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1 Introduction

Let us consider a stationary Schrödinger equation in Rd,

∆u− uµ(x) = 0, (1.1)

and study the question if the equation (1.1) has a bounded non-vanishing global
solution in Rd. Here µ(x) ≥ 0 is either a measurable function or, more generally,
a measure of a certain class. Our aim is to characterize those µ which admit such
solutions.
Let us note that the Laplace operator can be replaced by a more general elliptic

or subelliptic operator as well as Rd can be replaced by a more general harmonic
space X. However, for the sake of Introduction, we restrict our attention to the
simplest setup and let X = Rd.
We start with description of admissible measures µ. We shall deal with the

following three classes of measures (in ascending order):

1. measures of Kato class (see exact definition in Section 2);

2. smooth Radon measures, i.e., Radon measures which do not charge polar sets;

3. smooth measures, i.e., measures which are countable sums of Radon measures,
not charging polar sets.

Respectively, the simplest examples of such measures are:

1. Lebesgue measure and any Radon measure with a locally bounded density
with respect to Lebesgue measure;

2. a Radon measure with a locally summable density with respect to Lebesgue
measure;

3. a measure with a measurable (possibly, infinite) density with respect to Lebesgue
measure.

The equation (1.1) is understood in the distribution sense. If µ is a smooth Radon
measure, then for any bounded measurable u, the product uµ is a distribution, and
the meaning of (1.1) is straightforward.. If µ is a smooth measure then we have to
assume in addition that u ∈ L1loc(µ) to ensure that uµ is a distribution.
The following notion is our main tool:

Definition 1.1 A measure µ on X is called big if one of the following statements
is true (and non-big1 otherwise):

1We reserve the natural antonym “small” for another notion.
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(1) µ is a Kato measure and equation (1.1) has no bounded continuous solution u
in X except for the constant zero;

(2) µ is a smooth Radon measure and equation (1.1) has no bounded finely con-
tinuous2 solution u in X except the constant zero;

(3) µ is a smooth measure and the inequality

∆u ≥ uµ (1.2)

has no positive bounded finely continuous solution u ∈ L1loc(µ) on X except the
constant zero.

Remarks. 1. As a matter of fact, each of these definitions contains the previous
one as a particular case (see below Propositions 2.9 and 2.6). Let us emphasize the
differences between (1)-(3):

• (2) differs from (1) by the requirement of fine continuity of the solution;

• (3) differs from (2) by the assumption of positivity of u and by considering
inequality (1.2) instead of equation (1.1) (note that in definition (2), we have
u ∈ L1loc(µ) automatically since u is bounded and the value of µ on any bounded
Borel set is finite).

2. It is natural to consider only finely continuous solutions of (1.1). Suppose
that µ ∈ L1loc(X) and let u ∈ L∞loc(X) satisfy (1.1). Fix a ball B with closure in
X and let q denote the difference of potentials generated by the density uµ on B.
Then ∆(u + q) = ∆u− uµ = 0 on B, hence there exists a harmonic function h on
B such that u + q = h a.e. on B. Then w := h − q is finely continuous on B and
∆w − wµ = (u− w)µ = 0 (in the sense of distributions). Using the fact that non-
empty finely open sets have strictly positive Lebesgue measure we obtain: There
exists a unique finely continuous function ũ on X such that ũ = u a.e. Moreover,
ũ is a solution of (1.1). (For a stronger statement see [13, Theorem 5.4].) If, on
the contrary, µ 6= 0 is supported by a Borel set A having Lebesgue measure zero,
then f := 1U\A satisfies ∆f = 0 = fµ, so f trivially is a bounded solution of (1.1),
a solution, which is of little interest. However, the only finely continuous function
being equal to f a.e. is the constant 1, which is no solution of (1.1).

By default, all measures considered are smooth. The term “big” with respect to
a measure is justified by the following property which will be proved among others
in the main body of the paper:

If µ and ν are measures and µ ≥ cν for some constant c > 0 then
bigness of ν implies bigness of µ.

2We recall that open sets are finely open, superharmonic functions on open sets are finely
continuous, and that the fine topology is the coarsest topology having these properties. Note that
superharmonic functions are lower semi-continuous by definition.
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Our main purpose is to provide criteria for bigness. In Rd, d ≤ 2, any µ 6= 0
is big. Indeed, if u ∈ L1loc(µ) is positive and bounded then ∆u ≥ uµ ≥ 0 which
together with fine continuity of u implies that u is subharmonic (see [12]). Since
any bounded subharmonic function on Rd, d ≤ 2, is constant then u ≡ const. Since
uµ ≤ ∆u = 0 then µ 6= 0 implies u ≡ 0.
So, let us assume now that d ≥ 3. One of our principal results is a character-

ization of a non-big measure in terms of splitting it into two parts each of them
being non-big for different reasons. Before we can state it, we describe the two basic
classes of non-big measures. Using the Green function G of the Laplace operator,

G(x, y) =
cd

|x− y|d−2 ,

we define the function Gµ by

Gµ :=

Z
X

G(·, y)dµ(y). (1.3)

Our first claim is:

(i) If Gµ 6≡ ∞, then µ is non-big.

To state the second case of non-bigness, we need another definition.

Definition 1.2 We say that a set A ⊂ X is thick if for any positive superharmonic
function s on X, s ≥ 1 on A implies that s ≥ 1 on X.

It is easy to see that if A ⊂ B and A is thick then B is thick as well. Another
useful property: If A is thick thenA\K is thick as well for any compactK. Thickness
has a very natural probabilistic characterization: The set A is thick if and only if
Brownian motion starting from an arbitrary point, hits A with probability 1 (see
e.g. [4, p. 264]), i.e., if and only if it is recurrent in the sense of [3].
We say that µ is supported by a Borel set A if µ(X\A) = 0. Our second claim

is:

(ii) If µ is supported by a non-thick set then µ is non-big.

It turns out that the two cases of non-bigness of measure µ - finiteness of Gµ

and being supported by a non-thick set - and their combination, exhaust all non-big
measures as stated by the following main theorem.

Theorem 1.1 (Criterion of non-bigness) A smooth measure µ on X is non-big if
and only if it decomposes into a sum µ = µ1+ µ2 of two smooth measures such that
µ1 is supported by a non-thick set A and G

µ2 6≡ ∞.

The following particular cases were known before:

1. The first author [8] proved that if µ is a continuous function on a Riemannian
manifold then Gµ <∞ implies that µ is non-big.
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2. Arendt, Batty and Benilan [2] proved that if µ is a locally integrable function
in Rd, d ≥ 3, and µ = µ1 + µ2 where µ1 is supported by a compact and
Gµ2 <∞ then µ is non-big (and that the converse holds if µ is radial).

