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Abstract

Let (X, d) be a locally compact separable ultrametric space. Given a measure m on
X and a function C(B) defined on the set of all non-singleton balls B of X we consider
the hierarchical Laplacian L = LC . The operator L acts in L2(X,m), is essentially
self-adjoint and has a purely point spectrum. Choosing a family {ε(B)} of i.i.d. we
define the perturbated function C(B,ω) and the perturbated hierarchical Laplacian
Lω = LC(ω). We study the arithmetic means λ(ω) of the Lω-eigenvalues. Under
some mild assumptions the normalized arithmetic means

(
λ − Eλ

)
/σ
[
λ
]

converge
to N(0, 1) in law. We also give examples where the normal convergence fails. We
prove existence of the integrated density of states. We introduce the empirical point
process Nω of the Lω-eigenvalues and, assuming that the density of states exists and
is continuous, we prove that the finite dimensional distributions of Nω converge to
the finite dimensional distributions of the Poisson point process. As an example we
consider random perturbations of the Vladimirov operator acting in L2(X,m), where
X = Qp is the ring of p-adic numbers and m is the Haar measure.
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1 Introduction

The concept of hierarchical lattice and hierarchical distance was proposed by F.J. Dyson
in his famous papers on the phase transition for 1D ferromagnetic model with long range
interaction [12, 13]. The notion of the hierarchical Laplacian L, which is closely related to
the Dyson’s model was studied in several mathematical papers [7], [18],[19],[20], [24], [2],
[25]. These papers contain some basic information about L (the spectrum, the Markov
semigroup, resolvent etc) in the case when the state space X is discrete and the hierar-
chical lattice satisfies some symmetry conditions (homogenuity, self-similarity etc). Under
these symmetry conditions the state space (X,m) can be identified with some discrete
infinitely generated Abelian group G equipped with a translation invariant ultrametric,
the Markov semigroup P t = exp(−tL) acting on L2(G,m) becomes symmetric, transla-
tion invariant and isotropic. In particular, Spec(L) is pure point and all eigenvalues have
infinite multiplicity.

The main goal of the papers mentioned above was to study the corresponding Anderson
Hamiltonian H = L + V ; hierarhical Laplacian L plus random potential V . There was a
hope to detect for such operators the spectral bifurcation from the pure point spectrum
to the continuous one, i.e. to justify the famous Anderson conjecture. Unfortunately,
the true result was opposite: under mild technical conditions the hierarchical Anderson
Hamiltonian has a pure point spectrum - the phenomenon of localization, see [25] and
[19]. Moreover, the local statistics of the spectrum of H is Poissonian, see [20], which is
always deemed a manifistation of the spectral localization, see [1] and [23].

We will introduce a new class of operators: the random hierarchical Laplacians Lω,
which demonstrate several new spectral effects. The spectrum of such operators is still pure
point (with compactly supported eigenfunctions) but in contrast to the deterministic case
there exists the continuous density of states. This density detects the spectral bifurcation
from the pure point spectrum to the continuous one. The eigenvalues form locally a
Poissonian point process with intensity given by the density of states. We will show
that our assumptions on the random variables in the definition of Lω are almost final.
Counterexamples demonstrate that all major results are failed without such assumptions.

A systematic study of a class of isotropic Markov semigroups defined on a ultrametric
measure space (X, d,m) has been done in [4] (X is discrete) and in the recent paper [5]
(X may contain both isolated and non-isolated points), see also related papers [2] and
[16]. This study has been motivated by Random walks on infinitely generated groups -
the classical subject which can be traced back to the pioneering works of Erdos, Spitzer,
Kesten, Molchanov, Lawler and others. It turned out that the two mentioned above
studies are closely related to each other. Namely, given an isotropic Markov semigroup
(P t) defined on a ultrametric measure space (X, d,m) with minus Markov generator L, one
can show that the operator L coincides with the hierarchical Laplacian LC on (X, d,m)
associated with appropriately defined choice-function C(B) (see the definition below),
and vice versa. Then the general theory developed in [4] and [5] applies. In particulary,
modifying canonically the underlying ultrametric d, we call this new ultrametric d∗, the
set Spec(L) can be described as

Spec(L) = closure{1/d∗(x, y) : x 6= y} ∪ {0}. (1.1)

In this construction the families of d-balls and d∗-balls coincide, whence these two ultra-
metrics generate the same topology and the same hierarchical structure, and in particular,
the same class of hierarchical Laplacians. In turn the equation (1.1) yields the following
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crucial in our analysis facts, see the paper [6]: Let S ⊆ [0,∞) be any given closed set
which contains 0 as an accumulation point. Assume that X is not compact and that if X
contains a non-isolated point then S is unbounded. The following properties hold true:

• There exists a proper ultrametric d′ on X and a choice function C(B) defined on the
set of balls in (X, d′) such that Spec(LC) = S. The ultrametric d′ defines the same
topology as d.

• Assume that d is proper and that there exists a partition of X made of d-balls
containing infinitely many non-singletons. Then there exists a choice function C(B)
defined on the set of balls in (X, d) such that Spec(LC) = S.

A very simple example shows that the condition “there exists a partition of X made
of d-balls containing infinitely many non-singletons” in the second statement can not be
dropped: X = N and d(m,n) = max(m,n) when m 6= n and 0 otherwise.

In the course of study we assume that (X, d) is a locally compact and separable ultra-
metric space. Recall that a metric d is called an ultrametric if it satisfies the ultrametric
inequality

d(x, y) ≤ max{d(x, z), d(z, y)}, (1.2)

that is obviously stronger than the usual triangle inequality. Usually, we also assume that
the ultrametric d is proper, that is, each closed d-ball is a compact set.

Let m be a Radon measure on (X, d) such that

• m(B) > 0 for each ball B of positive diameter.

• m({x}) = 0 if and only if x is a non-isolated point.

• m(X) = ∞ if X is not compact.

Let B be the set of all balls having positive measure. Our assumptions imply that the
set B is at most countable. Let C : B → (0,∞) be a function which satisfies the following
assumptions (in short, a choice-function):

• For any ball B ∈ B,

λ(B) :=
∑

T∈B: B⊆T

C(T ) < ∞.

• For any non-isolated x ∈ X,

sup{λ(B) : B ∈ B and x ∈ B} = ∞.

Let D be the set of all locally constant functions having compact support. Given the
data (X, d,m,C) we define (pointwise) the hierarchical Laplacian

LCf(x) := −
∑

B∈B: x∈B

C(B) (PBf − f(x)) , f ∈ D, (1.3)

where

PBf :=
1

m(B)

∫

B

fdm.
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The operator (LC ,D) acts in L2 = L2(X,m), is symmetric and admits a complete system
of eigenfunctions {fB,B′}B∈B, namely,

fB,B′ =
1

m(B)
1B −

1
m(B′)

1B′ , (1.4)

where B ⊂ B′ are nearest neighboring balls; when m(X) < ∞, we also set fX,X ′ =
1/m(X). The eigenvalue λ(B′) corresponding to fB,B′ is

λ(B′) =
∑

T∈B: B′⊆T

C(T ); (1.5)

when m(X) < ∞, we also set X ′ = X ∪ {$} and λ(X ′) = 0. In particular, we conclude
that (LC ,D) is an essentially self-adjoint operator in L2. By abuse of notation, we shall
write (LC , DomLC

) for its unique self-adjoint extension. For all that we refer to [6].
Observe that to define the functions C(B), λ(B) and in particular the operator (LC ,

DomLC
) we do not need to specify the ultrametric d. What is needed is the family of balls

B which evidently can be the same for two different ultrametrics d and d′.
On the other hand, given the data (X, d,m) and choosing the function

C(B) =
1

diam(B)
−

1
diam(B′)

,

where B ⊂ B′ are any two nearest neighboring balls, we obtain the hierarchical Laplacian
(LC , DomLC

) satisfying

λ(B) =
1

diam(B)
.

We will refere to (LC , DomLC
) as to the standard hierarchical Laplacian associated with

the data (X, d,m).
Let us describe the main body of the paper. In Section 2 we specify some spectral

properties of the hierarchical Laplacian LC assuming that the ultrametric measure space
(X, d,m) where it acts and the Laplacian by itself satisfy certain symmetry conditions
(homogenuity, self-semilarity). As an example we consider the operator Dα of the p-
adic fractional derivative of order α > 0. This operator related to the concept of p-adic
Quantum Mechanics was introduced by V.S. Vladimirov, see [31], [32] and [33]. Dα is the
hierarchical Laplacian which acts in L2(Qp,m), where Qp is the field of p-adic numbers
and m is the Haar measure. The set Spec(Dα) consists of eigenvalues pkα, k ∈ Z, each of
which has infinite multiplicity and contains 0 as an accumulation point.

In Section 3, given a homogeneous Laplacian LC and a family {ε(B)}B∈B of symmetric
i.i.d., we define a perturbated choice-function C(B,ω) and a perturbated Laplacian Lω =
LC(ω). The new operator Lω is the main object in the study of the spectral statistics.

