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Abstract

We state and prove Künneth formulas for path homologies of Cartesian product and join
of two digraphs.
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1 Introduction

The purpose of this paper is to prove Künneth formulas for homology groups of digraphs (=di-
rected graphs). We use the notion of path homology of digraphs that was introduced in [9] and
[10]. A digraph G is a pair (V,E) where V is a set of vertices and E the set of edges that is a
subset of V × V \ diag . An n-path on G is a formal linear combination of sequences v0, ..., vn

of n + 1 vertices. If in any sequence, involved in the linear combination, all pairs (vi, vi+1) are
edges, then the n-path is called allowed.

There is a natural definition of the boundary ∂ of an n-path that is an (n− 1)-path. However,
the boundary of an allowed path does not have to be allowed. Those allowed paths whose
boundaries are also allowed, are called ∂-invariant. The linear space of ∂-invariant n-paths is an
element of the chain complex whose homologies are called the path homologies of the digraph.

An undirected graph can also be considered as a digraph by replacing each undirected edge
by two oppositely directed edges. In this way we obtain path homologies of undirected graphs.

There has been a number of attempts to define the notions of homology and cohomology for
graphs. At a trivial level, any graph can be regarded as an one-dimensional simplicial complex,
so that its simplicial homologies are defined. However, all homology groups of order 2 and higher
are trivial, which makes this approach uninteresting.

Another way to make a graph into a simplicial complex is to consider all its cliques (=com-
plete subgraphs) as simplexes of the corresponding dimensions (cf. [5], [15]). Then higher
dimensional homologies may be non-trivial, but in this approach the notion of graph looses its
identity and becomes a particular case of the notion of a simplicial complex. Besides, some
desirable functorial properties of homologies fail, for example, the Künneth formula is not true
for Cartesian product of graphs.

Yet another approach to homologies of digraphs can be realized via Hochschild homology.
Indeed, allowed paths on a digraph have a natural operation of product, which allows to define
the notion of a path algebra of a digraph. The Hochschild homology of the path algebra is a
natural object to consider. However, it was shown in [14] that Hochschild homologies of order
≥ 2 are trivial, which makes this approach less attractive.

More recently there have been a number of attempts to define singular homologies of graphs
[2], [17]. In these theories one uses predefined “small” graphs as basic cell elements and defines
singular chains using maps of the basic cells into the graph. However, simple examples show
that the homology groups obtained in this way, depend essentially on the choice of the basic cells
and, moreover, lack some the functorial properties of homologies. Not to say that computation
of singular homologies for the graphs beyond the trivial ones is very hard.

The path homologies of digraphs that are dealt with in this paper have many advantages in
comparison with other notions of graph homologies.

Firstly, the homologies of all dimensions could be non-trivial. Also, the chain complex may
have a rich structure. It contains not only cliques but also binary hypercubes and many other
interesting shapes. Besides, path homologies can be relatively easily computed, by definition
for small graphs and by means of any conventional linear algebra computing package for larger
graphs.

Secondly, there is an independently developed notion of homotopy of digraphs [10] (similar
to homotopy theory on graphs [1], [3]) that is compatible with path homology. For example,
homotopy equivalent digraphs have the same homology groups, and the first homology group is
abelization of the fundamental group.
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Thirdly, there is a dual cohomology theory with the coboundary operator that arises inde-
pendently and naturally as an exterior derivative on the algebra of functions on the vertex set of
the digraph. This approach to the cohomology of digraphs, that is based on the classification of
Bourbaki [4] of exterior derivations on algebras, was introduced by Dimakis and Müller-Hoissen
in [6], [7] and further developed in [13]. Here we do not touch cohomologies of digraph and refer
the reader to [9] for details.

Finally, the notion of path homology has good functorial properties with respect to graph-
theoretical operations. The main result of this paper goes exactly in this direction: we prove
the Künneth formulas for the path homologies of the Cartesian product and of the join of two
digraphs.

We feel that the notion of path homology of digraphs has a rich mathematical content and
hope that it will become a useful tool in various areas of pure and applied mathematics. For
example, this notion was employed in [12] to give a new elementary proof of a theorem of
Gerstenhaber and Schack [8] that identifies simplicial homology as a Hochschild homology. A
link between path homologies of digraphs and cubical homologies was revealed in [11]. On
the other hand, it is conceivable that the notion of path homology can be used in practical
applications such as coverage verification in sensor networks (cf. [16]), and many others.

Let us briefly describe the structure of the paper. In Section 2 we define the notion of the
boundary operator, path homology and give some simple examples.

In Section 3 we introduce the operation join of two digraphs and state a Künneth formula
for it (Theorem 3.3). Particular cases of join are operations of building a cone and suspension
over a digraph, which behave homologically in the same way as those in the classical algebraic
topology.

In Section 4 we introduce the notions of cross product of paths and Cartesian product of
digraphs. We state a Künneth formula for Cartesian product (Theorem 4.7) and give some
examples.

In Sections 5, 6 we prove both Theorems 3.3 and 4.7 in a unified way. Note that in the both
cases of join and Cartesian product we prove not only Künneth formulas for homologies but also
similar formulas for chain complexes that have no analog in the classical algebraic topology.

The main difficulty in the proof lies in distinction between the notions of allowed paths and
∂-invariant paths. This difficulty does not occur in the classical algebraic topology and in order
to overcome it we have developed a new tool of homological algebra that is stated in Theorem
5.1.

2 Path homologies

2.1 Paths on finite sets

Let V be an arbitrary non-empty finite set whose elements will be called vertices. For any
non-negative integer p, an elementary p-path on a set V is any sequence {ik}

p
k=0 of p+1 vertices

of V (the vertices in the path do not have to be distinct). For p = −1, an elementary p-path
is an empty set ∅. The p-path {ik}

p
k=0 will also be denoted simply by i0...ip, without delimiters

between the vertices.
Fix a field K and consider a K-linear space Λp = Λp (V ) that consists of all formal linear

combinations of all elementary p-paths with the coefficients from K. The elements of Λp are
called p-paths on V . An elementary p-path i0...ip as an element of Λp will be denoted by ei0...ip .
The empty set as an element of Λ−1 will be denoted by e.

By definition, the family
{
ei0...ip : i0, ..., ip ∈ V

}
is a basis in Λp. Hence, each p-path v has a
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unique representation in the form

v =
∑

i0,...,ip∈V

vi0...ip ei0...ip , (2.1)

where vi0...ip ∈ K are the components of v. For example, Λ0 consists of all linear combinations
of elements ei that are the vertices of V , Λ1 consists of all linear combinations of the elements
eij that are pairs of vertices, etc. Note that , Λ−1 consists of all multiples of e so that Λ−1

∼= K.

Definition 2.1 For any p ≥ 0, the boundary operator ∂ : Λp → Λp−1 is a K-linear operator
that acts on elementary paths by

∂ei0...ip =
p∑

q=0

(−1)q ei0...îq ...ip
, (2.2)

where the hat îq means omission of the index iq.

For example, we have

∂ei = e, ∂eij = ej − ei, ∂eijk = ejk − eik + eij . (2.3)

It follows that, for any v ∈ Λp,

(∂v)j0...jp−1 =
∑

k∈V

p∑

q=0

(−1)q vj0...jq−1k jq ...jp−1 . (2.4)

Set also Λ−2 = {0} and define ∂ : Λ−1 → Λ−2 to be zero.

Lemma 2.2 We have ∂2v = 0 for any v ∈ Λp with p ≥ 0.

Proof. For p = 0 this is trivial. For p ≥ 1 we have by (2.2)

∂2ei0...ip =
p∑

q=0

(−1)q ∂ei0...îq ...ip

=
p∑

q=0

(−1)q




q−1∑

r=0

(−1)r ei0...îr...îq ...ip
+

p∑

r=q+1

(−1)r−1 ei0...îq ...îr ...ip





=
∑

0≤r<q≤p

(−1)q+r ei0...îr...îq ...ip
−

∑

0≤q<r≤p

(−1)q+r ei0...îq ...îr...ip
.

After switching q and r in the last sum we see that the two sums cancel out, whence ∂2ei0...ip = 0.
This implies ∂2v = 0 for all v ∈ Λp.

Definition 2.3 For all p, q ≥ −1 and for any two paths u ∈ Λp and v ∈ Λq define their join
uv ∈ Λp+q+1 as follows:

(uv)i0...ipj0...jq = ui0...ipvj0...jq . (2.5)

Clearly, join of paths is a bilinear operation that satisfies the associative law (but not com-
mutative). It follows from (2.5) that

ei0...ipej0...jq = ei0...ipj0...jq . (2.6)

Let us extend the definition of uv to the case when either p = −2 and q ≥ −1 or q = −2 and
p ≥ −1, just by setting uv = 0 ∈ Λp+q+1.
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Lemma 2.4 (Product rule for join) For all p, q ≥ −1 and u ∈ Λp, v ∈ Λq we have

∂ (uv) = (∂u)v + (−1)p+1 u∂v. (2.7)

Proof. Assume first that p, q ≥ 0. It suffices to prove (2.7) for u = ei0...ip and v = ej0...jq .
We have

∂ (uv) = ∂ei0...ipj0...jq = ei1...ipj0...jq − ei0i2...ipj0...jq + ...

+(−1)p+1 (ei0...ipj1...jq − ei0...ipj0j2...jq + ...
)

=
(
∂ei0...ip

)
ej0...jq + (−1)p+1 ei0...ip∂ej0...jq ,

whence (2.7) follows. If p = −1 then it suffices to prove (2.7) for u = e. In this case uv = v,
(∂u) v = 0, and u∂v = ∂v so that the both sides of (2.7) are equal to ∂v. The case q = −1 is
similar.

2.2 Regular paths

Definition 2.5 An elementary p-path ei0...ip on a set V is called regular if ik 6= ik+1 for all
k = 0, ..., p − 1, and non-regular otherwise.

For any p ≥ −1, consider the following subspace of Λp

Rp = Rp (V ) := span
{
ei0...ip : i0...ip is regular

}
,

whose elements are called regular p-paths. We would like to consider the operator ∂ on the
spaces Rp. However, in the present form ∂ is not invariant on the spaces Rp. For example,
eiji ∈ R2 for i 6= j while ∂eiji = eji − eii + eij contains a non-regular component eii. The same
applies to the notion of join of paths: the join of two regular path does not have to be regular,
for example, eijeji = eijji.

To overcome this difficulty, consider the complementary subspace

Ip = Ip (V ) := span
{
ei0...ip : i0...ip is non-regular

}

and observe the following property of Ip.

Lemma 2.6 Let u ∈ Ip. Then ∂u ∈ Ip−1 and uv ∈ Ip+q+1 for any v ∈ Λq.

