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1 Introduction

Consider the heat equation ∂tu = ∆u, where u = u (t, x) is a function on R+ ×R
n and ∆

is the Laplace operator in R
n. It is well-known that, for all p ∈ [1, +∞], the Lp-norm of

a solution u (t, ·) is a non-increasing function of t. In the case p = +∞, this statement is
a particular case of the classical parabolic maximum principle. In the case p < +∞, we
will refer to it as an integral maximum principle. It admits the following generalization
for weighted norms. Let a smooth function ξ (t, x) defined on R+ × R

n be such that

∂tξ +
1

2
|∇ξ|2 ≤ 0. (1.1)

Then the weighted integral ∫
Rn

u2 (t, x) eξ(t,x)dx (1.2)

is a non-increasing function of t. For example, the function ξ (t, x) = d2(x)
2t

satisfies (1.1)
provided |∇d| ≤ 1.

The fact that the weighted integral (1.2) decreases in time remains true if the Laplace
operator is replaced by a more general second-order elliptic operator in divergence form
(under accordingly modified condition (1.1)). This was observed by Aronson and was
used by him in [1] for obtaining two-sided estimates of the fundamental solutions of the
corresponding heat equation. Similar results for the heat equation on a Riemannian
manifold were obtained by the second author in [15], [14], [16]. Note that such results are
universal, in the sense that they do not depend on the geometry on the manifold, and
that they are instrumental in obtaining basic heat kernel estimates.

The purpose of this paper is to prove an analogue of the latter integral maximum
principle in the setting of discrete heat equation on a graph. This will enable us to
answer some basic questions about estimates of discrete heat kernels, which were left
open in [9]. We should mention that the proof in the above continuous setting is quite
easy, at least if u and its derivatives decay fast enough as x → ∞. Indeed, differentiating
(1.2) in t and applying integration by parts we obtain

d

dt

∫
Rn

u2eξdx =

∫
Rn

(
2∆u u eξ + u2∂tξe

ξ
)
dx

=

∫
Rn

(−2∇u · ∇ (ueξ
)
dx + u2∂tξe

ξ
)
dx

=

∫
Rn

(−2 |∇u|2 eξdx − 2∇u · ∇ξ ueξ + u2∂tξe
ξ
)
dx

≤
∫

Rn

(
−2 |∇u|2 +

(
2 |∇u|2 +

1

2
|∇ξ|2 u2

)
+ u2∂tξ

)
eξdx

=

∫
Rn

(
1

2
|∇ξ|2 + ∂tξ

)
u2eξdx,
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which is non-positive by (1.1). However, if one tries to mimic this proof in the discrete
setting, it does not work, due to additional terms that come from the discreteness of
time. Before we can discuss this in details, let us introduce the necessary definitions and
notation.

Let Γ be a (non-oriented) countable graph, that is a countable (we do not exclude the
finite case) set of vertices, some of which are connected by edges. We write x ∼ y if x
and y are connected by an edge, and denote this edge by xy. We shall assume throughout
that Γ is locally finite, that is each x ∈ Γ has a finite number of neighbors. A path of
length n between x and y in Γ is a sequence xi, 0 = 1, ..., n such that x0 = x, xn = y
and xi ∼ xi+1, i = 0, ..., n − 1. We shall assume that Γ is connected, i.e. there exists a
path between any two points of Γ. Let d be the graph metric on Γ: d(x, y) is the minimal
length of a path between x and y. Denote by B(x, r) = {y ∈ Γ : d (x, y) ≤ 1} the closed
ball of radius r ≥ 0 centered at x ∈ Γ.

Let µxy be a non-negative symmetric weight defined for all x, y ∈ Γ and vanishing on
all pairs x, y that are not neighbors (so that µxy is a function on the edge set). Assume µ
is non-degenerate in the sense that for any x ∈ Γ there exists y ∈ Γ such that µxy > 0. A
couple (Γ, µ) is called a weighted graph. Any graph Γ admits the standard weight: µxy = 1
for all x ∼ y.

The weight µ induces a positive weight m on vertices defined by

m(x) =
∑
y∼x

µxy,

which extends to a measure on Γ by

|Ω| = m (Ω) =
∑
x∈Ω

m (x) ,

for Ω ⊂ Γ. Next, define a kernel p (x, y) on Γ × Γ by

p(x, y) =
µxy

m(x)
.

Note that p is a Markov kernel, meaning that, for all x, y ∈ Γ,

p(x, y) ≥ 0 and
∑
z∈Γ

p(x, z) = 1, (1.3)

and p is reversible with respect to measure m, that is

p(x, y)m(x) = p(y, x)m(y). (1.4)

Conversely, given a Markov kernel p reversible with respect to a positive measure m, the
weight µ is uniquely determined by µxy = p(x, y)m(x).

Let P be the Markov operator acting on functions on Γ as follows

Pu(x) :=
∑
y∈Γ

p(x, y)u(y) ≡
∑
y∈Γ

h(x, y)u(y)m(y), ∀x ∈ Γ.

The (discrete) Laplace operator ∆ of (Γ, µ) is defined by ∆ = P − Id, that is

∆u (x) =
∑
y∈Γ

p (x, y) (u (y) − u (x)) .
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Let now u = u (k, x) be a function on N×Γ where we regard the variable k as a (discrete)
time. It will be convenient to write uk = u (k, ·). Let u satisfy the (discrete) heat equation,
that is

uk+1 − uk = ∆uk, (1.5)

which is equivalent to uk+1 = Puk. Let f be a non-negative function on N×Γ, which will
play the role of a weight. Consider the following weighted L2-norm of u:

Ik :=
∑
x∈Γ

u2
k (x) fk (x) m (x) .

Our main result - Theorem 2.2 - says that Ik is a non-increasing function of k provided
there exists α > 0 such that

p (x, x) ≥ α for all x ∈ Γ (α)

and f satisfies the inequality

fk+1 − fk +
|∇fk+1|2
4αfk+1

≤ 0, (1.6)

where

|∇f |2 (x) :=
∑
y∈Γ

(f (y) − f (x))2 p (x, y) .

Note that in the continuous setting (1.1) implies that the function f = eξ satisfies the
inequality

∂tf +
|∇f |2
2f

≤ 0,

which matches (1.6).
Condition (α) has no analogue in the manifold setting. In the graph setting, it appears

in [11] and [13]. At first sight it seems very restrictive; indeed, the simplest graph Z
D with

the standard weight µ does not satisfy it. However, for most applications of the integral
maximum principle, it is possible to get rid of (α) by considering a new graph Γ̃ that

has the same set of vertices as Γ but x and y are related by an edge in Γ̃ if d (x, y) ≤ 2

in Γ. Respectively, one considers on Γ̃ the Markov kernel p̃ (x, y) = p2 (x, y), which is
reversible with respect to the same measure m (x). The associated weight is denoted by

µ̃. The weighted graph (Γ̃, µ̃) satisfies condition (α) provided (Γ, µ) satisfies the following
condition

m (B (x, 1)) =
∑
y∼x

m(y) ≤ β m (x) ∀x ∈ Γ, (β)

for a constant β (see Lemma 3.2). It is frequently possible to prove certain results about

pk(x, y) on Γ by having proved them first on Γ̃ for p̃k (x, y) using (α) and then transferring
them back to Γ. This way of using (α) was introduced by Delmotte [13] and later was
applied also in [9]. Note that the construction of iterated graphs may serve another
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purpose, namely extend our results from Markov chains with range one to Markov chains
with bounded range.

All our applications of the integral maximum principle relate to estimates of the heat
kernel on (Γ, µ). Let pk (x, y), k ∈ N, be the k-th iterate power of p (x, y), that is

p0 (x, y) = δx,y :=

{
0, x �= y,
1, x = y,

and

pk(x, y) =
∑
z∈Γ

pk−1(x, z)p(z, y), k ≥ 1. (1.7)

The function pk (x, y) is the k-th step transition function of the random walk defined by
the transition probabilities p (x, y) . Define the transition density or the heat kernel of this
random walk by

hk (x, y) =
pk (x, y)

m (y)
.