3. Batty [3] gave the characterization of Theorem 1.1 for the case of a measurable
function µ ≥ 0 on Rd by means of probabilistic methods, i.e., using Brownian
motion and Feynman-Kac formula (see Remark after Proposition 2.9 at the
end of Section 2.2).

Let us mention for comparison that our proof is entirely analytic and uses only
very basic properties such as the minimum principle for superharmonic functions
and the solvability of the Dirichlet problem.
Theorem 1.1 may provide an efficient way of verifying that a given measure is

non-big. On the other hand, it seems to be more difficult to use it for proving that
a measure is big. We state below a sufficient condition for bigness in the spirit of
the Wiener criterion. Let Bk denote a ball of radius 2

k centred at the origin x0, and
Ak := Bk\Bk−1.

Theorem 1.2 Given a smooth measure µ on Rd, let us denote for any k = 1, 2, ...

sk(x) :=

Z
Ak

G(x, y)dµ(y) (1.4)

and
αk := sup{sk(x) : x ∈ Ak}.

If
∞X
k=1

sk(x0)

1 + αk
=∞ (1.5)

then µ is big.

Although condition (1.5) is not necessary for bigness of µ, it is not very far from
that as is shown by the next statement.

Theorem 1.3 Let a smooth measure µ on X be supported by a set A ⊂ X and let

βk := inf{sk(x) : x ∈ Ak ∩A}. (1.6)

where sk(x) is defined by (1.4). If

∞X
k=1

sk(x0)

1 + βk
<∞

then µ is non-big.
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Figure 1 Sets Ak, Bk and A

Let us remark that Theorems 1.1 and 1.3 remain true in a very general setting
of harmonic spaces whereas Theorem 1.2 relies on a uniform Harnack inequality
which imposes a rather strong restriction on the geometry of the space X. We tried
to underline this by denoting the underlying space in Theorems 1.1 and 1.3 by X
rather than Rd.
The structure of the paper is the following. In the next three sections, we dis-

cuss the problem on Riemannian manifolds. Restricting our attention first to this
case allows us to avoid many technical difficulties which appear in the general case
of harmonic spaces and to give (hopefully) clear ideas of the proofs. We introduce
Liouville functions associated with Kato measures and, more generally, smooth mea-
sures. Studying the correspondence between measures and Liouville functions we
obtain simple proofs of Theorems 1.1, 1.2, 1.3 for the case when X is a Rieman-
nian manifold. In Section 5 we develop Wiener type criteria. In Section 6, we
consider various examples - applications of the above theorems, and some counter-
examples to show to what extent the hypotheses of Theorems 1.2 and 1.3 are sharp.
Section 7 starts with a brief introduction to the theory of perturbation of harmonic
spaces which is an abstract counterpart of the Schrödinger equation. It contains also
further examples of differential operators to which our results are applicable. More-
over, we explicitly write down the generalization of the results previously obtained
for Riemannian manifolds. Instead of being bounded the functions we consider are
supposed to be bounded by multiples of an arbitrary positive harmonic function h
(which is of considerable interest also in the special case of a Riemannian mani-
fold). In Section 8 we discuss relations to the minimality of the harmonic function
h. Appendix contains the proof of Proposition 2.1 and the relation between smooth
measures and Kato measures.
The work was done when the first author enjoyed hospitality of the Bielefeld

University. He gratefully acknowledges support of DAAD (Germany) and EPSRC
(UK).
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2 Schrödinger equations on Riemannian manifolds

Let X be a (connected) Riemannian manifold and let ∆ denote the Laplace operator
of the Riemannian metric of X. A reader who is not familiar with Riemannian
geometry, may safely assume that X is Rd or an arbitrary domain in Rd. The
general case when X is a harmonic space, is more involved and will be considered
in the next sections.
Let Or denote the set of all regular3 precompact regions in X, and for every

B ∈ Or let us introduce the following notation:

1. Cb(B) (Bb(B) resp.) - the set of all bounded continuous (Borel resp.) functions
on B;

2. HBf - the (Perron) solution to the Dirichlet problem in B ∈ Or,½
∆u = 0,
u|∂B = f,

for continuous real functions f on ∂B (for later generalizations, it will be
convenient to interpret this as HBf being a harmonic function on B such that
limx→zHBf(x) = f(z) for every z ∈ ∂B),

3. GB(x, y) - the Green function of the Laplace operator in B, i.e., for any y ∈ B,½
∆GB(·, y) = −δy,
GB(·, y)|∂B = 0 .

4. GµB - (µ being a measure on X) defined by

GµB :=

Z
B

GB(·, y) dµ(y).

We define a function G on X ×X by

G(x, y) := sup
B⊂⊂X

GB(x, y) = lim
B↑X

GB(x, y) ,

where B ↑ X means an exhaustion of X by an increasing sequence in Or.
Let us note that the function G(x, y) may happen to be infinite for all x, y or it is

finite for all x 6= y. The manifold X is called parabolic if G ≡ ∞ and non-parabolic
(or a Green space) otherwise and then G is a global Green function. For example,
Rd is parabolic if and only if d ≤ 2 (see [22] for potential theory of Riemannian
manifolds).
A countable sum of Radon measures µ ≥ 0 on X is called smooth if µ(P ) = 0

for every polar set P in X. For example, Lebesgue measure λd on Rd is smooth,
and any measure having a density (finite or not) with respect to a smooth measure
is a smooth measure.

3Alternatively, we may assume that Or is the set of all precompact regions with smooth bound-
ary.
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Kato measures are particularly nice smooth Radon measures: A measure µ ≥ 0
onX is called a (local) Kato measure if for any B ∈ Or the functionGµB is continuous
and real on B.
Clearly, sums and positive multiples of Kato measures are Kato measures. More-

over, any measure ν ≥ 0 majorized by a Kato measure µ is a Kato measure: It
suffices to note that, for every B ∈ Or, we have the equality

Gν
B +G

µ−ν
B = GµB,

and the functions Gν
B and G

µ−ν
B are lower semi-continuous4. This implies that Gν

B

is continuous if GµB is continuous.
In particular, a measure µ with a locally bounded density with respect to the

Riemannian measure λ, is a Kato measure. Indeed, the Riemannian measure is Kato,
which follows from local integrability of the Green function. Therefore, any measure
µ ≤ constλ is Kato as well. Finally, due to the local nature of the definition of Kato
measure, it suffices to have µ ≤ constλ on any compact, with const depending on
the compact, which is equivalent to µ having a locally bounded density with respect
to λ.
It is not difficult to see that a measure µ ≥ 0 is smooth if and only if it is the

limit of an increasing sequence of Kato measures or, equivalently, if and only if it
has a density with respect to a Kato measure (see Proposition 9.1 in the Appendix).
Let us mention that µ being a Kato measure is not only a sufficient condition