For each ω ∈ Ω, the operator Lω is the hierarchical Laplacian whence it has a pure
point spectrum. On the other hand, for some ω it may fail to be homogeneous. In
particular, the set of its eigenvalues may form dense subsets in certain intervals. We
study the arithmetic means λO(ω), O ∈ B, of the eigenvalues of the operator Lω. Under
some mild assumptions the normalized arithmetic means

(
λO − EλO

)
/σ
[
λO

]
converge to

N(0, 1) in law, as O → X. We also give examples where the normal convergence fails.
In Section 4 we study the problem of existence of the integrated density of states, i.d.s.

for short. It turns out that the i.d.s., whenever it exists, has a remarkable structure, it can
be represented via infinite convolution of probability measures. More precisely, the i.d.s.
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coincides with the distribution of the random variable X =
∑

AkXk, where Xk are i.i.d.
and the coefficients Ak > 0 satisfy

∑
Ak = 1. Various properties of probability measures

of the form μ = PX (the infinite convolutions) have been studied by many authors since
1930’s, see e.g. [22], [14], [27], [28], [29] and references therein. This classical study can
be traced back to the pioneering works of Erdös, Kerschner, Lévy, Jessen and Wintner.
We apply the known results about infinite convolutions to study random perturbations by
Bernoulli random variables of the Vladimirov operator Dα. It turns out that the i.d.s. has
an L2-density for almost all 0 < α ≤ log 2/ log p and is purely singular for α > log 2/ log p.

In the concluding Section 5 we apply the results of the previous sections to study the
the empirical process

Nω
O =

∑

B⊆O

δλ(B,ω)

associated to the eigenvalues λ(B,ω) of the perturbated operator Lω, where δa is the
probability measure taking value 1 at {a}. Let I be a finite interval, we set NO(I) : ω →
Nω

O(I). We show that, when ENO(I), converges to some value λ = λ(I) > 0 as O → $,
the random variable NO(I) converges to the Poisson random variable Pλ in law as O → $.
We provide various examples to illustrate our results.

Acknowledgement. This work has been started at Bielefeld University (SFB-701)
and finished at Cornell University. We are grateful to L. Gross, M. Nussbaum, L. Saloff-
Coste and R. Strichartz for fruitful discussions and valuable comments. Thanks are also
due to the referee for a number of valuable suggestions.

2 Homogeneous Laplacian

In this section we specify some spectral properties of the hierarchical Laplacian LC as-
suming that the ultrametric measure space (X, d,m) where it acts and the Laplacian by
itself satisfy the following symmetry conditions:

• The group of isometries of (X, d) acts transitively on X.

• Both the reference measure m and the choice-function C(B) are invariant under the
action of isometries.

The ultrametric measure space (X, d,m) and the hierarchical Laplacian LC on it sat-
isfying these two conditions we call homogeneous.

The first assumption implies that (X, d) is either discrete or perfect. Basic examples
which we have in mind are

• X = Zp - the ring of p− adic integers.

• X = Qp - the ring of p− adic numbers.

• X = Qp/Zp
∼= Z(p∞) - the multiplicative group of pnth roots of unity, where n runs

through the set of all nonnegative integers, considered in the discrete topology.

As it was noticed in [10],[11], our assumptions imply that the measure space (X,m)
can be identified with a locally compact totally disconnected Abelian group G equipped
with its Haar measure. Notice that the group G is not unique. As a possible choice of
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the group G when for instance, X is perfect and non-compact, one can take the following
Abelian group

G = limind
l→−∞




∏

k≥l

Z(nk)



 , (2.1)

where Z(nk) are cyclic groups and { nk}k∈Z is an appropriately chosen double sided se-
quence of integers. The canonical ultrametric structure on G is defined by the descending
sequence of its compact subgroups

Gl =
∏

k≥l

Z(nk).

Namely, the groups Gl, l ∈ Z, and their cosets {a+Gl} form the collection B of all clopen
balls.

There is a natural ultrametric structure associated to the double sided chain of sub-
groups Gl of G. One defines the absolute value |a| for the elements a of G,

|a| =

{
0 if a = 0

m(Gl) if a ∈ Gl\Gl+1
.

The absolute value |a| satisfies the ultrametric inequality

|a + b| ≤ max{|a| , |b|}.

It is also clear that |a| = |−a| and that d(a, b) := |a − b| is an ultrametric that gives (G,m)
the structure of a homogeneous ultrametric measure space as defined above. In particular,
for any ball B we have

m(B) = diam(B).

Choosing the Haar measure m such that m(G0) = 1 we compute m(Gl) for any l 6= 0 as
follows

m(Gl) =

{
nl...n−1 if l < 0

(nl−1...n0)
−1 if l > 0

.

Recall that in the classical setting X = Qp we have G0 = Zp, Gl = plZp and

|a| = p−n(a), where n(a) = max{l : a ∈ Gl}.

The quantity |a| becomes a pseudonorm, that is,

|ab| ≤ |a| |b| ;

it is a norm if p is a prime number - the basic property in the p - adic analysis and its
applications.

We recall that to an ultrametric space (X, d) one can associate in a standard fashion a
tree T (X) (see Fig. 1). The vertices of the tree are metric balls, and hence in our case the
cosets {a+Gl : a ∈ G, l ∈ Z}. The ascending sequence of subgroups {Gl : l = 0,−1,−2, ...}
identifies a special boundary point, which we denote $. With respect to this special point
we consider the horocycles of the tree. A horocycle in this case is the set of vertices
consisting of the balls of a given diameter; in other words the cosets relative to the same
subgroup Gl. Thus, for fixed l, the horocycle Hl = {a+Gl : a ∈ G}. The boundary ∂T (G)
can be identified with the one-point compactification G∪ {$} of G. We refere to [10],[11]

6



and [6] for a complete treatment of the association between an ultrametric space and the
tree of its metric balls. The most complete sourse for the basic definitions related to the
geometry of trees is [8], see also [34].
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Figure 1. Tree of balls T (X) with forward degree nl = 2.

Let LC be a homogeneous hierarchical Laplacian on the ultrametric measure space
(G, d,m) defined by the choice-function C(B), that is

LCf(x) = −
∑

B∈B: x∈B

C(B) (PBf − f(x)) .

Thanks to the homogenuity property, C(A) = C(B) for any two balls which belong to
the same horocycle H. The same of course true for the eigenvalues λ(A) and λ(B). We
set cH = C(B) and λH = λ(B), for any ball B ∈ H. When H = Hk we will also write
ck = cHk

and λk = λHk
. In this notation

λk =
∑

l≤k

cl.

Each ball B ∈ Hk has nk nearest neighbors Bi ⊂ B. The eigenfunctions fBi,B correspond-
ing to λ(B) have the following form

fBi,B =
1Bi

m(Bi)
−

1B

m(B)
.

The system of functions {fBi,B : i = 1, ..., nk} is not orthogonal, its linear span H(B) ⊂ L2

has dimension nk − 1. Setting

fi := fBi,B , and m := m(Bi), i = 1, ..., nk − 1,

and applying the Gramm-Schmidt procedure we obtain an orthogonal basis {ui : i =
1, ..., nk − 1} ⊂ H(B) : u1 = f1 and for i ≥ 2,

ui = f1 + ... + fi−1 + (nk − i + 1) fi, ‖ui‖
2 =

(nk − i)(nk − i + 1)
m

.
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For two different balls S and T the eigenspaces H(S) and H(T ) are orthogonal. It follows
that the eigenspace Hk corresponding to the horocycle Hk (equivalently, to the eigenvalue
λk) is of the form

Hk =
⊕

B∈Hk

H(B).

The system of eigenfunctions {fBi,B}B∈B is complete, whence

⊕

k∈Z

Hk = L2(G,m).

Among the variety of homogeneous hierarchical Laplacians LC on (G, d,m) we would like
to mention a one-parametric family {Bα}α>0. The hierarchical Laplacian Bα is defined
by the choice-function

Cα(B) = (diam(B))−α −
(
diam(B′)

)−α
, (2.2)

where B ⊂ B′ are nearest neighbouring balls. Hence for any ball B ∈ B, the eigenvalue
λα(B) of Bα corresponding to B is

λα(B) = (diam(B))−α .

The eigenvalue λα(k) ofBα corresponding to the horocycle Hk is computed then as follows:
λα(0) = 1 and

λα(k) =

{
(nk...n−1)−α if k < 0
(nk−1...n0)α if k > 0

.

We recall from [5] that the set D of compactly supported locally constant functions is in
the domain of the operator Bα. It is remarkable however, although not difficult to prove,
that the following properties hold:

Bβ : D → Dom(Bα)

and on D,
Bα ◦Bβ = Bα+β and (Bα)β = Bαβ .

Moreover, when G = Qp, the operator Dα = pαBα is the operator of fractional derivative
of order α as defined and studied via Fourier transform in [30], [31], [33] and [17]. In this
case, for f ∈ D,

Dαf(x) =
pα − 1

1 − p−α−1

∫

G

f(x) − f(y)

|x − y|1+α dm(y) (2.3)

and therefore

Bαf(x) =
1 − p−α

1 − p−α−1

∫

G

f(x) − f(y)

|x − y|1+α dm(y).

At last notice that similar identifications (based on cyclic groups Z(n) as building
blocks) can be carried over in the remaining two cases: (X, d) is infinite and discrete, and
(X, d) is compact and perfect. For instance, the infinite (non-Abelian) symmetric group S∞

equipped with its canonocal ultrametric structure defined by the family {Sn} of its finite
symmetric subgroups Sn can be identified (as ultrametric measure space) with discrete
Abelian group G =

⊕

l>1

Z(l). The group G is equipped with its canonocal ultrametric
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structure defined by the family {Gn} of its finite subgroups Gn =
∏

1<l≤n

Z(l). As a second

example, we consider a compact and perfect ultrametric space X = Zp ⊂ Qp - the ring
of p-adic integers, which we can identify (as ultrametric measure spaces) with compact
Abelian group G =

∏

k≥1

Z(lk), with all lk = p.The ultrametric structure in this case is

defined by the descending family of small subgroups Gl =
∏

k≥l

Z(lk) ⊂ G.