Note that unlike pk(x, y), the function hk (x, y) is symmetric in x, y. It follows from (1.7)
that hk satisfies the identity

hk+l(x, y) =
∑
z∈Γ

hk(x, z)hl(z, y)m(z), (1.8)

for any k, l ∈ N and x, y ∈ Γ. Note that x → hk(x, y) is a solution of the discrete heat
equation for any y ∈ Γ. For various aspects of heat kernel estimates on graphs, we refer
the reader to the book [26], to the surveys [7], [10], [22] and to the references therein.
Some of the lecture courses contained in [3] are also relevant.

Our purpose here is to provide with the integral maximum principle a basic and
universal tool for the study of pointwise estimates of transition probabilities of random
walks of graphs. As such, it does not use specific geometric properties of the graph, such
as the volume growth or Poincaré inequalities. On the other hand, it is very stable, so that
it might prove useful for instance in the study of random walks in random environment.

In Section 2 we prove the integral maximum principle for graphs satisfying condition
(α). In Section 3 we discuss relation between conditions (α) and (β). In subsequent
sections, we present a selection of four applications of the integral maximum principle for
graphs satisfying (α) or (β).

Corollary 4.2 says that, for all finite subsets A and B in Γ,∑
x∈A

∑
y∈B

hk (x, y)m (x) m (y) ≤ C exp

(
−c

d2 (A, B)

k

)√
m (A) m (B), (1.9)

where d (A, B) := inf {d (x, y) : x ∈ A, y ∈ B} is the distance between A and B and C, c
are positive constants. The inequality (1.9) is not new. An analogue of (1.9) for heat
kernels on Riemannian manifolds was proved by Davies [12, Theorem 2] (see also [19] for
an earlier version and [17] for alternative proofs). In the graph case, when A and B are
single points, inequality (1.9) yields

pk(x, y) ≤ C exp

√
m(y)

m(x)

(
−c

d2(x, y)

k

)
.
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A weaker version of this estimate is due to Varopoulos [24], and the proof in full generality
is due to Carne [5]. Moreover, Carne’s method allows to prove (1.9) for arbitrary sets A, B
without assuming (α) or (β). Another proof of (1.9) was obtained in [9, Lemma 5.1] using
a result of Hebisch and Saloff-Coste [18] for an auxiliary random walk with continuous
time1. In Section 4, we deduce (1.9) from the integral maximum principle to illustrate
the strength of the latter. We also deduce another, apparently new, generalization to
arbitrary sets of the Carne-Varopoulos estimate, namely∑

x∈A

∑
y∈B

h2
k(x, y)m(x)m(y) ≤ C exp

(
−c

d2(A, B)

k

)
min(card (A), card (B)).

Another application of the integral maximum principle enables one to obtain off-
diagonal estimates of the heat kernel from on-diagonal ones. Assume that for two fixed
points x, y ∈ Γ and all k ∈ N the following estimates hold:

h2k (x, x) ≤ 1

f (k)
and h2k (y, y) ≤ 1

g (k)
,

where f and g are some increasing regular enough functions. Then, for all k ∈ N,

h2k (x, y) ≤ C√
f (ηk) g (ηk)

exp

(
−c

d2 (x, y)

k

)
,

for some positive constants C, c, η (see Theorem 5.2). An analogous result for manifolds
was proved in [16]. Let us emphasize that unlike other methods for obtaining Gaussian
upper bounds (see for example [9] and [18]) we need information on the heat kernel only
at fixed points x, y, which provides a lot of flexibility for potential applications.

The integral maximum principle also enables one to obtain a lower bound of heat
kernel from an upper bound, similarly to a result of [8, Theorem 7.2] for the manifolds
setting. Assume that for a fixed point x ∈ Γ the following two conditions hold:

V (x, 2r) ≤ CV (x, r) for all r > 0,

where V (x, r) := m (B (x, r)), and

hk (x, x) ≤ C

V
(
x,
√

k
) , for all k ∈ N.

Then, by Theorem 6.1, there exists a constant c > 0 such that

hk (x, x) ≥ c

V
(
x,
√

k
) for all k ∈ N.

In Section 7 we observe that our results can be carried over to time-dependent ran-
dom walks, and in Section 8 we give an application of Theorem 5.2 to random walks on
percolation clusters.

1In the statement of the Davies-Gaffney inequality in [9, Lemma 5.1], one hypothesis is missing.
Namely, one has to assume that

sup
x,y∈Γ

µxy

m (x) m (y)
< ∞, (1.10)

in order to be able to apply [18, Lemma 2.4].
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2 The discrete integral maximum principle

We start with the following simple observation, which will not be used, but which gives
some flavor of what follows.

Proposition 2.1. Let (Γ, µ) be a weighted graph and let u be a solution of the discrete
heat equation on (Γ, µ). Let f be a non-negative function on N × Γ such that

Pfk+1 ≤ fk, ∀k ∈ N.

Then, for any q ∈ [1, +∞), the quantity

J
(q)
k :=

∑
x∈Γ

|uk(x)|qfk(x)m(x)

is non-increasing in k, that is J
(q)
k+1 ≤ J

(q)
k for all k ∈ N.

Proof. Since

uk+1 (x) = (Puk) (x) =
∑
y∈Γ

p (x, y)uk (y) ,

we obtain, using the Hölder inequality, (1.3), and (1.4),

J
(q)
k+1 =

∑
x∈Γ

∣∣∣∣∣∑
y∈Γ

p(x, y)uk(y)

∣∣∣∣∣
q

fk+1(x)m(x)

≤
∑
x∈Γ

(∑
y∈Γ

p(x, y)

)q−1(∑
y∈Γ

p(x, y)|uk(y)|q
)

fk+1(x)m(x)

=
∑
y∈Γ

∑
x∈Γ

p(y, x)|uk(y)|qfk+1(x)m(y)

=
∑
y∈Γ

|uk(y)|q (Pfk+1) (y)m(y)

≤
∑
y∈Γ

|uk(y)|qfk(y)m(y) = J
(q)
k .

As a simple consequence, by taking fk ≡ 1, we see that the lq(Γ, m)-norm of a solution
of the discrete heat equation is non-increasing. This is of course also true if q = +∞.
From now on, we will consider only the case q = 2.

Let us introduce the following notation: given a function f on N we write

∂kf := fk+1 − fk.

It is easy to see that

∂k (fg) = (∂kf) gk+1 + fk (∂kg) (2.1)

∂k

(
f 2
)

= 2fk∂kf + (∂kf)2 .

7



Similarly, if f is a function on Γ and x, y are two vertices in Γ, let us set

∇xyf := f (y) − f (x)

and observe that the following product rules take place:

∇xy (fg) = f (x) (∇xyg) + (∇xyf) g (y) (2.2)

∇xy

(
f 2
)

= 2f (x)∇xyf + (∇xyf)2 .

Let us define |∇f | as a function on Γ by

|∇f |2 (x) =
∑
y∈Γ

(∇xyf)2 p (x, y) . (2.3)

Note that the Laplace operator on (Γ, µ) can be rewritten in the form

∆f(x) =
∑
y∈Γ

p(x, y)∇xyf.

One can easily check the following integration by parts formula: if one of the functions
f, g on Γ has a finite support then∑

x∈Γ

∆f(x)g(x)m(x) = −1

2

∑
x,y∈Γ

(∇xyf) (∇xyg)µxy (2.4)

(the factor 1
2

appears because each edge is counted twice in the sum).
Given a ∈ N and b ∈ N ∪ {+∞}, a < b, define the intervals

[a, b) = {k ∈ N : a ≤ k < b} and [a, b] = {k ∈ N : a ≤ k ≤ b} .

Let n ∈ N∪ {+∞}. We say that a function u satisfies the heat equation in [0, n)× Γ if u
is defined in [0, n] × Γ and

∂ku = ∆uk for all k ∈ [0, n). (2.5)

The next theorem is the main result of this section. Recall that the weighted graph (Γ, µ)
satisfies condition (α) if

inf
x∈Γ

p(x, x) =: α > 0.

