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Abstract

We consider the operator H = L+V that is a perturbation of the Taibleson-Vladimirov
operator L = Dα by a potential V (x) = b ‖x‖−α, where α > 0 and b ≥ b∗, and prove that
the operator H is closable and its minimal closure is a non-negative definite self-adjoint
operator (where the critical value b∗ depends on α). While the operator H is non-negative
definite, the potential V (x) may well take negative values as b∗ < 0 for all 0 < α < 1.
The equation Hu = v admits a Green function gH(x, y), that is the integral kernel of
the operator H−1. We obtain sharp lower and upper bounds on the ratio of the Green
functions gH(x, y) and gL(x, y).
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1 Introduction

The spectral theory of nested fractals similar to the Sierpinski gasket, i.e. the spectral
theory of the corresponding Laplacians, is well understood. It has several important features:
Cantor-like structure of the essential spectrum and, as result, the large number of spectral
gaps, presence of infinite number of eigenvalues each of which has infinite multiplicity and
compactly supported eigenstates, non-regularly varying heat kernels which contain oscillating
in log t scale terms etc, see P. J. Grabner and W. Woess [21], G. Derfel and P. J. Grabner
[16] and A. Bendikov, W. Cygan and W. Woess [8].

The spectral properties mentioned above occur in the very precise form for the Taibleson-
Vladimirov Laplacian Dα, the operator of fractional derivative of order α. This operator can
be introduced in several different forms, say, as L2(Qp)-multiplier where Qp is the ring of p-
adic numbers, see works of M. H. Taibleson [40], V. S. Vladimirov, I. V. Volovich, E. I. Zelenov
[41]), [42], [43] and A. N. Kochubey [26].

The operator Dα is unitary equivalent to a hypersingular integral operator L acting in
L2(0, +∞),

Lf(x) =

∞∫

0

(f(x) − f(y)) J(x, y)dy, (1.1)

the kernel J(x, y) will be specified in this section. We refer to the articles A. Bendikov [3],
A. Bendikov and P. Krupski [6], and S. V. Kosyrev [27]. See also related articles S. Albeverio
and W. Karwowski [2], A. Bendikov, A. Grigor’yan, S. A. Molchanov, G. P. Samorodnitsky
and W. Woess [4], [5], [7], F. J. Dyson [17], S. A. Molchanov [34], [35], M. Del Muto and
A. Figà-Talamanca [15], J. J. Rodŕıges-Vega and W. A. Zúňiga-Galindo [39], W. A. Zúňiga-
Galindo [44].

Let us briefly outline the construction of the operator L. The equivalence Dα ' L will
follow from the fact that Dα and L are essentially self-adjoint operators having pure point
spectrums which consist of eigenvalues of infinite multiplicity with 0 as unique limit point, as
subsets of [0, +∞) their spectrums coincide. For detailed exposition we refer the interested
reader to the article A. Bendikov [3].

The ultrametric space Let us fix an integer p ≥ 2 and consider the family of partitions
{Πr : r ∈ Z} of the set X = [0, +∞) such that each Πr consists of all p-adic intervals
I = [kpr, (k + 1)pr). We call r the rank of the partition Πr (respectively, the rank of the
interval I ∈ Πr). Each interval of rank r is the union of p disjoint intervals of rank (r − 1).
Each point x ∈ X belongs to a certain interval Ir(x) of rank r, and the intersection of all
intervals Ir(x), r ∈ Z, is {x}.

The hierarchical distance d(x, y) is defined as zero if x = y and as the length l(I) of
the minimal p-adic interval I which contains x and y. Since any two points x 6= y belong
to a certain p-adic interval, d(x, y) < ∞. Clearly d(x, y) = 0 if and only if x = y, and
d(x, y) = d(y, x). Moreover, for arbitrary x, y and z holds the ultrametric inequality (which
is stronger than the triangle inequality)

d(x, y) ≤ max{d(x, z), d(z, y)}. (1.2)

The ultrametric space (X, d) is complete, separable, non-compact and proper metric space.
In (X, d) the set of all open balls is countable and coincides with the set of all p-adic intervals.
In particular, any two balls either do not intersect or one is a subset of another. Thus (X, d)
is a totally disconnected topological space.

The Borel σ-algebra generated by the ultrametric balls coincides with the Borel σ-algebra
generated by the Euclidean balls.
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As it follows from a general theorem that is due to M. Del Muto and A. Figà-Talamanca
[15, Section 2], the non-compact ultrametric space (X, d) is isometrically isomorphic to the
ring of p-adic numbers Qp equipped with its canonical ultrametric ‖x − y‖p. See Theorem 2.2
in Section 2.1 and discussion after this theorem about possible identification of a homogeneous
ultrametric space with a totally disconnected locally compact Abelian group.

The hierarchical Laplacian. Let D be the set of all compactly supported locally constant
functions. Let κ ∈]0, 1[ be a fixed parameter. The hierarchical Laplacian L is defined as a
sum of Laplacians (i.e. minus Markov generators) Lr of pure jump processes

(Lf)(x) =
+∞∑

r=−∞

(1 − κ)κr−1




f(x) −

1
l(Ir(x))

∫

Ir(x)

fdl






︸ ︷︷ ︸
(Lrf)(x)

. (1.3)

The series in (1.3) diverges in general but it is finite and belongs to all spaces Lp(0,∞), p ≥ 1,
for any function f ∈ D.

As each ”elementary” Laplacian Lr can be written in the form

Lrf(x) =

∞∫

0

(f(x) − f(y)) Jr(x, y)dy,

Jr(x, y)dy = (1 − κ)κr−1

︸ ︷︷ ︸
λr(x)

∙ 1Ir(x)(y)/l(Ir(x))dy
︸ ︷︷ ︸

Ur(x,dy)

,

the operator L coincides with a hypersingular integral operator

Lf(x) =

∞∫

0

(f(x) − f(y)) J(x, y)dy,

J(x, y) =
κ−1 − 1
1 − κp−1

∙
1

d(x, y)1+α
, α = −

log κ

log p
.

The operator L admits a complete system of compactly supported eigenfunctions. Indeed,
let I be a p-adic interval of rank r, and I1, I2, ..., Ip be its p-adic subintervals of rank r − 1.
Let us consider p functions

ψIi =
1Ii

l(Ii)
−

1I

l(I)
.

Each function ψIi belongs to D and satisfies the equation

LψIi = κr−1ψIi .

A Markov process {X(t), Px} with state space X is called a pure jump process if, starting from any point
x ∈ X , it has all sample paths constant except for isolated jumps, and right-continuous.

The basic data which defines the process are (i) a function 0 < λ(x) < ∞, and (ii) a Markov kernel U(x, dy)
satisfying U(x, {x}) = 0. Its Lalacian (i.e.minus Markov generator) has the form

Lf(x) =

∫

X
(f(x) − f(y)) λ(x)U(x, dy).

Intuitively a particle starting from x remains there for an exponentialy distributed time with parameter λ(x)
at which time it ”jumps” to a new position x′ according to distribution U(x, ∙) etc.
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When I runs over the set of all p-adic intervals the set of eigenfunctions ψIi forms a complete
system in L2(0,∞). In particular, L is essentially self-adjoint operator having a pure point
spectrum

Spec(L) = {0} ∪ {κr : r ∈ Z}.

Each eigenvalue κr has infinite multiplicity. In particular, the spectrum of L coincides with
its essential part. It follows that writing κ = p−α the operator L can be identified with the
Taibleson-Vladimirov operator Dα, the operator of fractional derivative of order α acting in
L2(Qp),

Dαψ(x) = −
1

Γp(−α)

∫

Qp

ψ(x) − ψ(y)

‖x − y‖1+α
p

dm(y).

Towards the general theory. There are already several publications on the spectrum
of the hierarchical Laplacian acting on a general ultrametric measure space (X, d,m), see
S. Albeverio and W. Karwowski [2], M. Aisenman and S. A. Molchanov [1], [35], [34], A.
Bendikov, A. Grigor’yan, P. Krupski, S.A. Molchanov, Ch. Pittet and W. Woess resp. [4],
[5], [6], [7]. Accordingly, the hierarchical Schrödinger-type operator, the subject of the present
work, was studied in F. J. Dyson [18], S. A. Molchanov, B. Vainberg [35], [36], [37], A. Bovier
[13], E. Kritchevski [30], [31], [32] (the hierarchical lattice of Dyson) and in V. S. Vladimirov,
I. V. Volovich, E. I. Zelenov and A. N. Kochuvey resp. [43], [42], [26] (the field of p-adic
numbers).

By the general theory developed in A. Bendikov, A. Grigor’yan, P. Krupski, Ch. Pittet
and W. Woess resp. [4], [5] and [6], any hierarchical Laplacian L acts in L2(X,m), is essen-
tially self-adjoint non-negative definite operator. It can be represented as a hypersingular
integral operator

Lf(x) =
∫

X

(f(x) − f(y))J(x, y)dm(y). (1.4)

Respectively, the quadratic form QL(u, u) := (L1/2u, L1/2u)L2(X,m) is a regular Dirichlet form
having representation

QL(u, u) =
1
2

∫

X×X

(f(x) − f(y))2J(x, y)dm(x)dm(y). (1.5)

The operator L has a pure point spectrum, its Markovian semigroup (e−tL)t>0 admits with
respect to m a continuous transition density p(t, x, y). In terms of certain (intrinsically related
to L) ultrametric d∗(x, y) the functions J(x, y) and p(t, x, y) can be represented in the form

J(x, y) =

1/d∗(x,y)∫

0

N(x, τ )dτ , (1.6)

p(t, x, y) = t

1/d∗(x,y)∫

0

N(x, τ ) exp(−tτ)dτ. (1.7)

The function N(x, τ ), the so called Spectral function, will be specified in the next section.
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Outline. Let us describe the main body of the paper. In Section 2 we introduce the notion
of homogeneous hierarchical Laplacian L and list its basic properties e.g. the spectrum of
the operator L is pure point, all eigenvalues of L have infinite multiplicity and compactly
supported eigenfunctions, the heat kernel p(t, x, y) exists and is a continuous function having
certain asymptotic properties etc. For the basic facts related to the ultrametric analysis of
heat kernels listed here we refer to A. Bendikov, A. Grigor’yan, P. Krupski, Ch. Pittet and
W. Woess [4], [5], [6].

As a special example we consider the case X = Qp, the ring of p-adic numbers endowed
with its standard ultrametric d(x, y) = ‖x − y‖p and the normed Haar measure m. The
hierarchical Laplacian L in our example coincides with the Taibleson-Vladimirov operator
Dα, the operator of fractional derivative of order α, see V. S. Vladimirov, I. V. Volovich, E.
I. Zelenov and A. N. Kochubey resp. [41], [43], and [26]. The most complete source for the
basic definitions and facts related to the p-adic analysis is N. Koblitz [25] and M. H. Taibleson
[40].

In the next section we consider the Schrödinger type operator H = Dα +V with potential
V ∈ L1

loc having local singularity, e.g. V (x) = b ‖x‖−α
p , 0 < α < 1. The main aim here is to

prove that under certain conditions on V the quadratic form

Q(u, u) := QDα(u, u) + QV (u, u)

where

QDα(u, u) =
∫ ∣
∣
∣Dα/2u

∣
∣
∣
2
dm, QV (u, u) =

∫
|u|2 V dm

is semibounded and whence defines a self-adjoint operator H. Under certain conditions on
V we will prove that D, the set of locally constant compactly supported functions, is indeed
a form core for Q(u, u).

We also prove several results about the negative part of the spectrum of H. For instance,
if V ∈ Lp for some p > 1/α, then the operator H has essential spectrum equals to the
spectrum of Dα. In particular, if H has any negative spectrum, then it consists of a sequence
of negative eigenvalues of finite multiplicity. If this sequence is infinite then it converges to
zero.