3 Random perturbations

Let (X, d,m) be a non-compact homogeneous ultrametric space. Let LC be the homoge-
neous hierarchical Laplacian acting on X and defined by the choice-function C(B). Let
{ε(B)}B∈B be a family of symmetric i.i.d. random variables defined on the probability
space (Ω,P) and taking values in some small interval [−ε, ε] ⊂ (−1, 1) . We define the per-
turbated choice-function C(B,ω) and the perturbated hierarchical Laplacian as follows:

C(B,ω) = C(B)(1 + ε(B,ω))

and
Lωf(x) := LC(ω)f(x) = −

∑

B∈B: x∈B

C(B,ω) (PBf − f(x)) .

Evidently Lω may well be non-homogeneous for some ω ∈ Ω. Still it has a pure point
spectrum for all ω but the structure of the closed set Spec(Lω) can be quite complicated,
see [6] for various examples.

Two stationary families. Let us fix a horocycle H = Hl, for some l ∈ Z. Let λH = λl

be the eigenvalue of the homogeneous Laplacian LC corresponding to the horocycle H.
Let B ∈ H and {Bk}k≤l be the unique infinite geodesic path in T (X) from $ to B. We
compute the eigenvalue λ(B,ω) of the operator Lω = LC(ω),

λ(B,ω) =
∑

k≤l

C(Bk, ω) =
∑

k≤l

ck (1 + ε(Bk, ω))

= λl



1 +
∑

k≤l

akε(Bk, ω)



 := λl (1 + U(B,ω)) ,

where ak = ck/λl, and
U(B,ω) =

∑

k≤l

akε(Bk, ω). (3.1)

Notice that
∑

k≤l ak = 1 and that {U(B)}B∈H are (dependent) identically distributed
symmetric random variables taking values in some symmetric interval I $ (−1, 1) .

We want to study the family of random variables {λ(B,ω)}B∈H , resp. {U(B)}B∈H .
As the horocycle H = Hl is fixed it is useful to identify the balls B ∈ H with elements
g ∈ G of the (discrete!) Abelian group G =

⊕

k<l

Z(nk). Having such identification in mind

it is now straightforvard to show that the family {U(B)}B∈H = {U(g)}g∈G is stationary,
that is, for any g, g1, ..., gs in G,

{U(g + g1), ..., U (g + gs)}
d
= {U(g1), ..., U (gs)} .
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For the general theory of stationary processes we refere to [15] and [14].
One easely compute the corelation function KU (g, g′) = EU(g)U(g′). We have

KU (g, g′) = KU (0, g − g′) := KU (g − g′)

and
KU (g) =

∑

k≥|g|

a2
l−k, (3.2)

where

|g| = min





n : g ∈ {0} ×

⊕

−n≤k<l

Z(nk) ⊂ G





.

The function KU (g) is positive definite, whence by Bochner’s theorem there is a finite
measure FU (the spectral measure) defined on the compact group Ĝ =

∏

k<l

Z(nk), such

that

KU (g) =
∫

Ĝ

〈g, γ〉 dFU (γ).

We have ∫

G

KU (g)dg = a2
l + nl−1a

2
l−1 + nl−1nl−2a

2
l−2 + ....

In particular, if the function KU is integrable, the spectral measure FU is absolutely
continuous w.r.t. Haar measure on Ĝ and admits a continuous density FU (γ) which can
be computed as the inverse Fourier transform of KU (g),

FU (γ) = a2
l + nl−1a

2
l−11A(Gl−1)(γ) + nl−1nl−2a

2
l−21A(Gl−2)(γ) + ....

In the above equation A(Gl−i) ⊂ Ĝ is the anigillator of the subgroup Gl−i, that is,

A(Gl−i) = {0} ×
∏

k<l−i

Z(nk).

Since for B ∈ H,
λ (B,ω) = λH (1 + U (B,ω)) ,

the family of random variables

λ(g, ω) = λH (1 + U (g, ω))

is stationary as well. In particular, its correlation function Kλ(g) satisfies

Kλ(g) = λ2
HKU (g), g ∈ G,

we will use this property in our further computations.
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The Law of Large Numbers. Let us choose a reference point o ∈ X, say the neutral
element 0 in our group-identification X ≡ G, and consider the family O of all balls O
centred at o. We fix a horocycle H and study limit behavior as O → $ along O of the
arithmetic means

λH(O,ω) =
1

|BH(O)|

∑

B∈BH(O)

λ(B,ω),

where BH(O) is the set of all balls B in O which belong to H, and |BH(O)| stands for the
cardinality of the finite set BH(O).

Recall that for any two balls A and B which belong to the same horocycle H the
eigenvalues λ(A) and λ(B) of the homogeneous Laplacian LC coincide; we denote their
common value λH .

Theorem 3.1 For any given horocycle H, as O → $,

λH(O,ω) −→ λH a.s.

Proof. Let B ∈ Hl, for some l ∈ Z. Let {Bk}k≤l be the unique infinite geodesic path
in T (X) from $ to B. We have already computed the eigenvalue λ(B,ω) of the operator
LC(ω) corresponding to the ball B,

λ(B,ω) = λl (1 + U(B,ω)) ,

where ak = ck/λl, and
U(B,ω) =

∑

k≤l

akε(Bk, ω). (3.3)

Let us compute the arithmetic mean λHl
(O,ω) assuming that O ∈ HL and L << l. To

simplify our notation we set λL(ω) := λHl
(O,ω).

λL(ω) =
1

|BH(O)|

∑

B∈BH(O)

λ(B,ω) (3.4)

=
λl

nl−1...nL

∑

B∈BHl
(O)

(1 + U(B,ω))

= λl

(
1 + UL(ω)

)
,

where

UL(ω) =
1

nl−1...nL

∑

B∈BHl
(O)

U(B,ω). (3.5)

Thus to prove the theorem we are left to show that UL(ω) → 0 as L → −∞ almost surely
ω. Let {Ok}k≤l be the infinite geodesic path from $ to O. By substitution (3.3) to the

11



equation (3.5) we obtain

UL =
1

nl−1...nL

∑

B∈Hl:B⊂O

∑

k≤l

akε(Bk) =
1

nl−1...nL

∑

k≤l

ak

∑

B∈Hl:B⊂O

ε(Bk)

=
1

nl−1...nL



al

∑

B∈Hl:B⊆O

ε(B) + al−1nl−1

∑

B∈Hl−1:B⊆O

ε(B)

+al−2nl−1nl−2

∑

B∈Hl−2:B⊆O

ε(B) + ... + aLnl−1nl−2...nLε(OL)





+aL−1ε(OL−1) + aL−2ε(OL−2) + ... .

Let us introduce two random variables

UL =
al

nl−1...nL

∑

B∈Hl:B⊆O

ε(B) +
al−1

nl−2...nL

∑

B∈Hl−1:B⊆O

ε(B) + ... + aLε(OL) (3.6)

and
VL = aL−1ε(OL−1) + aL−2ε(OL−2) + ... . (3.7)

Random variables UL and VL are independent, have zero mean and

UL = UL + VL. (3.8)

Moreover, VL → 0 uniformly as L → −∞. Hence we are left to show that

UL → 0 a.s. as L → −∞.

Let σ =
√

Var[ε] and σ[UL] =
√

Var[UL]. Using (3.6) we compute σ[UL],

σ[UL]2 = σ2

(
a2

l

nl−1...nL
+

a2
l−1

nl−2...nL
+ ... + a2

L

)

. (3.9)

It follows that, since all nk ≥ 2,

∑

L≤l

σ[UL]2 = σ2a2
l

(

1 +
1

nl−1
+

1
nl−1nl−2

+ ...

)

+σ2a2
l−1

(

1 +
1

nl−2
+

1
nl−2nl−3

+ ...

)

+ ...

≤ 2σ2
(
a2

l + a2
l−1 + ...

)
< 2σ2 (al + al−1 + ...)2 = 2σ2.

At last, Chebyshev inequality and Borell-Cantelli lemma yield the desired result.

Central Limit Theorem. We study limit behaviour as O → $ of the normalized
arithmetic means

ΛH (O) =
λH(O) − λH

σ
[
λH(O)

] .

Recall that for random variable Y we denote σ [Y ] its mean-square displacement
√

Var [Y ].
In the course of study we will assume that the following condition holds:

1/κ ≤ C(B) (diam(B))δ/2 ≤ κ, (3.10)

12



for any ball B ∈ B and some δ, κ > 0.
It is easy to see that (3.10) is equivalent to the following condition

1/2κ ≤ λ(B) (diam(B))δ/2 ≤ 2κ. (3.11)

Evidently (3.10) and (3.11) with δ = 2α hold true for the operator Bα introduced in the
previous section at (2.2). Actually in this case we have

λ(B) (diam(B))δ/2 = 1.

Let N(0, 1) be the standard normal random variable. The main result of this subsection
is the following theorem.

Theorem 3.2 Assume that δ ≥ 1, then as O → $,

ΛH (O) → N(0, 1) in law.