Theorem 2.2. Let (Γ, µ) be a weighted graph satisfying condition (α) and let f be a
strictly positive function on [0, n] × Γ such that, for all x ∈ Γ and k ∈ [0, n),

∂kf(x) +
|∇fk+1|2
4αfk+1

(x) ≤ 0. (2.6)

Then, for any solution u of the heat equation in [0, n) × Γ, the quantity

Jk = Jk (u) :=
∑
x∈Γ

u2
k(x)fk(x)m(x)

is non-increasing in k, that is, Jk+1 ≤ Jk for any k ∈ [0, n).
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Proof. Assume first that supp(u0) is a finite set, which implies that supp(uk) is also finite
for any k ∈ [0, n) and which will ensure finiteness of all the sums in the argument below.
By (2.1), we have

∂k(u
2f) = ∂k

(
u2
)
fk+1 + u2

k∂kf = 2uk (∂ku) fk+1 + (∂ku)2fk+1 + u2
k∂kf,

whence

∂kJ (u) =
∑
x∈Γ

∂k(u
2f)(x)m(x)

= 2
∑
x∈Γ

uk(x)∂ku(x)fk+1(x)m(x) +
∑
x∈Γ

(∂ku(x))2fk+1(x)m(x) (2.7)

+
∑
x∈Γ

u2
k(x)∂kf(x)m(x). (2.8)

Using (2.5), (2.4), and (2.2) let us observe that the first sum in (2.7) is equal to

2
∑
x∈Γ

uk(x)∆uk(x)fk+1(x)m(x)

= −
∑
x,y∈Γ

(∇xyuk)∇xy (ukfk+1) µxy

= −
∑
x,y∈Γ

(∇xyuk)
2fk+1(x)µxy −

∑
x,y∈Γ

(∇xyuk)uk(y)(∇xyfk+1)µxy

= −
∑
x,y∈Γ

(∇xyuk)
2fk+1(x)µxy −

∑
x,y∈Γ

(∇xyuk)uk(x)(∇xyfk+1)µxy, (2.9)

where in the last sum in (2.9), in order to replace uk (y) by uk (x), one switches x and y
in the notation using ∇xy = −∇yx and µxy = µyx.

To handle the second term in (2.7), we will argue as in [13], §1.5 and [9], Lemma 4.6,
using the condition (α). Indeed, we have

(∂ku (x))2 = (∆uk(x))2

=

 ∑
y∈Γ\{x}

(∇xyuk) p(x, y)

2

≤
 ∑

y∈Γ\{x}
p(x, y)

(∑
y∈Γ

(∇xyuk)
2p(x, y)

)

= (1 − p(x, x))
∑
y∈Γ

(∇xyuk)
2p(x, y)

≤ (1 − α)
∑
y∈Γ

(∇xyuk)
2p(x, y), (2.10)

whence, using p(x, y)m(x) = µxy,∑
x∈Γ

(∂ku(x))2fk+1(x)m(x) ≤ (1 − α)
∑
x,y∈Γ

(∇xyuk)
2fk+1(x)µxy. (2.11)
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Hence, substituting (2.9) and (2.11) into (2.7)-(2.8) and using (2.3) we obtain

∂kJ (u) ≤ −α
∑
x,y∈Γ

(∇xyuk)
2fk+1(x)µxy −

∑
x,y∈Γ

(∇xyuk)uk(x)(∇xyfk+1)µxy

+
∑
x∈Γ

u2
k(x)∂kf(x)m(x)

= −
∑
x,y∈Γ

(
∇xyuk

√
αfk+1(x) +

uk(x)

2
√

αfk+1(x)
∇xyfk+1

)2

µxy

+
∑
x∈Γ

u2
k(x)

(
1

4αfk+1(x)
|∇fk+1|2 (x) + ∂kf(x)

)
m(x).

By hypothesis (2.6), the expression in the brackets in the last sum is non-positive, whence
∂kJ ≤ 0.

Let now u0 be an arbitrary function on Γ. Without loss of generality, we can assume
that J0 (u) < ∞. Indeed, as long as Jk (u) = +∞ there is nothing to prove, and if k0

is the minimum integer such that Jko (u) < +∞ then we can shift the time as follows:
k → k − k0.

Let us take an increasing sequence of finite subsets {Γi}i∈N such that ∪+∞
i=0 Γi = Γ and

define the initial states u
(i)
0 := 1Γi

u0. Alongside the function uk = P ku0 consider also the
following functions:

u
(i)
k := P ku

(i)
0 , v

(i)
k := P k|u(i)

0 |, vk := P k|u0|.

When i → ∞ we have, for any x ∈ Γ and k ∈ N,

u
(i)
k (x) → uk(x) and v

(i)
k (x) ↑ vk(x).

By the monotone convergence theorem, we conclude

Jk

(
v(i)
) ↑ Jk (v) .

Since v(i) is a solution with finite support, Jk

(
v(i)
)

is monotone decreasing in k whence
we see that so is Jk (v). In particular, we have

Jk (v) ≤ J0 (v) = J0 (u) < ∞.

Since
∣∣∣u(i)

k

∣∣∣ ≤ v
(i)
k ≤ vk, we obtain by the dominated convergence theorem

Jk

(
u(i)
)→ Jk (u) .

Since Jk

(
u(i)
)

is monotone decreasing in k, we conclude that so is Jk (u), which completes
the proof.

In the next statement we shall give a first example of a non-trivial weight f satisfying
(2.6). This weight will be used in Section 4. We say that a function ρ on Γ is 1-Lipschitz
if |∇xyρ| ≤ 1 whenever x ∼ y. For example, if M is any subset of Γ and ρ (x) is a distance
to M , that is, ρ(x) := d(x, M) then ρ is 1-Lipschitz.

10



Proposition 2.3. Let (Γ, µ) be a weighted graph satisfying condition (α) and let ρ (x) be
a 1-Lipschitz function on Γ. Let a and b be two real numbers satisfying

b ≥ log

(
1 +

(e|a| − 1)2

4α

)
. (2.12)

Then, for any solution u of the heat equation in [0, n) × Γ, the quantity

Jk = Jk (u) :=
∑
x∈Γ

u2
k(x)eaρ(x)−bkm(x) (2.13)

is non-increasing in k ∈ [0, n).

Proof. By Theorem 2.2, it suffices to prove that the function fk(x) := eaρ(x)−bk satisfies
(2.6). We have

∂kf(x) = (e−b − 1)fk(x),

and, for all x, y ∈ Γ such that x ∼ y,

|∇xyfk+1(x)| ≤ (e|a| − 1)fk+1(x).

Therefore

|∇fk+1|2 (x) =
∑

{y:y∼x}
|∇xyfk+1(x)|2 p (x, y) ≤ (e|a| − 1)2f 2

k+1(x),

and

|∇fk+1(x)|2
fk+1(x)

≤ (e|a| − 1)2fk+1(x) = e−b(e|a| − 1)2fk(x).

Finally,

∂kf(x) +
|∇fk+1(x)|2
4αfk+1(x)

≤
[
e−b

(
1 +

(e|a| − 1)2

4α

)
− 1

]
fk(x),

and (2.6) follows from (2.12).

Remark 2.4. Observe that there is a positive constant c (α) such that, for all a ∈ R,

log

(
1 +

(e|a| − 1)2

4α

)
≤ c (α) a2.

Hence, (2.12) is satisfied by any couple a, b with b = c(α)a2. The relation b = ca2 between
a and b is important in applications of Theorem 2.3; in those applications, one chooses a
to be a small positive number. Without condition (α) one cannot ensure the existence of
such a constant c that the quantity (2.13) decays for any couple a, b related by b = ca2.
Numerical experiments indicate that even in the case of the simple random walk on Z, for
any choice of c, the quantity Jk may oscillate for a long time provided a is small enough.