(see [1], [7], [11], and Proposition 2.9 below), but also a necessary condition for
continuity of finely continuous bounded solutions of (1.1) (see [17], [20]).
We first show that Theorem 1.1 is trivially true if X is parabolic. Since parabol-

icity is equivalent to the fact that any bounded subharmonic function on X is nec-
essarily constant (see [22]) then we can refer to the argument from Introduction,
which shows that any non-big measure on a parabolic manifold is identically zero.
On the other hand, any non-polar set A is thick on a parabolic manifold. Indeed,

the only positive superharmonic functions on a parabolic manifold are constants.
Hence, Definition 1.2 is trivially satisfied: If s ≥ 1 q.e. on A then s ≥ 1 on
X. Therefore, the property “µ1 is supported by a non-thick set” means that µ1 is
supported by a polar set which is equivalent to µ1 = 0. The property “G

µ2 6≡ ∞” is
equivalent to µ2 = 0 since G ≡ ∞.
We conclude that the statement of Theorem 1.1 holds because all measures

involved are zero.
So we may turn to the main case when X is a Green space. We will constantly

use the Green function G(x, y) and the following integral operators defined by

Kµf := Gfµ =

Z
B

G(·, y)f(y)dµ(y)

and the localized version

Kµ
Bf := G

fµ
B =

Z
B

GB(·, y)f(y)dµ(y) (B ∈ Or).

4Lower semi-continuity of Gµ for any measure µ follows from Fatou’s lemma.
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If µ is a Kato measure, B ∈ Or, and f ∈ Bb(B), then

Kµ
Bf = G

f+µ
B −Gf−µB ∈ Cb(B)

since f+µ and f−µ are Kato measures. Moreover, for every B0 ∈ Or containing the
closure of B,

GB(·, y) = GB0(·, y)−HBGB0(·, y) (2.1)

and hence
Kµ
Bf = K

µ
B0f −HBKµ

B0f. (2.2)

This shows that Kµ
Bf is continuous up to the boundary ∂B and (Kµ

Bf)|∂B = 0.
By definition of G and using (2.1), we obtain that

GµB +

Z
B

HBG(·, y) dµ(y) =
Z
B

G(·, y) dµ(y) = G1Bµ (2.3)

where x 7→ R
B
HBG(·, y) dµ(y) is harmonic on B for any Radon measure µ on X.

Thus a Radon measure µ ≥ 0 on X is a Kato measure if and only if, given any
B ∈ Or, the function G1Bµ is continuous and real on B (and hence on X).
In the following proposition, we have collected the technical tools which facilitate

considerably working with the Schrödinger equation. The main purpose of them is
to construct the solution to the Dirichlet problem for the Schrödinger equation, and
to provide the identity (2.5) which will be constantly used.

Proposition 2.1 Let µ be a Kato measure on X and B ∈ Or. Then the following
holds:

(1) Kµ
B is a compact operator on Bb(B) (with respect to uniform convergence).

(2) If t is a positive superharmonic function on B and s ∈ Bb(B) such that s +
Kµ
Bs+ t is a positive superharmonic function on B, then s+ t ≥ 0.

(3) The operator I +Kµ
B is invertible on Bb(B).

(4) For every f ∈ C(∂B), the function

Hµ
Bf := (I +K

µ
B)
−1HBf (2.4)

is the unique (Perron) solution to the Dirichlet problem½
∆u− uµ = 0,
u|∂B = f.

If f ≥ 0 then 0 ≤ Hµ
Bf ≤ HBf and, more generally, Hµ+ν

B f ≤ Hµ
Bf for every

Kato measure ν on X.

(5) The function u := Hµ
Bf satisfies the following identity in B:

u+Kµ
Bu = HBf . (2.5)

9



B

HB f
µ

HB f

Figure 2 HBf and H
µ
Bf

It is easy to see that a function u satisfying (2.5) is a solution of the Dirichlet
problem for ∆ − µ. Indeed, we have Kµ

Bu = GuµB and ∆GuµB = −uµ on B, hence
(2.5) implies that ∆u − uµ = ∆HBf = 0 on B. Moreover, Kµ

Bu|∂B = 0, hence
u|∂f = (HBf)|∂B = f . A detailed proof for Proposition 2.1 can be found in [7] and
[11] (except for the minor modification of an additional t in (2)). For convenience
of the reader, we reproduce the proof in the Appendix at the end of the paper. Of
course, the key identity (2.5) is just another form of (2.4).
The main technical tool for proving Theorem 1.1 is a so-called Liouville function

of a measure µ which will be denoted by Lµ and which is basically equal to the
maximal function v such that 0 ≤ v ≤ 1 and ∆v ≥ µv. A careful definition of
Lµ will be given in the following two subsections. Let us highlight the following
properties of Lµ which will be proved below among others and which are crucial for
Theorem 1.1:

• a 0 − 1 law: either Lµ ≡ 0 and µ is big or supLµ = 1 and µ is non-big
(Proposition 2.8 and Lemma 3.3);

• monotonicity of bigness: a positive multiple of a big measure is again big
(Lemma 3.2, Proposition 3.7), which is based on the inequality Lµ + Lν ≤
1 + Lµ+ν (Lemma 3.5);

• inequality of Corollary 2.7: if µ is supported by a set A then Lµ + bRA1 ≥ 1
where bRA1 is a regularized reduced function of A;

• inequality Lµ +Gµ ≥ 1 (Lemmas 2.2 and 2.4).

2.1 Liouville function for Kato measures

Given a Kato measure µ on our Riemannian manifold X, it is natural to construct
a global bounded solution to (1.1) which might serve as function deciding bigness of
µ by using the following procedure. Let us choose an exhaustion of X - a sequence

(Bk) in Or such that Bk ⊂ Bk+1 and
∞S
k=1

Bk = X. For example, in Rd it may be a

sequence of concentric balls with radii tending to ∞.

10



Let us denote by uk the solution inBk of the Dirichlet problem for the Schrödinger
equation with the boundary function 1 : uk := H

µ
Bk
1. Proposition 2.1 implies that

0 ≤ uk ≤ 1 and the sequence (uk) is decreasing:
uk+1|Bk = Hµ

Bk
uk+1 ≤ Hµ

Bk
1 = uk.

Therefore, there exists the limit:

Lµ(x) := lim
k→∞

uk(x) (x ∈ X). (2.6)

Bk +1Bk -1 Bk

H
µ

1Bk

1

H
µ

   1Bk+1
  L

µ

Figure 3 Liouville function Lµ as the limit of Hµ
Bk
1

Clearly, Lµ does not depend on the choice of the sequence (Bk). The function L
µ

will be called Liouville function of 1 with respect to µ.