Proof. Let H = Hl and O = OL ∈ HL for some L << l. As in the proof of Theorem 3.1
we fix l and let L → −∞. To simplify our notation we set ΛH(O) := ΛL. By the equation
(3.4), we have

ΛL =
UL

σ
[
UL

] ,

whence we are left to show that as L → −∞,

UL

σ
[
UL

] → N(0, 1) in law. (3.12)

As in the equation (3.8) we write UL = UL + VL. Since UL and VL are independent,

σ[UL]2 = σ[UL]2 + σ[VL]2.

Claim 1. For l fixed and L → −∞,

σ[VL]2 � σ2 (nL−1nL...n0)
−δ (3.13)

and

σ[UL]2 �






σ2 (nL...n0)
−1 if δ > 1

−σ2L (nL...n0)
−1 if δ = 1

σ2 (nL...n0)
−δ if δ < 1

, (3.14)

where x � y means that the ratio x/y is uniformly bounded from above and from below.
To prove (3.13) we apply (3.7). Since {ε(B)}B∈B are i.i.d.,

σ[VL]2 = σ2
(
a2

L−1 + a2
L−2 + ...

)
=

σ2

λ2
l

(
c2
L−1 + c2

L−2 + ...
)
,

and (3.10) yields

σ[VL]2 � σ2
(
(nL−1nL...n0)

−δ + (nL−2nL−1nL...n0)
−δ + ...

)

= σ2 (nL−1nL...n0)
−δ
(
1 + (nL−2)

−δ + (nL−2nL−3)
−δ + ...

)
,
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for any fixed l. Since all nk ≥ 2 the result follows.
For (3.14) we apply (3.9) and (3.10). Since l is fixed, we have

σ[UL]2 = σ2

(
a2

l

nl−1...nL
+

a2
l−1

nl−2...nL
+ ... + a2

L

)

=
σ2

nl−1...nL

(
a2

l + a2
l−1nl−1 + ... + a2

Lnl−1...nL

)

�
σ2

n0...nL

(

1 +

(
al−1

al

)2

nl−1 + ... +

(
aL

al

)2

nl−1...nL

)

�
σ2

n0...nL

(
1 + (nl−1)

1−δ + ... + (nl−1...nL)1−δ
)

.

The desired result follows.
Let now δ ≥ 1. By the Claim 1,

σ[UL] ∼ σ[UL] as L → −∞,

whence to prove (3.12) we are left to show that

UL

σ[UL]
→ N (0, 1) in law.

Claim 2. Assume that δ ≥ 1 and that l is fixed. Then,

lim
L→−∞

max
L≤k≤l

σak

σ[UL]
∏

L≤i≤k−1

ni
= 0 (3.15)

(with the agreement that
∏

i∈∅
bi := 1).

Indeed, define ε = min (1, δ − 1) and consider k such that L ≤ k ≤ l. Since l is fixed we
can assume that k ≤ 0. Denote by A (δ) the fraction in the left-hand-side of the equation
(3.15). By the Claim 1, when δ > 1,

A (δ)2 �
σ2 (nk...n0)

−δ

σ2 (nL...n0)
−1 (nL...nk−1)

2

=
1

(nk...n0)
δ−1 (nL...nk−1)

≤
1

(nL...n0)
ε

and, when δ = 1,

A (δ)2 � −
σ2 (nk...n0)

−1

σ2L (nL...n0)
−1 (nL...nk−1)

2

= −
1

L (nL...nk−1)
≤ −

1
L

.

The result follows.
Observe that when δ < 1, we obtain

max
L≤k≤l

σak

σ[UL]
∏

L≤i≤k−1

ni
≥

σaL

σ[UL]
≥

cσ (nL...n0)
−δ/2

σ (nL...n0)
−δ/2

= c,
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for some c > 0. In particular, in this case the equation (3.15) does not hold.
Let φ and Φ be characteristic functions of the random variables ε = ε(B) and UL/σ[UL]

respectively. By the equation (3.6),

Φ(x) =
∏

L≤k≤l

φ

(
akx

σ[UL]nL...nk−1

)nL...nk−1

(with the agreement that nL...nk−1 = 1 when k = L).
Since the random variable ε has two moments,

φ(z) = 1 −
1
2
(σz)2 (1 + β(σz)) , (3.16)

where β(z) → 0 as z → 0. Let us set

Δk =
σak

σ[UL]nL...nk−1
.

Observe that ∑

L≤k≤l

nL...nk−1Δ
2
k = 1.

Applying now (3.16) we obtain

log Φ(x) =
∑

L≤k≤l

nL...nk−1 log

[

1 −
x2

2
Δ2

k (1 + β (Δkx))

]

∼ −
x2

2




∑

L≤k≤l

nL...nk−1Δ
2
k (1 + β (Δkx))





= −
x2

2



1 +
∑

L≤k≤l

nL...nk−1Δ
2
kβ (Δkx)



 .

Finally, the Claim 2 and the inequality
∑

L≤k≤l

nL...nk−1Δ
2
kβ (Δkx) ≤ max

L≤k≤l
β (Δkx)

evidently yield the desired result. The proof of the theorem is finished.

The operator Bα. As an example we consider the space X = Qp equipped with its
standard ultrametric structure defined by the descending sequence of compact subgroups
Gl = plZp. Let Bα be the homogeneous Laplacian introduced at (2.2) and Bα (ω) its
random perturbation by symmetric i.i.d. {ε(B)}B∈B as defined and studied above. As we
noticed Bα satisfies the condition (3.11) with α = δ/2. In particular, for any α ≥ 1/2 the
normalized arithmetic means Λα

H (O) of Bα(ω)-eigenvalues converge in law as O → $ to
the standard normal random variable N(0, 1). In this subsection we study convergence of
the normalized arithmetic means Λα

H (O) assuming that 0 < α < 1/2.

Theorem 3.3 For any 0 < α < 1/2 there exists a random variable Λα
H such that as

O → $,
Λα

H (O) → Λα
H in law.
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The random variable Λα
H is not Gaussian. It has C∞- distribution function FΛα

H
∈ D(2)

- the domain of attraction of the normal law. FΛα
H

is unimodal whenever the common
distribution function Fε of i.i.d. {ε(B)}B∈B is unimodal.

Proof. We follow line-by-line the proof of the Theorem 3.2. Without loss of generality we
may assume that the horocycle H = H0 and O = OL ∈ HL for some L < −1. To simplify
our notation we set ΛL := Λα

H(O). As ΛL = UL/σ
[
UL

]
, where UL is defined at (3.5), we

write UL = UL + VL and
σ[UL]2 = σ[UL]2 + σ[VL]2.

Since λk = pαk and ck = (pα − 1) pα(k−1) we obtain

ak = ck/λ0 = (pα − 1) pα(k−1), k ≤ 0.

Using the above data we estimate σ[UL] and σ[VL] at −∞. We have

σ[UL]2 = σ2

(
a2

0

p−L
+

a2
−1

p−L−1
+ ... + a2

L

)

(3.17)

= σ2 (pα − 1)2
∑

0≤l≤−L

pL+l−2α(l+1)

∼
σ2 (pα − 1)2

1 − p2α−1
p2α(L−1) =

σ2

1 − p2α−1
a2

L

and

σ[VL]2 = σ2
(
a2

L−1 + a2
L−2 + ...

)
(3.18)

= σ2 (pα − 1)2
∑

l≥−L+1

p−2α(l+1)

∼
σ2 (pα − 1)2

1 − p−2α
p2α(L−2) =

σ2

1 − p−2α
a2

L−1.

Let {εi}i≥0 be i.i.d. random variables independent of {ε(B)}B∈B and having the same
common distribution as {ε(B)}B∈B. By (3.7) and (3.18) the random variable VL/σ[VL]
converges in law to the random variable

V =
√

1 − p−2α

(
ε0

σ [ε0]
+ p−α ε1

σ [ε2]
+ ... + p−kα εk

σ [εk]
+ ...

)

.

By Cramér’s theorem V is not Gaussian.
Let {εij}i,j≥0 be i.i.d. random variables independent of both {εi}i≥0 and {ε(B)}B∈B

and having the same common distribution as {ε(B)}B∈B. Define the random variables

Sk =
∑

0≤j≤pk−1

εkj , k = 0, 1, 2, ... .

By (3.6) and (3.17) the random variable UL/σ[UL] converges in law to the random variable

U =
√

1 − p2α−1
∑

k≥0

p(2α−1)k/2 Sk

σ [Sk]
.

By Cramér’s theorem U is not Gaussian.
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Finally, the random variable

ΛL =
UL

σ
[
UL

] =
σ[UL]

σ
[
UL

]
UL

σ[UL]
+

σ[VL]

σ
[
UL

]
VL

σ[VL]

converges in law to the random variable

Λ =

√
1 − p−2α

1 − p−1
U +

√
p−2α − p−1

1 − p−1
V.

Since U and V are independent and non-Gaussian, Λ is not Gaussian as well.
For a random variable X we denote ΦX(ξ) = E( exp(iξX)) its characteristic function.