Proof. It suffices to prove both claims for u = ei0...ip . Since this path is non-regular, there
exists an index k such that ik = ik+1. Then we have

∂ei0...ip = ei1...ip − ei0i2...ip + ...

+(−1)k ei0...ik−1ik+1ik+2...ip + (−1)k+1 ei0...ik−1ikik+2...ip (2.8)

+... + (−1)p ei0...ip−1 .

By ik = ik+1 the two terms in the middle line of (2.8) cancel out, whereas all other terms are
non-regular, whence ∂ei0...ip ∈ Ip−1.

If v = ej0...jq then uv = ei0...ipj0...jq is obviously non-regular.
It follows from Lemma 2.6 that the both operations ∂ and join are well defined on the

quotients Λp/Ip. On the other hand, it is clear that Λp = Rp ⊕ Ip and, hence, Rp
∼= Λp/Ip,

where each element of Λp/Ip has a unique representative in Rp.
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Definition 2.7 Define the regular operations ∂ and join on the spaces Rp as pullbacks of
those from Λp/Ip using the natural linear isomorphism Rp

∼= Λp/Ip . The previously defined
operations ∂ and join on Λp will be then referred to as non-regular.

Of course, Lemmas 2.2 and 2.4 remain true for the regular operations. When applying the
formulas (2.2), (2.4) for the regular boundary operator ∂ and (2.5), (2.6) for regular join, one
should make the following adjustments:

(I) all the components vi0...ip of v ∈ Rp for non-regular paths i0...ip are equal to 0 by definition;

(II) all non-regular elementary paths ei0...ip , should they arise as a result of an operation, are
treated as zeros.

For example, for non-regular operator ∂ : Λ2 → Λ1 we have ∂eiji = eji− eii + eij whereas for
the regular operator ∂ : R2 → R1 we have ∂eiji = eji + eij since eii is set to be zero. Similarly,
for non-regular join we have eijeji = eijji whereas for the regular join eijeji = 0.

Hence, we obtain the regular chain complex of the set V :

0← K← R0 ← R1 ← ...← Rp−1 ← Rp ← ... (2.9)

where all the arrows are given by regular operator ∂. We will need also the truncated regular
chain complex

0← R0 ← R1 ← ...← Rp−1 ← Rp ← ... (2.10)

where we follow a different convention for R−1, by setting R−1 = 0. In this case ∂v for v ∈ R0

is redefined by ∂v = 0. Note that for the latter definition the product rule (2.7) for join breaks
down if p = 0 or q = 0. However, (2.10) will be useful when dealing with cross product of paths
in Section 4.

In the rest of this paper ∂ means always the regular boundary operator acting on Rp,
although in two modifications: (2.9) and (2.10), depending on the context. More precisely, in
Section 3 we use (2.9) whereas in Section 4 – the version (2.10).

2.3 Paths on digraphs

A digraph is a pair G = (V,E) where V is an arbitrary set, called the set of vertices, and
E ⊂ V × V \ {diag} is the set of directed edges. For vertices a, b ∈ V the fact that (a, b) ∈ E
will be denoted by a → b. Note that a → b excludes a = b. The set V will always be assume
finite.

Let n ≥ −1 be an integer.

Definition 2.8 An elementary n-path i0...in ∈ Λn (V ) is called allowed on (V,E) if ik−1 → ik for
all k = 1, ..., n.

Denote by En the set of all allowed n-paths on (V,E). We have E−1 = {e} , E0 = V and
E1 = E.

For any integer n ≥ −1 denote by An the K-linear space that is spanned by all the paths
from En, that is

An = An (G) = span {ei0...in : i0...in is allowed} .

Set also A−2 = {0}.

Definition 2.9 The elements of An (G) are called allowed n-paths.
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By construction, An is a subspace of Rn. For example, Ap = Λp = Rp for p ≤ 0, while A1 is
spanned by all the edges from E and can be smaller than R1. Sometimes we will need also the
space

Nn = Nn (G) = span {ei0...in : i0...in is regular and non-allowed} . (2.11)

Clearly, we have Rn = An ⊕Nn.
We would like to restrict the regular boundary operator ∂ to the spaces An. For some

digraphs it can happen that ∂An ⊂ An−1, so that the restriction of ∂ to An is straightforward.
However, in general ∂An does not have to be a subspace of An−1. For example, this is the case
for a digraph

↗

1
•↘

0 • •2

where the 2-path e012 is allowed, while ∂e012 = e12 − e02 + e01 is non-allowed because e02 is
non-allowed.

For a general digraph G = (V,E) and for any n ≥ −1, consider the following subspaces of
An:

Ωn = Ωn (G) := {v ∈ An : ∂v ∈ An−1} . (2.12)

Set also Ω−2 = {0}. Note that Ωn = An for n ≤ 1; in particular Ω0 consists of all K-linear
combinations of the vertices and Ω1 consists of all R-linear combination of the edges, so that

dimΩ0 = |V | and dimΩ1 = |E| .

For n ≥ 2 the space Ωn can be actually smaller that An.

Claim. We have ∂Ωn ⊂ Ωn−1 for all n ≥ −1.

Proof. Indeed, if v ∈ Ωn then ∂v ∈ An−1 and ∂ (∂v) = ∂2v = 0 ∈ An−2 whence it follows
that ∂v ∈ Ωn−1, which was to be proved.

Definition 2.10 The elements of Ωn (G) are called ∂-invariant n-paths.

Thus, we obtain the chain complex of ∂-invariant paths:

0← K← Ω0 ← Ω1 ← ...← Ωn−1 ← Ωn ← Ωn+1 ← ... (2.13)

where all arrows are given by ∂, which is a subcomplex of (2.9). Consider also its truncated
version

0← Ω0 ← Ω1 ← ...← Ωn−1 ← Ωn ← Ωn+1 ← ... (2.14)

that is a subcomplex of (2.10). In the case (2.13) we have Ω−1 = A−1
∼= K, whereas in the case

(2.14) we redefine Ω−1 = {0} .

Definition 2.11 The homology groups of (2.14) are referred to as the path homology groups of
the digraph G and are denoted by Hn (G,K) , n ≥ 0, that is,

Hn (G,K) = ker ∂|Ωn

/
Im ∂|Ωn+1 .

The homology groups of (2.13) are called the reduced path homology groups of G and are denoted
by H̃n (G,K) , n ≥ −1.
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We will also use short notations Hn (G) and H̃n (G) since the field K is usually fixed. Clearly,
H̃n (G) = Hn (G) for n ≥ 1, H̃0 (G) ∼= H0 (G) /K and H̃−1 (G) = {0} . Although we have assumed
from the very beginning that K is a field, the notion of path homology can be defined in the
same way when K is a commutative unital ring. However, the main theorems of the present
paper are proved under the assumption that K is a field.

The notion of path homologies of digraphs is the main object of this paper. It is easy to
prove that dim H0 (G) is equal to the number of (undirected) connected components of the G.
In particular, for connected digraphs dim H0 (G) = 1 and, hence, H̃0 (G) = {0}.

Example 2.12 Consider a digraph on Fig. 1. A direct computation shows that H1 (G) = {0}
and H2 (G) ∼= K; moreover, H2 (G) is generated by

e124 + e234 + e314 − (e125 + e235 + e315) ,

which will be proved in Example 3.8. It is easy to see that G is a planar digraph but nevertheless
its second homology group is non-trivial.

  
4 

5 

1 

2 

3 

Figure 1: An example of a planar digraph G with non-trivial H2

2.4 Cyclic digraphs

To give an example of computation of Ωp (G) and Hp (G), we consider here a class of cyclic
digraphs. We say that a digraph G = (V,E) is a cycle if it is connected (as an undirected graph),
every vertex had the degree 2, and there are no double edges. We refer to G as an n-cycle if
the number |V | of its vertices is n. For an n-cycle we have dimΩ0 (G) = dimΩ1 (G) = n and
dim H0 (G) = 1.

Consider two specific examples of cycles. Let us call by a triangle the following digraph

↗

2
•↖

0• → •1
(2.15)

Note that the triangle contains a 2-path e012 ∈ Ω2 as e012 ∈ A2 and

∂e012 = e12 − e02 + e01 ∈ A1.

Let us called by a square the following digraph

2• −→ •3
↑ ↑

0• −→ •1
(2.16)
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The square contains a 2-path v := e013 − e023 ∈ Ω2 because v ∈ A2 and

∂v = (e13 − e03 + e01)− (e23 − e03 + e02)

= e13 + e01 − e23 − e02 ∈ A1,

where the non-allowed path e03 cancels out.

Proposition 2.13 Let G be a cycle. Then

Ωp (G) = {0} for all p ≥ 3 and Hp (G) = {0} for all p ≥ 2.

If G is a triangle or a square then

dimΩ2 (G) = 1, dim H1 (G) = 0

whereas otherwise
dimΩ2 (G) = 0, dim H1 (G) = 1.

Proof. Let G be a triangle (2.15). For p ≥ 3 there are no allowed p-paths, in particular,
Ωp = {0} and Hp = {0} . Obviously, A2 is spanned by a single 2-path e012, and this path is also
∂-invariant, so that Ω2 = span {e012}. Since ∂e012 6= 0, we see that ker ∂|Ω2 = 0 and, hence,
H2 = {0}. Clearly, Ω1 = span {e01, e02, e12} and it is easy to see that ker ∂|Ω1 is spanned by
e12 − e02 + e01, which coincides with Im ∂|Ω2 ; hence, H1 = {0}.

Let G be a square (2.16). As above, we obtain for p ≥ 3 that Ωp = {0} and Hp = {0}. The
space A2 is now 2-dimensional:

A2 = span {e013, e023} .

A 2-path v = αe013 + βe023 ∈ A2 has the boundary

∂v = α (e13 − e03 + e01) + β (e23 − e03 + e02)

that is allowed if and only if the terms e03 cancel out, that is, when α + β = 0. Hence, Ω2 is
one-dimensional and

Ω2 = span {e013 − e023} .

As in the case of a triangle, we obtain ker ∂|Ω2 = 0 and H2 = {0}. Also, ker ∂|Ω1 is spanned by
e13 + e01 − e23 − e02, which coincides with Im ∂|Ω2 ; hence, H1 = {0}.