Lemma 2.2 Let µ be a Kato measure. Then Lµ is a continuous subharmonic func-
tion on X, 0 ≤ Lµ ≤ 1. The function Lµ +KµLµ is harmonic and

Lµ +KµLµ ≤ 1 ≤ Lµ +Gµ.
In particular, Lµ is a solution of (1.1).

Proof. Take (Bk) and (uk) as above and let u = L
µ. Since each uk is subharmonic

on Bk, the function u is subharmonic on X, and of course 0 ≤ u ≤ 1. For every
k ∈ N,

1 = uk +K
µ
Bk
uk ≤ uk +GµBk .

Letting k tend to infinity and applying Fatou’s lemma we obtain that

u+Kµu ≤ 1 ≤ u+Gµ.
Now fix k ∈ N. By Proposition 2.1, for every m > k,

um +K
µ
Bk
um = um +K

µ
Bm
um −HBkKµ

Bm
um = 1−HBkKµ

Bm
um,

hence um +K
µ
Bk
um is harmonic on Bk. This implies that the infimum u +Kµ

Bk
u is

harmonic on Bk and u is continuous on Bk.
The sequence (u+Kµ

Bk
u)k∈N is increasing to u+Kµu which does not exceed 1.

Thus u+Kµu is harmonic (which shows again that u is subharmonic). In particular,
∆u− uµ = 0 (which of course follows as well directly from ∆uk − ukµ = 0 on Bk).
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Lemma 2.3 Let (µn) be an increasing sequence of Kato measures. Then the se-
quence (Lµn) is decreasing. If µ = supn µn is a Kato measure as well then L

µ =
infn L

µn.

Proof. The first statement follows from Proposition 2.1. Let (Bk) be a sequence
in Or exhausting X and fix k ∈ N.
Defining

uk,n = H
µn
Bk
1

we know by Proposition 2.1 that

1 = uk,n +K
µn
Bk
uk,n = uk,n +K

µ
Bk
uk,n −Kµ−µn

Bk
uk,n

for every n ∈ N and that the sequence (uk,n)n∈N is decreasing to a function uk.
Moreover,

0 ≤ Kµ−µn
Bk

uk,n ≤ Gµ−µnBk

and
lim
n→∞

G
µ−µn
Bk

= 0.

So we obtain that
1 = uk +K

µ
Bk
uk,

hence uk = HBk1. Thus

Lµ = inf
k
uk = inf

k
inf
n
uk,n = inf

n
inf
k
uk,n = inf L

µn.

2.2 Liouville function and bigness for smooth measures

We now extend the definition of Lµ to arbitrary smooth measures: For every smooth
measure µ let

Lµ := inf{Lν : ν Kato measure, ν ≤ µ}. (2.7)

Again, Lµ will be called Liouville function of 1 with respect to µ.
Lemma 2.3 implies that

Lµ = inf Lµn (2.8)

for any sequence (µn) of Kato measures increasing to µ. Indeed, if ν is any Kato
measure such that ν ≤ µ then the sequence (µnfν) is increasing to ν (where µnfν
denotes the largest measure which is smaller than µn and ν), hence

Lν = inf
n
Lµnfν ≥ inf

n
Lµn .

(It is now easy to show that (2.8) holds for any sequence (µn) of smooth measures
increasing to µ.)

Proposition 2.4 For every smooth measure µ, 0 ≤ Lµ ≤ 1, the function Lµ+KµLµ

is subharmonic, and
Lµ +KµLµ ≤ 1 ≤ Lµ +Gµ.

In particular, Lµ is subharmonic, ∆Lµ ≥ Lµµ.
If µ is a smooth Radon measure, then Lµ +KµLµ is harmonic, ∆Lµ = Lµµ.
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Proof. Let µ be a smooth measure and fix a sequence (µn) of Kato measures
such that µn ↑ µ. Define

v := Lµ, vn := L
µn.

Every vn is subharmonic and we obtain from (2.8) that the sequence (vn) is decreas-
ing to v, hence v is subharmonic, 0 ≤ v ≤ 1. Moreover, by Lemma 2.2

v +Kµnv ≤ vn +Kµnvn ≤ 1 ≤ vn +Gµn ≤ vn +Gµ

for every n ∈ N, hence
v +Kµv ≤ 1 ≤ v +Gµ.

The function w := v + Kµv is finely continuous. For every n ∈ N, the function
vn +K

µnvn is harmonic by Lemma 2.2 and hence

vn +K
µnv = (vn +K

µnvn)−Kµn(vn − v) (2.9)

is subharmonic. This implies that

w = lim
n→∞

(vn +K
µnv)

is subharmonic as well. In particular,

∆v − vµ = ∆w ≥ 0.

Suppose finally that µ is a smooth Radon measure and fix B ∈ Or. Then, by (2.9)
and (2.3),

0 ≤ HBw − w = lim
n→∞

(Kµn(vn − v)−HBKµn(vn − v))
= lim

n→∞
K
µn
B (vn − v) ≤ lim

n→∞
Kµ
B(vn − v) = 0

on {GµB < ∞}. Since {GµB = ∞} is a polar set and HBw − w is finely continuous,
we obtain that HBw − w = 0. Thus w is harmonic, ∆v − vµ = ∆w = 0.

Lemma 2.5 Let µ be a smooth measure on X and let v be a finely continuous
function on X such that |v| ≤ 1. Assume that, for every B ∈ Or and for every Kato
measure ν ≤ µ, the function v+Kν

Bv
+−Kµ

Bv
− is subharmonic on B. Then v ≤ Lµ.

Note that the additional assumption on v is satisfied if Kµ|v| is bounded and
v+Kµv is subharmonic. Indeed, using (2.3) we obtain that v+Kµ

Bv is subharmonic
on B and hence

v +Kν
Bv

+ −Kµ
Bv

− = (v +Kµ
Bv)−Kµ−ν

B v+

is subharmonic on B.
Proof. Fix a Kato measure ν on X such that ν ≤ µ and let B ∈ Or. Define

functions s and t on B by

s := Hν
B1− v, t := 1− (v +Kν

Bv
+ −Kµ

Bv
−).

13



By assumption, t is superharmonic and

t+Kν
Bv

+ = (1− v) +Kµ
Bv

− ≥ 0,

hence t ≥ 0. Moreover,

s+Kν
Bs+K

µ−ν
B v− = 1− (v +Kν

Bv) +K
µ−ν
B v− = t.

Using (2) of Proposition 2.1 we conclude that

s+Kµ−ν
B v− ≥ 0.

If (νn) is a sequence of Kato measures increasing to µ, then

lim
n→∞

Kµ−νn
B v− = 0 on {Kµ

Bv
− <∞}.

So we obtain that
inf
n
Hνn
B 1 ≥ v on {Kµv− <∞}.