Another family of weight functions satisfying (2.6) is given by the following proposi-
tion. This weight will be used in Sections 5 and 6.
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Proposition 2.5. Let (Γ, µ) be a weighted graph satisfying condition (α) and let ρ be a
1-Lipschitz function on Γ such that inf ρ ≥ 1. There exists a positive number Dα such
that, for any D ≥ Dα, the weight function

fk(x) = fD
k (x) := exp

(
− ρ2(x)

D(n + 1 − k)

)
(2.14)

satisfies (2.6) for all x ∈ Γ and k ∈ [0, n). Hence, for any solution u of the heat equation
in [0, n) × Γ, the quantity Jk :=

∑
x∈Γ u2

k(x)fk (x) m (x) is non-increasing in k ∈ [0, n).

Proof. A simple calculation shows that

−∂kf(x) =

(
exp

(
ρ2(x)

D(n + 1 − k)(n − k)

)
− 1

)
fk+1(x)

≥
(

exp

(
ρ2(x)

2D(n − k)2

)
− 1

)
fk+1(x) (2.15)

and

|∇fk+1(x)|2 =
∑
y:y∼x

p(x, y)

(
exp

(
− ρ2(y)

D(n − k)

)
− exp

(
− ρ2(x)

D(n − k)

))2

= f 2
k+1(x)

∑
y:y∼x

p(x, y)

(
exp

(
ρ2(x) − ρ2(y)

D(n − k)

)
− 1

)2

.

By the Lipschitz condition and the hypothesis ρ (x) ≥ 1 we obtain

|ρ2(x) − ρ2(y)| = |ρ(x) − ρ(y)||ρ(x) + ρ(y)| ≤ 2ρ(x) + 1 ≤ 3ρ (x) .

Next we use the following elementary inequality: if |t| ≤ s then∣∣et − 1
∣∣ ≤ es − 1.

Combining together the previous lines, we obtain

|∇fk+1(x)|2 ≤ f 2
k+1(x)

(
exp

(
3ρ(x)

D(n − k)

)
− 1

)2

. (2.16)

Next let us use another elementary fact: for any A > 0 there exists B > 0 such that,
for all t > 0, (

et − 1
)2 ≤ AeBt2 − 1.

Setting t = 3ρ(x)
D(n−k)

and A = 4α we obtain that, for some B = B (α),

1

4α

(
exp

(
3ρ(x)

D(n − k)

)
− 1

)2

≤ exp

(
Bρ2(x)

D2(n − k)2

)
− 1. (2.17)

Hence, if D ≥ Dα := 2B then the right hand side of (2.17) is bounded from above by

exp

(
ρ2(x)

2D(n − k)2

)
− 1.

12



Combining with (2.15) and (2.16), we obtain

|∇fk+1(x)|2
4αfk+1 (x)

≤ fk+1(x)

4α

(
exp

(
3ρ(x)

D(n − k)

)
− 1

)2

≤ fk+1(x)

(
exp

(
ρ2(x)

2D(n − k)2

)
− 1

)
≤ −∂kf(x),

which was to be proved.

3 Iterated graph

Recall that with any weighted graph (Γ, µ) there associates an iterated graph Γ̃ whose set

of vertices is the same as that of Γ and x ∼ y in Γ̃ if d (x, y) ≤ 2 in Γ. The graph Γ̃ is
equipped with a weight µ̃ defined by

µ̃xy = p2 (x, y)m (x) .

In other words, the Markov kernel p̃ (x, y) on Γ̃ is given by p̃ (x, y) = p2 (x, y), and the

corresponding measure m̃ coincides with m. The heat kernels h and h̃ respectively on Γ
and Γ̃ are related as follows.

Lemma 3.1. For all k ∈ N
∗ and x, y ∈ Γ, we have

h2k (x, y) = h̃k (x, y)

and

h2k+1 (x, y) ≤ max
z∈B(y,1)

h̃k (x, z) .

Proof. Indeed, we have

h2k (x, y) =
p2k (x, y)

m (y)
=

p̃k (x, y)

m̃ (y)
= h̃k (x, y)

and

h2k+1 (x, y) =
∑

z∈B(y,1)

h2k (x, z) p (y, z) ≤ max
z∈B(y,1)

h̃k (x, z)
∑

z

p (y, z) = max
z∈B(y,1)

h̃k (x, z) .

We say that (Γ, µ) satisfies condition (β) if, for some β > 0,

m (B (x, 1)) ≤ β m (x) ∀x ∈ Γ.

Most our results in the next sections use the following lemma.

Lemma 3.2. ([9], §4.2) If (Γ, µ) satisfies condition (β), then (Γ̃, µ̃) satisfies condition
(α), with α = 1/β.
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Proof. By the Cauchy-Schwarz inequality, for any x ∈ Γ,

h2(x, x) =
∑

y∈B(x,1)

h2(x, y)m(y)

≥ 1

m(B(x, 1))

 ∑
y∈B(x,1)

h(x, y)m(y)

2

=
1

m(B(x, 1))
,

that is

p̃ (x, x) = p2(x, x) = h2 (x, x) m (x) ≥ m(x)

m(B(x, 1))
,

whence the claim follows.

Using Lemmas 3.1 and 3.2, one can easily formulate versions of Propositions 2.3 and
and 2.5 adapted to graphs satisfying condition (β) instead of (α); here the conclusion is
that the expressions Jk decay separately for even and odd times. We leave details to the
reader.

A couple of comments are in order about condition (β). First it is obviously equivalent
to the conjunction of the two following properties:

- supx∈Γ Nx < +∞, where Nx is the number of neighbors of x, that is, the graph Γ is
locally uniformly finite.

- m(x) � m(y) if x, y are neighbors.

Note that, in the case of a simple random walk on Γ, the second condition follows
from the first one.

On the other hand, it is easy to see that either of the following conditions on (Γ, µ)
implies condition (β):

- infx∼y p(x, y) > 0.

- (Γ, µ) is invariant under a quasi-transitive group action, that is, there exists a group
G, acting on the graph Γ with finitely many orbits, and such that µ is G-invariant.

Note finally that neither of conditions (α), (β) implies the other one for the same
graph.

4 The Davies-Gaffney estimate of the heat kernel

The aim of this section is to derive the following statement from the discrete integrated
maximum principle. Here (., .) denotes the inner product in �2(Γ, m), and ‖ · ‖2 is the
corresponding norm.

Theorem 4.1. Let (Γ, µ) be a weighted graph satisfying either condition (α) or condition
(β). There exist positive constants C, c depending only on α or β, such that, for any two
subsets A, B ⊂ Γ, for all f ∈ �2(A), g ∈ �2(B), and all k ∈ N

∗, we have∣∣(P kf, g)
∣∣ ≤ C exp

(
−c

d2(A, B)

k

)
‖f‖2‖g‖2, (4.1)

where d(A, B) := inf{d(x, y) : x ∈ A, y ∈ B}.
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Proof. We first prove the statement when (Γ, µ) satisfies condition (α). Setting uk := P kf
we have

∣∣(P kf, g)
∣∣ =

∣∣∣∣∣∑
y∈B

uk(y)g(y)m(y)

∣∣∣∣∣ ≤
(∑

y∈B

u2
k(y)m(y)

)1/2

‖g‖2. (4.2)

Then consider the quantity

Jk :=
∑
y∈Γ

u2
k(y)ead(y,B)−bkm(y),

with a ≥ 0 and b = c(α)a2 as in Remark 2.4, and record the following three facts:

- Since u0 = f is supported in A and d(., A) ≡ 0 on A,

J0 =
∑
y∈A

u2
0(y)m(y) = ‖f‖2

2.

- By Proposition 2.3 and Remark 2.4, Jk ≤ J0.

- Since d(y, A) ≥ d(A, B) for any y ∈ B,

Jk ≥ ead(A,B)−bk
∑
y∈B

u2
k(y)m(y).