In the concluding section we consider the operator H = Dα + b ‖x‖−α
p assuming that

0 < α < 1 and b ≥ b∗, the critical value which will be specified later. We will prove that the
equation Hu = v admits a fundamental solution gH(x, y) (the Green function of the operator
H). The function gH(x, y) is continuous and takes finite values off the diagonal. Let gDα(x, y)
be the Green function of the operator Dα. The main result of this section is the following
statement: for any b ≥ b∗ there exists α−1

2 ≤ β < α such that

gH(x, y)
gDα(x, y)

�

(
‖x‖p

‖y‖p

∧
‖y‖p

‖x‖p

)β

,

where the sign � means that the ratio of the left- and right hand sides is bounded from below
and above by positive constants. This result must be compared with the Green function
estimates for Schrödinger operators on complete Riemannian manifolds, see A. Grigor’yan
[22].
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2 Preliminaries

2.1 Homogeneous ultrametric space

Let (X, d) be a locally compact and separable ultrametric space. Recall that a metric d is
called a ultrametric if it satisfies the ultrametric inequality

d(x, y) ≤ max{d(x, z), d(z, y)}, (2.1)

that is stronger than the usual triangle inequality. The basic consequence of the ultrametric
property is that each open ball is a closed set. Moreover, each point x of a ball B can be
regarded as its center, any two balls A and B either do not intersect or one is a subset of an-
other etc. In particular, the ultrametric space (X, d) is totally disconnected, see A. Bendikov
and P. Krupski [6] and references therein. In this paper we assume that the ultrametric space
(X, d) is proper, that is, each closed ball is a compact set.

To any ultrametric space (X, d) one can associate in a standard fashion a tree T . The
vertices of the tree are metric balls. T is an ultrametric space if distance between two balls
u and v is defined as diameter diam(uf v) of the minimal ball uf v which contains both u
and v. The boundary ∂T can be identified with the one-point compactification X ∪ {$} of
X.

We refer the reader to the article A. Bendikov and P. Krupski [6] for a treatment of the
association between an ultrametric space and the tree of its metric balls.

Definition 2.1. An ultrametric measure space (X, d,m) is called homogeneous if the group
of its isometries acts transitively and preserves the measure.

The following remarkable result is due to M. Del Muto and A. Figà-Talamanca [15, Section
2].

Theorem 2.2. Any homogeneous ultrametric measure space (X, d,m) can be identified with
certain locally compact Abelian group equipped with a translation invariant ultrametric and
the Haar measure.

For example, the set X = [0, +∞[ equipped with the ultrametric structure generated by
p-adic intervals and normed Lebesgues measure is a non-compact homogeneous ultrametric
measure space. Its tree of balls clearly coincides with the tree of balls associated with the
ring of p-adic numbers Qp, whence these two homogeneous ultrametric measure spaces are
isometrically isomorphic.

The identification in Theorem 2.2 is not unique. One possible way to define such identifi-
cation is to choose the sequence a = {an} of forward degrees associated with the tree of balls
T (cf. Fig. 1). This sequence is two-sided if X is non-compact and perfect (has no isolated
points), it is one-sided if X is compact and perfect, or if X is discrete. In the 1st case we
identify X with Ωa, the ring of a-adic numbers, in the 2nd case with Δa ⊂ Ωa, the ring of
a-adic integers, and in the 3rd case with the discrete group [Ωa : Δa]. Notice, that Ωa = Qp,
the ring of p-adic numbers (resp. Δa = Zp, the ring of p-adic integers) whenever all numbers
an are the same and equal p. The group [Qp : Zp] is just infinite product of cyclic groups Zp

of order p.
We refer the reader to the monograph E. Hewitt and K. A. Ross [23] for the comprehensive

treatment of special groups Ωa, Δa and [Ωa : Δa].
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Figure 1: Tree of balls with forward degrees an = 2

2.2 Homogeneous hierarchical Laplacian

Let (X, d,m) be a non-compact homogeneous ultrametric measure space. Let B be the set
of all open balls, B(x) ⊂ B the set of balls centred at x, and C : B → (0,∞) a function
satisfying the following conditions:

(i) C(A) = C(B) for any two balls A and B of the same diameter,

(ii) λ(B) :=
∑

T∈B: B⊆T

C(T ) < ∞ for all B ∈ B,

(iii) supB∈B(x) λ(B) = ∞ for any non-isolated x.

The class of functions C(B) satisfying these conditions is reach enough, e.g. one can
choose

C(B) = (1/m(B))α − (1/m(B′))α

for any two closest neighboring balls B ⊂ B′. In this case λ(B) = (1/m(B))α.
The homogeneous hierarchical Laplacian L is defined (pointwise) as

Lf(x) :=
∑

B∈B(x)

C(B)



f(x) −
1

m(B)

∫

B

fdm



 . (2.2)

In general, the series in (2.2) diverges but for f ∈ D, the set of all locally constant compactly
supported functions, it converges in Banach spaces Lp(X,m), 1 ≤ p < ∞, and in C∞(X).

Let us choose any two closest neighboring balls B ⊂ B′ and set

fB =
1B

m(B)
−

1B′

m(B′)
. (2.3)

Then clearly fB ∈ D and one can check that

LfB(x) = λ(B′)fB(x). (2.4)

As the couple B ⊂ B′ runs over all nearest neighboring balls in B the system {fB : B ∈ B}
is complete. In particular, we conclude that L : D → L2(X,m) is an essentially self-adjoint
operator.

The intrinsic ultrametric d∗(x, y) associated with L is defined as follows

d∗(x, y) :=

{
0 when x = y

1/λ(xf y) when x 6= y
, (2.5)
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where xf y is the minimal ball containing both x and y. In particular, for any non-singleton
ball B we have

λ(B) =
1

diam∗(B)
. (2.6)

The spectral function τ → N(τ), see equation (1.6), is defined as the left-continuous step-
function having jumps at the points λ(B), and taking values

N(λ(B)) = 1/m(B).

The volume function V (r) is defined by setting V (r) = m(B) where the ball B has d∗-radius
r. It is easy to see that

N(τ) = 1/V (1/τ). (2.7)

The Markovian semigroup Pt = e−tL, t > 0, admits a continuous density p(t, x, y) w.r.t. m,
we call it the heat kernel. The function p(t, x, y) can be represented in the form (1.7).

For λ > 0 the Markovian resolvent Gλ = (λ + L)−1 admits a continuous strictly positive
integral kernel g(λ, x, y). The operator Gλ is well defined for λ = 0 (i.e. the Markovian semi-
group (Pt)t>0 is transient) if and only if for some (equivalently, for all) x ∈ X the reciprocal to
the volume function τ → 1/V (τ) is integrable at ∞. The integral kernel g(x, y) := g(0, x, y),
called also the Green function, is of the form

g(x, y) =

+∞∫

r

dτ

V (τ)
, r = d∗(x, y). (2.8)

Under certain Tauberian conditions it takes the form

g(x, y) �
r

V (r)
, r = d∗(x, y). (2.9)

2.3 Subordination

Let Φ : R+ → R+ be an increasing homeomorphism. For any two nearest neighboring balls
B ⊂ B′ we define

C(B) = Φ (1/m(B)) − Φ
(
1/m(B′)

)
. (2.10)

Let LΦ be the corresponding to C(B) hierarchical Laplacian. The following properties hold
true:

(i) λ(B) = Φ (1/m(B)). In particular, the Laplacians LΦ and LId are related by the equation
LΦ = Φ(LId).

(ii) d∗(x, y) = 1/Φ(1/m(xf y)).

(iii) V (r) ≤ 1/Φ−1(1/r).

(iv) V (r) � 1/Φ−1(1/r) whenever both Φ and Φ−1 are doubling and the inequality m(B′) ≤
Cm(B) holds for some C > 0 and all nearest neighboring balls B ⊂ B′. In particular,
in this case we have

pΦ(t, x, y) � t ∙ min

{
1
t
Φ−1

(
1
t

)

,
1

m(xf y)
Φ

(
1

m(xf y)

)}

.

In the case Φ(τ) is a Bernstein function the association LΦ = Φ(LId) has been studied in the well-known
Bochner’s subordination theory W. Feller [19].
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2.4 Multipliers

As a special case of the general construction consider X = Qp, the ring of p-adic numbers
equipped with its standard ultrametric d(x, y) = ‖x − y‖p. Notice that the ultrametric
spaces (Qp, d) and ([0,∞), d) with non-Euclidean d, as explained in the introduction, are
isometrically isomorphic (the isometry can be established via identification of their trees of
metric balls).

Let F : f → f̂ be the Fourier transform of the function f . It is known, see M. H. Taibleson
[40], V. S. Vladimirov, A. N. Kochubei [43], [26], that F : D → D is a bijection.

Let Φ : R+ → R+ be an increasing homeomorphism. The self-adjoint operator Φ(D) we
define as multiplier, that is,

Φ̂(D)f(ξ) = Φ(‖ξ‖p)f̂(ξ), ξ ∈ Qp. (2.11)

By A. Bendikov, A. Grigor’yan, Ch. Pittet and W. Woess [5, Theorem 3.1], Φ(D) is a
homogeneous hierarchical Laplacian. The eigenvalues λ(B) of the operator Φ(D) are numbers

λ(B) = Φ

(
p

m(B)

)

= Φ

(
p

diam(B)

)

. (2.12)

Let pΦ(t, x, y) be the heat kernel associated with the operator Φ(D). Assuming that both Φ
and Φ−1 are doubling we get the following relationship

pΦ(t, x, y) � t ∙ min

{
1
t
Φ−1

(
1
t

)

,
1

‖x − y‖p

Φ

(
1

‖x − y‖p

)}

. (2.13)

The Taibleson-Vladimirov operator Dα introduced in M. H. Taibleson [40] and V. S. Vladimirov
[43] is the multiplier corresponding to the function Φ(τ) = τα . On the set D it can be rep-
resented in the form

Dαψ(x) = −
1

Γp(−α)

∫

Qp

ψ(x) − ψ(y)

‖x − y‖1+α
p

dm(y), (2.14)

where Γp(z) = (1−pz−1)(1−p−z)−1 is the p-adic Gamma-function. The function z → Γp(z) is
meromorphic in the complex plane C and satisfies the functional equation Γp(z)Γp(1−z) = 1.

By what we said above the heat kernel pα(t, x, y), the transition density of the Markovian
semigroup (e−tDα

)t>0, can be estimated as follows

pα(t, x, y) �
t

(t1/α + ‖x − y‖p)
1+α

, (2.15)

In particular, the Markov semigroup (e−tDα
)t>0 is transient if and only if α < 1. In the

transient case the Green function gα(x, y) can be computed explicitly

gα(x, y) =
1

Γp(α)
1

‖x − y‖1−α
p

. (2.16)

For all facts listed above we refer the reader to A. Bendikov, A. Grigor’yan, P. Krupski, Ch.
Pittet and W. Woess [4], [5] and [6].
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2.5 The symbol of the hierarchical Laplacian

Identifying X with a locally compact Abelian group we can regard −L as an isotropic Lévy
generator. By (1.4), the operator L on D takes the form

Lf(x) =
∫

X

(f(x) − f(y))J(x − y)dm(y), (2.17)

or equivalently, in terms of the Fourier transform,

L̂f(θ) = L̂(θ) ∙ f̂(θ), θ ∈ X̂, (2.18)

where X̂ is the dual Abelian group (e.g. Q̂p can be identified with Qp) and

L̂(θ) =
∫

X

[1 − Re 〈h, θ〉]J(h)dm(h). (2.19)

The function L̂(θ) ≥ 0, the symbol of the Lévy generator −L, is a continuous negative definite

function Ch. Berg and G. Forst [11]. In particular, the function
√

L̂(θ) is subadditive. By the
subordination property A. Bendikov, A. Grigor’yan, Ch. Pittet and W. Woess [5, Theorem
3.1], the function L̂(θ)2 is the symbol of symmetric Lévy generator −L2, so the function

L̂(θ) =
√

L̂(θ)2 is subadditive as well, i.e. it satisfies the triangle inequality

L̂(θ1 + θ2) ≤ L̂(θ1) + L̂(θ2). (2.20)

Since −L is an isotropic Lévy generator [5, Sec. 5.2 ] , a stronger property holds true

Theorem 2.3. The function L̂(θ) satisfies the ultrametric inequality

L̂(θ1 + θ2) ≤ max{L̂(θ1), L̂(θ2)}. (2.21)

Proof. In order to simplify notation we assume that X = Qp, the ring of p-adic numbers.
Let B ⊂ B′ be two nearest neighboring balls centred at the neutral element. Notice that
both B and B′ are compact subgroups of the group Qp, say B = p−kZp and B′ = p−k−1Zp.
Applying the Fourier transform to the both sides of equation (2.4) we get

L̂(θ)f̂B(θ) = λ(B′)f̂B(θ). (2.22)

The measure ωB = (1Bm)/m(B) is the normalized Haar measure of the compact subgroup
B, similarly for ωB′ . Since for any locally compact Abelian group, the Fourier transform of
the normalized Haar measure of any compact subgroup A is the indicator of its annihilator
group A⊥, and in our particular case B⊥ = pkZp and (B′)⊥ = pk+1Zp, we obtain

f̂B(θ) = 1B⊥(θ) − 1(B′)⊥(θ) = 1∂B⊥(θ), (2.23)

where ∂B⊥ is the sphere B⊥ \(B′)⊥. Equations (2.23) and (2.4) imply that the function L̂(θ)
takes constant value λ(B′) on the sphere ∂B⊥, i.e. L̂(θ) = ψ(‖θ‖p) for some function ψ(τ)
such that ψ(0) = 0 and ψ(+∞) = +∞. Since C ⊂ D implies λ(C) > λ(D), the function ψ(τ)
can be chosen to be continuous and increasing, so L̂(θ) = ψ(‖θ‖p) satisfies the ultrametric
inequality (2.21) as claimed.
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3 Schrödinger-type operators

Let (X, d,m) be a homogeneous ultrametric measure space and L a homogeneous hierarchical
Laplacian on it. In this section we embark on the study of Schrödinger-type operators

Hf(x) = Lf(x) + V (x)f(x).