Assume first that G is neither triangle nor square. Then G contains neither triangle nor
square as subgraph. Let us show that Ωp = {0} for any p ≥ 2. Indeed, let v be a ∂-invariant
p-path. Consider one of the elementary paths ei0...ip that enters v with non-zero coefficients.
Then we have i0 → i1 → i2 → ... but i0 6→ i2 because otherwise i0i1i2 would be a triangle.
Note that ∂ei0...ip contains the term ei0 î1i2...ip

that is not allowed. Hence, the latter term should
cancel out with a similar term that comes from another elementary path ei0i′1i2...in path being
also a part of v. But then we have i0 → i′1 → i2 so that the vertices i0, i1, i

′
1, i2 form a square,

which is impossible. Consequently, we have Hp = {0} for p ≥ 2.
Finally, let us compute H1 = ker ∂|Ω1 . Set n = |V |. By the definition of a cycle, the set

of vertices of G can be identified with Zn so that there is an edge between i and i + 1 for any
i ∈ Zn. Denote this edge by vi, that is, vi is either ei(i+1) or e(i+1)i. Then we have

∂vi = σi (ei+1 − ei) ,

where

σi =

{
1, if i→ (i + 1)
−1, if (i + 1)→ i,

(2.17)
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For any allowed (=∂-invariant) 1-path v =
∑

i αivi we have

∂v =
∑

i

αiσi (ei+1 − ei) =
∑

i

(αi−1σi−1 − αiσi) ei,

which vanishes if and only if for all i

αi−1σi−1 = αiσi. (2.18)

Hence, H1 = ker ∂|Ω1 is one-dimensional. The condition (2.18) is, in particular, satisfied if
αi = σi for all i, which implies that H1 is spanned by v =

∑
i σivi. An example of such a path

is shown on Fig. 2.

  5 
4 

3 

2 1 

0 

-1 

+1 

+1 
-1 

-1 

+1 

Figure 2: The 1-path v = −e01 − e12 + e23 + e34 − e45 + e50 spans H1.

3 Join of digraphs

To simplify notation, we denote the set of vertices of a digraph by the same letter as the digraph
itself. In this section we always use the version (2.13) of the chain complex {Ωp}p≥−1 and, hence,

the reduced homologies {H̃p}p≥−1.

3.1 Join of two digraphs

Definition 3.1 Let X,Y be two digraphs whose sets of vertices are disjoint. Consider the
digraph Z with the set of vertices X tY and with the set of edges, that consists of all the edges
of X and Y , as well as of all the edges of the form x→ y for all x ∈ X and y ∈ Y . The digraph
Z is called the join of X and Y and is denoted by X ∗ Y.

An example of a join of two digraphs is shown on Fig. 3(right). The operation ∗ on the
digraphs is obviously non-commutative but associative.

Since X and Y are subgraphs of Z = X∗Y , every (regular) path on X or Y can be considered
as a (regular) path on Z. In particular, we can consider the operation join uv of regular paths
u on X and v on Y , so that the result uv is a regular path on Z (see Fig. 3(left)). Clearly, if
u ∈ Rp (X) and v ∈ Rq (Y ) then uv ∈ Rp+q+1 (Z).

It is clear from construction that an elementary path ez on Z is allowed if and only if it has
the form exey where ex is an elementary allowed path on X and ey is that on Y. Moreover, x
and y in the representation ez = exey are uniquely defined.

Proposition 3.2 Let p, q ≥ −1 and r = p + q + 1.
(a) If u ∈ Ap (X) and v ∈ Aq (Y ) then uv ∈ Ar (Z). If u ∈ Ap (X) and v ∈ Nq (Y ) then

uv ∈ Nr (Z), and the same is true for u ∈ Np (X) and v ∈ Ap (Y ) (where N∗ is defined in
(2.11)).
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Figure 3: Join of two paths (left) and join of two digraphs (right)

(b) If u ∈ Ωp (X) and v ∈ Ωq (Y ) then uv ∈ Ωr (Z) . Moreover, the operation u, v 7→ uv

extends to that for the homology classes u ∈ H̃p (X) and v ∈ H̃q (Y ) so that uv ∈ H̃r (Z) .

Proof. (a) For u = ex, v = ey the both claims are obvious, for general u, v they follow by
linearity.

(b) If u ∈ Ωp (X) and v ∈ Ωq (Y ) then by (a) the path uv is allowed. Since ∂u and ∂v are
allowed, by (a) also (∂u) v and u (∂v) are allowed, whence ∂ (uv) is allowed by the product rule
(2.7). It follows that uv is ∂-invariant.

If u, v are representatives of homology classes, that is, closed paths, then by (2.7) the join uv
is also closed, so that uv represents a homology class of Z. We are left to verify that the class
of uv depends only on the classes of u and v. For that it suffices to prove that if either u or v
is exact then so is uv. Indeed, if u = ∂w then

∂ (wv) = (∂w) v + (−1)p w (∂v) = uv

so that uv is exact.
One of our main results is the following theorem. Here we denote by Ω∗ the full chain

complex (2.13) and deal with its homologies H̃∗. Set also, for any p ≥ 0,

Ω′
p := Ωp−1

so that Ω′
∗ is the same chain complex as Ω∗ but with the shifted index p.

Theorem 3.3 Let X,Y be two finite digraphs and Z = X ∗ Y. Then we have the following
isomorphism of the chain complexes:

Ω∗ (Z) ∼= Ω′
∗ (X)⊗ Ω∗ (Y ) , (3.1)

which is given by the map u ⊗ v 7→ uv with u ∈ Ω′
∗ (X) and v ∈ Ω∗ (Y ) . In particular, for any

r ≥ −1,
Ωr (Z) ∼=

⊕

{p,q≥−1:p+q=r−1}

(Ωp (X)⊗ Ωq (Y )) . (3.2)

Consequently, we have, for any r ≥ 0,

H̃r (Z) ∼=
⊕

{p,q≥0:p+q=r−1}

(
H̃p (X)⊗ H̃q (Y )

)
(3.3)

(a Künneth formula for join).
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The proof will be given in Section 6. It follows from (3.2) that Ωr (Z) has a basis
⊔

{p,q≥−1:p+q=r−1}

{u(p)
i v

(q)
j }i,j , (3.4)

where {u(p)
i } is a basis in Ωp (X) and {v(q)

j } is a basis in Ωq (Y ); in particular,

dimΩr (Z) =
∑

{p,q≥−1:p+q=r−1}

dimΩp (X) dimΩq (Y ) .

In the same way one expresses a basis in H̃r (Z) via the basis in H̃p (X) and H̃q (Y ).

Example 3.4 Consider the digraph Z = X ∗ Y as on Fig. 3(right). In this case we have by
Proposition 2.13 that all the homology groups H̃p (X) and H̃q (Y ) are trivial except for

H̃1 (X) = span {e01 + e12 + e20} ,

H̃1 (Y ) = span {e35 − e65 + e64 − e34} .

It follows from (3.3) that all H̃r (Z) are trivial except for H̃3 (Z), and the latter is generated by
a single element

e0135 − e0165 + e0164 − e0134 + e1235 − e1265 + e1264 − e1234 + e2035 − e2065 + e2064 − e2034

that is the join of the generators of H̃1 (X) and H̃1 (Y ) .

Given a digraph X, the digraph Cone X is obtained from X by adding one more vertex a
and all the edges of the form x → a for all x ∈ X. The vertex a is called the cone vertex.
Clearly, we have Cone X = X ∗ Y where the digraph Y consists of a single vertex a. Observe
that Ω−1 (Y ) ∼= K, Ω0 (Y ) = span {ea}, Ωq (Y ) = {0} for q ≥ 1 and H̃q (Y ) = {0} for all q ≥ −1.
Hence, applying Theorem 3.3 with Y = {a} , we obtain the following statement.

Proposition 3.5 For any digraph X and for any r ≥ 0, we have

Ωr (Cone X) ∼= Ωr (X)⊕ Ωr−1 (X) , (3.5)

where the isomorphism is given by the map u, v 7→ u+vea, where u ∈ Ωr (X), v ∈ Ωr−1 (X) and
a is the cone vertex. Furthermore, all the reduced homologies H̃r (Cone X) are trivial.

Example 3.6 Let us define for any n ≥ 0 a simplex-digraph Smn as follows: its set of vertices
is {0, 1, ..., n} and the edges are i→ j for all i < j. For example, we have

Sm1 = 0• → •1, Sm2 = ↗

2
•↖

0• → •1
,

and Sm3 is shown on Fig. 4.
Clearly, we have Smn = Cone Smn−1. Since Ω0 (Sm0) = span {e0} and Ωn (Smn−1) = {0},

we obtain by induction from (3.5) that Ωn (Smn) = span {e01...n}. Of course, all the reduced
homologies of Smn are trivial.

A suspension over a digraph X is a digraph Sus X that is obtained from X by adding two
vertices a, b and all the edges x → a and x → b for all x ∈ X. The vertices a, b are called the
suspension vertices. Clearly, we have Sus X = X ∗ Y where Y is a digraph that consists of two
vertices a, b and no edges. Observe that Ω−1 (Y ) ∼= K, Ω0 (Y ) = span {ea, eb}, Ωq (Y ) = {0}
for q ≥ 1, H̃0 (Y ) = span (eb − ea) and H̃q (Y ) = {0} for q ≥ 1. Applying Theorem 3.3 with
Y = {a, b} , we obtain the following statement.
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Figure 4: A simplex-digraph Sm3

Proposition 3.7 For any digraph X and for any r ≥ 0, we have

Ωr (Sus X) ∼= Ωr (X)⊕ Ωr−1 (X)⊕ Ωr−1 (X) , (3.6)

and the isomorphism is given by the map u, v, w 7→ u + vea + web, where u ∈ Ωr (X), v, w ∈
Ωr−1 (X) and a, b are the suspension vertices. Furthermore, we have

H̃r (Sus X) ∼= H̃r−1 (X) , (3.7)

and the isomorphism is given by the map u 7→ u (ea − eb), where u ∈ H̃r−1 (X) .

Example 3.8 Let S be any cycle that is neither triangle nor square, so that by Proposition
2.13 dim H1 (S) = 1. We regards S as an analog of a circle. Define Sn inductively by S1 = S and
Sn+1 = Sus Sn, so that Sn can be regarded as an analog of the n-dimensional sphere. Proposition
3.7 implies by induction that dim Hn (Sn) = dim H1 (S) = 1, which gives an example of a non-
trivial Hn with an arbitrary n. In the same way one shows that Hp (Sn) = {0} for all p ≥ 1, p 6= n.

Let v be an 1-path on S that spans H1 (S) (see the proof of Proposition 2.13). Denoting
by an, bn the suspension vertices of Sn+1 = Sus Sn, we obtain by induction that Hn (Sn) is
generated by the path

v (ea1 − eb1) (ea2 − eb2) ...
(
ean−1 − ebn−1

)
.

For example, the digraph G on Fig. 1 is an S2 based on 3-cycle S with the vertices 1, 2, 3. Since
by Proposition 2.13 v = e12 + e23 + e31, we obtain that H2 (G) is generated by

v (e4 − e5) = (e124 + e234 + e314)− (e125 + e235 + e315) .