As {εkj} are i.i.d. Φεkj
does not depend on i, j; we set Φ = Φεkj

. By (3.16), for any
0 < ε < 1 we find δ > 0 such that

|ΦU (ξ)| =
∏

k≥0

∣
∣
∣
∣
∣
ΦSk

(
p(2α−1)k/2

σ [Sk]
ξ

)∣∣
∣
∣
∣
=
∏

k≥0

∣
∣
∣
∣
∣
Φ

(
p(2α−1)k/2

σ [Sk]
ξ

)∣∣
∣
∣
∣

pk

≤
∏

k: p(2α−1)k/2ξ/σ[Sk]<δ

∣
∣
∣
∣
∣
Φ

(
p(2α−1)k/2

σ [Sk]
ξ

)∣∣
∣
∣
∣

pk

≤
∏

k: p(2α−1)k/2ξ/σ[Sk]<δ

(

1 −
ξ2

2
σ2p(2α−1)k(1 − ε)

σ [Sk]
2

)pk

.

Since σ [Sk]
2 = σ2pk, we obtain

|ΦU (ξ)| ≤ exp



−
ξ2

2
(1 − ε)

∑

k: p(α−1)kξ/σ<δ

p(2α−1)k





≤ exp
(
−Aξβ

)
,

for some A > 0, β = (1 − α)−1 ∈ (1, 2) and for all ξ > δσ. For ξ ≤ δσ, we will get

|ΦU (ξ)| ≤ exp
(
−Bξ2

)
,

for some B > 0. Thus, for all ξ we obtain,

|ΦU (ξ)| ≤ exp
(
−C min(ξ2, ξβ)

)
,

for some C > 0.
The random variables U and V are independent, Λ = λ1U+λ2V , whence we have

ΦΛ(ξ) = ΦU (λ1ξ)ΦV (λ2ξ).

In particular, ΦΛ satisfies the inequality similar to that of ΦU . This proves that the dis-
tribution function FΛ of Λ is in the class C∞. Since Λ has second moment, FΛ ∈ D(2) -
the domain of attraction of the normal law.

At last, assume that the common distribution function Fε of the i.i.d. {εij} is unimodal.
As a convolution of symmetric unimodal distribution functions FU (resp. FV ) is symmetric
and unimodal, whence FΛ does. The proof is finished.
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4 The integrated density of states

Let LC be the homogeneous hierarchical Laplacian and LC(ω) its random perturbation as
defined and studied in the previous section. Let O ∈ B be an ultrametric ball and H ∈ T
a horocycle. Let BH(O) be the set of all balls B ⊆ O which belong to the horocycle H.

Let δa be the probability distribution concentrated at a ∈ R. We fix a horocycle H
and study limit behaviour of the normalized empirical process

Mω
O =

1
|BH(O)|

∑

B∈BH(O)

δλ(B,ω) (4.1)

as O tend to $.

Theorem 4.1 There exists a probability measure M such that as O tend to $, for almost
all ω ∈ Ω,

Mω
O → M in the Bernoulli topology. (4.2)

Proof. As in the proof of Theorem 3.1, for any B ∈ H, we write

λ (B,ω) = λH (1 + U (B,ω)) ,

where U (B,ω) is defined at (3.3). The random variables {U(B)}B∈H are identically
distributed (dependent) random variables; denote N their common distribution. Since
the horocycle H is fixed we are left to study the normalized empirical process

N ω
O =

1
|BH(O)|

∑

B∈BH(O)

δU(B,ω).

Claim. As O tend to $, for almost all ω ∈ Ω,

N ω
O → N in the Bernoulli topology. (4.3)

Without loss of generality we may assume that H = H0 and O ∈ HL; in that case we
will write NO = N ω

L . Let Φω
L (resp. Φ) be the characteristic function of the probability

measure N ω
L (resp. N ),

Φω
L(θ) =

1
nLnL+1...n−1

∑

B∈BH(O)

exp {iθU(B,ω)} . (4.4)

We have
E (Φω

L(θ)) = Φ (θ) .

Let us show that for every θ,
Φω

L(θ) → Φ(θ) a.s. ω. (4.5)

Since all probability measures N ω
L , ω ∈ Ω, are supported by some finite interval [−a, a] ,

the family of functions {Φω
L} is equicontinuous. Hence the exceptional null-set in (4.5) can

be chosen the same for all θ. Thus, given (4.5) holds true, the Claim follows by the the
Lévy continuity theorem.
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For B ∈ BH(O), let {Bk}k≤0 be the unique infinite geodesic path in the tree of balls
T from $ to B. We write

U(B,ω) =




∑

L≤k≤0

+
∑

k<L



 akε(Bk, ω) := UL(B,ω) + VL(B,ω).

Since for any two balls B and B′ in BH(O),

VL(B,ω) = VL(B′, ω) := VL(ω),

we have

Φω
L(θ) =

exp {iθVL(ω)}
nLnL+1...n−1

∑

B∈BH(O)

exp {iθUL(B,ω)} .

As L → −∞, uniformly in ω ∈ Ω,

exp {iθVL(ω)} → 1, for every θ,

whence we are left study limit behaviour of the random variables

ω → Ψω
L(θ) =

1
nLnL+1...n−1

∑

B∈BH(O)

exp {iθUL(B,ω)} .

The random variables {UL(B,ω)}B∈BH(O) are still dependent, identically distributed ran-
dom variables; let ΨL(θ) be their common characteristic function. We have

E(Ψω
L(θ)) = ΨL(θ).

Let us show that for any fixed θ,

∑

L<0

σ [Ψω
L(θ)]2 < ∞. (4.6)

Given (4.6) holds true, Chebychev inequality and Borel-Cantelli lemma yield

Ψω
L(θ) − ΨL(θ) → 0 a.s. ω.

Since as L → −∞ the random variables Φω
L(θ) − Ψω

L(θ) and the functions Φ(θ) − ΨL(θ)
tend to zero pointwise, we will finally get (4.5).

Let X,Y be independent random variables. Assume that |X| = 1 and |Y | ≤ 1, then

σ [XY ]2 ≤ σ [Y ]2 + 2 (1 − |E(X)|) . (4.7)

Let φ be the common characteristic function of i.i.d. {ε(B)}B∈B. By substitution the data

X = exp{iθaLε(BL)}

and

Y =
1

nLnL+1...n−1

∑

B∈BH(O)

exp {iθUL+1(B)}

in (4.7) we obtain

σ [ΨL(θ)]2 ≤ σ [Y ]2 + 2 (1 − |φ(aLθ)|) ≤ σ [Y ]2 + a2
Lθ2.
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Let {Ol : 0 ≥ l ≥ −∞} be an infinite geodesic path in T with O0 ∈ H, OL = O and
O−∞ = $. Let {Oi

L+1 : 1 ≤ i ≤ nL, }, with O1
L+1 = OL+1, be nL ultrametric balls which

belong to the horocycle HL+1 and are subballs of the ball O = OL. We write

Y =
1

nL

nL∑

i=1

Yi,

where

Yi =
1

nL+1...n−1

∑

B∈BH(Oi
L+1)

exp {iθUL+1(B)} .

The random variables {Yi : 1 ≤ i ≤ nL} are independent and identically distributed, and
Y1 = ΨL+1(θ). As a result we obtain the following inequality

σ [ΨL(θ)]2 ≤
1

nL
σ [ΨL+1(θ)]

2 + a2
Lθ2,

which evidently proves (4.6).

Definition 4.2 The measure M defined at (4.2) is called the integrated density of states
(i.d.s. for short) corresponding to the horocycle H. If the measure M is absolutelly
continuous w.r.t. Lebesgue measure, i.e.

M(I) =
∫

I

m(τ)dτ,

the function m(τ) is called the density of states (d.s. for short) corresponding to the
horocycle H.

The question whether the d.s. m(τ) related to the data (C, ε) exists, is continuous,
belongs to the class C∞ etc. is basic in various applications, see Theorem 5.1 below.

Remark 4.3 Recall that the measures M and N defined at (4.2) and (4.3) respectively
are related by the equation

M = N ◦ ϑ−1,

where ϑ : x → ax + b with a = b = λH . In particular, M is absolutely continuous w.r.t.
Lebesgue measure if and only if N does.

The measure N has a remarkable feature - it belongs to the class J of probability
measures each of which can be represented as the distribution of some random variable U
of the form

U =
∑

k≥0

bkεk, (4.8)

where {εk}k≥0 are symmetric i.i.d. with values in some finite interval I ⊂ R1 and bk > 0
satisfy

∑
bk = 1.

Various properties of I-distributions (infinite convolutions) have been studied by many
authors since 1930’s, see e.g. [22], [14], [27], [28], [29], [26] and references therein. We would
like to mention two remarkable properties of I-distributions. The first one is due to Lévy
(1937) and the second one is due to Jessen and Wintner (1935), see e.g. [22], Thm. 3.7.6
and 3.7.7 respectively.
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• Each I-distribution N in its Lebesgue decomposition contains no discrete compo-
nent.

• Assume that {εk} at (4.8) are discrete, then the measure N is either singular or it
is absolutely continuous (w.r.t. Lebesgue measure).

Examples of singular I-distributions will be given later (infinite Bernoulli convolu-
tions). We consider first a simple class of absolutely continuous I-distributions. Let N be
a I-distribution as defined at (4.8). Assume that the common characteristic function φ of
i.i.d. {εk} satisfies

|φ(x)| ≤ x−D at ∞,

for some D > 0. Then evidently the characteristic function Φ(x) of the measure N , as an
infinite product of characteristic functions, satisfies

|Φ(x)| ≤ x−B at ∞,

for any B > 0, whence N admits a C∞-density w.r.t. Lebesgue measure. The proposition
below gives a little refinement of the above observation.