Our goal is to find conditions such that one can associate with the equation above a self-
adjoint operator H acting in L2(X,m).

3.1 Locally bounded potentials

If we assume that the potential V is a locally bounded function then

(Hu)(x) := (Lu)(x) + V (x)u(x)

is a well defined symmetric operator H : D → L2(X,m). For the proof of the following
theorem we refer to the paper A. Bendikov, A. Grigor’yan and S. A. Molchanov [9, Theorem
3.1]

Theorem 3.1. Assume that V is a locally bounded function, then
1. The operator H is essentially self-adjoint.
2. If V (x) → +∞ as x → $, then the self-adjoint operator H has a compact resolvent.

(Thus, its spectrum is discrete).
3. If V (x) → 0 as x → $, then the essential spectrum of H coincides with the spectrum

of L. (Thus, the spectrum of H is pure point and the negative part of the spectrum consists
of isolated eigenvalues of finite multiplicity).

Remark 3.2. For the classical Schrödinger operator H = −Δ + V defined on the set of
compactly supported smooth functions the statement similar to the statement 1 of Theorem
3.1 is known as the Sears’s theorem: H is essentially self-adjoint if the potential V admits a
low bound

V (x) ≥ −Q(|x|),

where Q(r) > 0 is a continuous non-decreasing function such that
∫ ∞

0
Q(r)−1/2dr = ∞,

and H may fail to be essentially self-adjoint otherwise, see F. A. Beresin and M. A. Shubin
[10, Chapter II, Theorem 1.1 and Example 1.1].

3.2 Potentials with local singularities

If we are interested in potentials with local singularities, such as V (x) = b ‖x‖−β
p , b ∈ R, then

certain local conditions on the potential V are necessary in order to prove that the quadratic
form

Q(u, u) := QL(u, u) + QV (u, u), (3.1)

defined on the set
dom(Q) := dom(QL) ∩ dom(QV )

is a densely defined bounded below closed quadratic form, whence it is associated to a bounded
below self-adjoint operator H, see E. B. Davies [14, Section 4.4]. It is customary to write
H = L+V , but it must be remembered that this is a quadratic form sum and not an operator
sum as in the previous subsection.
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Theorem 3.3. If 0 ≤ V ∈ L1
loc(X,m), then the quadratic form (3.1) is a regular Dirichlet

form. In particular, it is the form of a non-negative self-adjoint operator H,

Q(u, u) = (H1/2u,H1/2u)

and the set D is a core for Q.

Proof. The set D belongs to both dom(QL) and dom(QV ) hence Q is densely defined. Set
Vτ = V ∧ τ and define on the set dom(QL) the form

Qτ (u, u) = QL(u, u) + QVτ (u, u).

Since Vτ is bounded the form Qτ is closed. In particular, the function u → Qτ (u, u) is lower
semicontinuous. It follows that the function u → Q(u, u) = sup{Qτ (u, u) : τ > 0} is lower
semicontinuous as well. Hence by [14, Theorem 4.4.2] the form Q is closed, and thus it is the
form of a non-negative definite self-adjoint operator H. Clearly the form Q is Markovian,
i.e. the normal contraction operates on (Q,F) where F = dom(Q). Thus Q is a Dirichlet
form. Let us show that D is a core for Q, i.e. that Q is a regular Dirichlet form, see M.
Fukushima [20]. Step 1 For u ∈ dom(Q) we set un = ((−n)∨ u)∧ n, then un ∈ dom(Q) and
Q(u− un, u− un) → 0, see M. Fukushima [20, Theorem 1.4.2]. Therefore the set of bounded
functions in dom(Q) is a core for Q. Step 2 Let B be a ball centred at the neutral element.
Let u ∈ dom(QL) be bounded and uB = 1B ∙ u. The function 1B is in D ⊂ dom(QL), whence
applying M. Fukushima [20, Theorem 1.4.2] we get: uB ∈ dom(QL) and

√
QL(uB , uB) ≤

√
QL(u, u) + ‖u‖∞ ∙

√
QL(1B , 1B).

The following auxiliary result is of its own interest: Let B′ ⊃ B be the closest neighboring
balls and λ(B′) the eigenvalue of L corresponding to the ball B′, see equations (2.3) and
(2.4), then

1
2
m(B)λ(B′) < QL(1B , 1B) < 2m(B)λ(B′). (3.2)

Indeed, to prove inequality (3.2) we write

1B

m(B)
=

∑

T∈B: B⊆T

fT

where the series converges in L2(X,m). As λ(C) < λ(D) for any two balls C ⊃ D the series
below converges in L2(X,m) (and also in uniform metric) and

L1B = m(B)
∑

T∈B: B⊆T

LfT = m(B)
∑

T∈B: B⊆T

λ(T ′)fT .

Hence 1B ∈ dom(L) and the following equation holds true

QL(1B , 1B) = (L1B , 1B) = m(B)2
∑

T∈B: B⊆T

λ(T ′) ‖fT ‖
2

= m(B)2
∑

T∈B: B⊆T

λ(T ′)

(
1

m(T )
−

1
m(T ′)

)

.

In turn, the above identity yield the desired inequalities

QL(1B , 1B) > m(B)λ(B′)

(

1 −
m(B)
m(B′)

)

≥
1
2
m(B)λ(B′)
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and

QL(1B , 1B) < m(B)λ(B′)
∑

T∈B: B⊆T

m(B)
m(T )

≤ 2m(B)λ(B′)

as it was claimed. In particular, if we assume that

lim
B↗X

m(B)λ(B′) = 0 (3.3)

(as it happens in the case of the operator L = Dα, α > 1) then

lim sup
B↗X

QL(uB , uB) ≤ QL(u, u). (3.4)

On the other hand, since the form QL is closed the function u → QL(u, u) is lower semicon-
tinuous whence we get

lim inf
B↗X

QL(uB , uB) ≥ QL(u, u). (3.5)

Thus, assuming that (3.3) holds, we obtain

lim
B↗X

QL(uB , uB) = QL(u, u). (3.6)

By the Lebesgue’s convergence theorem,

lim
B↗X

QV (uB , uB) = QV (u, u). (3.7)

Hence applying (3.6) and (3.7) we get

lim
B↗X

Q(uB , uB) = Q(u, u). (3.8)

Step 3 Let (Rλ)λ>0 be the Markov resolvent corresponding to Q. Let Q1(f, g) := Q(f, g) +
(f, g). Then for any function v ∈ L2(X,m) by the Lebesgue’s convergence theorem

Q1(uB , R1v) = (uB , v) → (u, v) = Q1(u,R1v)

Since R1(L2(X,m)) is a dense set in the Hilbert space (F , ‖∙‖∗), where F = dom(Q) and
‖u‖∗ =

√
Q1(u, u), the sequence uB converges weakly in (F , ‖∙‖∗) to u, i.e.

Q1(uB , w) → Q1(u,w), ∀w ∈ dom(Q). (3.9)

Using equations (3.8) and (3.9) we obtain:

lim
B↗X

Q1(u − uB, u − uB) = lim
B↗X

(Q1(u, u) − 2Q1(uB , u) + Q1(uB , uB))

= Q1(u, u) − 2 lim
B↗X

Q1(uB , u) + lim
B↗X

Q1(uB , uB)

= Q1(u, u) − 2Q1(u, u) + Q1(u, u) = 0.

Thus, if condition (3.8) holds, the set of bounded functions with compact support in dom(Q)
is a core for Q as desired. Step 4 In order to prove property (3.8) without any limitation
on the spectrum of L we are forced to apply the Fourier transform argument and the metric
properties of the symbol L̂(θ) of the operator L. To simplify notation we assume that X = Qp

so that X̂ = Qp. Any ball B centred at the neutral element is a compact subgroup of X.
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Since the Fourier transform of the normalized Haar measure of a compact subgroup is the
indicator of its annihilator group, we obtain

QL(uB, uB) =
∫

X̂
L̂(θ) |ûB(θ)|2 dm̂(θ)

=
∫

X̂
L̂(θ) |û ∗ m̂B⊥(θ)|2 dm̂(θ),

where B⊥ is the annihilator group of the compact subgroup B ⊂ X and m̂B⊥ is the normed
Haar measure of B⊥. Having this in mind and using the inequality

|û ∗ m̂B⊥ |2 ≤ |û|2 ∗ m̂B⊥

we get

QL(uB , uB) ≤
∫

X̂
L̂(θ)

(
|û|2 ∗ m̂B⊥

)
(θ)dm̂(θ)

=
∫

X̂
L̂(θ)

(∫

B⊥
|û(θ + ζ)|2 dm̂B⊥(ζ)

)

dm̂(θ)

=
∫

B⊥

(∫

X̂
L̂(θ + ζ) |û(θ)|2 dm̂(θ)

)

dm̂B⊥(ζ).

By Theorem 2.3 L̂(θ) = ψ(‖θ‖p), where ψ(τ) is an increasing continuous function. It follows

that θ → L̂(θ) satisfies the ultrametric inequality (2.21), and therefore

QL(uB, uB) ≤
∫

B⊥

(∫

X̂
max

{
L̂(θ), L̂(ζ)

}
|û(θ)|2 dm̂(θ)

)

dm̂B⊥(ζ)

≤
∫

B⊥

(∫

X̂

(
L̂(θ) + L̂(ζ)

)
|û(θ)|2 dm̂(θ)

)

dm̂B⊥(ζ).

As m̂B⊥(1) = 1 all the above yield the following inequality

QL(uB , uB) ≤ QL(u, u) +

(∫

B⊥
L̂(ζ)dm̂B⊥(ζ)

)

‖u‖2 .

When B ↗ X the measure m̂B⊥ converges weakly to the Dirac measure concentrated at the
neutral element. As L̂(0) = 0 we finally get

lim sup
B↗X

QL(uB , uB) ≤ QL(u, u). (3.10)

Evidently (3.10), (3.5) and (3.7) yield the equation

lim
B↗X

Q(uB , uB) = Q(u, u)

which holds without any restriction on the spectrum of the operator L. Thus, as in Step 3,
we come to conclusion that the set of bounded compactly supported functions in dom(Q) is a
core for Q as desired. Step 5 Let now u ∈ dom(Q) be bounded and has a compact support.
Let B be a ball centred at the neutral element of X (recall that B is a compact subgroup of
X) and mB be its normed Haar measure. We set uB = u ∗ mB. The function uB is locally

constant and has a compact support, hence it belongs to D ⊂ dom(Q). We have ûB = û ∙1B⊥

whence

lim
B→{e}

∥
∥u − uB

∥
∥2

2
= lim

B⊥→X̂

∫

(B⊥)c

|û(θ)|2 dm̂(θ) = 0, (3.11)
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similarly

lim
B→{e}

QL(u − uB , u − uB) = lim
B⊥→X̂

∫

(B⊥)c

L̂(θ) |û(θ)|2 dm̂(θ) = 0. (3.12)

There exists a compact set K which contains the support of every function u − uB provided
diam(B) ≤ 1. Given ε > 0 there exists a decomposition V |K = V1 + V2 such that ‖V1‖1 < ε
and V2 ∈ L∞(X,m). It follows that

QV (u − uB, u − uB) =
∫

K

V
∣
∣u − uB

∣
∣2 dm

=
∫

K

V1

∣
∣u − uB

∣
∣2 dm +

∫

K

V2

∣
∣u − uB

∣
∣2 dm

≤ 4ε ‖u‖2
∞ + ‖V2‖∞

∥
∥u − uB

∥
∥2

2

whence
lim sup
B→{e}

QV (u − uB , u − uB) ≤ 4ε ‖u‖2
∞ . (3.13)

Clearly equations (3.11), (3.12) and (3.13) yield the desired result

lim
B→{e}

Q1(u − uB , u − uB) = 0,

i.e. D is indeed a core for Q = QL + QV .