Therefore ∑
y∈B

u2
k(y)m(y) ≤ e−ad(A,B)+bk‖f‖2

2 ,

whence, by choosing a = λd(A,B)
k

where λ is any positive number smaller than 1
c(α)

,

∑
y∈B

u2
k(y)m(y) ≤ exp

(
−c

d2 (A, B)

k

)
‖f‖2

2 . (4.3)

Substituting into (4.2), we obtain (4.1).
Assume now that (Γ, µ) satisfies condition (β). Then, by Lemma 3.2, the iterated

graph (Γ̃, µ̃) satisfies condition (α). By the first part of this proof, we conclude that

∣∣∣(P̃ kf, g)
∣∣∣ ≤ C exp

(
−c

d̃2(A, B)

k

)
‖f‖2‖g‖2,

where P̃ is the Markov operator on (Γ̃, µ̃) associated with p̃, and d̃ is the graph distance

on Γ̃. Since P̃ k = P 2k and d̃ = �d/2� ≥ d/2, we obtain

∣∣(P 2kf, g)
∣∣ ≤ C exp

(
−c

4

d2(A, B)

k

)
‖f‖2‖g‖2. (4.4)
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Finally, noticing that the support of Pf is in the 1-neighborhood A′ of A, we obtain from
(4.4) applied to Pf instead of f :

∣∣(P 2k+1f, g)
∣∣ ≤ C exp

(
−c

4

d2(A′, B)

k

)
‖Pf‖2‖g‖2.

≤ C ′ exp

(
−c′

d2(A, B)

k

)
‖f‖2‖g‖2,

where we have also used ‖Pf‖2 ≤ ‖f‖2.

Corollary 4.2. Let (Γ, µ) be a weighted graph satisfying either condition (α) or condition
(β). There exist positive constants C, c depending only on α or β, such that, for any two
subsets A, B ⊂ Γ with finite measure and for any k ∈ N

∗, we have∑
x∈A

∑
y∈B

hk(x, y)m(x)m(y) ≤ C exp

(
−c

d2(A, B)

k

)√
m(A)m(B) (4.5)

and ∑
x∈A

∑
y∈B

h2
k(x, y)m(x)m(y) ≤ C exp

(
−c

d2(A, B)

k

)
min(card (A), card (B)). (4.6)

Proof. By taking f = 1A, g = 1B in (4.1) we obtain (4.5). To prove (4.6), we use (4.3)
with f (y) = δx,y

m(x)
with a fixed x ∈ Γ. Then uk (y) = P kf (y) = hk (x, y), and (4.3) yields

∑
y∈B

h2
k(x, y)m(y) ≤ exp

(
−c

d2 (x, B)

k

)
1

m (x)
.

Multiplying by m (x) ,summing in x ∈ A, and noticing that d (x, B) ≥ d (A, B), we obtain

∑
x∈A

∑
y∈B

h2
k(x, y)m(x)m (y) ≤ exp

(
−c

d2 (A, B)

k

)
card (A) .

Hence, (4.6) follows by symmetry between A and B.

5 From on-diagonal to off-diagonal upper estimates

Let us first recall the notion of regular function introduced in [16].

Definition 5.1. We say that a function f : (0, +∞) → (0, +∞) is regular if f is mono-
tonically increasing and if there exist A ≥ 1 and γ > 1 such that for all 0 < s < t we
have

f(γs)

f(s)
≤ A

f(γt)

f(t)
. (5.1)

Here are two (opposite) sufficient conditions for regularity:
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1. Let f(t) satisfy the doubling condition, that is, for some A ≥ 1 and all t > 0

f(2t) ≤ Af(t). (5.2)

Then f is regular with γ = 2 because

f(2s)

f(s)
≤ A ≤ A

f(2t)

f(t)
.

2. Let f(t) have at least polynomial growth in the sense that, for some γ > 1, the
function f(γt)/f(t) is increasing in t. Then f is regular with A = 1.

Consider a function l(ξ) := log f(eξ) where ξ ∈ (−∞, +∞). If f is differentiable then
regularity is implied by either of the following two conditions:

1. l′ is uniformly bounded (for example, this is the case when f(t) = tN or f(t) =
logN(1 + t) where N > 0);

2. l′ is monotone increasing (for example, f(t) = exp(tN)).

On the other hand, regularity fails if l′ = exp (−ξ) (that is unbounded and decreasing),
which corresponds to f(t) = exp (−t−1). Also, regularity may fail if l′ is oscillating.

We can now state the main result of this section.

Theorem 5.2. Let (Γ, µ) be a weighted graph satisfying condition (α). Let x, y be two
fixed vertices in Γ, and assume that there are two regular functions f, g (satisfying (5.1)
with the same constants γ, A) such that, for all k ∈ N

∗,

h2k(x, x) ≤ 1

f(k)
,

h2k(y, y) ≤ 1

g(k)
.

Then, for all k ∈ N
∗,

hk(x, y) ≤ C0√
f(ηk)g(ηk)

exp

(
−d2(x, y)

D0k

)
, (5.3)

where η = η (γ) > 0, D0 = D0 (α, γ) > 0 and C0 = C0 (A, α, γ).
If (Γ, µ) satisfies condition (β) instead of (α) then the conclusion (5.3) still holds but

only for even k, and C0, D0 depend on β instead of α.

To prove the above result, we shall follow closely the strategy of [16]. For D > 0,
x ∈ Γ, consider the following quantity:

ED(k, x) :=
∑
z∈Γ

h2
k(x, z) exp

(
d2

1 (x, z)

Dk

)
m (z) , (5.4)

where

d1(x, z) := max{d(x, z), 1}.
Note that ED (k, x) → h2k (x, x) as D → ∞.
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Proposition 5.3. Let (Γ, µ) be a weighted graph. For all x, y ∈ Γ, k ∈ N
∗, and all

D > 0,

h2k(x, y) ≤
√

ED(k, x)ED(k, y) exp

(
−d2(x, y)

4Dk

)
. (5.5)

Proof. By Cauchy-Schwarz, since d2
1(x, y) ≤ 2(d2

1(x, z) + d2
1(y, z)), we have

h2k(x, y) ≤
∑
z∈Γ

hk(x, z)hk(y, z)e
d2
1(x,z)

2Dk e
d2
1(y,z)

2Dk e−
d2
1(x,y)

4Dk m(z)

≤
√

ED(k, x)ED(k, y)e−
d2
1(x,y)

4Dk .

Since d1(x, y) ≥ d(x, y), the claim is proved.

Observe that, as D → +∞, (5.5) becomes the well-known estimate h2k(x, y) ≤√
h2k(x, x)h2k(y, y).
Proposition 5.3 enables one to obtain an upper bound for h2k(x, y) from an upper

bound for ED(k, y). More precisely, Theorem 5.2 is an obvious consequence of (5.5) and
the following statement.

Proposition 5.4. Let (Γ, µ) be a weighted graph satisfying condition (α). Let x be a fixed
vertex in Γ, and assume that there exists a regular function f such that, for all k ∈ N

∗,

h2k(x, x) ≤ 1

f(k)
. (5.6)

Then, for all k ∈ N
∗,

ED0(k, x) ≤ C0

f(ηk)
, (5.7)

where η = η (γ) > 0, D0 = D0(α, γ) > 0, and C0 = C0(A, α, γ) (here γ, A are the
constants from (5.1)).

The same statement is true if (Γ, µ) satisfies condition (β) instead of (α), with the
constants D0 and C0 depending on β instead of α.

Proof of Theorem 5.2. Using (5.5) with D = D0 and applying Proposition 5.4, we obtain

h2k(x, y) ≤
√

ED(k, x)ED(k, y) exp

(
−d2(x, y)

4Dk

)
≤ C0√

f (ηk) g (ηk)
exp

(
−d2(x, y)

4Dk

)
, (5.8)

which yields (5.3) for even times.
If (Γ, µ) satisfies condition (α) then we write

h2k (x, y) =
∑

z∈B(y,1)

h2k−1 (x, z) p (y, z) ≥ h2k−1 (x, y) p (y, y) ≥ αh2k−1 (x, y)

whence

h2k−1 (x, y) ≤ α−1h2k (x, y) .