Proposition 4.4 Let N be a I-distribution. Assume that the common characteristic
function φ of i.i.d. {εk} tend to zero at infinity and that

bk ≥ C exp(−Dk),

for some C,D > 0. Then N admits a C∞-density w.r.t. Lebesgue measure.

Proof. Let Φ be the characteristic function of N . For a given ε > 0 choose N = N(ε) > 1
such that |φ(z)| ≤ ε for all z ≥ N , and write

|Φ(x)| ≤
∏

k: bkx≥N

φ(bkx) ≤ exp

(

−#{k : bkx ≥ N} log
1
ε

)

.

By the assumption,

#{k : bkx ≥ N} ≥ log
1
e

(cx

N

)1/D
,

whence
|Φ(x)| ≤ Ax−B at ∞

with

A =
[
e (N/C)1/D

]log 1
ε

and B =
1
D

log
1
ε
.

Since ε > 0 can be chosen arbitrary small the result follows.
Various examples of characteristic functions φ of singular distributions {εk} which

satisfy the condition of Proposition 4.4 are given in [22], Sec.3, and also in [14], Sec. 6 and
7. Here is an example of Kerschner(1936): a is a rational number such that 0 < a < 1/2
and a 6= 1/n, where n ≥ 3 is an integer. Then

φ(x) =
∞∏

k=1

cos(xak)
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is the characteristic function of a singular symmetric I-distribution satisfying

|φ(x)| ≤
1

(log x)γ
at + ∞, (4.9)

for some γ > 0.
Certain applications of Proposition 4.4 which we have in mind are homogeneous ul-

trametric spaces X such that the sequence {nH} of forward degrees, defined by the tree
of balls T (X), is bounded and the homogeneous hierarchical Laplacians LC on X satisfy
the condition (3.11). For instance, one can consider X = Qp and LC is the operator of
fractional derivative introduced at (2.2).

Modifying the proof of Proposition 4.4 one can obtain results which can be applied
when the sequence {nH} is unbounded, e.g. when X is the infinite symmetric group
S∞ = ∪n∈NSn. In this case, for H consisting of the symmetric group Sl and its cosets aSl,
the nH equals l.

Proposition 4.5 Assume that the common characteristic function φ of i.i.d. {εk} satis-
fies (4.9) and that bk ≥ C/k! for some C > 0. Then the characteristic function Φ(x) of
the corresponding I-distribution N satisfies

|Φ(x)| ≤ x−(γ−ε) at + ∞,

for any 0 < ε < γ. In particular, if γ > 1, the distribution N admits a Ck-density with
k ≤ γ − 1.

Proof. By the assumption,

n(t) := #{k : bk ≥ t} ≥ #{k : C/k! ≥ t} ∼
log 1/t

log log 1/t
at 0.

For x > 1 set Φ(x) = (log x)γ and choose r(x) such that

log r(x) ∼
log x

log log x
at + ∞.

For x big enough define

A(x) := n

(
r(x)
x

)

log Φ(r(x)).

By the assumption,

lim inf
x→+∞

A(x)
γ log x

≥ 1. (4.10)

At last we estimate the characteristic function Φ(x) of the I-distribution N ,

|Φ(x)| =
∏

k

|φ(bkx)| ≤
∏

k: bkx≥r(x)

|φ(bkx)| ≤
∏

k: bkx≥r(x)

(
Φ(bkx)

)−1

≤
(
Φ(r(x))

)−n
(

r(x)
x

)

= exp {−A(x)} .

Applying (4.10) we obtain the desired result.
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Infinite Bernoulli convolutions. Let {εk}k≥0 be i.i.d. random variables taking values
±1 with equal probability 1/2. Define a one-parametric family of random variables

Uλ =
∑

k≥0

λkεk, 0 < λ < 1. (4.11)

Let Nλ be the distribution of Uλ. The measure Nλ is the infinite convolution product
of discrete measures

(
δ−λk + δλk

)
/2. It is called the infinite Bernoulli convolution. The

characteristic function Φλ of Nλ can be represented as a convergent infinite product

Φλ(θ) =
∞∏

k=0

cos
(
λkθ
)

.

We describe some of the previous work on the infinite Bernoulli convolutions. We refere
to the survey of B. Solomyak [27] which contains a comprehensive list of references to the
relevant literature.

• Jessen and Wintner (1935) showed that Nλ is either absolutely continuous or purely
singular, depending on λ.

• Kerschner and Wintner (1935) observed that Nλ is singular for λ ∈ (0, 2−1), since it
is supported on a Cantor set of zero Lebesgue measure.

• Wintner (1935) noted that Nλ is uniform on [−2, 2] for λ = 2−1, and for λ = 2−1/k

with integer k ≥ 1 it is absolutely continuous, with a Ck−1-density.

• Erdös (1939) has shown that Nλ, λ ∈ (2−1, 1), is singular if 1/λ is a PV-number (an
algebraic integer whose Galois conjugates are strictly less than one in modulus; the
golden ratio

(
1 +

√
5
)
/2 is an example). No other λ ∈ (2−1, 1) with singular Nλ are

known.

• Solomyak (1995) proved that Nλ is absolutely continuous for almost every λ ∈
(2−1, 1) - Garsia conjecture (1962). A stronger conjecture that this is true for all
but countably many λ ∈ (2−1, 1) is still very much open.

Bernoulli perturbations of the operator Bα. As an example we consider the ho-
mogeneous Laplacian Bα introduced at (2.2). The operator Bα acts in L2(Qp,m), where
Qp is the ring of p-adic numbers (p is not necessary a prime number), and m is the Haar
measure,

Bαf(x) =
1 − p−α

1 − p−α−1

∫

Qp

f(x) − f(y)

|x − y|1+α dm(y).

Let Bα (ω) be the perturbation of the operator Bα by symmetric i.i.d. Bernoulli random
variables {θε(B)}B∈B, 0 < θ < 1. Let Nλ be the infinite Bernoulli convolution with
λ = p−α. Set

a = θ
(
1 − p−α

)
λH , b = λH and ϑ(x) = ax + b.

Applying Theorem 4.1, properties of infinite Bernoulli convolutions listed above and the
fact that the eigenvalue λH of the operator Bα corresponding to the horocycle H = Hl is
equal to pαl we obtain the following result.
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Theorem 4.6 Let Mα be the integrated density of states associated with the operator
Bα (ω) via Theorem 4.1 and Definition 4.2 . Let Nλ be the infinite Bernoulli convolution
with λ = p−α. We have,

Mα = Nλ ◦ ϑ−1.

In particular, with respect to Lebesgue measure, Mα is:

• singular, for all α > (log 2) / (log p) ,

• uniform, for α = (log 2) / (log p) , and

• absolutely continuous, having L2-density, for a.e. 0 < α ≤ (log 2) / (log p). Moreover,
for α = (log 2) / (k log p) , k ∈ N, it admits a Ck−1-density.

5 The Poisson Convergence

Let us fix a horocycle H. The eigenvalues λ(B,ω), B ∈ BH(O), themselves can be repre-
sented by the following empirical process

Nω
O(I) =

∑

B∈BH(O)

δλ(B,ω)(I), I ∈ B(R).

The intensity measure μO(I) - the expected number of λ(B,ω), B ∈ BH(O), which fall in
the set I - is computed as

μO(I) = ENO(I) = |BH(O)|P(ω ∈ Ω : λ(B,ω) ∈ I);

recall that the right-hand-side of the above equality does not depend of B ∈ BH(O). We
fix numbers c, τ0 > 0 and consider a small interval

I =

{

τ : |τ − τ0| ≤
c

2 |BH(O)|

}

. (5.1)

Assuming that the density of states m(τ) as defined in (4.2) exists, is continuous at τ = τ0

and that m (τ0) > 0 we obtain

lim
O→$

μO(I) = cm (τ0) := λc > 0. (5.2)

In particular, if the λ(B,ω), B ∈ BH(O), were i.i.d., then the equation (5.2) would yield
the classical convergence of NO = Nω

O(I) to the Poisson random variable Pλ with intensity
λ = λc. More precisely, in the i.i.d. case we would then have, see [21], [9], [3],

‖L(NO) − L(Pλ)‖TV ≤
min(λ, λ2)
2 |BH(O)|

.

Remember that L(X) stands for the law of the random variable X and ‖μ − ν‖TV is the
distance between μ and ν in total variation.

However, in our case the λ(B,ω), B ∈ BH(O), are dependent random variables, whence
the classical theory does not apply directly and needs some justifications and complements.
Basic ingredients in our study are the stationarity property of the family {λ(B,ω)}B∈H

and certain estimates of its correlation function, see Section 3. We will prove the following
statement.
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Theorem 5.1 Assume that the condition (3.11) holds with δ > 2, and that the common
law of i.i.d. {ε(B)} admits a bounded density. Then, in the notation introduced above, as
O → $,

L(NO) → L(Pλ) in the Bernoulli topology.

Before embarking on the proof notice that, thanks to our assumptions, the density of
states m(τ) exists and belongs to C∞, see Proposition 4.4. In particular, λ = λc at (5.2)
is well defined for any c > 0. Next, for any B ∈ H, the eigenvalue λ(B,ω) can be written
in the form

λ(B,ω) = λH (1 + U(B,ω)) , (5.3)

where
U(B,ω) =

∑

B⊆Bk

akε(Bk, ω), and ak = C(Bk)/λH . (5.4)

Since
∑

ak = 1 and |ε(B,ω)| ≤ ε, for all B,ω and some 0 < ε < 1,

|U(B,ω)| ≤ sup
k,ω

|ε(Bk, ω)| = ε.