Remark 3.4. It is clear that Theorem 3.3 can be extended for those V which are bounded
below and in L1

loc(X,m) by simply adding a large enough positive constant. If, however, we
are interested in V with negative local singularities, then stronger local conditions on V are
necessary in order to be able to prove that the form Q is closed.

Definition 3.5. Let p ≥ 1 be fixed. We say that a potential V lies in Lp + L∞ if one can
write V = V ′ + V ′′where V ′ ∈ Lp(X,m) and V ′′ ∈ L∞(X,m) . This decomposition is not
unique, and, if it is possible at all, then one can arrange for ‖V ′‖p to be as small as one
chooses.

Theorem 3.6. Consider X = Qp equipped with the Haar measure m. Let L = Dγ acting
in L2(Qp,m) and Q = QL + QV be the quadratic form (3.1) where V ∈ Lp + L∞ for some
p > 1/γ. Then:

1. Q is a densely defined bounded below closed quadratic form. In particular, Q is asso-
ciated with a bounded below self-adjoint operator H.

2. If 2 ≤ 1/γ < p then dom(H) = dom(Dγ). The same is true if 1/γ < 2 and p = 2 .

Proof. The set D belongs to both dom(QL) and dom(QV ) whence Q is densely defined.
Given ε > 0 we may write |V | = W + W ′ where ‖W‖p < ε and W ′ ∈ L∞(X,m). We claim
that if ε > 0 is sufficiently small, then

∥
∥
∥W 1/2u

∥
∥
∥

2

2
≤

1
2
QL(u, u) + c0 ‖u‖

2
2 (3.14)

for some constant c0 > 0 and all u ∈ dom(QL). Clearly inequality 3.14 yield that
∫

|V | |u|2 dm ≤
∥
∥
∥W 1/2u

∥
∥
∥

2

2
+
∥
∥W ′

∥
∥
∞ ‖u‖2

2

≤
1
2
QL(u, u) + c1 ‖u‖

2
2
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for some constant c1 > 0 and all u ∈ dom(QL). Thus for c2 > 2c1 we get

1
2

{
QL(u, u) + c2 ‖u‖

2
2

}
≤ Q(u, u) + c2 ‖u‖

2
2 ≤

3
2

{
QL(u, u) + c2 ‖u‖

2
2

}
.

It follows that the quadratic form u → Q(u, u)+ c2 ‖u‖
2
2 is non-negative and closed whence it

is associated with a non-negative self-adjoint operator, which is clearly equal to H + c2I. To
prove the inequality 3.14 we need some auxiliary Lp-estimates which are of their own interest.

E1. If 0 < α ≤ 1/(2γ) and 2 ≤ p < 2/(1 − 2αγ), then (Dγ + I)−α is a bounded linear
operator from L2(X,m) to Lp(X,m). If α > 1/(2γ), then (Dγ + I)−α is a bounded
linear operator from L2(X,m) to L∞(X,m).

E2. If 0 < α ≤ 1/(2γ) and W ∈ Lq(X,m), then A : = W ∙ (Dγ + λI)−α is a bounded linear
operator on L2(X,m) provided 1/(αγ) < q ≤ ∞. Moreover, there exists a constant
c > 0 such that ‖A‖L2→L2 ≤ c ‖W‖q for all such W . The same bound holds in the
case α > 1/(2γ) and q = 2. In both cases the operator A is a compact operator on L2.
Moreover, limλ→∞ ‖W ∙ (Dγ + λI)−α‖L2→L2 = 0.

Proof of statement (E1). Assume first that 0 < α ≤ 1/(2γ). If we define the function
g(y) := (‖y‖γ

p + 1)−α and assume that 1/(αγ) < s < ∞ then

‖g‖s
s =

∫

Qp

dm(y)
(‖y‖γ

p + 1)αs
=

(

1 −
1
p

) ∞∑

τ=−∞

pτ

(pτγ + 1)αs
< ∞.

If k = ̂(Dγ + I)−αf and f ∈ L2, then k(y) = g(y)f̂(y). Putting 1/q = 1/s + 1/2, 1/(αγ) <
s ≤ ∞, we deduce that 1 < q ≤ 2 and

‖k‖q ≤ ‖g‖s

∥
∥
∥f̂
∥
∥
∥

2
= c1 ‖f‖2 .

If 1/p + 1/q = 1, then 2 ≤ p < ∞ and, as it follows from the Hausdorff-Young theorem,

∥
∥(Dγ + I)−αf

∥
∥

p
=
∥
∥
∥k̂
∥
∥
∥

p
≤ ‖k‖q ≤ c1 ‖f‖2 .

We have 1/p = 1 − 1/q = 1/2 − 1/s and 1/(αγ) < s ≤ ∞, whence p increases from 2 to
2/(1 − 2αγ) as s decreases from ∞ to 1/(αγ). If α > 1/(2γ), then the function g defined
above lies in L2 and we deduce that

‖k‖1 =
∥
∥
∥gf̂

∥
∥
∥

1
≤ ‖g‖2

∥
∥
∥f̂
∥
∥
∥

2
= c2 ‖f‖2

whence as above ∥
∥(Dγ + I)−αf

∥
∥
∞ =

∥
∥
∥k̂
∥
∥
∥
∞

≤ ‖k‖1 ≤ c2 ‖f‖2

as desired. Proof of the statement (E2). For any fixed λ > 0 if 0 < α ≤ 1/(2γ), then
∥
∥W ∙ (Dγ + λI)−αf

∥
∥

2
≤ ‖W‖q

∥
∥(Dγ + λI)−αf

∥
∥

p

provided 1/2 = 1/p+1/q. The condition 2 ≤ p < 2/(1−2αγ) is equivalent to 1/(αγ) < q ≤ ∞.
We apply the statement (E1) to get the desired conclusion. The case α > 1/(2γ) is similar,

∥
∥W ∙ (Dγ + λI)−αf

∥
∥

2
≤ ‖W‖2

∥
∥(Dγ + λI)−αf

∥
∥
∞ .
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To prove compactness of the operator A = W ∙ (Dγ + λI)−α we choose a sequence Wn ∈ D
such that Wn → W in Lq. Let Φn be a strictly increasing function such that Φn(τ) = τγ for
0 ≤ τ ≤ n and Φn(τ) � eτ as τ → ∞. If we set An = Wn∙(Φn(D) + λI)−α then An → A
in the operator norm. Since the set of compact operators is closed under norm limits, it is
sufficient to prove that each An is a Hilbert-Schmidt operator. Each operator An is unitary
equivalent to the integral operator Ân : û → Ânu which has the kernel

Ân(θ, ζ) = Ŵn(θ − ζ)(Φn(‖ζ‖) + λ)−α := Ŵn(θ − ζ)G(ζ)

so that the Hilbert-Schmidt norm
∥
∥
∥Ân

∥
∥
∥of the operator Ân is

∥
∥
∥Ân

∥
∥
∥ = ‖Wn‖2 ‖G‖2 < ∞.

Thus the operatorA = W ∙ (Dγ + λI)−α is compact and clearly its norm tend to zero as
λ → ∞. Let us turn to the proof of the claim 3.14. To prove the claim in the case 0 < γ ≤ 1
and p > 1/γ we write

∥
∥
∥W 1/2u

∥
∥
∥

2

2
=
∥
∥
∥W 1/2 ∙ (Dγ + I)−1/2 ∙ (Dγ + I)1/2u

∥
∥
∥

2

2

≤
∥
∥
∥W 1/2 ∙ (Dγ + I)−1/2

∥
∥
∥

2

L2→L2

∥
∥
∥(Dγ + I)1/2u

∥
∥
∥

2

2

=
∥
∥
∥W 1/2 ∙ (Dγ + I)−1/2

∥
∥
∥

2

L2→L2

(
QL(u, u) + ‖u‖2

2

)

≤ c
∥
∥
∥W 1/2

∥
∥
∥

2

q

(
QL(u, u) + ‖u‖2

2

)
≤

1
2
QL(u, u) + c1 ‖u‖

2
2

provided ε > 0 is chosen small enough and q = 2p > 2/γ as in the statement (E2) with
α = 1/2. The case γ > 1 is similar: The restriction p > 1/γ becomes p ≥ 1. We set
Y = {|V | > τ} and W = |V | 1Y . By Markov inequality m(Y ) ≤ τ−p ‖V ‖p

p < ∞ whence

‖W‖1 = o(1) as τ → ∞. In particular, W 1/2 ∈ L2 and
∥
∥W 1/2

∥
∥

2
= o(1) as τ → ∞. Applying

the second part of the statement (E2) with α = 1/2 and q = 2 we come to the conclusion
∥
∥
∥W 1/2u

∥
∥
∥

2

2
≤ c

∥
∥
∥W 1/2

∥
∥
∥

2

2

(
QL(u, u) + ‖u‖2

2

)

≤
1
2
QL(u, u) + c1 ‖u‖

2
2 ,

as desired. To prove that dom(H) = dom(Dγ) we first write V = V ′ + V ′′, where V ′ ∈
Lp(X,m) and V ′′ ∈ L∞(X,m). The statement (E2) yields that

lim
λ→∞

∥
∥V ′ ∙ (Dγ + λI)−1

∥
∥

L2→L2 = 0.

We also have
∥
∥V ′′ ∙ (Dγ + λI)−1

∥
∥

L2→L2 ≤
∥
∥V ′′

∥
∥
∞

∥
∥(Dγ + λI)−1

∥
∥

L2→L2 = λ−1
∥
∥V ′′

∥
∥
∞

for all λ > 0, so
lim
t→∞

∥
∥V ∙ (Dγ + λI)−1

∥
∥

L2→L2 = 0.

For any 1 > δ > 0 small enough we conclude that if λ > 0 is chosen large enough then

‖V f‖2 ≤ δ ‖Dγf‖2 + λδ ‖f‖2

for all f ∈ dom(Dγ). Thus V is a relatively bounded perturbation of Dγwith a relative bound
δ < 1 whence dom(Dγ +V ) = dom(Dγ) by an application of E. B. Davies [14, Theorem 1.4.2].
The proof is now completed.
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Remark 3.7. The number N := 2/γ is the so called spectral dimension related to the
operator Dγ (remember that the topological dimension of the state space Qp is zero). The
value of the number N in our setting is similar to the value of the topological dimension in
the classical potential theory, e.g. one can regard the estimates (E.1) and (E.2) as a version
of the well known estimates for the operator −Δ in the Euclidean space RN , see E. B. Davies
[14, Sec. 3.6]. One more example is the relation

pγ(t, x, x) � t−N/2 (3.15)

which holds for the heat kernel pγ(t, x, y) of the operator Dγ , see equation (2.15) and A.
Bendikov, W. Cygan and W. Woess [8] for a more advanced study of asymptotic relation
(3.15).

3.3 The positive spectrum

We find criteria on the potential of a Schrödinger-type operator H = L+V to have spectrum
which is contained in the interval [0,∞). We assume that the quadratic form Q = QL + QV

is a densely defined bounded below closed quadratic form having D as a core, and thus H
is a bounded below self-adjoint operator associated with Q. Remember that this happens if
e.g. the potential V satisfy one of the hypotheses of Theorem 3.3 and Theorem 3.6) above.
Notice however that even if Spec(H) is contained in the interval [0,∞), the form Q is not a
Dirichlet form unless V ≥ 0.

In what follows we use the notion Γ(u, v) for the square of gradient defined as follows: for
all u, v ∈ D we set

Γ(u, v) :=
1
2
{uLv + vLu − L(uv)} . (3.16)

Let J(x− y) be the jump kernel associated with the (non-local) hierarchical Laplacian L, see
equations (2.17) and (2.19). It is straightforward to show that the following identities hold
true:

Γ(u, v)(x) =
1
2

∫

X
(u(y) − u(x)) (v(y) − v(x)) J(x − y)dm(y), (3.17)

QL(u, v) =
∫

X
Γ(u, v)dm, (3.18)

QL(uv,w) =
∫

X
vΓ(u,w)dm +

∫

X
uΓ(v, w)dm, (3.19)

∫

X
vΓ(u2, w)dm − 2

∫

X
vuΓ(u,w)dm (3.20)

=
1
2

∫

X×X
(u(y) − u(x))2 (w(y) − w(x)) (v(y) − v(x)) J(x − y)dm(x)dm(y).