By assumption, Kµ
Bv

− 6≡ ∞, hence the set {Kµ
Bv

− = ∞} is polar. The function
infnH

νn
B 1 is subharmonic, hence finely continuous, and we get that infnH

νn
B 1 ≥ v

on X. Thus finally
Lµ = inf

B∈Or
inf
n
Hνn
B 1 ≥ v.

Proposition 2.6 Let µ be a smooth measure. Then Lµ can be characterized in the
following way:

(1) Lµ is the maximal finely continuous function v on X such that |v| ≤ 1, v ∈
L1loc(µ), and ∆v ≥ vµ.

(2) If 1 ∈ L1loc(µ) then Lµ is the maximal finely continuous solution v of (1.1)
such that |v| ≤ 1.

Proof. It follows immediately from Proposition 2.4 that Lµ has the desired
properties.
Conversely, let v be a finely continuous function on X such that |v| ≤ 1, v ∈

L1loc(µ), and ∆v ≥ vµ. Fix B ∈ Or and a Kato measure ν ≤ µ. Then

w := v +Kν
Bv

+ −Kµ
Bv

−

is upper bounded, finely continuous, and

∆w = ∆v − v+ν + v−µ ≥ 0

on B, hence w is subharmonic on B. Thus v ≤ Lµ by Lemma 2.5.
If, in addition, 1 ∈ L1loc(µ) and v is a finely continuous solution of (1.1) with

|v| ≤ 1, then of course v ∈ L1loc(µ) and we obtain that ±v ≤ Lµ.

14



Let S+(X) denote the set of all positive superharmonic functions on X. For
every A ⊂ X and s ∈ S+(X), we define

RAs = inf{v ∈ S+(X) : v ≥ s on A}
= inf{v ∈ S+(X) : v ≤ s on X, v = s on A},bRAs(x) = lim inf

y→x
RAs(y).

Then bRAs ∈ S+(X) and, of course, bRAs ≤ RAs ≤ s on X and RAs = s on A.

Moreover, { bRAs < RAs} is a polar subset of A.
Let us note that thickness of A is equivalent to RA1 ≡ 1 which is in turn

equivalent to bRA1 ≡ 1.
Corollary 2.7 Let µ be a smooth measure which is supported by a (Borel) set A.
Then

Lµ ≥ 1− bRA1. (2.10)

Proof. Since bRA1 ∈ S+(X), the function v := 1 − bRA1 is subharmonic and
0 ≤ v ≤ 1. Moreover, v = 0 on A \ { bRA1 < RA1}, and the measure µ does not
charge the polar set A \ { bRA1 < RA1}. Therefore ∆v ≥ 0 = vµ. Thus v ≤ Lµ by
Proposition 2.6.

Set  A supporting
  the measure  µ

Function   L
µ

 Function  v=1-RA1^

Figure 4 v = 1− bRA1 is a subsolution: ∆v ≥ vµ, and 0 ≤ v ≤ 1 whence v ≤ Lµ
Example. Let A be an open subset of X and let µ =∞1Aλ. Then µ is a smooth
measure and

Lµ = 1−RA1. (2.11)

Indeed, Lµ ≥ 1−RA1 by Corollary 2.7. On the other hand,KµLµ ≤ 1 by Proposition
2.4 and hence Lµ = 0 λ-a.e. on A. Since Lµ is subharmonic, we conclude that Lµ = 0
on A. So s := 1− Lµ ∈ S+(X), s = 1 on A, hence s ≥ RA1, i.e., 1−RA1 ≥ Lµ.
Note that Lµ = 1 − RA1 is no solution of (1.1) if A is a non-empty open set

which is non-thick!
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More generally, we get the equality (2.11) in the following situation: ν any Kato
measure, µ =∞ν, and A a set supporting ν such that ν(V ) > 0 for any x ∈ A and
any (Borel) fine neighbourhood V of x.

Proposition 2.6 shows that the definitions for bigness given in the Introduction
are consistent and that we have the following characterization:

Proposition 2.8 (Criterion of bigness) For a smooth measure µ consider the fol-
lowing statements:

(1) µ is big.

(2) Lµ = 0.

(3) If u is a bounded continuous solution of (1.1), then u = 0.

Then: (1) ⇔ (2) ⇒ (3). If µ is a Kato measure, then the three statements are
equivalent.

For sake of completeness let us add the following:

Proposition 2.9 If µ is a Kato measure then every bounded finely continuous so-
lution of (1.1) is continuous.

Proof. Fix a bounded finely continuous solution v of (1.1) and take B ∈r. Then

∆(v +Kµ
Bv) = ∆v − vµ = 0 on B,

hence there exists a harmonic function g on B such that v +Kµ
Bv = g λ-a.e. on B.

By assumption on µ, the function Kµ
Bv is continuous, hence the function v+K

µ
Bv is

finely continuous. Therefore v +Kµ
Bv = g on B, i.e., v|B = g −Kµ

Bv is continuous.

Remark: Assuming that X = Rd, d ≥ 3, and that µ is absolutely continuous with
respect to Lebesgue measure, i.e., that µ = V λ with a Borel measurable function
V ≥ 0 on Rd, it is now easily seen that µ is big if and only if the Schrödinger
semigroup associated with V is strongly stable on L1(Rd) (see [3, page 464]). Let
(Xt)t>0 denote Brownian motion on Rd. By Feynman-Kac formula (see e.g. [7,
Theorem 6.7]), we know that, for every ball B in Rd and every m ∈ N,

H
min(V,m)λ
B 1(x) = Ex

µ
exp

µ
−
Z τB

0

min(V (Xt),m) dt

¶¶
(x ∈ Rd)

(where τB denotes the first exit time from B). Hence, by (2.6) and (2.7),

LV λ(x) = Ex
µ
exp

µ
−
Z ∞

0

V (Xt) dt

¶¶
(x ∈ Rd).
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3 Small and big measures on Riemannian mani-

folds

Unless stated otherwise, we shall assume in what follows that X is a Riemannian
manifold which is a Green space and that µ, ν are smooth measures on X.
For the study of non-big measures it will be useful to introduce the subset of

small measures. We begin with the following simple observation: The subharmonic
function Lµ has a smallest harmonic majorant Pµ, namely

P µ = lim
B↑X

HBL
µ. (3.1)

Of course,
Lµ ≤ Pµ ≤ 1,

and µ is big if and only if Pµ = 0. Moreover, P µ ≤ P ν if ν ≤ µ.

Definition 3.1 We shall say that a smooth measure µ is small, if P µ = 1.

Lemma 3.1 µ is small if and only if 1− Lµ is a potential5.

Proof. The function s := 1−Lµ is a positive superharmonic function onX, hence
we have a Riesz decomposition s = g + p where g is a positive harmonic function
and p is a potential on X. So Lµ + p = 1− g is harmonic. Since limB↑X HBp = 0,
we conclude from (3.1) that P µ = 1− g. Thus µ is small if and only if g = 0, i.e., if
and only if s = p.