Substituting the estimate (5.8), we obtain (5.3) for odd times.
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Proof of Proposition 5.4. Let us first assume that (Γ, µ) satisfies condition (α). Fix x ∈ Γ
and, for any R > 0 and k ∈ N, define

I(k, R) = I(k, x, R) :=
∑

z �∈B(x,R)

h2
k(x, z)m(z).

We will estimate I(k, R) by iteration, and the iterative step is contained in the following
estimate: for all n, k ∈ N such that n > k and all real numbers R ≥ r > 0,

I(n, R) ≤
(

h2k(x, x) exp

(
− (R − r)2

2Dα(n − k)

)
+ I(k, r)

)
exp (1/Dα) , (5.9)

where Dα is the constant from Proposition 2.5. Denote by �R� the integer part of R.
Define

ρ(z) :=

{
d(z, B(x, R)c) + 1 = �R� − d(x, z) + 2, if z ∈ B(x, R),
1, otherwise.

.

Note that ρ satisfies the assumptions of Proposition 2.5. Let

Fk(x) := exp

(
− ρ2(x)

Dα(n + 1 − k)

)
, k = 0, ..., n.

Since Fk (z) ≥ exp
(
− 1

Dα

)
for z /∈ B (x, R), we can write

I(R, n) =
∑

z �∈B(x,R)

h2
n(x, z)m(z) ≤ exp (1/Dα)

∑
z∈Γ

h2
n(x, z)Fn(z)m(z).

Then, we know from Proposition 2.5 that∑
z∈Γ

h2
n(x, z)Fn(z)m(z) ≤

∑
z∈Γ

h2
k(x, z)Fk(z)m(z).

If z ∈ B(x, r), then ρ(z) ≥ �R� − r + 2 ≥ R − r whence∑
z∈Γ

h2
k(x, z)Fk(z)m(z) =

∑
z∈B(x,r)

h2
k(x, z)Fk(z)m(z) +

∑
z �∈B(x,r)

h2
k(x, z)Fk(z)m(z)

≤
 ∑

z∈B(x,r)

h2
k(x, z)m(z)

 exp

(
− (R − r)2

Dα(n + 1 − k)

)
+ I(r, k)

≤ h2k(x, x) exp

(
− (R − r)2

2Dα(n − k)

)
+ I(r, k),

that is (5.9). Using the hypothesis (5.6), we obtain from (5.9)

I(n, R) ≤ exp (1/Dα)

f (k)
exp

(
− (R − r)2

2Dα(n − k)

)
+ I(k, r) exp (1/Dα) , (5.10)

Now let us prove that there exist positive numbers R0 = R0 (γ) and θ = θ (γ) such
that, for all R ≥ R0 and k ∈ N

∗,

I(R, k) ≤ C0

f(k/γ)
exp

(
−θ

R2

k

)
. (5.11)
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The result is trivial if R ≥ k (since then I(R, k) = 0), hence we can suppose k > R. Given
any finite decreasing sequence {Rj}j0

j=1 of real numbers and any finite strictly decreasing

sequence {kj}j0
j=1 of natural numbers such that R1 = R, k1 = k and I(Rj0, kj0) = 0, we

can iterate (5.10) and obtain

I(R, k) ≤
j0−1∑
j=1

exp(j/Dα)

f(kj+1)
exp

(
− (Rj − Rj+1)

2

2Dα(kj − kj+1)

)
. (5.12)

Let us now build such sequences {Rj}j0
j=1 and {kj}j0

j=1. Recall that γ > 1. Take R > R0

where

R0 = R0 (γ) := 2γ/(γ − 1) + 2,

and

Rj := R/2 + R/(j + 1), tj := k/γj−1, kj := �tj� ,

where �t� is the smallest integer larger than or equal to t. Let j0 := min{j : Rj ≥ kj}
(note that j0 > 1 since k > R). By construction, one has I(Rj0, kj0) = 0. Also, for all
j < j0 we have kj > Rj > R/2, whence

tj − tj+1 = tj(1 − 1

γ
) ≥ (kj − 1)(1 − 1

γ
) ≥ (R/2 − 1)(1 − 1

γ
) > 1,

which means that kj > kj+1. Moreover,

kj − kj+1 ≤ k/γj−1 − k/γj + 1 = k(γ − 1)/γj + 1 ≤ 2k(γ − 1)/γj ,

where in the last inequality we used the fact that k > γj/ (γ − 1) which follows from
kj > R/2 and the choice of R. Using the estimate for kj − kj+1 and the identity

(Rj − Rj+1)
2 =

R2

(j + 1)2(j + 2)2
,

we obtain

(Rj − Rj+1)
2

2Dα(kj − kj+1)
≥ θ

R2

k
(j + 1),

where

θ = θ (α, γ) :=
1

4Dα(γ − 1)
min
j≥1

γj

(j + 1)3(j + 2)2
> 0.

Therefore (5.12) yields

I(R, k) ≤
j0−1∑
j=1

1

f(tj+1)
exp

(
j

Dα

− θ
R2

k
(j + 1)

)
.
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By the regularity of f, we have

f (tj)

f (tj+1)
=

f (γtj+1)

f (tj+1)
≤ A

f (t1)

f (t2)
= A

f (k)

f (k/γ)

whence

f(t1)

f(tj+1)
=

f(t1)

f(t2)

f(t2)

f(t3)
· · · f(tj)

f(tj+1)
≤
(

A
f(k)

f(k/γ)

)j

.

Thus, setting L := log
(
A f(k)

f(k/γ)

)
,

1

f(tj+1)
≤ 1

f(t1)
exp (jL) =

1

f(k)
exp (jL) ,

and

I(R, k) ≤ 1

f(k)
exp

(
−θ

R2

k

) j0−1∑
j=1

exp

(
−j

(
θ
R2

k
− L − 1

Dα

))
.

We consider two cases:

Case 1: Let

θ
R2

k
− L − 1

Dα
≥ log 2.

In this case we have

I(R, k) ≤ 1

f(k)
exp

(
−θ

R2

k

) j0−1∑
j=1

2−j ≤ 1

f(k)
exp

(
−θ

R2

k

)
.

Case 2: Let

θ
R2

k
− L − 1

Dα
< log 2.

In this case we estimate I(R, k) differently:

I(R, k) ≤
∑
z∈Γ

h2
k(x, z)m(z) = h2k (x, x) ≤ 1

f(k)

≤ 2

f(k)
exp

(
L +

1

Dα
− θ

R2

k

)
=

2A exp(1/Dα)

f(k/γ)
exp

(
−θ

R2

k

)
.

In both cases we have

I(R, k) ≤ 2A exp(1/Dα)

f(k/γ)
exp

(
−θ

R2

k

)
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for all R ≥ R0 (γ), which is (5.11).
Finally, let us prove (5.7). Define, for j ∈ N,

AR
j :=

{
{z ∈ Γ : d1(x, z) ≤ R}, j = 0,

{z ∈ Γ : 2j−1R < d1(x, z) ≤ 2jR}, j ≥ 1,

and

ED(k, x) =

∞∑
j=0

∑
z∈AR

j

h2
k(x, z) exp

(
d2

1(x, z)

Dk

)
m(z).

For any D > 0, the first term of this sum admits the estimate∑
z∈AR

0

h2
k(x, z) exp

(
d2

1(x, z)

Dk

)
m(z) ≤ h2k (x, x) exp

(
R2

Dk

)
≤ 1

f(k)
exp

(
R2

Dk

)
. (5.13)

Now for the remaining terms we have, assuming R ≥ 1,∑
z∈AR

j

h2
k(x, z) exp

(
d2

1(x, z)

Dk

)
m(z) ≤ exp

(
4jR2

Dk

)
I(2j−1R, k).