In particular, we have
∫

X
wΓ(u2, w)dm − 2

∫

X
wuΓ(u,w)dm (3.21)

=
1
2

∫

X×X
(u(y) − u(x))2 (w(y) − w(x))2 J(x − y)dm(x)dm(y) ≥ 0.

The identities listed above can be extended to the set of all bounded functions u, v and w
from dom(QL). We refer to M. Fukushima [20, Sec. 5].

By the interpolation the operator L : D → L2(X,m) can be extended to each of the
Banach spaces C∞(X) and Lq(X,m), 1 ≤ q < ∞, as minus Markov generator. To simplify
our notation the extended operator we still denote by L denoting if required its domain.
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Theorem 3.8. Assume that there exists a function 0 < f ∈ domC∞(X)(L) such that the
inequality

V (x) ≥ −
Lf(x)
f (x)

holds m-almost everywhere. Then there exists a self-adjoint operator H ≥ 0 associated with
the quadratic form Q = QL + QV , that is, Q(u, u) = (Hu, u), ∀u ∈ dom(H) ⊂ dom(Q). In
particular, Spec(H) ⊆ [0,∞).

Proof. Let us assume first that f is a locally constant function. Let us put Wf := (−Lf)/f
and let ϕ ∈ D. If we put ψ := ϕ/f ∈ D, then using equations (3.18)-(3.21) we get

Q(ϕ,ϕ) =
∫

X
(ϕLϕ + V ϕ2)dm ≥

∫

X
(ϕLϕ + Wfϕ2)dm

=
∫

X
(ψLf − 2Γ(f, ψ) + fLψ + Wffψ)fψdm.

Since Lf + Wff = 0, the right-hand side of the inequality from above (shortly RHS) can be
written as

RHS =
∫

X
(−2ψfΓ(f, ψ) + f2ψLψ)dm

=
∫

X
−2ψfΓ(f, ψ)dm + QL(f2ψ,ψ).

It follows that

Q(ϕ,ϕ) ≥
∫

X
−2ψfΓ(f, ψ)dm + QL(f2ψ,ψ)

=
∫

X
{−2ψfΓ(f, ψ) + f2Γ(ψ,ψ) + ψΓ(f2, ψ)}dm

and thus finally, by (3.21),

Q(ϕ,ϕ) ≥
∫

X
f2Γ(ψ,ψ)dm +

∫

X
{−2ψfΓ(f, ψ) + ψΓ(f2, ψ)}dm

≥
∫

X
f2Γ(ψ,ψ)dm ≥ 0.

We have already shown that Q(ϕ,ϕ) ≥ 0 for all ϕ ∈ D. Since such functions ϕ form a core
for Q, the result follows by an application of the variational formula

E = inf{Q(ϕ,ϕ) : ϕ ∈ D and ‖ϕ‖2 = 1} (3.22)

where E is the bottom of the spectrum of the operator H. In general one can choose a
sequence of locally constant functions fn such that Wfn → Wf locally uniformly in X. For
instance, one can choose a δ-sequence φn ∈ D+ and set fn := f ∗φn. Then setting ψn := ϕ/fn

we get

Q(ϕ,ϕ) =
∫

X
(ϕLϕ + V ϕ2)dm ≥

∫

X
(ϕLϕ + Wfϕ2)dm

= lim
n→∞

∫

X
(ϕLϕ + Wfnϕ2)dm ≥ lim sup

n→∞

∫

X
f2

nΓ(ψn, ψn)dm ≥ 0.

The proof of the theorem is finished.
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Corollary 3.9. Consider the quadratic form Q = QDα + QV with domain D. Assume that
0 < α < 1 and that the following inequality

V−(x) ≤

(

Γp

(
1 + α

2

))2

‖x‖−α
p

holds almost everywhere, then Q(ϕ,ϕ) ≥ 0 for all ϕ ∈ D.
Assume further that the non-negative definite quadratic form (Q,D) is closable, let Dα+V

be the non-negative definite operator associated with its minimal closed extension, then

Spec(Dα + V ) ⊆ [0,∞).

Proof. Let us set uβ(x) := ‖x‖β
p . By V. S. Vladimirov [43, Sec. 8.1, Eq. (1.6)], the function

uβ defines a distribution (a generalized function) in D′ which is holomorphic on β everywhere
on the real line. The operator Dα : ψ → Dαψ can be defined as convolution of distributions
u−α−1/Γp(−α) and ψ, see V. S. Vladimirov [43, Sec. IX]. We claim that in the sense of
distributions

Dαuβ =
Γp(β + 1)

Γp(β + 1 − α)
uβ−α, ∀β 6= α. (3.23)

The case β = 0 is trivial. For β 6= 0 we apply the Fourier transform argument. Remind that
the Fourier transform f → f̂ is a linear isomorphism of D′ → D′. By virtue of the results of
V. S. Vladimirov [43, Sec. VII.5], the equation

ûγ−1(ξ) = Γp(γ)u−γ(ξ) (3.24)

holds true for all γ 6= 1. Applying equation (3.24) we obtain

D̂αuβ(ξ) = uα(ξ)ûβ(ξ) = uα(ξ)ûβ+1−1(ξ)

= uα(ξ)Γp(β + 1)u−β−1(ξ) = Γp(β + 1)u−(1+β−α)(ξ)

=
Γp(β + 1)

Γp(β + 1 − α)
Γp(β + 1 − α)u−(1+β−α)(ξ)

=
Γp(β + 1)

Γp(β + 1 − α)
̂u(1+β−α)−1(ξ) =

Γp(β + 1)
Γp(β + 1 − α)

ûβ−α(ξ),

so by the uniqueness theorem the desired result follows. For φ ∈ D+ and β := (α − 1)/2 we
define the following function

Wφ :=
Γp(β + 1)

Γp(β + 1 − α)
uβ−α ∗ φ

uβ ∗ φ
=

(

Γp

(
1 + α

2

))2 u− 1+α
2

∗ φ

u− 1−α
2

∗ φ
.

We claim that the function Wφ belongs to C∞(X) and Wφ = Dαf/f where

0 < f = u− 1−α
2

∗ φ ∈ domC∞(X)(D
α).

Indeed, ‖x‖p > ‖y‖p implies that ‖x − y‖p = ‖x‖p whence for any fixed ball B which is centred
at the neutral element and contains the set {φ > 0} and for any x such that ‖x‖p > diam(B)
we have

0 < u− 1∓α
2

∗ φ(x) =
∫

B

φ(y)

‖x − y‖
1∓α

2
p

dm(y) =
1

‖x‖
1∓α

2
p

∫

B

φdm. (3.25)

It follows that the functions u− 1−α
2

∗ φ, u− 1+α
2

∗ φ and Wφ belong to C∞(X). In particular,

applying equation (3.23) we get f ∈ C∞(X) and

Dαf =

(

Γp

(
1 + α

2

))2

u− 1+α
2

∗ φ := F (3.26)
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in the sense of distributions. So by V. S. Vladimirov [43, Sec. IX.3]

f(x) = D−αF (x) =
1

Γp(α)

∫
F (y)

‖x − y‖1−α
p

dm(y). (3.27)

Finally, equations (3.27) and (3.25) show that f (being the Green potential of the function
F ∈ C∞(X)) belongs to C∞(X)-domain of the operator Dα. In particular, equation (3.26)
holds in the strong sense. Clearly Wφ = Dαf/f and the proof of the claim is finished. Thus
Theorem 3.8 is applicable and we conclude that

QWφ
(ϕ,ϕ) ≤ QDα(ϕ,ϕ), ∀ϕ ∈ D.

Let us choose a sequence {Bn : n = 1, 2, ...} of balls centred at the neutral element 0 such
that ∩∞

n=1Bn = {0} and set φn = 1Bn/m(Bn). Clearly φn∗f → f for any continuous function
f , whence

Wφn(x) → W (x) =

(

Γp

(
1 + α

2

))2 u− 1+α
2

(x)

u− 1−α
2

(x)
=

(

Γp

(
1 + α

2

))2

‖x‖−α
p .

Applying now Fatou lemma we conclude: for all ϕ ∈ D, the following inequality holds (a
Qp-version of the classical Hardy inequality in RN )

QW (ϕ,ϕ) ≤ QDα(ϕ,ϕ).

It follows that for all ϕ ∈ D,

−QV (ϕ,ϕ) ≤ QV−(ϕ,ϕ) ≤ QW (ϕ,ϕ) ≤ QDα(ϕ,ϕ),

or equivalently,
Q(ϕ,ϕ) := QDα(ϕ,ϕ) + QV (ϕ,ϕ) ≥ 0.

The set D forms a core for Q(ϕ,ϕ), for reasons which depend upon which assumption we
make on V , and the proof is completed by an application of the variational formula (3.22).

Example 3.10. Consider the quadratic form Q = QDα+QV with V (x) = b ‖x‖−α
p , 0 < α < 1,

b ≥ −{Γp ((1 + α)/2)}2, and with dom(Q) = D, the set of all locally constant functions having
compact supports. In order to prove that the form Q is semibounded and closable Theorem
3.6 does not apply simply because V ∈ Lp + L∞ only if p < 1/α. Notice however that
Theorem 3.6 applies in the case Q = QDα + Qb‖∙‖−β

p
where 0 < β < α < 1, b ∈ R1, because

V ∈ Lp + L∞ for all 1/α < p < 1/β.
In the interesting case Q = QDα + Qb‖∙‖−α

p
we argue as follows: Let us consider the

operator H = Dα + b ‖x‖−α
p defined on the dense set D0 = {ϕ ∈ D : ϕ(0) = 0}. Evidently

the operator H : D0 → L2 is symmetric and we can write

Q(ϕ,ϕ) := QDα(ϕ,ϕ) + Qb‖∙‖−α
p

(ϕ,ϕ) = (Hϕ,ϕ), ∀ϕ ∈ D0.

Since b ≥ −{Γp ((1 + α)/2)}2, Corollary 3.9 applies and we conclude that Q(ϕ,ϕ) ≥ 0,
∀ϕ ∈ D. In particular, the operator H is a non-negative definite symmetric operator. As
each non-negative definite symmetric operator is closable and its minimal closed extension
H is a non-negative definite self-adjoint operator, the quadratic form Q with domain D0 is
closable.

To prove that the non-negative quadratic form Q with domain D is closable it is enough
to show that the indicator function 1B of any ball B which contains the neutral element 0 can
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be approximated in Q-metric by a sequence of functions in D0. Let Bn ↓ {0} be a descending
sequence of balls belonging to B such that any two balls Bn ⊂ Bn−i are closest neighbors
and 1B\Bn

∈ D0 be the sequence of the indicators of sets B\Bn. Let us show that

Q(1B − 1B\Bn
, 1B − 1B\Bn

) = Q(1Bn , 1Bn) → 0, n → ∞.

Clearly QV (1Bn , 1Bn) → 0, so it is enough to show that QDα(1Bn , 1Bn) → 0. Applying
inequality (3.2) we get

1
2
m(Bn)λ(Bn−1) < QDα(1Bn , 1Bn) < 2m(Bn)λ(Bn−1).

We can also assume that m(Bn) = p−n for all n large enough, then the eigenvalue λ(Bn−1) =
pα(n−1). Since 0 < α < 1 we get m(Bn)λ(Bn−1) = p−(1−α)(n−1)−1 → 0 as desired. Thus the
form Q with dom(Q) = D is non-negative definite and closable and its minimal closure is
associated with non-negative definite self-adjoint operator H,

Q(u, u) = (H
1/2

u,H
1/2

u), ∀u ∈ dom(Q).

3.4 The negative spectrum

Next we discuss several results giving information about the negative part of the spectrum of
the Schrödinger-type operator H = L + V . We consider L = Dγ acting in Lp(Qp,m) where
m is the Haar measure.

Theorem 3.11. Let L = Dγ and let V ∈ Lp(Qp,m) for some p > 1/γ. Then the following
properties hold:

1. The operator H = L + V has essential spectrum equals to the spectrum of the operator
L.

2. In particular, if H has any negative spectrum, then it consists of a sequence of negative
eigenvalues of finite multiplicity. If this sequence is infinite then it converges to zero.

3. Suppose that there exists an open set U ⊂ X on which V is negative. If Eλ is the
bottom of the spectrum of the operator Hλ = L + λV , then Eλ ≤ 0 for all λ ≥ 0 and
limλ→∞ Eλ = −∞.