Lemma 3.2 (Monotonicity of bigness and smallness) If ν ≤ µ, then µ is big if ν is
big, and ν is small if µ is small.

Proof. In view of Proposition 2.8 it suffices to recall that 0 ≤ Lµ ≤ Lν and
P µ ≤ P ν ≤ 1.

Lemma 3.3 (A 0− 1 law) If Lµ 6≡ 0 (i.e., if µ is non-big) then supLµ = 1.

Proof. Indeed, let us denote u = Lµ and a = supu. Then 0 < a ≤ 1, 0 ≤ u/a ≤ 1.
By Proposition 2.6, the function u is the maximal finely continuous function on X
satisfying |u| ≤ 1, u ∈ L1loc(µ) and ∆u ≥ uµ. Therefore, we obtain that u/a ≤ u,
whence a ≥ 1 and a = 1.
In some cases every non-big measure is small:

Proposition 3.4 If every bounded harmonic function on X is constant (i.e., if 1
is a minimal harmonic function), then each µ is big or small (and conversely).

Proof. If µ is non-big, then supLµ = 1 by Lemma 3.3, hence supPµ = 1. This
implies that P µ = 1 if 1 is minimal (for the converse see Corollary 8.4).
We note that the assumption of Proposition 3.4 implies as well that each subset

is either thick or thin (see Proposition 8.3).

5By definition, a potential is a non-negative superharmonic function which admits no non-
negative harmonic minorant except for zero.
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Lemma 3.5 We have Lµ + Lν ≤ 1 + Lµ+ν and P µ + P ν ≤ 1 + P µ+ν.

Proof. By (2.7), we may assume that µ, ν are Kato measures. For every k ∈ N,
let

uk = H
µ
Bk
1, vk = H

ν
Bk
1, wk = H

µ+ν
Bk
1.

Then we have by (2.5) and HBk1 = 1

uk +K
µ
Bk
uk = 1, vk +K

ν
Bk
vk = 1, wk +K

µ+ν
Bk
wk = 1.

By Proposition 2.1, wk ≤ uk and wk ≤ vk, and hence
(1− uk) + (1− vk) = Kµ

Bk
uk +K

ν
Bk
vk

≥ Kµ
Bk
wk +K

ν
Bk
wk = K

µ+ν
Bk
wk = 1− wk.

Letting k → ∞ we obtain that (1 − Lµ) + (1 − Lν) ≥ 1 − Lµ+ν whence the first
inequality. The second inequality now follows by (3.1).

Lemma 3.6 If ν is small, then P µ+ν = Pµ.

Proof. We always have P µ+ν ≤ P µ. If ν is small, i.e., if P ν = 1, then Lemma
3.5 implies that Pµ ≤ P µ+ν.

Proposition 3.7 (1) If µ is non-big and ν is small, then µ+ ν is non-big.

(2) The set of all small measures is a convex cone.

(3) Any strictly positive multiple of a big measure is a big measure.

Property (3) was proved by A.Grigor’yan and N.Nadirashvili [10] in the case
when µ is a continuous function. Let us mention that our proof is much shorter and
more general than that of [10].
Proof. (1) If µ is non-big and ν is small, then P µ+ν = P µ 6≡ 0, hence µ + ν is

non-big.
(2) Suppose that µ and ν are small. Then by Lemma 3.5

1 + 1 = P µ + P ν ≤ 1 + P µ+ν ,
hence 1 ≤ P µ+ν , i.e., µ+ν is small. In particular, 2µ is small if µ is small. And then
monotonicity (Lemma 3.2) implies that any multiple of a small measure is small.
(3) By Lemma 3.5

2Lµ ≤ 1 + L2µ.
So, if 2µ is big, then 2Lµ ≤ 1, hence Lµ = 0 by our 0-1-law (Lemma 3.3), i.e., µ is
big. Another application of our monotonicity lemma finishes the proof.
If 1 is a minimal harmonic function, then non—big measures form a convex cone

by Proposition 3.4 and Proposition 3.7. We note that the converse holds as well (see
Proposition 8.4), i.e., if 1 is not minimal then there are non—big measures µ, ν on X
such that µ+ ν is big.

Lemma 3.8 (First case of smallness) If Gµ 6≡ ∞, then the measure µ is small.

18



Proof. By Proposition 2.4, 1 ≤ Lµ +Gµ whence for any B ∈ Or
1 = HB1 ≤ HBLµ +HBGµ.

Since Gµ 6≡ ∞ then lim
B↑X

HBG
µ = 0. Hence

1 ≤ lim
B↑X

HBL
µ = P µ,

and µ is small.
We recall that a subset A of X is non-thick if bRA1 6≡ 1. It is called 1-thin (or

thin at ∞) if bRA1 is a potential.
Lemma 3.9 (Second case of non-bigness and smallness) If µ is supported by a set
A and A is non-thick (thin resp.) then µ is non-big (small resp.).

Proof. By Corollary 2.7
1 ≤ Lµ + bRA1.

If A is non-thick, then bRA1(x) < 1 for some x ∈ X and then Lµ(x) > 0, µ is non-big.

If A is thin, then lim
B↑X

HB bRA1 = 0, hence 1 ≤ P µ, µ is small.
It may be interesting to note the following:

Lemma 3.10 If µ is a smooth Radon measure, then Lµ +KµLµ = P µ.

Proof. Let u = Lµ. By Proposition 2.4 the function g := u+Kµu is harmonic.
Moreover, for every B ∈ Or, g = HBg = HBu + HBKµu. Since lim

B↑X
HBK

µu = 0,

we obtain that
g = lim

B↑X
HBu = P

µ.

Moreover, we note that, for every c > 0,

P cµ = P µ

(for a proof see Proposition 7.20). This implies that

P µ = lim
ε→0

Lεµ

if µ is a Kato measure (see Corollary 7.21).

4 Characterization of small and big measures

It is now easy to obtain a characterization of non-big and small measures which
generalizes and improves Theorem 1.1 stated in the Introduction.

Theorem 4.1 For any Riemannian manifold X and any smooth measure µ on X,
the following statements are equivalent:
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(i) µ is non-big (small resp.).

(ii) µ can be represented as a sum of two measures µ = µ1 + µ2 where µ1 is
supported by a non-thick set (thin set resp.) and Gµ2 6≡ ∞.

(iii) There is an open set A which is non-thick (thin resp.) and such that for the
measure µ2 := 1{Aµ, the function G

µ2 is a bounded potential.

If µ is a Kato measure then each of (i)-(iii) is equivalent to:

(iv) There is an open set A which is non-thick (thin resp.) such that for the measure
µ2 := 1{Aµ, the function G

µ2 is a continuous bounded potential.