The common distribution function N (t) of the family {U(B,ω)}B∈H is absolutely contin-
uous and its density n(t) relates to the integrated density of states m(τ) by

n(t) = λHm(λHt + λH).

In particular, n(t) is supported by the interval [−ε, ε], is continuous and strictly positive
at t0 = τ0/λH − 1.

Let Ñω
O be the empirical process defined by the family {U(B,ω)} , B ∈ BH(O). Let us

choose an interval Ĩ as

Ĩ =

{

t : |t − t0| ≤
c̃

2 |BH(O)|

}

, c̃ = c/λH ,

and set ÑO := Ñω
O(Ĩ). The equation (5.3) yields

P {NO = k} = P
{

ÑO = k
}

,

and therefore
lim

O→$
P {NO = k} = lim

O→$
P
{

ÑO = k
}

.

Having all these observations in mind we will prove the evident U -version of Theorem 5.1.
We fix a horocycle H and let O tend to $. Evidently when studying the family U(B,ω),

B ∈ H, we can replace the original ultrametric space X by certain discrete ultrametric
space. For instance, we can replace X by the discrete Abelian group

G =
⊕

k≥1

Z (nk)

equipped with its canonical ultrametric structure defined by the family {Gl}l≥0 of its finite
subgroups

G0 = {0}, Gl =
∏

1≤k≤l

Z (nk) .
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With such agreement in mind we have: H = H0 is the set of all singletones, H1 is the set of
all ultrametric balls of the form g+G1 etc. When B = {g} we shell write U(B,ω) = Ug(ω).
For any Bi ⊇ B, we set ε(Bi, ω) = εig(ω). Thus we define a stationary family {Ug}g∈G,

Ug(ω) =
∞∑

i=0

aiεig(ω).

Let Zc
l (ω) be the number of Ug(ω), g ∈ Gl, which fall in the interval

Ic
l =

{

t : |t − t0| ≤
c

2πl

}

, πl = n1...nl.

We set λc = cn (t0) and prove that

lim
l→∞

P {Zc
l = k} =

(λc)k

k!
exp (−λc) . (5.5)

Writing Zc
l in the form

Zc
l (ω) =

∑

g∈Gl

δUg(ω)(I
c
l )

we compute
lim
l→∞

E (Zc
l ) = lim

l→∞
πlP(Ug ∈ Ic

l ) = λc.

It follows that the family {L(Zc
l )}l∈N is tight, whence it is relatively compact in the week

topology. Let L(Z) be an accumulation point of {L(Zc
l )}l∈N. We claim that Z is infinitely

divisible. Indeed, using the ultrametric structure of G we can write

Zc
l =

∑

g∈Z(nl)

τg

(
Z

c/nl

l−1

)
,

where
τg

(
Z

c/nl

l−1

)
:=

∑

a∈Gl−1

δUg+a(Ic/nl

l−1 ).

The τg

(
Z

c/nl

l−1

)
, g ∈ Z(nl), are identically distributed (dependent) random variables. How-

ever the dependence between them becomes weaker as l tend to infinity, that is, for each
g ∈ Gl we can write

Ug =
l−1∑

i=0

aiεig +
∞∑

i=l

aiεig := Ũg + Kl. (5.6)

The common part Kl of the random variables Ug is independent of the family {Ũg} and
can be estimated as

|Kl(ω)| ≤ ε
∞∑

i=l

ai = O(al) = O(π−δ/2
l ).

It particular, assuming that δ > 2, we obtain

kl := sup
ω

|Kl(ω)| = o(π−1
l ). (5.7)

Let us compute the characteristic function

ΦZ(γ) = E (exp (−γZ)) , γ ≥ 0,
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of the random variable Z = Zc
l . We have

Zc
l =

∑

a∈Z(nl)

∑

g∈Gl−1

δUa+g(I
c
l ) =

∑

a∈Z(nl)

τa

(
Z

c/nl

l−1

)
,

whence

ΦZc
l
(γ) = E [E (exp (−γZc

l ) |Kl )]

= E
[(
E
(
exp

(
−γZ

c/nl

l−1

)
|Kl

))nl
]

=
∫

dμl(k)
(
E
(
exp

(
−γZ

c/nl

l−1

)
|Kl = k

))nl

,

where μl is the law of Kl. Using (5.6), we compute

E
(
exp

(
−γZ

c/nl

l−1

)
|Kl = k

)
= E{exp[−γ

∑

g∈Gl−1

δ
Ũg

(Ic/nl

l−1 − k)]}.

Remark that by (5.7), εl := πlkl = o(1), whence for any g ∈ Gl−1 and k ∈ [−kl, kl], we will
have {

Ug ∈ I
(c−2εl)/nl

l−1

}
⊆
{

Ũg ∈ I
c/nl

l−1 − k
}
⊆
{

Ug ∈ I
(c+2εl)/nl

l−1

}
,

and (

Φ
Z

(c+2εl)/nl
l−1

(γ)

)nl

≤ ΦZc
l
(γ) ≤

(

Φ
Z

(c−2εl)/nl
l−1

(γ)

)nl

. (5.8)

1st Case. Assume that nl = n along some infinite sequence {lk}. Then, along this
sequence,

E
(
Z

(c±2εl)/n
l−1

)
= πl−1P

(
Ug(ω) ∈ I

(c±2εl)/n
l−1

)
→ λc/n,

whence the family {L(Z(c±2εl)/n
l−1 )} is tight. Recall that the family {L(Zc

l )} is tight as well.

Choose a sequence {l
′

k} ⊂ {lk} such that along this new sequence

Zc
l → Z and Z

(c±2εl)/n
l−1 → Z± in law.

Since for all ω ∈ Ω,

Z
(c−2εl)/n
l−1 (ω) ≤ Z

(c+2εl)/n
l−1 (ω)

and the strong inequality occurs if and only if ω belongs to the event

Ωl = {Ug(ω) ∈ I
(c+2εl)/n
l−1 \I(c−2εl)/n

l−1 for some g ∈ Gl−1}

whose probability is estimated as

P(Ωl) ≤ 2 |Gl−1| (4εl/πl)(n (t0) + o(1))

= O(εl) → 0 as l → ∞,

we must have Z+ = Z− a.s. Let Z ′ = Z±, passing to the limit in the equation (5.8) we
obtain

ΦZ(γ) = (ΦZ′(γ))n . (5.9)

Applying the same procedure as before we will have

ΦZ′(γ) = (ΦZ′′(γ))n
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etc, whence Z is infinite divisible as claimed.
2nd Case. Assume that nl → ∞. Let Gl be partitioned into disjoint subsets Ai,

i = 1, 2, 3, that are made of Gl−1-cosets each and |A1| = |A2| = [πl/2]. We let

Zc
l,i =

∑

g∈Ai

δUg(ω)(I
c
l ), i = 1, 2, 3,

so that
Zc

l = Zc
l,1 + Zc

l,2 + Zc
l,3.

Note that as l → ∞,

E
(
Zc

l,3

)
≤

1
nl
E (Zc

l ) → 0

and
E
(
Zc

l,i

)
→ λc/2.

In particular, Zc
l,3 → 0 in probability. Clearly, Zc

l,1 and Zc
l,2 have the same distribution.

The families of laws {L(Zc
l,i)} are tight. Reasoning as in the 1st case, we will show that

along some subsequence Zc
l → Z, Zc

l,1 → Z ′ and Zc
l,2 → Z ′′in law, and that L(Z ′) = L(Z ′′).

The equation (5.9) holds with n = 2, whence Z is infinite divisible as desired.
Since Z is non-negative and integer valued its characteristic function has the following

representation

ΦZ(γ) = exp

{

−aγ −
∫ (

1 − e−γx
)
m(dx)

}

, γ ≥ 0, (5.10)

where m is a finite measure on N and a ∈ N∪{0}. Since the range of Z is the whole of
N∪{0}, it must be the case that a = 0. Note that

E(Z) =
∫

xm(dx) (5.11)

and

E(Z2) =
∫

x2m(dx) +

(∫
xm(dx)

)2

(5.12)

We claim that the measure m is concentrated at {1}. Suppose we can show that

lim sup
l→∞

E (Zc
l )

2 ≤ λc + (λc)
2 . (5.13)

It would then follow that the family {Zc
l } is uniformly integrable, so that along some

subsequence (lk)
E (Z) = limE (Zc

l ) = λc. (5.14)

Furthermore, by Fatou’s lemma and by (5.13),

E (Z)2 ≤ lim sup
l→∞

E (Zc
l )

2 ≤ λc + (λc)
2 ,

so that, by (5.12) and (5.14) we would obtain
∫

x2m(dx) ≤ λc =
∫

xm(dx).
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Since m is concentrated on N it would follow that m = λcδ{1} and thus Z is Poissonian
with parameter λc. This evidently would prove the claim (5.5). It remains therefore to
prove (5.13).