Proof. 1. By Theorem 3.6, if c > 0 is large enough then the operator H + cI is non-negative
and

1
2

∥
∥
∥(L + cI)1/2u

∥
∥
∥

2
≤
∥
∥
∥(H + cI)1/2u

∥
∥
∥

2
≤

3
2

∥
∥
∥(L + cI)1/2u

∥
∥
∥

2
(3.28)

for all u ∈ dom(QL). Let us define Δ := (L + cI)−1 − (H + cI)−1, then

Δ = (L + cI)−1V (H + cI)−1 = ABCDE

where A = (L+cI)−1/2, B = (L+cI)−1/2 |V |1/2, C = sign(V )∙B∗, D = (L+cI)1/2(H+cI)−1/2

and E = (H + cI)−1/2. It is clear that A and E are bounded operators in L2(Qp,m), B∗ and
C are compact operators in L2(Qp,m), see statement (E2) in the proof of Theorem 3.6, and
D is a bounded operator in L2(Qp,m) by equation (3.28). Thus, as a product of compact
and bounded operators, the difference of two resolvents Δ is a compact operator on L2. By
the perturbation theory of linear operators, H and L have the same essential spectrum, see
e.g. T. Kato [24]. Since Specess(L) = Spec(L) ⊂ [0,∞[, any negative point in the spectrum
of H must be an isolated eigenvalue of finite multiplicity. Any limit of negative eigenvalues
lies in the essential spectrum whence the only possible limit is zero. 2. That Eλ ≤ 0 for all
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λ ≥ 0 follows from the fact that {0} ∈ Specess(L) and that Specess(L + λV ) = Specess(L).
To prove the second statement we observe that D is a form core for QL + QλV , whence

Eλ = inf{QL(u, u) + QλV (u, u) : u ∈ D and ‖u‖2 = 1}. (3.29)

Let us choose u ∈ D having support in the set U , then as λ → ∞ we get

Eλ ≤ QL(u, u) + QλV (u, u)

= QL(u, u) − λ

∫

U
|V | |u|2 dm → −∞

as it was claimed.
The following example shows that the crucial issue for the existence of negative eigenvalues

in Theorem 3.11 for all λ > 0 is the rate at which the potential V (x) converges to 0 as
‖x‖p → ∞.

Example 3.12. Let 0 < α < 1 and Hλ = Dα − λV where

V (x) = (‖x‖p + 1)−β

for some 0 < β < 1 and λ > 0. We have:
1. If β ≥ α then Theorem 3.11 and Corollary 3.9 are applicable and there exists a positive

threshold for the existence of negative eigenvalues of Hλ.
2. If β > α then the number of negative eigenvalues of Hλ counted with their multiplicity

can be estimated as follows
Neg(Hλ) ≤ c(α, β)λ1/α.

Indeed, applying S. Molchanov and B. Vainberg [37, Theorem 2.1 and Remark 2.2], we obtain

Neg(Hλ) ≤ c(α)
∫

Qp

(λV )1/αdm

= c(α)λ1/α

∫

Qp

dm(x)
(‖x‖p + 1)β/α

= c(α, β)λ1/α.

3. If 0 < β < α then the result is totally different.

Theorem 3.13. In the notation of Example 3.12 assume that 0 < β < α, then Hλ has
non-empty negative spectrum for all λ > 0.

Proof. Let f := D−α1B where B is a ball centred at the neutral element which we will
specify later. The function f belongs to dom(Dα) and calculations based on the spectral
resolution formula and equation (2.12) show that

D−α1B/m(B) = D−α
∑

T : B⊆T

fT =
∑

T : B⊆T

D−αfT

=
∑

T : B⊆T

(
m(T ′)

p

)α

fT =
∑

T : B⊆T

m(T )α

(
1T

m(T )
−

1T ′

m(T ′)

)

= m(B)α−1
∑

T : B⊆T

(
m(T )
m(B)

)α−1(

1T −
1
p

1T ′

)

.

In particular, W := (Dαf)/f is given by

W =
1B

D−α1B
=

p − pα

p − 1
1B

m(B)α
=

p − pα

p − 1
1B

diam(B)α
.
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If λ > 0 and 0 < β < α, there exists a ball B such that diam(B) is large enough so that

W (x) <
λ

(‖x‖p + 1)β
= λV (x)

for all x ∈ Qp. Hence, as f belongs to dom(Dα), we obtain

QHλ
(f, f) = QDα(f, f) − QλV (f, f) < QDα(f, f) − QW (f, f)

= (Dαf, f) − (W ∙ f, f) = 0

and an application of the Rayleigh-Ritz formulae yields the desired result.

4 Green function estimates

In this section we consider the Schrödinger-type operator H = L + V with L a homogeneous
hierarchical Laplacian and show that under certain conditions the equation Hu = v has
unique solution u which can be represented in the form

u(x) =
∫

gH(x, y)v(y)dm(y).

The kernel gH(x, y) is a continuous strictly positive function which is bounded outside the
diagonal set Δ and gH |Δ = +∞. We call gH(x, y) the Green function defined by the operator
H = L + V .

Our aim here is to compare the Green functions gH(x, y) and gL(x, y). We provide our
calculations assuming that L = Dα and V (x) = b ‖x‖−α

p for 0 < α < 1 and b ≥ b∗, where

b∗ := −{Γp ((1 + α)/2)}2

is the critical value of the parameter b as will be explained in Theorem 4.1 below. We will
prove, see Corollary 4.8 below, that for any b ≥ b∗ there exists unique α−1

2 ≤ β < α such that

gH(x, y)
gDα(x, y)

�

(
‖x‖p

‖y‖p

∧
‖y‖p

‖x‖p

)β

.

4.1 Preliminary results

Recall that the p-adic Gamma-function is defined as

Γp(z) = (1 − pz−1)(1 − p−z)−1.

The function Γp(z) is meromorphic in the complex plane and satisfies the functional equation

Γp(z)Γp(1 − z) = 1

(see [43, Sec.VIII.2 ]).
For a real β we regard the function h(x) = ‖x‖β

p as a distribution in the spirit of [43]. For
β 6= α equation (3.23) shows that (in the sense of distributions)

Lh(x) =
Γp(β + 1)

Γp(β + 1 − α)
‖x‖β−α

p .

This relation must be compared with the Green function estimates for Schrödinger operators on Riemanian
manifolds, see [22]
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In particular, for β > α− 1 and 0 < α < 1, the distributions h(x) and Lh(x) are regular (i.e.
generated by locally integrable functions) and the function

V (x) := −
Lh(x)
h(x)

= −
Γp(β + 1)

Γp(β + 1 − α)
‖x‖−α

p (4.1)

belongs to L1
loc(Qp), so it defines a regular distribution as well.

Theorem 4.1. Let the function V (x) be defined by equation (4.1). Assume that α−1 < β < α
then the following statements hold true:

1. For 0 < β < α the function V (x) is strictly positive and belongs to L1
loc(Qp). Moreover,

for any b > 0 there exists 0 < β < α, the solution of the equation

−
Γp(β + 1)

Γp(β + 1 − α)
= b, (4.2)

such that V (x) = b ‖x‖−α
p for this value of β.

2. For α − 1 < β < 0 the function V (x) is strictly negative, and for all these values of β

V−(x) = −V (x) ≤

(

Γp

(
1 + α

2

))2

‖x‖−α
p .

Moreover, for b∗ := −{Γp ((1 + α)/2)}2 and for any 0 > b ≥ b∗ there exist two values of
β, solutions of the equation (4.2), 1 < β1 ≤ (α − 1)/2 and (α − 1)/2 ≤ β2 < 0, such that
V (x) = b ‖x‖−α

p for these values of β.

Proof. To prove the theorem we set ϑ = β + (1 − α)/2 and write

−
Γp(β + 1)

Γp(β + 1 − α)
= −Γp

(
1 + α

2
+ ϑ

)

Γp

(
1 + α

2
− ϑ

)

=: Cα(ϑ).

The function Cα(ϑ) is even, continuous and increasing on each interval [0, (1 + α)/2[ and
](1 + α)/2, +∞[. Using the very definition of the function Γp(ξ) it is straightforward to show
that the following properties hold true:

1. Cα(0) = −{Γp ((1 + α)/2)}2, Cα((1 − α)/2) = 0,

2. Cα((1 + α)/2 − 0) = +∞, Cα((1 + α)/2 + 0) = −∞,

3. Cα(+∞) = −pα < Cα(0).

Clearly properties (1)-(3) imply the result. The proof of the theorem is finished.
Let us define the linear space D0 := {u ∈ D : u(0) = 0}. For V as above and L = Dα we

define the linear operator H = L + V with dom(H) = D0. Clearly the operator H : D0 →
L2(Qp) is symmetric and

Q(u, u) = (Hu, u), ∀u ∈ dom(H).

Theorem 4.2. Assume that α − 1 < β < α. Then for L and V as above the operator
H = L + V is symmetric and non-negative definite. In particular, H is closable, its minimal
closure H is the non-negative definite self-adjoint operator associated with the quadratic form
Q = QL + QV , i.e.

Q(u, u) = (Hu, u), ∀u ∈ dom(H).

Proof. In the case 0 < β < α we can apply the first statement of Theorem 4.1 and Theorem
3.3. In the case α − 1 < β < 0 we can apply the second statement of Theorem 4.1, Example
3.10 and Corollary 3.9. The proof is finished.
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Figure 2: The function Cα

4.2 The time changed Dirichlet form

Let us choose in equation (4.1) the function h(x) = ‖x‖β
p with β satisfying (α−1)/2 < β < α.

If we set V = (−Lh)/h and H = L+V then the results of the previous subsection apply, so H
is a non-negative definite symmetric operator acting in L2(X,m) (we keep notation X = Qp

equipped with the Haar measure m). Its minimal closure H is a non-negative self-adjoint
operator associated with the quadratic form Q.

According to our choice h2 ∈ L1
loc(X,m), so h2 ∙m is a Radon measure. In particular, the

operator
Ug = hg : L2(X,h2 ∙ m) → L2(X,m)

is an isometry. Consider the non-negative self-adjoint operator

H = U−1 ◦ H ◦ U : L2(X,h2 ∙ m) → L2(X,h2 ∙ m)

and define the the following non-negative definite quadratic form

QH(u, u) =

{
(H1/2u,H1/2u), u ∈ dom(H1/2)

+∞, otherwise
.

As Q = QL + QV we get the equation

QH(u, u) = Q(hu, hu) = QL(hu, hu) + QV (hu, hu)

=
1
2

∫

X

∫

X
(h(x)u(x) − h(y)u(y))2 J(x, y)dm(y)dm(x)

+
∫

X
V (x)u2(x)h2(x)dm(x)

where the kernel J(x, y) is given by

J(x, y) = −
1

Γp(−α)
1

‖x − y‖1+α
p

. (4.3)

Theorem 4.3. Assume that 0 < α < 1 and (α − 1)/2 < β < α. Then D ⊂ dom(QH) and
the following equation holds

QH(u, u) =
1
2

∫ ∫
(u(x) − u(y))2 J(x, y)h(y)dm(y)h(x)dm(x). (4.4)
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In particular, QH is a densely defined, closed and Markovian quadratic form in L2(X,h2 ∙m).
In other words, QH is a regular Dirichlet form relative to L2(X,h2 ∙ m) having D as a core.

Proof. Let us prove that D ⊂ dom(QH). It is enough to show that QH(u, u) is finite
for any u of the form u = 1B , the indicator of any open ball in X. We have QH(u, u) =
QL(hu, hu) + QV (hu, hu). Since V (x) = b ‖x‖−α

p and β > (α − 1)/2 we get

|QV (hu, hu)| = |b|
∫

B
‖x‖−α+2β

p dm(x) < ∞.

If 0 /∈ B, then clearly hu ∈ D ⊂ dom(L) and thus

QL(hu, hu) = (Lhu, hu) < ∞.

Assume now that 0 ∈ B and set hB := h1B , then

QL(hu, hu) =
1
2

∫∫
(hB(x) − hB(y))2 J(x, y)dm(x)dm(y)

=
∫∫

(x,y)∈B×B: ‖x‖p<‖y‖p

(h(x) − h(y))2 J(x, y)dm(x)dm(y)

+
∫

B
h2(x)dm(x)

∫

Bc

J(x, y)dm(y).

The second term, call it II, is finite. Indeed, we have

II =
∫

B
h2(x)dm(x)

∫

Bc

J(0, z)dm(z) < ∞.