Another example of an S2 is shown on Fig. 5 in two ways.
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Figure 5: An octahedron digraph

Indeed, denoting by S the 4-cycle with vertices {0, 1, 2, 3}, we see that the digraph G on Fig.
5 is Sus S = S2. Hence, we obtain that H2 (G) is generated by

e024 − e025 − e034 + e035 − e124 + e125 + e134 − e135.
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3.2 Some auxiliary results

Given a digraph G, set E∗ (G) =
⋃

p≥−1 Ep (G), that is, E∗ (G) is the set of all allowed elementary
p-paths on G with p ≥ −1. Denote by A∗ (G) the union of all Ap (G) with p ≥ −1 and define in
A∗ (G) the K-scalar product as follows: for all u, v ∈ A∗ (G)

[u, v] :=
∑

x∈E∗(X)

uxvx.

In particular, if u ∈ Ap and v ∈ Ap′ with p 6= p′ then clearly [u, v] = 0.
As before, let Z = X ∗ Y for two digraphs X,Y. Let us prove some simple properties of join

of paths that we will need later for the proof of Theorem 3.3.

Lemma 3.9 Any path w ∈ A∗ (Z) admits a representation

w =
∑

x∈E∗(X),y∈E∗(Y )

cxyexey (3.8)

where cxy ∈ K.

Proof. By construction of join, any allowed elementary path on Z has the form exey, where
x ∈ E∗ (X) and y ∈ E∗ (Y ). Hence, any path w ∈ A∗ (Z) has the form (3.8).

Lemma 3.10 If u ∈ Ap (X) , ϕ ∈ Ap′ (X) and v ∈ Aq (Y ) , ψ ∈ Aq′ (Y ) with p, q, p′, q′ ≥ −1
then

[uv, ϕψ] = [u, ϕ] [v, ψ] . (3.9)

Proof. Set r = p + q + 1. If p′ + q′ + 1 6= r then then both sides of (4.22) vanish. Assuming
p′ + q′ + 1 = r we obtain

[uv, ϕψ] =
∑

z∈Er(Z)

(uv)z (ϕψ)z

=
∑

x∈Ep(X),y∈Eq(Y )

uxvyϕxψy.

If p′ 6= p then ϕx = 0 and then both sides of (4.22) vanish. If p′ = p and, hence, q′ = q, then we
obtain

[uv, ϕψ] =
∑

x∈Ep(X)

uxϕx
∑

y∈Eq(Y )

vyψy = [u, ϕ] [v, ψ] ,

which finishes the proof.

4 Cartesian product

In this section we use the truncated chain complexes {Rp}p≥0 and {Ωp}p≥0 (cf. (2.10) and
(2.14)) and the homologies {Hp}p≥0 of the latter.
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4.1 Step-like paths

Given two finite sets X,Y , consider their Cartesian product Z = X × Y. Fix r ≥ 0 and let
z = z0z1...zr be a regular elementary r-path on Z, where zk = (xk, yk) with xk ∈ X and yk ∈ Y .
We say that the path z is step-like if, for any k = 1, ..., r, either xk−1 = xk or yk−1 = yk. In
fact, exactly one of these conditions holds as z is regular.

Any step-like path z on Z determines regular elementary paths x on X and y on Y by
projection. More precisely, x is obtained from z by taking the sequence of all X-components of
the vertices of z and then by collapsing in it any subsequence of repeated vertices to one vertex.
The same rule applies to y. By construction, the projections x and y are regular elementary
paths on X and Y , respectively. If the projections of z are x = x0...xp and y = y0...yq then
p + q = r (cf. Fig. 6(left)).

 

xp xi 

yj 

yq 

zk=(xi,yj) 

z0=(x0,y0) 

zr=(xp,yq) 

(0,0) 

(p,q) 

(i,j) 

L(z) 

S(z) 

(p,0) 

(0,q) 

Figure 6: Left: a step-like path z and its projections x and y. Right: a staircase S (z) and its
elevation L (z) (here L (z) = 30).

Every vertex (xi, yj) of a step-like path z can be represented as a point (i, j) of Z2 so that
the whole path z is represented by a staircase S (z) in Z2 connecting the points (0, 0) and (p, q).

Definition 4.1 Define the elevation L (z) of the path z as the number of the cells in Z2
+ below

the staircase S (z) (cf. the shaded area on Fig. 6(right)).

By definition, any p-path u on X is given by

u =
∑

x

uxex

where the summation is taken over all elementary p-paths x on X and ux ∈ K are the components
of u. It will be convenient to extend the summation here to all elementary paths x with arbitrary
length, by setting ux = 0 if the length of x is not equal to p.

Definition 4.2 For any paths u ∈ Rp (X) and v ∈ Rq (Y ) with p, q ≥ 0 define their cross
product u × v as a path on Z by the following rule: for any step-like elementary path z on Z,
the component (u× v)z is defined by

(u× v)z = (−1)L(z) uxvy, (4.1)

where x and y are the projections of z onto X and Y , while for the rest paths z set (u× v)z = 0.
Hence, we have u× v ∈ Rp+q (Z) .
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In the context of this section we use the truncated regular chain complex (2.10), that is, the
convention that R−1 = {0}. Let us extend the definition of the cross product u× v to the case
when either p = −1 and q ≥ 0 or p ≥ 0 and q = −1 simply by setting u× v = 0 ∈ Rp+q.

For any regular elementary p-path x on X and q-path y on Y with p, q ≥ 0 denote by Πx,y

the set of all step-like paths z on Z whose projections on X and Y are x and y respectively.
Clearly, we have |Πx,y| =

(
p+q

p

)
. It follows from (4.1) that, for all regular elementary paths x, y,

ex × ey =
∑

z

(ex × ey)
z ez =

∑

z

(−1)L(z) (ex)x′
(ey)

y′
ez,

where x′ and y′ are projections of z, whence

ex × ey =
∑

z∈Πx,y

(−1)L(z) ez. (4.2)

It is not difficult to see that cross product is associative.

Example 4.3 Let us denote the vertices of X by letters a, b, c etc. and the vertices of Y by
integers 0, 1, 2, etc. Then the vertices of Z = X × Y will be denoted as chessboard fields, for
example, a0, b1 etc. Here are some examples of cross products:

1. ea × e01 = ea0a1, eab × e0 = ea0b0

2. eab × e01 = ea0b0b1 − ea0a1b1

3. eabc × e01 = ea0b0c0c1 − ea0b0b1c1 + ea0a1b1c1

4. eabc × e012 = ea0b0c0c1c2 − ea0b0b1c1c2 + ea0b0b1b2c2 + ea0a1b1c1c2 − ea0a1b1b2c2 + ea0a1a2b2c2

(cf. Fig. 7).

  

a0 b0 c0 

a1 

a2 

c1 

c2 

b1 

b2 

Figure 7: The staircase a0b0b1c1c2 has elevation 1. Hence, ea0b0b1c1c2 enters the product eabc×e012

with the negative sign.

Proposition 4.4 (Product rule for cross product) If u ∈ Rp (X) and v ∈ Rq (Y ) where p, q ≥ 0,
then

∂ (u× v) = (∂u)× v + (−1)p u× (∂v) . (4.3)

Proof. It suffices to prove (4.3) for the case u = ex and v = ey where x = x0...xp and
y = y0...yq are regular elementary p-path on X and q-path on Y , respectively. Set r = p + q so
that ex × ey ∈ Rr (Z).

If p = q = 0 then all the terms in (4.3) vanish. Assume p = 0 and q ≥ 1. Then Πx,y contains
the only element z = z0...zq where zi = (x0, yi). Since L (z) = 0, we obtain by (4.2) that

ex × ey = ez0...zq
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By (2.2) obtain
∂ (ex × ey) = ∂ez0...zq = ex × ∂ey0...yq ,

which is equivalent to (4.3), because ∂u = 0. In the same way (4.3) is proved if q = 0 and p ≥ 1.
Consider now the main case p, q ≥ 1. We have by (4.2) and (2.2)

∂ (ex × ey) =
∑

z∈Πx,y

(−1)L(z) ∂ez =
∑

z∈Πx,y

r∑

k=0

(−1)L(z)+k ez(k)
, (4.4)

where we use a shortcut
z(k) = z0...ẑk...zr = z0...zk−1zk+1...zr.

Switching the order of the sums, rewrite (4.4) in the form

∂ (ex × ey) =
r∑

k=0

∑

z∈Πx,y

(−1)L(z)+k ez(k)
. (4.5)

Given an index k = 0, ..., r and a path z ∈ Πx,y, consider the following four logically possible
cases how horizontal and vertical couples combine around zk:

(H) :
zk−1
• −→

zk• −→
zk+1
•

zk+1
•
↑

(V ) :
zk•
↑

zk−1
•

(R) :
zk+1
• (L) :

zk• −→
zk+1
•

↑ ↑
zk−1
• −→

zk•
zk−1
•

Here (H) stands for a horizontal position, (V ) for vertical, (R) for right and (L) for left. If k = 0
or k = r then zk−1 or zk+1 should be ignored, so that one has only two distinct positions (H)
and (V ).

If z ∈ Πx,y and zk stands in (R) or (L) then consider a path z′ ∈ Πx,y such that z′i = zi for all
i 6= k, whereas z′k stands in the opposite position (L) or (R), respectively, as on the diagrams:

z′k• −→
zk+1
•

↑ ↑
zk−1
• −→

zk•

zk• −→
zk+1
•

↑ ↑
zk−1
• −→

z′k•

Clearly, we have L (z′) = L (z) ± 1 which implies that the terms ez(k)
and ez′

(k)
in (4.5) cancel

out.
Denote by Πk

x,y the set of paths z ∈ Πx.y such that zk stands in position (V ) and by Π k
x,y

the set of paths z ∈ Πx,y such that zk stands in position (H). By the above observation, we
can restrict the summation in (4.5) to those pairs k, z where zk is either in vertical or horizontal
position, that is,

∂ (ex × ey) =
r∑

k=0

∑

z∈Πk
x,ytΠ k

x,y

(−1)L(z)+k ez(k)
. (4.6)

17



Let us now compute the first term in the right hand side of (4.3):

(∂ex)× ey =
p∑

l=0

(−1)l ex × ey =
p∑

l=0

∑

w∈Πx(l)
,y

(−1)L(w)+l ew. (4.7)

Fix some l = 0, ..., p and w ∈ Πx(l),y. Since the projection of w on X is x(l) = x0...xl−1xl+1...xp,
there exists a unique index k such that wk−1 projects onto xl−1 and wk projects onto xl+1. Then
wk−1 and wk have a common projection onto Y , say ym (cf. Fig. 8).

 

xl-1 

zk=(xl,ym) 

xp 

yq 

 xl xl+ 1 

ym 
wk-1=(xl-1,ym) wk=(xl+ 1,ym) 

x0 
y0 

Figure 8: Step-like paths w and z. The shaded area represents the difference L (z)− L (w).