Assuming R ≥ R0 (γ), we obtain by (5.11)

I(2j−1R, k) ≤ C0

f(k/γ)
exp

(
−θ

4j−1R2

k

)
,

whence∑
z∈AR

j

h2
k(x, z) exp

(
d2

1(x, z)

Dk

)
m(z) ≤ exp

(
4jR2

Dk

)
C0

f(k/γ)
exp

(
−θ

4j−1R2

k

)

≤ C0

f(k/γ)
exp

(
−4j−1R2

Dk

)
, (5.14)

provided D ≥ 5/θ.
Take

D0 = D0(α, γ) := max

(
5

θ
,

R2
0

log 2

)
. (5.15)

Then by (5.13) and (5.14) we obtain, for any R ≥ R0,

ED0(k, x) ≤ 1

f(k)
exp

(
R2

D0k

)
+

C0

f(k/γ)

∞∑
j=1

exp

(
−4j−1R2

D0k

)
. (5.16)

Given k ∈ N
∗ choose R such that R2/(D0k) = log 2. Since by (5.15) R ≥ R0, we conclude

ED0(k, x) ≤ 2

f(k)
+

C0

f(k/γ)

∞∑
j=1

2−4j−1 ≤ 2 + C0

f(k/γ)
,
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which was to be proved.
Now let us consider the case when (Γ, µ) satisfies condition (β). The hypothesis (5.6)

means that for the heat kernel h̃k on the iterated graph (Γ̃, µ̃) we have

h̃k(x, x) ≤ 1

f(k)
. (5.17)

Since (Γ̃, µ̃) satisfies condition (α), the above proof yields, for any D ≥ D0,

ẼD (k, x) ≤ C0

f (k/γ)
(5.18)

where

ẼD (k, x) =
∑
z∈Γ

h̃2
k(x, z) exp

(
d̃2

1 (x, z)

Dk

)
m (z) .

Clearly,

ẼD (k, x) ≥
∑
z∈Γ

h2
2k(x, z) exp

(
d2

1 (x, z)

4Dk

)
m (z) = E4D (2k, x) ,

which together with (5.18) yields

E4D (2k, x) ≤ C0

f (k/γ)
. (5.19)

To treat odd k, we start with the inequality

h2
2k+1 (x, z) ≤ max

y∈B(z,1)
h2

2k (x, y) ≤
∑

y∈B(z,1)

h2
2k (x, y) .

Since the condition (β) implies that m (z) ≤ βm (y) for all y ∼ z and Ny ≤ β2 for all
y ∈ Γ, we can write

E8D (2k + 1, x) ≤
∑
z∈Γ

∑
y∈B(z,1)

h2
2k (x, y) exp

(
d2

1 (x, z)

8Dk

)
m (z)

≤ β
∑
z∈Γ

∑
y∈B(z,1)

h2
2k (x, y) exp

(
d2

1 (x, y) + 1

4Dk

)
m (y)

≤ βe1/(4D)
∑
y∈Γ

∑
z∈B(y,1)

h2
2k (x, y) exp

(
d2

1 (x, y)

4Dk

)
m (y)

= βe1/(4D)NyE4D (2k, x)

≤ β3e1/(4D)E4D (2k, x) ,

whence by (5.19)

E8D (2k + 1, x) ≤ C(β, D)C0

f (k/γ)
. (5.20)

Combining (5.19) and (5.20) and changing appropriately the constants C0, D0, we obtain
(5.7) again.
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6 From on-diagonal upper to on-diagonal lower esti-

mates

The aim of this section is to prove the following theorem.

Theorem 6.1. Let (Γ, µ) be a weighted graph which satisfies condition (α) and x ∈ Γ be
a fixed vertex. Let v be a non-decreasing function on (0, +∞) such that

m(B(x, r)) ≤ v(r), ∀r > 0 (6.1)

and, for some A > 0,

v(2r) ≤ Av(r), ∀r > 0. (6.2)

If there exists a constant C > 0 such that

hk(x, x) ≤ C

v(
√

k)
, ∀k ∈ N

∗, (6.3)

then

hk(x, x) ≥ c

v(
√

k)
, ∀k ∈ N

∗, (6.4)

for some c = c(A, C, α) > 0.
If (Γ, µ) satisfies condition (β) instead of (α) then the conclusion (6.4) still holds but

only for even k, and c depends on β instead of α.

We note that under condition (β) alone we cannot hope to extend estimate (6.4) to
odd values of time since it may happen that h2k+1(x, x) = 0.

We start with a lemma, which is well-known in the context of continuous-time heat
kernels (see for example [23]).

Lemma 6.2. Let (Γ, µ) be a weighted graph and x ∈ Γ be a fixed vertex. Let Ω be a
non-empty subset of Γ. If, for some ε > 0 and k ∈ N

∗,∑
y∈Γ\Ω

hk(x, y)m(y) ≤ ε,

then

h2k(x, x) ≥ (1 − ε)2

m(Ω)
.

Proof. Indeed, using (1.8) and the Cauchy-Schwarz inequality, one has

h2k(x, x) ≥
∑
y∈Ω

h2
k(x, y)m(y) ≥ 1

m(Ω)

(∑
y∈Ω

hk(x, y)m(y)

)2

=
(1 − ε)2

m(Ω)
.
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Since hk(x, y) = 0 if y �∈ B(x, k), this lemma implies immediately the following uni-
versal on-diagonal lower bound for the heat kernel

h2k(x, x) ≥ 1

m(B(x, k))
.

Proof. Let us fix k ∈ N
∗ and recall the definition

ED0(k, x) :=
∑
y∈Γ

h2
k(x, y) exp

(
d2

1(x, y)

D0k

)
m(y),

where D0 is as in Proposition 5.4. Given any R ≥ 0 we have, using the Cauchy-Schwarz
inequality and d ≤ d1, ∑

y∈Γ\B(x,R)

hk(x, y)m(y)

2

≤ ED0(k, x)
∑

y∈Γ\B(x,R)

exp

(
−d2(x, y)

D0k

)
m(y)

= ED0(k, x)S(k, x, R) (6.5)

where

S(k, x, R) :=
∑

y∈Γ\B(x,R)

exp

(
−d2(x, y)

D0k

)
m(y). (6.6)

Our aim is to show that it is possible to find some R > 0 such that the expression in (6.5)
is smaller than, say, 1/2 and then we shall apply Lemma 6.2.

The function t → v(
√

t) is clearly regular with constants γ = 4 and A. Assuming that
(Γ, µ) satisfies (α) or (β), Proposition 5.4 yields

ED0(k, x) ≤ C0

v(
√

k)
. (6.7)

Let us estimate S(k, x, R) as follows, using the notation Rj := 2jR:

S(k, x, R) ≤
+∞∑
j=0

exp

(
− R2

j

D0k

)
m(B(x, Rj+1) \ B(x, Rj))

≤
+∞∑
j=0

exp

(
− R2

j

D0k

)
m(B(x, Rj+1))

≤
+∞∑
j=0

exp

(
− R2

j

D0k
+ log(v(Rj+1))

)
,

where in the last inequality we used (6.1). From (6.2) we have that v(Rj+1) ≤ Aj+1v(R),
and since 4j ≥ j + 1 for any j ∈ N, we have

S(k, x, R) ≤
+∞∑
j=0

exp

(
−4j R2

D0k
+ log(v(R)) + (j + 1) log A

)

≤ v(R)

+∞∑
j=1

exp

(
−j

(
R2

D0k
− log A

))
.
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Finally we take R = a
√

D0k with a2 ≥ 2 log A, obtaining

S(k, x, R) ≤ v(R)

+∞∑
j=1

exp

(
−j

a2

2

)
=

v(R)

exp
(

a2

2

)− 1
. (6.8)

Hence (6.5), (6.7) and (6.8) yield ∑
y∈Γ\B(x,R)

hk(x, y)m(y)

2

≤ C0

v(
√

k)

v(R)

exp
(

a2

2

)− 1

≤ C0A
log2(a

√
D0)+1

exp
(

a2

2

)− 1
,

where we used repeatedly (6.2) to obtain

v(R)

v(
√

k)
≤ Alog2(a

√
D0)+1.