Without loss of generality we may assume that diam(B) = 1. By the ultrametric inequality,
‖x‖p < ‖y‖p implies that ‖x − y‖p = ‖y‖p, so the first term, call it I, can be estimated as
follows:

I = −
1

Γp(−α)

∞∑

k=1

k∑

l=1

∫

‖x‖p=p−k

dm(x)
∫

‖y‖p=p−k+l

dm(y)
(
‖x‖β

p − ‖y‖β
p

)2
‖y‖−(1+α)

p

= −
1

Γp(−α)

(

1 −
1
p

)2 ∞∑

k=1

k∑

l=1

p−kp−k+lp−(1+α)(−k+l)
(
p−kβ − p(−k+l)β

)2

= −
1

Γp(−α)

(

1 −
1
p

)2 ∞∑

k=1

p−k(1−α+2β)
k∑

l=1

p−lα
(
1 − plβ

)2
.

That the term I is finite for (α − 1)/2 < β < α follows by inspection. To prove equation
(4.4) it is enough to check it for u = 1B , the indicator of an open ball B. Let us first prove
the following identity

QV (hu, hu) = −QL(hu, h). (4.5)

It is enough to check the above identity assuming that B does not contain the neutral element.
To certify this claim we act as in Example (3.10): if 0 ∈ B we choose a descending sequence
of balls Bn in B which converges to {0}. Then by what we claim QV (h1B\Bn

, h1B\Bn
) =

−QL(h1B\Bn
, h) and both sides of this equation converge to QV (h1B , h1B) and −QL(h1B , h)

respectively. Let us consider the distribution fγ(x) = ‖x‖γ−1
p /Γp(γ). According to V. S.

Vladimirov [43, Section IX], h(x) = Γp(β + 1)fβ+1 and

−Lh = f−α ∗ Γp(β + 1)fβ+1 = Γp(β + 1)fβ−α+1 ∈ L1
loc.
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As we assume that 0 ∈ B the functions V hu = (−Lh)u and hu := hB belong to D and

QV (hu, hu) =
∫

(−Lh)hBdm = ((−Lh) ∗ hB) (0)

= Γp(β + 1)((f−α ∗ fβ+1) ∗ hB)(0)

= Γp(β + 1)((fβ+1 ∗ (f−α ∗ hB))(0) =
∫

h(−LhB)dm

= −
∫∫

(hB(x) − hB(y))h(x)J(x, y)dm(x)dm(y).

By symmetry J(x, y) = J(y, x) we get

QV (hu, hu) = −
∫∫

(hB(y) − hB(x))h(y)J(x, y)dm(x)dm(y)

= −
1
2

∫∫
(hB(x) − hB(y))(h(x) − h(y))J(x, y)dm(x)dm(y)

or in other words QV (hu, hu) = −QL(hu, h) as claimed. On the other hand, for u = 1B we
have

QL(hu, hu) =
1
2

∫∫
(hB(x) − hB(y))2J(x, y)dm(x)dm(y). (4.6)

Equations (4.5) and (4.6) yield the following equation

QH(u, u) = QL(hu, hu − h) =
1
2

∫∫
(hB(x) − hB(y))[(hB(x) − h(x))

− (hB(y) − h(y))]J(x, y)dm(x)dm(y)

and thus

QH(u, u) =
1
2

∫∫
[hB(x)(hB(x) − h(x)) + hB(y)(hB(y) − h(y))

− hB(x)(hB(y) − h(y)) − hB(y)(hB(x) − h(x))]J(x, y)dm(x)dm(y).

By symmetry we obtain

QH(u, u) =
∫∫

[hB(x)(hB(x) − h(x)) − hB(x)(hB(y) − h(y))]J(x, y)dm(x)dm(y)

=
∫∫

[(hB(x)2 − h(x)hB(x)) − hB(x)(hB(y) − h(y))]J(x, y)dm(x)dm(y)

=
∫∫

hB(x)(h(y) − hB(y))J(x, y)dm(x)dm(y).

Similarly, direct computations of the right hand side of equation (4.4) yield

1
2

∫ ∫
(1B(x) − 1B(y))2 J(x, y)h(y)dm(y)h(x)dm(x)

=
1
2

∫ ∫
(hB(x)h(y) − 2hB(x)hB(y) + hB(y)h(x)) J(x, y)dm(y)dm(x)

=
1
2

∫ ∫
[hB(x)(h(y) − hB(y)) + hB(y)(h(x) − hB(x)]J(x, y)dm(y)dm(x)

=
∫ ∫

hB(x)(h(y) − hB(y))J(x, y)dm(y)dm(x).

This proves identity (4.4) together with the fact that the quadratic form QH(u, u) is a regular
Dirichlet form in L2(X,h2 ∙ m) as claimed.
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Definition 4.4. A symmetric Markovian semigroup (Pt)t>0 in L2(X,μ) is called transient
if its resolvent (Gλ)λ>0 can be defined also for the value λ = 0 as a self-adjoint (possibly
unbounded) operator G0 =

∫∞
0 Ptdt such that 1K ∈ dom(G0) for every compact set K ⊂ X.

A Dirichlet form Q(u, u) relative to L2(X,μ) is called transient if the associated symmetric
Markovian semigroup (Pt)t>0 is transient.

One can show that the form Q(u, u) is transient if and only if the following condition
holds: for every compact set K ⊂ X there exists a constant CK > 0 such that

∫

X
|u| dμ ≤ CK

√
Q(u, u), ∀u ∈ dom(Q) .

Theorem 4.5. In the setting of Theorem 4.3:

1. There exists a hierarchical Laplacian L, related to the (non-homogeneous) ultrametric
measure space (X,h ∙ m), such that

QH(u, u) = QL(u, u), ∀u ∈ L2(X,h ∙ m) ∩ L2(X,h2 ∙ m).

2. In particular, D ⊂ dom(QL) is a core for QL (i.e. QL(u, u) is a regular Dirichlet form
relative to L2(X,h ∙ m)).

3. The Dirichlet form QL is transient.

Proof. Consider the function

J(B) := −
1

Γp(−α)
1

m(B)1+α
, B ∈ B,

defined on the set B of all open balls. Since in the p-adic metric m(B) = diam(B) for any
ball B, we get

J(x, y) = J(xf y)

where x f y is the minimal ball which contains x and y. Consider also the Radon measure
m̃ = h ∙ m. We claim that the following properties hold true:

(i) S ⊂ T =⇒ J(S) > J(T ) and J(T ) → 0 as T → X.

(ii) λ̃(B) :=
∑

S: B⊆S m̃(S) (J(S) − J(S′)) < ∞ for any B ∈ B.

(iii) λ̃(B) → +∞ as B → {x} for any x ∈ X.

The property (i) is evident. To prove (ii) we write

λ̃(B) = −
1

Γp(−α)

(

1 −
1

p1+α

) ∑

S: B⊆S

m̃(S)
m(S)1+α

This condition of transience was first introduced by A. Beurling and J. Deny in the unreplacable paper
A. Beurling and J. Deny [12]. It is slightly more restrictive than the definition of transience given in M.
Fukushima [20, Section 1.5].

The following counterpart of Theorem 4.5 is in order: Let XH and XL be the Hunt processes associated
with the Dirichlet forms QH and QL respectively. According to M. Fukushima [20, Theorem 5.5.2 and Example
5.5.1] their paths are related by the random time change XH

t = XL
τt

where τt = inf{s > 0 : At > t} and

At =
∫ t

0
h(XH

s )ds is the positive continuous additive functional. It follows in particular, that the characteristic
operators of Dynkin for these processes are related by the equation (−Hu)(x) = (−Lu)(x)/h(x). This fact we
are going to use in the next sections to solve the equation Hu = v.
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= (pα − 1)
∑

S: B⊆S

m̃(S)
m(S)1+α

.

Next, using the identity

∫
f(‖x‖p)dm(x) =

(

1 −
1
p

) ∞∑

γ=−∞

f(pγ)pγ ,

we obtain that if 0 ∈ S then

m̃(S) =
p − 1

p − p−β
m(S)1+β , (4.7)

so
m̃(S)

m(S)1+α
=

p − 1
p − p−β

1
m(S)α−β

. (4.8)

Clearly equality (4.8) implies (ii). On the other hand, for B ∈ B(x) small enough we have

λ̃(B) ≥ (pα − 1)
m̃(B)

m(B)1+α
> (pα − 1)m(B)−α min

y∈B
‖y‖β

p (4.9)

and

min
y∈B

‖y‖β
p =

{
‖x‖β

p if x 6= 0
(m(B)β if x = 0

, (4.10)

so (4.9) and (4.10) imply (iii). According to A. Bendikov [3, Section 2], properties (i)− (iii)
imply that the operator

Lu(x) =
∫

(u(x) − u(y)) J(x, y)dm̃(y) (4.11)

is a hierarchical Laplacian in L2(X, m̃). In particular, D ⊂ dom(L) and for u ∈ D we have

QL(u, u) =
1
2

∫ ∫
(u(x) − u(y))2 J(x, y)dm̃(y)dm̃(x) = QH(u, u).

That D is a core of QL follows from the fact that L, as a hierarchical Laplacian, is essentially
self-adjoint. Indeed, in this case (QL, dom(QL)) concedes with the minimal extension of
(QL,D) which has D as a core. The proof of the fact that the Markovian semigroup (e−tL)t>0

is transient, i.e. that 1K belongs to dom(G0) for any compact set K, uses an ad hoc argument
and we postpone it to the next section (Theorem 4.6). Let us show how to derive the
Beurling-Deny condition of transience from the transience of the semigroup (e−tL)t>0. For
any u ∈ dom(QL) we have |u| ∈ dom(QL) and QL(|u|, |u|) ≤ QL(u, u). Also v := G01K is in
dom(L) and Lv = 1K whence

∫

K
|u| dm̃ = QL(|u|, v)

≤
√

QL(v, v)
√

QL(u, u).

Setting CK :=
√

QL(v, v) we get the desired result. The proof is finished.
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4.3 The Green function gL(x, y)

In what follows we assume that (α−1)/2 < β < α. The Markovian resolvent Gλ = (L+λI)−1,
λ > 0, acts in Banach spaces C∞(X) and Lp(X, m̃), where m̃ = h ∙m, as a bounded operator
and admits the following representation

Gλu(x) =
∫

gL(λ, x, y)u(y)dm̃(y).

Here gL(λ, x, y), the so called λ-Green function, is a continuous function taking finite values
outside the diagonal set. As a function of λ it decreases, so the limit (finite or infinite)

gL(x, y) := lim
λ→0

gL(λ, x, y)

exists. The function gL(x, y) is called the Green function of the operator L.

Theorem 4.6. The Green function gL(x, y) is a continuous function taking finite values
off the diagonal set (i.e. the Markovian semigroup (e−tL)t>0 is transient). Moreover, the
following relationship holds:

gL(x, y) �
‖x − y‖α−1

p
(
‖x‖p ∨ ‖y‖p

)2β
, (4.12)

or equivalently

gL(x, y)
gL(x, y)

�

(
1

‖x‖p

∧
1

‖y‖p

)2β

. (4.13)

Proof. Let us equip X = Qp with the ultrametric d(x, y) = p−α ‖x − y‖α
p , intrinsic for the

hierarchical Laplacian L, and define the following variables

F (x,R) =

(∫ ∞

R

(
1

m(Br(x))

∫

Br(x)
hdm

)
dr

r2

)−1

and
d̃(x, y) = F (x, d(x, y)). (4.14)

Since for each fixed x the function R → F (x,R) is continuous, strictly increasing, 0 at 0 and
∞ at ∞, d̃(x, y) is an ultrametric on X. Let B̃

R̃
(x) be a d̃-ball of radius R̃ centred at x.

Then B̃
R̃
(x) = BR(x) whenever

R̃ = F (x,R).

Since L is a hierarchical Laplacian acting in L2(X,m) and d(x, y) is its intrinsic ultrametric,
we have (see [5, equation (3.11)])

J(x, y) =
∫ ∞

d(x,y)

1
m(BR(x))

dR

R2
(4.15)

=
∫ ∞

d̃(x,y)

1

m̃(B̃
R̃
(x))

dR̃

R̃2
.

It follows that d̃(x, y) is intrinsic ultrametric corresponding to the hierarchical Laplacian L
and

Ṽ (x, R̃) := m̃(B̃
R̃
(x))
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= m̃(BR(x)) =
∫

BR(x)
hdm

is its volume-function. We claim that

m̃(BR(x))
m(BR(x))

�

{
m(BR(x))β if d(0, x) ≤ R

h(x) if d(0, x) > R
. (4.16)

Indeed, if d(0, x) ≤ R then BR(x) = BR(0), so applying (4.7), we get

m̃(BR(x))
m(BR(x))

=
1

m(BR(x))

∫

BR(x)
hdm

=
1

m(BR(0))

∫

BR(0)
hdm

=
p − 1

p − p−β
m(BR(0))β =

p − 1
p − p−β

m(BR(x))β .