Define a path z ∈ Π k
x,y by setting

zi =






wi for i ≤ k − 1,
(xl, ym) for i = k,
wi−1 for i ≥ k + 1.

(4.8)

By construction we have z(k) = w. It also follows from the construction that

L (z) = L (w) + m.

Since k = l + m, we obtain that

L (z) + k = L (w) + l + 2m.

We see that each pair l, w where l = 0, ..., p and w ∈ Πx(l),y gives rise to a pair k, z where

k = 0, ..., r , z ∈ Π k
x,y , and

(−1)L(z)+k ez(k)
= (−1)L(w)+l ew.

By reversing this argument, we obtain that each such pair k, z gives back l, w so that this
correspondence between k, z and l, w is bijective. Hence, we conclude that

(∂ex)× ey =
p∑

l=0

∑

w∈Πx(l)
,y

(−1)L(w)+l ew =
r∑

k=0

∑

z∈Π k
x,y

(−1)L(z)+k ez(k)
. (4.9)
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The second term in the right hand side of (4.3) is computed similarly:

(−1)p ex × ∂ey =
q∑

m=0

(−1)m+p ex × ey(m)
=

q∑

m=0

∑

w∈Πx,y(m)

(−1)L(w)+m+p ew.

Each pair m,w here gives rise to a pair k, z where k = 0, ..., r and z ∈ Πk
x,y in the following way:

choose k such that wk−1 projects onto ym−1 and wk projects onto ym+1. Then wk−1 and wk

have a common projection onto X, say xl.

 

zk=(xl,ym) 

xp 

yq 

 xl 

ym+1 

wk-1=(xl,ym-1) 

wk=(xl,ym+1) 

x0 
y0 

ym 

ym-1 

Figure 9: Paths w and z. The shaded area represents L (z)− L (w).

Define the path z ∈ Πk
x,y as in (4.8) (cf. Fig. 9). Then we have w = z(k) and

L (z) = L (w) + p− l.

Since k = l + m, we obtain
L (z) + k = L (w) + p + m

and

(−1)p ex × ∂ey =
q∑

m=0

∑

w∈Πx,y(m)

(−1)L(w)+m+p ew =
r∑

k=0

∑

z∈Πk
x,y

(−1)L(z)+k ez(k)
.

Combining this with (4.6) and (4.9), we obtain (4.3).

4.2 Cartesian product of digraphs

Definition 4.5 Given two digraphs X and Y , consider the digraph Z with the set of vertices
X × Y and with the set of edges defined by the following rule: for x, x′ ∈ X and y, y′ ∈ Y ,

(x, y)→
(
x′, y′

)
if either x→ x′ and y = y′ or x = x′ and y → y′.

The digraph Z is called the Cartesian product of X and Y and is denoted by X�Y .
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A fragment of the graph Z is shown here:

y′• . . .
(x,y′)
• −→

(x′,y′)
• . . .

↑ ↑ ↑

y• . . .
(x,y)
• −→

(x′,y)
• . . .

Y � X . . . •
x

−→ •
x′

. . .

It is not difficult to see that the Cartesian product of digraphs is associative.
Clearly, any regular elementary path on Z = X�Y is allowed if and only if it is step-like

and its projections onto X and Y are allowed.

Proposition 4.6 Let p, q ≥ 0 and r = p + q.
(a) If u ∈ Ap (X) and v ∈ Aq (Y ) then u × v ∈ Ar (Z) . If u ∈ Np (X) and v ∈ Aq (Y ) then

u× v ∈ Nr (Z), and the same is true if u ∈ Ap (X) and v ∈ Nq (Y ) .
(b) If u ∈ Ωp (X) and v ∈ Ωq (Y ) then u× v ∈ Ωr (Z) . Moreover, the operation u, v 7→ u× v

extends to that for the homology classes u ∈ Hp (X) and v ∈ Hq (Y ) so that u× v ∈ Hr (Z) .

Proof. (a) It suffices to prove the both claims for u = ex and v = ey. By (4.2) ex × ey is
a linear combination of ez with z ∈ Πx,y. If x and y are allowed then any z ∈ Πx,y is allowed,
which implies that ex × ey ∈ Ar (Z).

Let x be non-allowed. Since the projection of z ∈ Πx,y onto X is x, it follows that z is non-
allowed. Hence, ex × ey is a linear combination of non-allowed paths, that is ex × ey ∈ Nr (Z) .

(b) The proof is based on the product rule (4.3) and goes the same way as the proof of
Proposition 3.2(b).

The next theorem gives a complete description of ∂-invariant paths on Z. We denote by
Ω∗ = {Ωp}p≥0 the truncated chain complex (2.14) and by H∗ = {Hp}p≥0 its homologies.

Theorem 4.7 Let X,Y be two finite digraphs and Z = X�Y. Then we have the following
isomorphism of the chain complexes:

Ω∗ (Z) ∼= Ω∗ (X)⊗ Ω∗ (Y ) , (4.10)

which is given by the map u⊗ v 7→ u× v with u ∈ Ω∗ (X) and v ∈ Ω∗ (Y ). In particular, for any
r ≥ 0

Ωr (Z) ∼=
⊕

{p,q≥0:p+q=r}

(Ωp (X)⊗ Ωq (Y )) . (4.11)

Consequently, we have
H∗ (Z) ∼= H∗ (X)⊗H∗ (Y ) , (4.12)

that is, for any r ≥ 0,
Hr (Z) ∼=

⊕

{p,q≥0:p+q=r}

(Hp (X)⊗Hq (Y )) (4.13)

(a Künneth formula for product).

Example 4.8 Consider the digraph Z = X�Y (shown on Fig. 10), where

X = ↗

b
•↘

a• → •c
and Y =

2• −→ •3
↑ ↑

0• −→ •1
.
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Figure 10: Cartesian product of a triangle and a square

For r = 4 we obtain from (4.11) that

Ω4 (Z) ∼= Ω2 (X)⊗ Ω2 (Y )

because on both digraphs X,Y we have Ωp = {0} for p ≥ 3. By the proof of Proposition 2.13,
Ω2 (X) = span (eabc) and Ω2 (Y ) = span (e013 − e023), whence it follows that Ω4 (Z) is spanned
by a single 4-path

eabc × (e013 − e023) = ea0b0c0c1c3 − ea0b0b1c1c3 + ea0b0b1b3c3

+ea0a1b1c1c3 − ea0a1b1b3c3 + ea0a1a3b3c3

−ea0b0c0c2c3 + ea0b0b2c2c3 − ea0b0b2b3c3

−ea0a2b2c2c3 + ea0a2b2b3c3 − ea0a2a3b3c3.

Similarly one can compute Ωr (Z) for other values of r. For example,

Ω3 (Z) ∼= Ω1 (X)⊗ Ω2 (Y )
⊕

Ω2 (X)⊗ Ω1 (Y ) ,

which implies dimΩ3 (Z) = 3 ∙ 1 + 1 ∙ 4 = 7 and the generators of Ω3 (Z) are

eab × (e013 − e023) , eac × (e013 − e023) , ebc × (e013 − e023)

eabc × e01, eabc × e13, eabc × e02, eabc × e23

Since all the homology groups of X,Y are trivial except for H0, we obtain that the same is true
for homologies of Z.

Example 4.9 Consider Z = X�Y where X,Y are cyclic digraphs:

X = ↗

b
•↘

a• ← •c
, Y =

1• −→ •2
↑ ↓

0• ←− •3
.

By Proposition 2.13 all the homologies Hp (X) and Hq (Y ) are trivial for p, q ≥ 2 whereas

H1 (X) = span (eab + ebc + eca)

H1 (Y ) = span (e01 + e12 + e23 + e30) .

It follows from (4.12) that

H2 (Z) ∼=
⊕

{p,q≥0:p+q=2}

(Hp (X)⊗Hq (Y )) = H1 (X)⊗H1 (Y ) ,
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in particular, dim H2 (Z) = 1. The generating element of H2 (Z) is

(eab + ebc + eca)× (e01 + e12 + e23 + e30) .

For any digraph X, define the cylinder over X by

Cyl X := X� Y with Y =
(
0• → •1

)
.

Assuming that the vertices of X are enumerated by 0, 1, ..., n− 1, let us enumerate the vertices
of Cyl X by 0, 1, ..., 2n− 1 using the following rule: (x, 0) is assigned the number x, while (x, 1)
is assigned x + n.

Define the operation of lifting paths from X to Cyl X as follows: for any regular path v on
X, the lifted path v̂ is defined by v̂ = v × e01. For example, if v = ei0...ip then

v̂ = ei0...ip × e01 = (−1)p
p∑

k=0

(−1)k ei0...ik(ik+n)...(ip+n). (4.14)

Since e01 ∈ Ω1 (Y ), we see that if v ∈ Ωp (X) then v̂ ∈ Ωp+1 (Cyl X).

Example 4.10 Let us define n-cube Cuben inductively as follows: Cube0 = {0} and

Cuben = CylCuben−1 .

For example, Cube1 is
0• → •1

Cube2 is a square
2• −→ •3

↑ ↑
0• −→ •1

and Cube3 is shown on Fig. 11.

 

0 1 

3 2 

4 5 

7 6 

Figure 11: A 3-cube

Since Cuben = Cuben−1×Y , where Ωq (Y ) is non-trivial only for q = 0, 1, and Ωn (Cuben−1) =
{0}, we obtain from (4.11)

Ωn (Cuben) ∼= Ωn−1 (Cuben−1)⊗ Ω1 (Y ) .

Since Ω1 (Y ) is generated by a single element v1 = e01, we obtain by induction that dimΩn (Cuben) =
1. A generating element vn of Ωn (Cuben) can be computed inductively by

vn = vn−1 × e01 = v̂n−1.
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By (4.14) we obtain successively

v2 = v̂1 = e013 − e023,

v3 = v̂2 = e0457 − e0157 + e0137 − e0467 + e0267 − e0237,

etc. In general, vn is an alternating sum of n! elementary paths that correspond to partitioning
of a solid n-cube into n! simplexes.

By (4.13) all homology groups of Cuben are trivial except for H0.

4.3 Some auxiliary results

For any digraph G denote by E∗ (G) the union of all Ep (G) with p ≥ 0, where Ep (G) is the
set of all allowed elementary p-paths. Note that the notation E∗ here is different from that in
Section 3.2 where p = −1 was also allowed.

Denote by A∗ (G) the union of all Ap (G) with p ≥ 0 and by Ω∗ (G) the similar union of all
Ωp (G) with p ≥ 0. We will use the K-scalar product in A∗ (G) defined by for all u, v ∈ A∗ (G)
by

[u, v] :=
∑

x∈E∗(X)

uxvx.

As in Section 4.2, we work with two digraphs X,Y and their Cartesian product Z = X�Y .
Here we prove some auxiliary results.