There exists large enough a0 such that

C0A
log2(a0

√
D0)+1

exp
(

a2
0

2

)
− 1

≤ 1

4
.

Then Lemma 6.2 implies

h2k(x, x) ≥ 1/4

m(B(x, a0

√
D0k))

≥ 1/4

v(a0

√
D0k)

≥ c

v
(√

2k
) ,

where

c :=
1/4

Alog2(a0

√
D0/2)+1

. (6.9)

This finishes the proof of (6.4) for even k. If (Γ, µ) satisfies (α) then by (1.8) and (α) one
has

h2k+1(x, x) =
∑

z∈B(x,1)

h2k (x, z) p (x, z) ≥ h2k(x, x)p(x, x) ≥ αc

v(
√

2k)
≥ αc

v(
√

2k + 1)
,

which was to be proved.

7 Time-dependent random walks

Our results apply, with minor modifications, to non-autonomous heat equations, in other
words to time-dependent random walks. Here the weight µ depends on time, that is
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we consider a sequence (µ(k))k∈N∗ of weights such that the total weight at each vertex is
constant:

m(x) =
∑
y∈Γ

µ(k)
xy , ∀k ∈ N

∗, ∀x ∈ Γ.

In other words, we consider a time-dependent Markov chain, reversible with respect to a
fixed measure m, with transition probability

p(k)(x, y) :=
µ

(k)
xy

m(x)

at time k. We shall call (Γ, µ) = (Γ, (µ(k))k∈N∗) a time-dependent weighted graph.
The associated time-dependent discrete heat equation is given by

∂ku = ∆(k)u (7.1)

where

∆(k)u(x) :=
∑
y∈Γ

p(k)(x, y) (u(y) − u(x)) .

The unique solution of this equation, given the initial state u0 = φ, is given by

uk(x) =
∑
y∈Γ

pk(x, y)φ(y)

where pk (x, y) is defined recursively by

p0(x, y) := δx,y

pk(x, y) :=
∑
z∈Γ

pk−1(x, z)p(k)(z, y).

One defines accordingly the heat kernel hk(x, y) := pk(x, y)/m(y).
Note that ∣∣∣∇(k)f

∣∣∣ (x) :=

(∑
y∈Γ

(f (y) − f (x))2 p(k) (x, y)

)1/2

is also time-dependent.
The proof of Theorem 2.2 extends verbatim to this setting, by adding superscripts (k)

in the proper places. As a consequence, if (Γ, µ) = (Γ, (µ(k))k∈N∗) satisfies

p(k)(x, x) ≥ αk > 0, ∀k ∈ N
∗,

then the condition

∂kf(x) +
|∇(k+1)fk+1|2
4αk+1fk+1

(x) ≤ 0, ∀x ∈ Γ, ∀k ∈ [0, n),

implies that Jk+1 ≤ Jk for any k ∈ [0, n), where Jk :=
∑

x∈Γ u2
k(x)fk(x)m(x) and u is a

solution of (7.1) in [0, n).
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If we generalize condition (α) by saying that a time-dependent (Γ, µ) satisfies it if

inf
k∈N∗

inf
x∈Γ

p(k)(x, x) = α > 0, (7.2)

then the statements of Propositions 2.3 and 2.5 also extend verbatim.
One can also extend the construction in Section 3. Given (Γ, µ) = (Γ, (µ(k))k∈N∗),

define (Γ̃, µ̃) = (Γ, (µ̃(k))k∈N∗), in the following way: Γ̃ is as in Section 3 and µ̃(k)
x,y =

p̃(k)(x, y)m(x), where p̃(k) be the Markov kernel defined for k ∈ N
∗ by

p̃(k) =
∑
z∈Γ

p(2k)(x, z)p(2k−1)(z, y) .

Of course the measure associated to the weights µ̃(k)
x,y is still independent of k and equal

to m.
Then one defines p̃k and h̃k from p̃(k) in a similar way as pk and hk were defined from

p(k). A trivial adaptation of Lemma 3.1 shows that (Γ̃, µ̃) satisfies condition (β) if (Γ, µ)
satisfies (α) in the above sense.

Theorems 5.2 and 6.1 generalize easily to the time-dependent setting.
As an application, one can for instance prove a result that was conjectured in [18,

p.680]. We shall say that the time-dependent weighted graph (Γ, µ) satisfies uniformly a
Sobolev inequality of dimension N > 2 if there exists C > 0 such that(∑

x∈Γ

f(x)qm(x)

)2/q

≤ C
∑
x,y∈Γ

(f(x) − f(y))2µ(k)
xy ,

for every function f on Γ with finite support and all k ∈ N
∗, where q = 2N

N−2
.

Theorem 7.1. Let (Γ, µ) be a time-dependent weighted graph satisfying condition (α) or
condition (β). Assume that (Γ, µ) satisfies uniformly a Sobolev inequality of dimension
N > 2. Then

h2k(x, y) ≤ Ck−N/2 exp

(
−c

d2(x, y)

k

)
, ∀x, y ∈ Γ, k ∈ N

∗

and

h2k(x, x) ≥ ck−N/2, ∀x ∈ Γ, k ∈ N
∗.

Proof. According to [25], chap.VII,

h2k(x, x) ≤ Ck−N/2, ∀x ∈ Γ.

Then one applies Theorem 5.2 to obtain the first assertion. The second one follows from
6.1 or directly from the first one as in [9], Theorem 6.1.

One can generalize the above statement to N > 0 by considering Nash inequalities
instead of Sobolev inequalities.

An interesting direction for future work would be to devise time-dependent versions
of [9] and [2], in order to obtain non-uniform upper estimates

h2k(x, y) ≤ C

V (x,
√

k)
exp

(
−c

d2(x, y)

k

)
,

as well as the matching off-diagonal lower bounds.
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8 Random walks on percolation clusters

A percolation cluster is an infinite connected graph (Γ, µ), which is a subgraph of Z
N

(with the standard weight) obtained by a certain random procedure. We do not go much
into the details of the construction. Our aim is just to point out how certain known
results on random walk on such graphs can be self-improved using Theorem 5.2. It is
known that, under certain hypotheses, the heat kernel on a percolation cluster satisfies
the following estimate: for any x ∈ Γ there exist positive constants Cx and Kx such that

h2k (x, x) ≤ Cxk
−N/2 for all k ≥ Kx (8.1)

(see [20] and also [21] for a continuous time analogue, and [4] for full Gaussian upper and
lower bounds for a continuous time random walk on percolation clusters). First note that
(Γ, µ) being a connected subgraph of Z

N satisfies condition (β) with β = β (N). Let us
also recall the well-known result (see for example [6]) that

h2k (x, x) ≤ Bk−1/2 for all x ∈ Γ, k ∈ N
∗, (8.2)

with a universal constant B > 0. Fix x ∈ Γ and set

fx (t) =

{
C−1

x tN/2, t ≥ Kx,
B−1t1/2, t < Kx,

so that we obtain from (8.1) and (8.2)

h2k (x, x) ≤ 1

fx (k)
for all x ∈ Γ, k ∈ N

∗. (8.3)

Clearly, there exist positive constants bx and cx such that

cx ≤ C−1
x , bx ≤ B−1, cxK

N/2
x = bxK

1/2
x .

Set

f̃x (t) =

{
cxt

N/2, t ≥ Kx,
bxt

1/2, t < Kx,
(8.4)

so that f̃x is a regular function with the regularity constants γ = 2 and A = A (N). Since

f̃x ≤ fx, (8.3) implies

h2k (x, x) ≤ 1

f̃x (k)
for all x ∈ Γ, k ∈ N

∗.

Finally, applying Theorem 5.2 we conclude, for all x, y ∈ Γ and k ∈ N
∗,

h2k (x, y) ≤ C√
f̃x (k) f̃y (k)

exp

(
−d2 (x, y)

Dk

)
.
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