On the other hand, if d(0, x) > R then from y ∈ BR(x) we get that d(y, 0) = d(x, 0), so

m̃(BR(x))
m(BR(x))

=
1

m(BR(x))

∫

BR(x)
h(y)dm(y)

=
1

m(BR(x))

∫

BR(x)
h(x)dm(y) = h(x).

Notice that asymptotic relationship (4.16) holds uniformly in x and R in the sense that the
corresponding two sided inequality contains constants which do not depend on x and R. In
turn, (4.16) implies the following (uniform) asymptotic relationship:

R̃ = F (x,R) �

{
R/h(x) if R < d(0, x)

R
α−β

α if R ≥ d(0, x)
(4.17)

Let us consider first the case d(0, x) ≤ R. We have

∫ ∞

R

m̃(Br(x))
m(Br(x))

dr

r2
�
∫ ∞

R
m(Br(x))β dr

r2

�
∫ ∞

R
r−(2− β

α)dr � R−(1− β
α),

so
R̃ := F (x,R) � R1− β

α .

In the case d(0, x) > R there exist constants C1, C2 > 0 such that

∫ ∞

R

m̃(Br(x))
m(Br(x))

dr

r2
=
∫ d(0,x)

R

m̃(Br(x))
m(Br(x))

dr

r2
+
∫ ∞

d(0,x)

m̃(Br(x))
m(Br(x))

dr

r2

= C1d(0, x)
β
α

(
1
R

−
1

d(0, x)

)

+
C2

d(0, x)1−
β
α

�
d(0, x)

β
α

R
�

h(x)
R

,

so

R̃ := F (x,R) �
R

h(x)
.

32



Furthermore, asymptotic relationships (4.16) and (4.17) yield the following (uniform) asymp-
totic relationship

Ṽ (x, R̃) = m̃(BR(x)) (4.18)

�

{
h(x)R

1
α if R < d(0, x)

R
1+β

α if R ≥ d(0, x)
,

or equivalently, we get

Ṽ (x, R̃) �

{
h(x)1+ 1

α R̃
1
α if R̃ < d̃(0, x)

R̃
1+β
α−β if R̃ ≥ d̃(0, x)

. (4.19)

1. Let us consider the case ‖x − y‖p = ‖x‖p ∨ ‖y‖p. Then clearly d(x, y) = d(0, x) ∨ d(0, y),

and similar equation holds in d̃ metric. If R ≥ d(0, x) then

R̃ := F (x,R) � R1− β
α (4.20)

and
Ṽ (x, R̃) � R

1+β
α � R̃

1+β
α−β , (4.21)

Equation (4.21) implies the following two results:

1. Since δ := 1+β
α−β > 1, the function R̃ → 1/Ṽ (x, R̃) is integrable at ∞ for any fixed x, so

the Markovian semigroup (e−tL)t>0 (equivalently, the Dirichlet form QL) is transient
(see A. Bendikov, A. Grigor’yan, Ch. Pittet and W. Woess [5, Theorem 2.28]) as it has
been stated in Theorem 4.5.

2. The fact that Ṽ (x, R̃) � R̃δ, δ > 1, for R̃ ≥ d̃(0, x), yield the following asymptotic
relationship

gL(x, y) =

∞∫

d̃(x,y)

dR̃

Ṽ (x, R̃)
�

d̃(x, y)

Ṽ (x, d̃(x, y))
, (4.22)

or equivalently, see equations (4.20) and (4.21),

gL(x, y) � ‖x − y‖α−1−2β
p =

‖x − y‖α−1
p

(
‖x‖p ∨ ‖y‖p

)2β
(4.23)

provided ‖x‖p ≤ ‖x − y‖p. Similarly, by symmetry, relationship (4.23) holds provided ‖y‖p ≤
‖x − y‖p. Thus finally, the assumption ‖x − y‖p = ‖x‖p ∨ ‖y‖p implies (4.23), as it was
claimed. 2. Let us consider the case ‖x − y‖p < ‖x‖p∨‖y‖p. In this case we have: ‖x‖p = ‖y‖p

and ‖x − y‖p < ‖x‖p, similar relations hold in d and d̃ metrics. Having this in mind we write

gL(x, y) =

∞∫

d̃(x,y)

dR̃

Ṽ (x, R̃)
=






d̃(0,x)∫

d̃(x,y)

+

∞∫

d̃(0,x)






dR̃

Ṽ (x, R̃)
= I + II.

Since d̃(0, x) ≤ R̃ implies Ṽ (x, R̃) � R̃
1+β
α−β , we get

II �
d̃(0, x)

Ṽ (x, d̃(0, x))
�

1

d̃(0, x)
1−α+2β

α−β

.
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To estimate the first term we write

I =

d̃(0,x)∫

d̃(x,y)

dR̃

Ṽ (x, R̃)
�

1

h(x)1+ 1
α

d̃(0,x)∫

d̃(x,y)

dR̃

R̃
1
α

and

1

h(x)1+ 1
α

d̃(0,x)∫

d̃(x,y)

dR̃

R̃
1
α

=
1

h(x)1+ 1
α

(
1

d̃(x, y)
1
α
−1

−
1

d̃(0, x)
1
α
−1

)

=
d̃(x, y)1−

1
α

h(x)1+ 1
α



1 −

(
d̃(x, y)

d̃(0, x)

) 1
α
−1


 .

Finally, since ‖x‖p = ‖y‖p and ‖x − y‖p < ‖x‖p, we have

gL(x, y) = I + II

�
d̃(x, y)1−

1
α

h(x)1+ 1
α



1 −

(
d̃(x, y)

d̃(0, x)

) 1
α
−1


+
1

d̃(0, x)
1−α+2β

α−β

=
d̃(x, y)1−

1
α

h(x)1+ 1
α







1 −

(
d̃(x, y)

d̃(0, x)

) 1
α
−1


+
d̃(x, y)

1
α
−1h(x)1+ 1

α

d̃(0, x)
1−α+2β

α−β



 .

According to (4.20) h(x) � d̃(0, x)
β

α−β whence

h(x)1+ 1
α

d̃(0, x)
1−α+2β

α−β

�
d̃(0, x)

β
α−β (1+ 1

α)

d̃(0, x)
1−α+2β

α−β

�
1

d̃(0, x)
1
α
−1

and thus, using (4.17), we get

gL(x, y) �
d̃(x, y)1−

1
α

h(x)1+ 1
α

�

(
d(x, y)
h(x)

)1− 1
α 1

h(x)1+ 1
α

=
d(x, y)1−

1
α

h(x)2
�

‖x − y‖α−1
p

‖x‖2β
p

=
‖x − y‖α−1

p
(
‖x‖p ∨ ‖y‖p

)2β
.

The proof of the theorem is finished.

4.4 Solution of the equation Hu = v

Throughout this section we assume that (α − 1)/2 ≤ β < α and that b and β are related by
equation (4.2). Then, by Theorem 4.1), the operator

H = Dα + b ‖x‖−α
p

is a self-adjoint and non-negative definite operator acting in L2(X,m).
Notice that b is an increasing continuous function of β which fulfill the whole range

[b∗, +∞), where b∗ = −{Γp ((1 + α)/2)}2. In particular, b fulfills the interval [b∗, 0) as β runs
through the interval [(α− 1)/2, 0) and b fulfills [0, +∞) as β runs through the interval [0, α).
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Theorem 4.7. The equation Hu = v has unique solution

u(x) =
∫

X

gH(x, y)v(y)dm(y),

where gH(x, y) is a continuous function given by

gH(x, y) = h(x)gL(x, y)h(y).

We call gH(x, y) the Green function of the operator H, or the fundamental solution of the
equation Hu = v.

Proof. We know that L : D → L2(X,h ∙ m) ∩ C∞(X). Let us show that L : D → Lq(X,m),
∀1 ≤ q ≤ ∞. It is enough to check this property for ψ = 1B , the indicator of an open ball
B. In this case there exists a constant C > 0 such that as x → ∞ the following asymptotic
relationship holds:

Lψ(x) = −
∫

B

J(x, y)h(y)dm(y)

= −
1

Γp(−α)
1

‖x‖1+α
p

∫

B

hdm �
C

‖x‖1+α
p

Clearly this relationship and the fact that Lψ(x) is bounded proofs the claim. In particular,
Lψ ∈ L2(X,m) and therefore 1

hLψ ∈ L2(X,h2 ∙ m) for any ψ ∈ D. Having this in mind we
do our computations for ϕ,ψ ∈ D :

|QH(ϕ,ψ)| = |QL(ϕ,ψ)| = |(Lψ,ϕ)L2(hm)|

=

∣
∣
∣
∣
∣

(
1
h
Lψ,ϕ

)

L2(h2m)

∣
∣
∣
∣
∣
≤

∥
∥
∥
∥

1
h
Lψ

∥
∥
∥
∥

L2(h2m)

‖ϕ‖L2(h2m) .

The above estimate means that ϕ → QH(ϕ,ψ) is a bounded linear functional in L2(X,h2 ∙m)
for any ψ ∈ D. This fact, in turn, implies that D ⊂ dom(H) and

Hψ =
1
h
Lψ, ∀ψ ∈ D. (4.24)

Let us consider the equation Hu = v for v ∈ D. Since D ⊂ dom(H) we have

(Hu, ψ)L2(X,h2∙m) = (u,Hψ)L2(X,h2∙m), ∀ψ ∈ D.

Applying equation (4.24) we get

(Hu, ψ)L2(X,h2∙m) =

(

u,
1
h
Lψ

)

L2(X,h2∙m)

= (u,Lψ)L2(X,h∙m).

On the other hand, we have

(Hu, ψ)L2(X,h2∙m) = (v, ψ)L2(X,h2∙m) = (hv, ψ)L2(X,h∙m).

Our calculations from above show that for Hölder conjugated (p, q) we have
∣
∣(u,Lψ)L2(X,h∙m)

∣
∣ = |(hv, ψ)L2(X,h∙m)| ≤ ‖hv‖Lp(X,h∙m) ‖ψ‖Lq(X,h∙m) .
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It follows that if we choose 1 < p < 1+α
1−α , then ψ → (u,Lψ)L2(X,h∙m) is a bounded linear

functional in Lq(X,h ∙ m) provided q = p
p−1 , i.e. 1

2

(
1 + 1

α

)
< q < ∞. As (e−tL)t>0 is a

continuous symmetric Markovian semigroup an application of the Riesz-Thorin interpolation
theorem shows that it can be extended to all Lq(X,h ∙ m) as a continuous contraction semi-
group. Let Lq be its minus infinitesimal generator, then Lq extends L, and L∗

q = Lp. All the
above shows that u must belong to the set dom(Lp) and Lpu = hv. The equation Lpu = hv
has unique solution

u(x) =
∫

X

gL(x, y)(hv)(y)h(y)dm(y)

=
∫

X

gL(x, y)v(y)h2(y)dm(y).

It follows that the operator H acting in L2(X,h2 ∙ m) admits a Green function gH(x, y) and
that gH(x, y) coincides with the function gL(x, y), the Green function of the operator L acting
in L2(X,h ∙ m):

gH(x, y) = gL(x, y). (4.25)

Finally, let us consider the equation Hu = v. Since H = U◦H◦U−1, we get H(U−1u) = U−1v.
It follows that

(U−1u)(x) =
∫

X

gH(x, y)(U−1v)(y)h(y)2dm(y),

or equivalently

u(x) =
∫

X

h(x)gH(x, y)h(y)v(y)dm(y).

That means that equation Hu = v admits a fundamental solution

gH(x, y) := h(x)gH(x, y)h(y)

= h(x)gL(x, y)h(y),

thanks to (4.25). The proof of the theorem is finished.

Corollary 4.8. The Green function gH(x, y) is a continuous function taking finite values off
the diagonal set. Moreover, the following relationship holds:

gH(x, y) �
‖x‖β

p ‖x − y‖α−1
p ‖y‖β

p
(
‖x‖p ∨ ‖y‖p

)2β
, (4.26)

or equivalently,

gH(x, y)
gL(x, y)

�

(
‖x‖p

‖y‖p

∧
‖y‖p

‖x‖p

)β

.

Proof. Follows directly from Theorem 4.6 and Theorem 4.7.
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