Lemma 4.11 The family of paths {ex × ey} where x ∈ E∗ (X) and y ∈ E∗ (Y ) is linearly
independent.

Proof. Set for some cxy ∈ K

w =
∑

x∈E∗(X),y∈E∗(Y )

cxyex × ey

and prove that w = 0 implies that cxy = 0 for all couple x, y as in the summation. Fix such a
couple x′, y′ and choose one z ∈ Πx′,y′ . By (4.1) we have

(ex × ey)
z =

{
(−1)L(z) , if x = x′ and y = y′,
0, otherwise,

which implies that wz = (−1)L(z) cx′y′
. Hence, w = 0⇒ cx′y′

= 0, which was to be proved.

Lemma 4.12 Any path w ∈ Ω∗ (Z) admits a representation

w =
∑

x∈E∗(X), y∈E∗(Y )

cxy (ex × ey) (4.15)

with some coefficients cxy ∈ K (note that cxy are uniquely defined by Lemma 4.11).

Proof. Fix w ∈ Ωr (Z) for some r ≥ 0. For any x ∈ E∗ (X) and y ∈ E∗ (Y ) choose some
z ∈ Πx,y and set

cxy = (−1)L(z) wz. (4.16)

Let us first show that the value of cxy in (4.16) is independent of the choice of z ∈ Πx,y. Set
z = i0...ir. Let k be an index such that one of the couples ik−1ik, ikik+1 is vertical and the other
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is horizontal. If ik−1 = (a, b) and ik+1 = (a′, b′) where a, a′ ∈ X and b, b′ ∈ Y , then ik is either
(a′, b) or (a, b′). Denote the other of these two vertices by i′k, as, for example, on the diagram:

...
...

b′•
i′k• −→

ik+1
• . . .

↑ ↑ ↑
b• . . .

ik−1
• −→

ik•
...

...
||
y

x= . . . •
a
−→ •

a′
. . .

Replacing in the path z = i0...ir the vertex ik by i′k, we obtain the path z′ = i0...ik−1i
′
kik+1...ir

that clearly belongs to Πx,y and, hence, is allowed. Since the (r − 1)-path i0...ik−1ik+1...ir is
regular but non-allowed (as it is not step-like), while ∂w is allowed, we have

(∂w)i0...ik−1ik+1...ir = 0. (4.17)

On the other hand, we have by (2.4)

(∂w)i0...ik−1ik+1...ir =
∑

j∈Z

(
k−1∑

m=0

(−1)m wi0...im−1jim...ik−1ik+1...ir (4.18)

+ (−1)k wi0...ik−1jik+1...ir (4.19)

+
r+1∑

m=k+2

(−1)m−1 wi0...ik−1ik+1...im−1jim...ir

)

. (4.20)

All the components of w in the sums (4.18) and (4.20) vanish since they correspond to non-
allowed paths, while w is allowed. The path i0...ik−1jik+1...ir in the term (4.19) is also non-
allowed unless j = ik or j = i′k (note that ik and i′k are uniquely determined by ik−1 and ik+1).
Hence, the only non-zero terms in (4.18)-(4.20) are wi0...ik−1ikik+1...ir = wz and wi0...ik−1i′kik+1...ir =
wz′ . Combining (4.17) and (4.18)-(4.20), we obtain

0 = wz + wz′ .

Since L (z′) = L (z)± 1, it follows that

(−1)L(z′) wz′ = (−1)L(z) wz. (4.21)

The transformation z 7→ z′ described above, allows us to obtain from a given z ∈ Πx,y in a
finite number of steps any other path in Πx,y. Since the quantity (−1)L(z) wz does not change
under this transformation, it follows that it does not depend on a particular choice of z ∈ Πx,y,
which was claimed. Hence, the coefficients cxy are well-defined by (4.16).

Finally, let us show that the identity (4.15) holds with the coefficients cxy from (4.16). By
(4.2) we have

ex × ey =
∑

z∈Πx,y

(−1)L(z) ez.
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Using (4.16) we obtain
∑

x∈E∗(X), y∈E∗(Y )

cxy (ex × ey) =
∑

x∈E∗(X), y∈E∗(Y )

cxy
∑

z∈Πx,y

(−1)L(z) ez

=
∑

x∈E∗(X), y∈E∗(Y )

∑

z∈Πx,y

wzez

=
∑

z∈E∗(Z)

wzez = w,

which finishes the proof.

Lemma 4.13 If u ∈ Ap (X) , ϕ ∈ Ap′ (X) and v ∈ Aq (Y ) , ψ ∈ Aq′ (Y ), where p, q ≥ 0, then

[u× v, ϕ× ψ] =
(
p+q

p

)
[u, ϕ] [v, ψ] . (4.22)

Proof. Set r = p + q. If p′ + q′ 6= r then the both sides of (4.22) vanish. Assume further
that p′ + q′ = r so that w := ϕ× ψ ∈ Ar (Z). We have then

[u× v, w] =
∑

z∈Er(Z)

(u× v)z wz

=
∑

z∈Er(Z)

(−1)L(z) uxvywz (x, y are projections of z)

=
∑

x∈Ep(X)

∑

y∈Eq(Y )

∑

z∈Πx,y

(−1)L(z) uxvywz. (4.23)

By definition of cross product, we have

wz = (−1)L(z) ϕxψy,

where x and y are the projections of z. In (4.23) we have x ∈ Ep (X) and y ∈ Eq (Y ). Therefore,
if p′ 6= p then ϕx = 0, wz = 0 and the sum in (4.23) vanishes. In this case, the both sides of
(4.22) are equal to zero again.

In the main case p′ = p and, hence, q′ = q, we obtain

[u× v, ϕ× ψ] =
∑

x∈E∗(X)

∑

y∈E∗(Y )

∑

z∈Πx,y

(−1)L(z) uxvy (−1)L(z) ϕxψy

=
∑

x∈E∗(X)

∑

y∈E∗(Y )

|Πx,y|u
xϕxvyψy

=
(
p+q

p

)
[u, ϕ] [v, ψ]

where we have used |Πx,y| =
(
p+q

p

)
.

5 ∂-Invariant elements on abstract products

The main part of the proof of Theorems 3.3 and 4.7 is contained in Theorem 5.1 below. This
theorem will be stated in terms of an abstract chain complex. Fix some integer f and let
{Rp}p≥f be a sequence of finite dimensional K-linear spaces, that together with a boundary
operator ∂ : Rp → Rp−1 forms a chain complex

0← Rf ← Rf+1 ← ...← Rp−1 ← Rp ← ...
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Fix a basis {ex} in Rp where the index x varies in a finite set Rp. For any u ∈ Rp we have
then a unique expansion u =

∑
x∈Rp

uxex where ux ∈ K. We extend the notation ux to any
x ∈ R∗ =

⋃
p≥f Rp by setting ux = 0 if x ∈ Rq with q 6= p. Define in R∗ =

⋃
p≥f Rp a K-scalar

product by
[u, v] =

∑

x∈R∗

uxvx.

Fix a subset Ep of Rp and denote by Ap the subspace of Rp spanned by {ex} with x ∈ Ep.
The elements of A∗ =

⋃
p≥f Ap are called allowed. Define also

Np = span {ex : x ∈ Rp \ Ep}

so that Rp = Ap ⊕Np. The elements of N∗ are called non-allowed.
Define for any p ≥ f a subspace Ωp of Ap by

Ωp = {u ∈ Ap : ∂u ∈ Ap−1} .

Obviously, we have ∂Ωp ⊂ Ωp−1 so that {Ωp}p≥f is a chain complex. The elements of Ωp are
called ∂-invariant.

Of course, the above definitions represent abstract version of the construction of ∂-invariant
paths. If we start with a digraph G then Rp is the set of regular elementary p-paths on G and
Ep – the set of allowed elementary p-paths. The value of f is a flag that distinguishes the full
chain complex (2.13) from the truncated one (2.14). Therefore, f = −1 in Theorem 3.3 and
f = 0 in Theorem 4.7.

Assume now that we have three sets of the structure {R∗,A∗, Ω∗}, which we will distinguish
by adding to these notations (X) , (Y ) , (Z) . Of course, in application X,Y, Z will be digraphs
where Z = X ∗Y or Z = X�Y , but abstractly X,Y, Z are nothing else but indices to distinguish
the three structures. This convention makes the notation in the abstract setting identical to
those for the digraph setting. Therefore, the reader who is interested only in digraphs may safely
assume that X,Y, Z are digraphs.

Assume that there exists a K-bilinear operation

u ∈ R∗ (X) , v ∈ R∗ (Y ) 7→ u ∙ v ∈ R∗ (Z)

with the following properties (everywhere p, q ≥ f).

1. If u ∈ Rp (X) and v ∈ Rq (Y ) then u ∙ v ∈ Rr (Z) with r = p + q − f .

2. If u ∈ A∗ (X) and v ∈ A∗ (Y ) then u ∙ v ∈ A∗ (Z) .

3. If u ∈ A∗ (X) and v ∈ N∗ (Y ) then u ∙ v ∈ N∗ (Z); the same is true if u ∈ N∗ (X) and
v ∈ A∗ (Y ) .

4. The sequence {ex ∙ ey}x∈E∗(X),y∈E∗(Y ) is linearly independent in A∗ (Z) .

5. If u ∈ Rp (X) and v ∈ Rq (Y ) then

∂ (u ∙ v) = α∂u ∙ v + βu ∙ ∂v, (5.1)

where α and β are non-zero scalars depending on p, q. In the case p = f we understand
∂u ∙ v as zero, and the same convention applies to u ∙ ∂v in the case q = f .
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6. If u ∈ Ap (X) , ϕ ∈ Ap′ (X) , v ∈ Aq (Y ) , ψ ∈ Aq′ (Y ) then

[u ∙ v, ϕ ∙ ψ] = γ [u, ϕ] [v, ψ] , (5.2)

where γ is a scalar depending on p, p′, q, q′.

7. For any w ∈ Ω∗ (Z) there is a representation

w =
∑

x∈E∗(X), y∈E∗(Y )

cxyex ∙ ey (5.3)

where cxy ∈ K (cxy are unique by 4).

Note that for the both operations of join (with f = −1) and cross product (with f = 0) all
the above properties 1-7 are satisfied as they were proved in the previous sections:

- for join: in Lemma 2.4, Proposition 3.2, Lemmas 3.9, 3.10;

- for cross product: in Propositions 4.4, 4.6, Lemmas 4.11, 4.12, 4.13.

The next theorem is our main technical result.

Theorem 5.1 Under the above hypotheses, any element w ∈ Ω∗ (Z) admits a representation in
the form

w =
k∑

i=1

ui ∙ vi (5.4)

for some finite k, where ui ∈ Ω∗ (X) and vi ∈ Ω∗ (Y ).