Proof. The discussion after the introduction of smooth measures shows that it
suffices to consider the case where X is a Green space. Then we have the following:
(iv) =⇒ (iii): =⇒ (ii): Trivial.
(ii) =⇒(i): Let µ = µ1 + µ2 where µ1 is supported by a non-thick set (thin set

resp.) and Gµ2 6≡ ∞. The measure µ1 is non-big (small resp.) by Lemma 3.9,
and the measure µ2 is small by Lemma 3.8, hence µ is non-big (small resp.) by
Proposition 3.7.
(i) =⇒ (iii): We have to prove that if µ is non-big (small resp.) then there is

an open set A which is non-thick (thin resp.) and such that G1{Aµ bounded. Let
u = Lµ, fix a real α ∈ ]0, 1[, and let

A := {u < α} .

Since u is u.s.c., the set A is open.
Why A is non-thick (thin resp.)? The function 1 − u is superharmonic on X

and 1− u ≥ 1− α on A, hence by definition of bRA1, we have
bRA1 ≤ 1− u

1− α
.

Function   R A1

  Function  ________

 Set  A={Lµ <α}

height 1

^

1-Lµ

1-α

Figure 5 Comparison of 1−L
µ

1−α and bRA1
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If µ is non-big, then supu = 1 by Lemma 3.3, hence inf bRA1 = 0, A is non-thick. If
µ is small, then 1 − u is a potential by Lemma 3.1, hence bRA1 is a potential, A is
thin.
Why G1{Aµ is bounded? We have α ≤ u on {A. By Proposition 2.4, Kµu ≤ 1,

hence

G1{Aµ = Kµ1{A ≤
1

α
Kµu ≤ 1

α
.

(i) =⇒ (iv): Now we assume that µ is a Kato measure. Let us choose A as above
and let µ2 = 1{Aµ. Then G

µ2 is even continuous. Indeed, fix B ∈ Or. Then
Gµ2 = G1{Bµ2 +G1Bµ2

where the first term on the right hand side is harmonic on B and the second term
is continuous, since µ2 is a Kato measure. Thus, G

µ2 is continuous on B and, since
B is arbitrary, on the whole of X.
Another way to prove it is to show directly (iii) =⇒(iv) by using the following

property of Kato measures:

Proposition 4.2 If µ is a Kato measure and Gµ 6≡ ∞, then Gµ is continuous and
real.

Proof. We note first that Gµ is finite on a dense subset of X. Now fix B ∈ Or
and choose an exhaustion (Bn) of X such that B1 = B. Then

Gµ = G1Bµ +
∞X
n=2

G1BnrBn−1µ

where all potentials on the right hand side are continuous and real and each term in
the sum is harmonic on B. Being finite on a dense subset of B the sum is harmonic
on B. Thus Gµ is continuous and real on B.

5 Wiener type results on Riemannian manifolds

5.1 Sufficient condition for non-bigness

Let us restate Theorem 1.3 for Riemannian manifolds.

Theorem 5.1 Let µ be a smooth measure on a non-parabolic Riemannian manifold
X, µ =

P
k µk where each µk is supported by some Borel set Ak. Let us denote

sk(x) :=

Z
G(x, y) dµk(y)

and
βk := inf sk(Ak) (5.1)

(with inf ∅ = 0). If for some point x0 ∈ X
∞X
k=1

sk(x0)

1 + βk
<∞ (5.2)

then µ is non-big.
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Set  Ak

x0

Function  sk

Height βk

Figure 6 Function sk

Proof. Let us first remark that βk <∞. Indeed, if µ(Ak) = 0, then µk = 0, sk = 0,
hence βk = 0. If µ(Ak) > 0, then Ak is not polar, hence the potential sk = G

µk is
not identically infinite on Ak, and βk <∞.
It follows from (5.2) that for a big enough K ∈ N,

∞X
k=K

sk(x0)

1 + βk
<
1

2
.

Let us split the measure µ as follows:

µ =
K−1X
k=1

µk +
∞X
k=K

µk (5.3)

and note that for the first sum we have by (5.2)

Gµ1+µ2+...+µK−1 = s1 + s2 + ...+ sK−1 6≡ ∞,
hence µ1 + µ2 + ...+ µK−1 is small by Lemma 3.8. Therefore, non-bigness of µ will
follow by Proposition 3.7 from that of the second sum in (5.3).
This means that we can assume from the very beginning that K = 1 and thus

∞X
k=1

sk(x0)

1 + βk
<
1

2
. (5.4)

Let us distinguish two types of sets Ak: when βk > 1 and when βk ≤ 1, and split
the measure µ into two parts:

ν1 =
X
βk>1

µk , ν2 =
X
βk≤1

µk .

The measure ν1 is supported by the set A
0 := ∪βk>1Ak. We claim that A0 is non-

thick. Indeed, let us prove that the function

s :=
X
βk>1

sk
βk
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is such that s|A ≥ 1, inf s < 1 and s is superharmonic. The former is obvious
because sk ≥ βk on Ak whereas the latter is implied by (5.4):

s(x0) =
X
βk>1

sk(x0)

βk
≤ 2

X
βk>1

sk(x0)

1 + βk
< 1,

which also yields s ∈ S+(X). So, A0 is non-thick.
The measure ν2 is small since

Gν2(x0) =
X
βk≤1

sk(x0) ≤ 2
X
βk≤1

sk(x0)

1 + βk
< 1,

whence µ = ν1 + ν2 is non-big by Theorem 4.1.

5.2 Sufficient condition for bigness

Let us state now a more general version of Theorem 1.2.

Theorem 5.2 Let X be a Riemannian manifold X, let (Bk) be an exhaustion of
X by sets in Or, and define A1 := B1, Ak := Bk\Bk−1 for k = 2, 3, .... Let µ be a
smooth measure on X, µ =

P
k µk where each µk is supported by Ak. Let us denote

tk(x) :=

Z
GBk+1(x, y) dµk(y)

and assume that αk := sup tk(Ak) <∞ for every k ∈ N.
If

∞X
k=3

inf
x∈Bk−2

tk(x)

1 + αk
=∞ (5.5)

then the measure µ is big.

x0
Bk-1

µ k

_
Set  Ak=Bk\Bk-1   
supporting  µk

Bk +1

Bk

αk :=sup tk

 Function   tk =G
B k+1

Figure 7 Function tk
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Corollary 5.3 (=Theorem 1.2) Let in the setting of Theorem 5.2 X = Rd, d ≥ 3,
and Bk be concentric balls of radii 2

k centred at a point x0 ∈ Rd. Let

sk(x) :=

Z
G(x, y)dµk(y)

and α0k := sup sk(Ak).
If

∞X
k=1

sk(x0)

1 + α0k
=∞ (5.6)

then µ is big.