Without loss of generality we may assume that nl ≡ n. Let g ∧ g′ be the confluent of
g and g′, that is, the minimal ball in G which contains both g and g′. We have

E (Zc
l )

2 =
∑

g,g′∈Gl

P
(
Ug ∈ Ic

l , Ug′ ∈ Ic
l

)

=
∑

0≤j≤l

∑

g∧g′∈BHj
(Gl)

P
(
Ug ∈ Ic

l , Ug′ ∈ Ic
l

)

=
∑

1≤j≤l

nl−j
∑

g∧g′=Gj

P
(
Ug ∈ Ic

l , Ug′ ∈ Ic
l

)
+ nlP (U0 ∈ Ic

l ) .

Since for any two couples (g, g′) and (f, f ′) such that g ∧ g′ = f ∧ f ′,

P
(
Ug ∈ Ic

l , Ug′ ∈ Ic
l

)
= P

(
Uf ∈ Ic

l , Uf ′ ∈ Ic
l

)
,

we obtain
∑

g∧g′=Gj

P
(
Ug ∈ Ic

l , Ug′ ∈ Ic
l

)
= nj(nj − nj−1)P

(
Ugj ∈ Ic

l , Ug′j
∈ Ic

l

)
,

where gj , g
′
j are chosen such that gj ∧ g′j = Gj . Whence we have

E (Zc
l )

2 = J + J ′,

where
J = (n − 1)

∑

1≤j≤l

nl+j−1P
(
Ugj ∈ Ic

l , Ug′j
∈ Ic

l

)

and
J ′ = nlP (U0 ∈ Ic

l ) .

Choosing {εi} and {ε′i} to be two independent families of i.i.d. having the same common
distribution as {ε(B)}B∈B we write

Ugj =
j−1∑

i=0

aiεi +
∞∑

i=j

aiεi := Ũj + Kj

and similarly

Ug′j
=

j−1∑

i=0

aiε
′
i +

∞∑

i=j

aiεi = Ũ ′
j + Kj ,

We already know that
lim
l→∞

nlP (U0 ∈ Ic
l ) = λc, (5.15)

whence we are left to show that

lim sup
l→∞

J ≤ (λc)
2 . (5.16)
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To simplify our notation we set

Pl−i = P
(
Ugl−i

∈ Ic
l , Ug′l−i

∈ Ic
l

)
.

We choose 0 < m < l and split the sum in J in two terms

J = (n − 1)
∑

0≤i<l

n2l−i−1Pl−i

= (n − 1)n2l




∑

0≤i≤m

+
∑

m<i<l



n−(i+1)Pl−i := Jm + Jm.

We write
Ugl−i

= a0ε0 + Al−i + Kl−i

and similarly
Ug′l−i

= a0ε
′
0 + A′

l−i + Kl−i.

Since {ε0, ε
′
0, Al−i, A

′
l−i,Kl−i} are independent, we write Pl−i as

∫
P (a0ε0 ∈ Ic

l − a − k)P
(
a0ε

′
0 ∈ Ic

l − a′ − k
)
dμ(a)dμ(a′)dν(k), (5.17)

where μ is the common distribution of i.i.d. {Al−1, A
′
l−1} and ν is the distribution of Kl−i.

Assume now that the common distribution function of {ε(B)}B∈B admits a bounded
density ε(x). Then the equation (5.17) yields

Pl−i ≤ n−2l ‖ε‖2
∞ c2/a2

0

and therefore, as m → ∞,

Jm ≤ (n − 1)n2l
∑

m<i<l

n−(i+1)n−2l ‖ε‖2
∞ c2/a2

0

< ‖ε‖2
∞ c2/a2

0(n − 1)
∑

i>m

n−(i+1) = n−(m+1) ‖ε‖2
∞ c2/a2

0 → 0.

To estimate Jm we choose 0 < θ < 1 and applying the same procedure of decoupling as
before we obtain

Pl−i =
∫ (

P
(
Ũl−i ∈ Ic

l − k
))2

dν(k)

≤ sup
|k|≤θ/nl

(
P
(
Ũl−i ∈ Ic

l − k
))2

+ P
(
|Kl−i| > θ/nl

)

≤
(
P
(
Ug ∈ Ic+4θ

l

))2
+ P

(
|Kl−i| > θ/nl

)
.

Hence we have

Jm ≤
(
P
(
Ug ∈ Ic+4θ

l

))2
(n − 1)n2l

∑

0≤i≤m

n−(i+1)

+(n − 1)n2l
∑

0≤i≤m

n−(i+1)P
(
|Kl−i| > θ/nl

)
.
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Further, as l → ∞ and m, θ are fixed,
(
P
(
Ug ∈ Ic+4θ

l

))2
(n − 1)n2l

∑

0≤i≤m

n−(i+1) → (λc+4θ)
2 (1 − n−m).

Next we fix p > 1, m < l and apply Chebychev inequality for i ≤ m,

P
(
|Kl−i| > θ/nl

)
≤ θ−pnpl ‖ε‖p

∞




∑

k≥l−m

ak





p

,

Assume now that the condition (3.11) holds with δ/2 = 1+γ, γ > 0. By (3.11), as l → ∞
and m is fixed,

1
al−m

∑

k≥l−m

ak = O(1).

Choosing p big enough (such that pγ > 2) we get

(n − 1)n2l
∑

0≤i≤m

n−(i+1)P
(
|Kl−i| > θ/nl

)
≤ n2l max

0≤i≤m
P
(
|Kl−i| > θ/nl

)

≤ Cn2l+plap
l−m ≤ C ′n−lβ ,

where C,C ′, β > 0 do not depend on l. Finally, all the above yields

lim sup
l→∞

J ≤ (λc+4θ)
2 (1 − n−m).

Letting θ → 0 and m → ∞ in the above inequality we get the desired result, that is, the
inequality (5.16). The proof of Theorem 5.1 is finished.

Binomial perturbations of the operator Bα. Let ε be the common distribution of
the i.i.d. {ε(B)}B∈B. The assumption of Theorem 5.1 that ε admits a bounded density
can not be entirelly droped. More precisely, we will show that if ε contains a discrete
component while the other assumptions of Theorem 5.1 hold true the Poisson convergence
may fail.

As an example we choose the operator of fractional derivative Bα and consider its
perturbation Bα(ω) defined by the i.i.d. symmetrized Binomial random variables, that is,
we take ε = B1 + ... + Bn , where {Bi} are i.i.d. symmetric Bernoulli random variables,
i.e. Bi take values ±1 with probability 1/2 each.

The condition (3.11) holds with δ > 2 if α = δ/2 > 1. By our choice, the common
distribution function N (t) of the Ug(ω), g ∈ G, is the n-fold convolution of the distribution
function Nλ(t), λ = p−α, of the infinite Bernoulli convolution defined at (4.11). Since
α > 1, we have 0 < λ < 1/2. Therefore Nλ(t) is purely singular. On the other hand, by
[29], Proposition 6.1, the Fourier transform Φλ(x) of the function Nλ(t) satisfies

|Φλ(x)| ≤
C

1 + |x|γ
,

for some C = C(λ) > 0 and γ = γ(λ) > 0, and for almost all 0 < λ < 1. Thus we can
choose α > 1 such that λ = p−α does not belong to the exceptional set and then n = n(α)
big enough such that the Fourier transform Φ(x) of the function N (t) satisfies

|Φ(x)| = |Φλ(x)|n ≤
C ′

1 + |x|2
,
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for some C ′ > 0. In particular, according to our choice, N (t) is absolutely continuous and
has a continuous density. This shows that the density of states exists and is a continuous
function, whereas ε is discrete. Thus Bα(ω) with appropriately chosen α > 1 and ε(ω)
is as desired.

Now let us return to our general setting and prove that the Poisson convergence fails.
Without loss of generality we can assume that ε({0}) := p0 > 0. We also assume that all
forward degrees nj are the same and equal n. Keeping all the notation from the proof of
Theorem 5.1 we write

Ug =
∞∑

i=0

aiεig = a0ε0g + Ũg

and

Zc
l =

∑

g∈Gl

1{Ug∈Ic
l }

≥
∑

g∈Gl

1{Ũg∈Ic
l }

1{ε0g=0} (5.18)

=
∑

g∈Gl/G1

1
{Ug∈I

c/n
l−1}

∑

a∈g

1{ε0a=0}.

For each g ∈ Gl/G1 we define a random variable

Bg =
∑

a∈g

1{ε0a=0}.

The {Bg}g∈Gl/G1
are i.i.d. Binomial random variables with parameters (p0, n). Further,

setting
Z̃

c/n
l−1 =

∑

g∈Gl/G1

1
{Ug∈I

c/n
l−1}

and
Zc

l =
∑

g∈Gl/G1

1
{Ug∈I

c/n
l−1}

∑

a∈g

1{ε0a=0},

we will obtain

Zc
l

d
=

τ∑

j≥0

Bj ,

where {Bi}∞i=0 are i.i.d. Binomial random variables with parameters (p0, n) which are

independent of τ = Z̃
c/n
l−1.

If we assume that the Poisson convergense holds then, as in the proof of Theorem
5.1, we can choose a subsequence {lk} such that along this subsequence Zc

l → Zc and

Z̃
c/n
l−1 → Z̃c/n, where both Zc and Z̃c/n are Poisson random variables with intensities λc

and λc/n respectively. In particular, by (5.18), we will have

P(Zc ≥ 2) ≥ P(Z̃c/n ≥ 1)P(B0 ≥ 2).

Contradiction, because as c → 0 the left-hand-side of the above inequality is of order c2

whereas the right-hand-side is of order c.
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