For the proof we need some lemmas.

Lemma 5.2 If u ∈ Ω∗ (X) and v ∈ Ω∗ (Y ) then u ∙ v ∈ Ω∗ (Z) .

Proof. Indeed, we know by hypothesis 2 that u ∙ v ∈ A∗ (Z). Since ∂u and ∂v are allowed,
we see that the right hand side of (5.1) is allowed, whence ∂ (u ∙ v) ∈ A∗ (Z) and, hence, u ∙ v ∈
Ω∗ (Z) .

Lemma 5.3 Any w ∈ Ω∗ (Z) admits a representation

w =
∑

y∈E∗(Y )

uy ∙ ey, (5.5)

where uy ∈ Ω∗ (X). Similarly, there is a representation

w =
∑

x∈E∗(X)

ex ∙ v
x,

where vx ∈ Ω∗ (Y ) .
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Proof. It follows from (5.3) that

w =
∑

y∈E∗(Y )

uy ∙ ey, (5.6)

where
uy =

∑

x∈E∗(X)

cxyex ∈ A∗ (X) .

It is obvious that uy are uniquely determined as so are the coefficients cxy. Let us show that, in
fact, uy ∈ Ω∗ (X) . Since the operator ∂ : R∗ (Y )→ R∗ (Y ) is linear, for any y ∈ R∗ (Y ) there is
an expansion

∂ey =
∑

y′∈R∗(Y )

δy′

y ey′ ,

where δy′

y ∈ K. Using (5.6) and by the product rule (5.1) we obtain (here αy, βy are scalars):

∂w =
∑

y∈E∗(Y )

(αy∂u y ∙ ey + β yu
y ∙ ∂e y)

=
∑

y∈E∗(Y )

αy∂u y ∙ ey +
∑

y∈E∗(Y )

∑

y′∈R∗(Y )

βyδ
y′

y u y ∙ ey′

=
∑

y∈E∗(Y )

αy∂u y ∙ ey +
∑

y∈R∗(Y )

∑

y′∈E∗(Y )

βy′δ y
y′u

y′
∙ ey

=
∑

y∈E∗(Y )



αy∂u y +
∑

y′∈E∗(Y )

βy′δ y
y′u

y′



 ∙ ey (5.7)

+
∑

y∈R∗(Y )\E∗(Y )




∑

y′∈E∗(Y )

βy′δ y
y′u

y′



 ∙ ey. (5.8)

Note that the whole term in (5.7) belongs to A∗ (Z) by hypothesis 2, while (5.8) consists of
products of elements of A∗ (X) and N∗ (Y ), which by hypothesis 3 lie in N∗ (Z). Since ∂w ∈
A∗ (Z), it follows that the whole term (5.8) vanishes. On the other hand, since ∂w ∈ Ω∗ (Z), we
have a representation

∂w =
∑

y∈E∗(Y )

ũy ∙ ey ,

where ũy ∈ A∗ (X). Comparison with (5.7) yields

ũy = αy∂u y +
∑

y′∈E∗(Y )

βy′δ y
y′u

y′
.

Since uy′
∈ A∗ (X), it follows that ∂uy ∈ A∗ (X), which proves that uy ∈ Ω∗ (X).

The second claim is proved similarly.
If u, v ∈ Ap and [u, v] = 0 then we write u⊥v. More generally, we write u⊥V where V is a

subspace of Ap if u⊥v for all v ∈ V .

Lemma 5.4 Fix p, q ≥ f and set r = p+q−f . If u ∈ Ap (X) and u⊥Ωp (X) then (u ∙ v)⊥Ωr (Z)
for all v ∈ Aq (Y ). Similarly, if v ∈ Aq (Y ) and v⊥Ωq (Y ) then (u ∙ v)⊥Ωr (Z) for any u ∈
Ap (X).
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Proof. To prove the first claim, we need to show that, for any w ∈ Ωr (Z),

[u ∙ v, w] = 0. (5.9)

By Lemma 5.3, w is a sum of the terms ϕ ∙ ψ where ϕ ∈ Ω∗ (X) and ψ ∈ A∗ (Y ), so that it
suffices to prove (5.9) for w = ϕ ∙ ψ. Observe that [u, ϕ] = 0. Indeed, if ϕ ∈ Ωp (X) then this
follows from u⊥Ωp (X). If ϕ ∈ Ωp′ (X) with p′ 6= p then [u, ϕ] = 0 holds trivially. Finally, we
conclude [u ∙ v, ϕ ∙ ψ] = 0 by (5.2). The second claim is proved similarly.

Proof of Theorem 5.1. Given two subspaces U ⊂ Ap (X) and V ⊂ Aq (Y ), denote by
U ∙V the subspace of Ap+q−f (Z) that is spanned by all the products u ∙v with u ∈ U and v ∈ V .
For any r ≥ f set

Ω̃r (Z) =
∑

p+q−f=r

Ωp (X) ∙ Ωq (Y ) , (5.10)

that is, Ω̃r (Z) is the subspace of Ar (Z) that is spanned by all the elements of the form u ∙ v
where u ∈ Ωp (X) and v ∈ Ωq (Y ) with some p, q such that p + q − f = r. By Lemma 5.2 we
have u ∙ v ∈ Ωr (Z) for all such u, v, whence it follows that

Ω̃r (Z) ⊂ Ωr (Z) .

The existence of the representation (5.4) is equivalent to the opposite inclusion, that is, to the
identity of the two spaces. For that, it suffices to prove that

dimΩr (Z) ≤ dim Ω̃r (Z) . (5.11)

Consider also the space
Ãr (Z) =

∑

p+q−f=r

Ap (X) ∙ Aq (Y ) . (5.12)

By the properties of the operation “∙” we have

Ãr (Z) ⊂ Ar (Z) .

By (5.3) any element from Ωr (Z) is a linear combination of ex ∙ ey with allowed x, y, which
implies

Ωr (Z) ⊂ Ãr (Z) . (5.13)

If Ωp (X) = Ap (X) and Ωq (Y ) = Aq (Y ) for all p, q ≥ f then we obtain from (5.10) and (5.12)
that Ω̃r (Z) = Ãr (Z). Clearly, (5.13) implies Ωr (Z) ⊂ Ω̃r (Z), which finishes the proof in this
case. However, the main difficulty in the present proof lies in the fact that in general Ωp $ Ap.

In the general case consider the spaces:

• Ω⊥
p (X) – the orthogonal complement of Ωp (X) in Ap (X), that is,

Ω⊥
p (X) = {u ∈ Ap (X) : [u, v] = 0 for all v ∈ Ωp (X)} . (5.14)

• Ω⊥
q (Y ) – the orthogonal complement of Ωq (Y ) in Aq (Y ).

• Ω⊥
r (Z) – the orthogonal complement of Ωr (Z) in Ãr (Z) .
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Lemma 5.4 implies that

u ∈ Ω⊥
p (X) , v ∈ Aq (Y ) ⇒ u ∙ v ∈ Ω⊥

r (Z) ,

u ∈ Ap (X) , v ∈ Ω⊥
q (Y ) ⇒ u ∙ v ∈ Ω⊥

r (Z) ,
(5.15)

where r = p + q − f . Indeed, we have by (5.12) u ∙ v ∈ Ãr (Z), whereas by Lemma 5.4
(u ∙ v)⊥Ωr (Z).

Consider first a simple case when the field K is R. In this case [∙, ∙] is a proper inner product
in Ap and Ω⊥

p is a proper orthogonal complement of Ωp in Ap; in particular, we have1

Ap (X) = Ωp (X)⊕ Ω⊥
p (X) (5.16)

(cf. Fig. 12)

 
 
 
 
 
 
 
 
 
 
 
 
 
  

p(X) 
 

p(X) 

p(X) 

q(Y) 
 

q(Y) 

q(Y) r(Z) 
~ 

Figure 12: Decomposition of the spaces Ap (X) and Aq (Y )

For each u ∈ Ap (X) consider a decomposition

u = uΩ + u⊥ (5.17)

where uΩ ∈ Ωp (X) and u⊥ ∈ Ω⊥
p (X), and a similar decomposition v = vΩ + v⊥ for v ∈ Aq (Y ) .

Then we have
u ∙ v = uΩ ∙ vΩ + uΩ ∙ v⊥ + u⊥ ∙ vΩ + u⊥ ∙ v⊥.

Here we have uΩ ∙ vΩ ∈ Ω̃r (Z), while by (5.15) all other terms in the right hand side belong to
Ω⊥

r (Z). It follows that
u ∙ v ∈ Ω̃r (Z) + Ω⊥

r (Z) .

Since Ãr (Z) is spanned by the products u ∙ v where u, v are allowed, we obtain that

Ãr (Z) ⊂ Ω̃r (Z) + Ω⊥
r (Z) .

Comparing with the decomposition

Ãr (Z) = Ωr (Z)⊕ Ω⊥
r (Z) ,

we obtain (5.11).

1For a general field K, the decomposition (5.16) is not true, because Ωp and Ω⊥
p may have a non-trivial

intersection.
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Consider now the most general case of an arbitrary field K. Let us introduce the following
notation:

ap = dimAp (X) , aq = dimAq (Y ) , ar = dim Ãr (Z) ,

ωp = dimΩp (X) , ωq = dimΩq (Y ) , ωr = dimΩr (Z) ,

and observe that, by the rank-nullity theorem,

dimΩ⊥
p (X) = ap − ωp, dimΩ⊥

q (Y ) = aq − ωq, dimΩ⊥
r (Z) = ar − ωr (5.18)

(cf. Lemma 6.1 below). Let us also observe that

ar =
∑

p+q−f=r

apaq. (5.19)

Indeed, by (5.12) Ãr (Z) is spanned by all the products ex ∙ ey, where x ∈ Ep (X), y ∈ Eq (Y )
and p+ q− f = r. The number of such products ex ∙ ey is equal to the right hand side of (5.19),
so that the identity (5.19) follows from the linear independence of the family {ex ∙ ey}. The
latter implies also

dim (Ap (X) ∙ Aq (Y )) = apaq, (5.20)

whence it follows that the sum in (5.12) is direct, that is,

Ãr (Z) =
⊕

p+q−f=r

(Ap (X) ∙ Aq (Y )) . (5.21)

Let us show that, for arbitrary subspaces U ⊂ Ap (X) and V ⊂ Aq (Y ),

dim (U ∙ V ) = dim U dim V. (5.22)

Indeed, let u1, u2, ..uk be a basis in U and v1, ...vl be a basis in V . Then U ∙ V is spanned by all
the products ui ∙ vj , so that

dim (U ∙ V ) ≤ kl. (5.23)

Let us complement the basis {ui} to a basis in Ap (X) by adding additional paths u′
1, ..., u

′
k′ ,

and similarly complement {vj} to a basis in Aq (Y ) by adding v′1, ..., v
′
l′ . Set U ′ = span {u′

i} and
V ′ = span{v′j}, so that

Ap (X) = U ⊕ U ′ and Aq (Y ) = V ⊕ V ′. (5.24)

Then

Ap (X) ∙ Aq (Y ) =
(
U + U ′) ∙

(
V + V ′) = U ∙ V + U ∙ V ′ + U ′ ∙ V + U ′ ∙ V ′, (5.25)

whence by (5.20) and (5.23)

apaq ≤ dim (U ∙ V ) + dim
(
U ∙ V ′)+ dim

(
U ′ ∙ V

)
+ dim

(
U ′ ∙ V ′) (5.26)

≤ kl + kl′ + k′l + k′l′.

However, the right hand side here is equal to (k + k′) (l + l′) = apaq, which implies that all the
inequalities in (5.26) are equalities, in particular, dim (U ∙ V ) = kl, which proves (5.22).

It follows from this argument (or directly from (5.22)) that the sum at the right hand side
of (5.25) is direct and that

U ∙ Aq (Y ) = U ∙
(
V ⊕ V ′) = (U ∙ V )⊕

(
U ∙ V ′)
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and
Ap (X) ∙ V =

(
U ⊕ U ′) ∙ V = (U ∙ V )⊕

(
U ′ ∙ V

)
.

Consequently, we obtain
(U ∙ Aq (Y )) ∩ (Ap (X) ∙ V ) = U ∙ V. (5.27)

By (5.15) we have
Ω⊥

p (X) ∙ Aq (Y ) ⊂ Ω⊥
r (Z)

and
Ap (X) ∙ Ω⊥

q (Y ) ⊂ Ω⊥
r (Z) ,

whence it follows that
∑

p+q−f=r

[(
Ω⊥

p (X) ∙ Aq (Y )
)

+
(
Ap (X) ∙ Ω⊥

q (Y )
)]
⊂ Ω⊥

r (Z) . (5.28)

Note that the space in the square brackets under the summation sign is a subspace of Ap (X) ∙
Aq (Y ). It follows from (5.21) that the sum in (5.28) is direct, hence

∑

p+q−f=r

dim
[(

Ω⊥
p (X) ∙ Aq (Y )

)
+
(
Ap (X) ∙ Ω⊥

q (Y )
)]
≤ dimΩ⊥

r (Z) . (5.29)

The intersection of Ω⊥
p (X) ∙ Aq (Y ) and Ap (X) ∙Ω⊥

q (Y ) is Ω⊥
p (X) ∙Ω⊥

q (Y ) (cf. (5.27)), which
implies that

dim
[(

Ω⊥
p (X) ∙ Aq (Y )

)
+
(
Ap (X) ∙ Ω⊥

q (Y )
)]

= dim
(
Ω⊥

p (X) ∙ Aq (Y )
)

+ dim
(
Ap (X) ∙ Ω⊥

q (Y )
)

− dim
(
Ω⊥

p (X) ∙ Ω⊥
q (Y )

)

= (ap − ωp) aq + ap (aq − ωq)− (ap − ωp) (aq − ωq)

= apaq − ωpωq.

Hence, (5.29) yields ∑

p+q−f=r

(apaq − ωpωq) ≤ ar − ωr.

Finally, we are left to observe that, by (5.10), (5.21) and (5.22),

dim Ω̃r (Z) =
∑

p+q−f=r

ωpωq,

whence (5.11) follows.

6 Proof of Theorems 3.3 and 4.7

In the next proof Ω∗ denotes the truncated chain complex (2.14), that is, Ω∗ = {Ωp}p≥0 .
Proof of Theorem 4.7. By definition, the chain complex Ω∗ (X)⊗Ω∗ (Y ) consists of the

spaces
Ωr (X,Y ) =

⊕

{p,q≥0:p+q=r}

(Ωp (X)⊗ Ωq (Y ))
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for all r ≥ 0 and the boundary operator ∂ : Ωr (X,Y )→ Ωr−1 (X,Y ) is given by

∂ (u⊗ v) = (∂u)⊗ v + (−1)p u⊗ v (6.1)

for all u ∈ Ωp (X) and v ∈ Ωq (Y ) (set also Ω−1 (X,Y ) = {0}).
Denoting by H∗ (X,Y ) the homologies of Ω∗ (X,Y ), we have by the abstract Künneth the-

orem that
H∗ (X,Y ) ∼= H∗ (X)⊗H∗ (Y ) .

Therefore, all the statements of Theorem 4.7 will be proved if we show the isomorphism of the
chain complexes

Ω∗ (X,Y ) ∼= Ω∗ (Z) .

Consider for any r ≥ 0 the space

Ar (X,Y ) =
⊕

{p,q≥0:p+q=r}

(Ap (X)⊗Aq (Y ))

and define a linear map
Φ : Ar (X,Y )→ Ar (Z) ,

by
Φ (ex ⊗ ey) = ex × ey

for all x ∈ Ep (X) and y ∈ Eq (Y ) with p + q = r, and then extend Φ to full Ar (X,Y ) by
linearity. Note that ex × ey ∈ Ar (Z) by Proposition 4.6. By Lemma 4.11 the family {ex × ey}
is linearly independent, which implies that the map Φ is injective.

For u ∈ Ωp (X) and v ∈ Ωq (Y ) we obtain by Proposition 4.6

Φ (u⊗ v) = u× v ∈ Ωr (Z) ,

which implies that the restriction of Φ to Ωr (X,Y ) is a monomorphism

Φ : Ωr (X,Y )→ Ωr (Z) . (6.2)

By Theorem 5.1, any w ∈ Ωr (Z) admits a representation

w =
∑

i

ui × vi,

where ui ∈ Ωp (X) and vi ∈ Ωq (Y ) with p + q = r. It follows that w = Φ(
∑

i ui ⊗ vi), that is,
the map (6.2) is surjective. Hence, Φ is isomorphism, which was to be proved.

It remains to observe that Φ commutes with ∂, which immediately follows from the identical
form of the product rules (6.1) and (4.3).

In the next proof Ω∗ denotes the full chain complex (2.13), that is, Ω∗ = {Ωp}p≥−1 . Recall

that Ω′
∗ =

{
Ω′

p

}
p≥0

where Ω′
p = Ωp−1.

Proof of Theorem 3.3. The chain complex Ω′
∗ (X)⊗ Ω∗ (Y ) consists of the spaces

Ωr (X,Y ) =
⊕

{p′≥0,q≥−1:p′+q=r}

(
Ω′

p′ (X)⊗ Ωq (Y )
)

=
⊕

{p,q≥−1:p+q=r−1}

(Ωp (X)⊗ Ωq (Y ))
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for all r ≥ −1, and the boundary operator ∂ : Ωr (X,Y )→ Ωr−1 (X,Y ) is given by

∂ (u⊗ v) = (∂u)⊗ v + (−1)p+1 u⊗ v (6.3)

for all u ∈ Ωp (X) = Ω′
p+1 (X) and v ∈ Ωq (Y ) (set also Ω−2 (X,Y ) = {0}). The isomorphism

(3.1) is equivalent to
Ω∗ (Z) ∼= Ω∗ (X,Y ) . (6.4)

Let us first show how (6.4) implies (3.2) and (3.3). Indeed, (6.4) and the Künneth theorem yield

H∗ (Ω∗ (Z)) ∼= H∗ (Ω∗ (X,Y )) ∼= H∗
(
Ω′
∗ (X)

)
⊗H∗ (Ω∗ (Y )) .

More explicitly this means that, for any r ≥ −1,

Hr (Ω∗ (Z)) ∼=
⊕

{p′≥0,q≥−1:p′+q=r}

(
Hp′

(
Ω′
∗ (X)

)
⊗Hq (Ω∗ (Y ))

)

=
⊕

{p,q≥−1:p+q=r−1}

(Hp (Ω∗ (X))⊗Hq (Ω∗ (Y ))) .

Since the homology group H−1 (Ω∗) is always trivial, the condition p, q ≥ −1 can be replaced
here by p, q ≥ 0. Finally, observing that Hp (Ω∗ (X)) = H̃p (X), Hq (Ω∗ (Y )) = H̃q (Y ) and
Hr (Ω∗ (Z)) = H̃r (Z) are the reduced homologies, we obtain (3.3).

Now we concentrate on the proof of (6.4). Consider for any r ≥ −1 the space

Ar (X,Y ) =
⊕

{p,q≥−1:p+q=r−1}

(Ap (X)⊗Aq (Y ))

and define a linear map
Φ : Ar (X,Y )→ Ar (Z)

by
Φ (ex ⊗ ey) = exy, (6.5)

for all x ∈ Ep (X) and y ∈ Eq (Y ) with p + q = r − 1. Note that exy is the join of ex and ey on
Z = X ∗Z. Since the family {exy} of paths is linearly independent, we see that Φ is a injective.

For u ∈ Ωp (X) and v ∈ Ωq (Y ) we obtain by Proposition 3.2

Φ (u⊗ v) = uv ∈ Ωr (Z) ,

which implies that the restriction of Φ to Ωr (X,Y ) is a monomorphism

Φ : Ωr (X,Y )→ Ωr (Z) . (6.6)

By Theorem 5.1, each w ∈ Ωr (Z) admits a representation w =
∑

i uivi, where ui ∈ Ωp (X) and
vi ∈ Ωq (Y ) with p + q = r − 1. It follows that w = Φ(

∑
i ui ⊗ vi), that is, the map (6.6) is

surjective. Hence, Φ is isomorphism, which was to be proved.
It remains to observe that Φ commutes with ∂, which immediately follows from the identical

form of the product rules (6.3) and (2.7).
In conclusion, let us prove a statement justifying (5.18) for an arbitrary field K. The subtlety

is that this identity does not hold for arbitrary bilinear form [u, v] and requires an additional
condition that replaces the positive definiteness in the case of K = R.
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Lemma 6.1 Let A be a vector space over K of dimension n. Fix a basis {e1, ..., en} in A and
define on A a bilinear form [u, v] =

∑n
i=1 uivi, where u =

∑n
i=1 uiei and v =

∑n
i=1 viei are

arbitrary elements of A. Then, for any subspace Ω of A,

dimΩ⊥ = n− dimΩ,

where Ω⊥ = {v ∈ A : [u, v] = 0 ∀u ∈ Ω} .

Proof. Set dimΩ = k and fix a basis {u1, ..., uk} in Ω. Set uj =
∑n

i=1 uijei so that the
matrix (uij) has the rank k over K. The condition [u, v] = 0 for v =

∑n
i=1 viei amounts to k

linear equations
∑n

i=1 uijvi = 0 for n unknown vi. By the rank-nullity theorem, the dimension
of the space of solutions v of this linear system is equal to n− k, which was to be proved.
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