Proof of Corollary. The hypothesis (5.6) implies (5.5) because:

1. Ak is separated from the boundary Bk+1 which implies together with the ex-
plicit formula for the Green function in Rd that on Ak

tk ≥ const sk ;

2. the function tk is positive and harmonic in Bk−1, whence by the Harnack
inequality

inf tk(Bk−2) ≥ const tk(x0) .

Let us emphasize that Theorem 5.2 does not require the Harnack inequality. On
the other hand, Corollary 5.3 is true not only in Rd but also on any complete Rie-
mannian manifold possessing the uniform Harnack inequality for harmonic functions
and a polynomial decay of the Green function G(x, y) with respect to the Rieman-
nian distance dist(x, y) (one should take the radii of the balls Bk to be C

k for a
large enough C). For example, this is the case for a complete Riemannian manifold
with non-negative Ricci curvature satisfying the following volume growth condition
for some ε > 0 :

V (x,R)

V (x, r)
≥ const

µ
R

r

¶2+ε
, ∀x ∈M, ∀R > r > 0

where V (x, r) is the Riemannian volume of the ball of radius r and the centre x.
See [19] for the Harnack inequality on such manifolds and estimates of the Green
function. For more general conditions for the Harnack inequality, see [9], [21], [23].
Proof of Theorem 5.2. Suppose first that µ is a Kato measure and consider the

functions
u := Lµ and vk := H

µk
Bk+1

1 .

We have to show that u = 0. Taking

ak := supu(Bk)

we obtain that, on each Bk+1,

ak+1vk = H
µk
Bk+1

ak+1 ≥ Hµk
Bk+1

u ≥ Hµ
Bk+1

u = u.
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Defining
bk := sup vk(Bk−2), k = 3, 4, ...

we get in particular that

ak−2 = supu(Bk−2) ≤ ak+1 sup vk(Bk−2) = ak+1bk.

 Function   u =Lµ
µ k

B k+1

Bk +1

x0
Bk

Bk-2 Bk-1

ak+1bk ak -2:=sup u (Bk-2)

 Function   ak+1vk  ≥ u

vk|        =1∂B k+1

ak +1:=sup u (Bk+1)

Set  Ak=Bk\Bk-1   
supporting  µk

_

bk :=sup vk (Bk-2)

Function   vk =H      1

Figure 8 Proof that ak−2 ≤ ak+1bk

By iteration and by ak ≤ 1, this leads to

an ≤
∞Y
i=0

bn+2+3i.

for every n ∈ N. Since clearly an ≤ an+1 ≤ an+2, this implies that

a3n ≤ anan+1an+2 ≤
∞Y

k=n+2

bk. (5.7)

In order to deduce that an = 0 for every n (and hence u = 0), it is sufficient to know
that ∞X

k=3

(1− bk) =∞. (5.8)

Now we concentrate on verifying (5.8). It will follow in turn from (5.5) and from
the inequality

1− vk ≥ tk
4 (1 + αk)

(5.9)

which is true in Bk+1. To prove it, let us fix k and consider

ν :=
µk

2(1 + αk)
, w := Hν

Bk+1
1.

We obviously have ν ≤ µk and therefore
w = Hν

Bk+1
1 ≥ Hµk

Bk+1
1 = vk.
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Hence, (5.9) will follow from

1− w ≥ tk
4 (1 + αk)

.

Clearly, tk ≤ αk on Bk+1, since tk = G
µk
Bk+1

and µk is supported by Ak.We have by
the identity (2.5)

w +Kν
Bk+1

w = 1 (5.10)

whence

1− w = Kν
Bk+1

w ≤ Gν
Bk+1
≤ 1

2(1 + αk)
G
µk
Bk+1

=
tk

2(1 + αk)
≤ 1
2

and w ≥ 1
2
in Bk+1. By using (5.10) again, we have

1− w = Kν
Bk+1

w ≥ 1
2
Gν
Bk+1

=
1

4 (1 + αk)
G
µk
Bk+1

=
tk

4 (1 + αk)
,

This finishes the proof if µ is a Kato measure.
Finally, consider the general case of a smooth measure µ, and define the measures

µk as above. Then there are Kato measures µ̃k such that µ̃k ≤ µk and

2
infx∈Bk−2 G

µ̃k
Bk+1

(x)

1 + supx∈Ak G
µ̃k
Bk+1

(x)
≥ infx∈Bk−2 G

µk
Bk+1

(x)

1 + supx∈Ak G
µk
Bk+1

(x)
.

Hence the Kato measure µ̃ :=
P∞

k=1 µ̃k satisfies the assumptions of Theorem 5.2.
Therefore, µ̃ is big. Since µ̃ ≤ µ we finally conclude that µ is big as well.

5.3 About an axiomatic approach

As we can see from the proofs of Theorems 4.1, 5.1 and 5.2, they do not use much the
Laplace and/or Schrödinger equations. Instead, we needed a few properties which
can be stated axiomatically, which leads to a similar statement in a general setup
of harmonic spaces. It should be clear from the proof above that what we need is
basically the following:

1. a notion of harmonic functions in a certain topological space and solvability
of the corresponding Dirichlet problem in a wide enough family of open sets;

2. maximum/minimum principle;

3. convergence principle: an increasing sequence of harmonic functions should
converge to harmonic function provided the limit is locally bounded;

This will be considered in detail in Section 7.
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6 Examples

6.1 Thick and thin sets in Rd

It may be interesting to note that Theorem 1.2 allows us to deduce the following
result (which of course is well known):

Proposition 6.1 (Wiener’s criterion at ∞) Let A be a Borel set in Rd, d > 2,
and let (Bk) denote the sequence of balls of radii 2

k, centred at the origin x0. Let us
denote Ak = A ∩ (Bk \Bk−1), k = 1, 2, ..., and let sk be the equilibrium potential of
Ak. Then A is thick if and only if

∞X
k=1

sk(x0) =∞. (6.1)

Remark: Since any bounded harmonic function on Rd is constant then by Propo-
sition 3.4, non-thickness of A is equivalent to thinness. In particular, A is thin if
and only if the series in (6.1) converges.

Proof. Let us first assume that (6.1) holds. For each k ∈ N we may choose a
compact subset A0k of Ak such that the equilibrium potential s

0
k = G

µk of A0k satisfies

s0k(x0) ≥
1

2
sk(x0) .

Here µk denotes the equilibrium measure of A
0
k which is supported by A

0
k. The set of

all x ∈ A0k such that s0k(x) < 1 is polar. So α0k := sup s
0
k(A

0
k) = 1 if A

0
k is non-polar.

If, however, A0k is polar then s
0
k = 0. Therefore

∞X
k=1

s0k(x0)
1 + α0k

≥ 1
2

∞X
k=1

s0k(x0) =∞.

By Theorem 1.2 we obtain that µ =
P

k µk is big. Clearly, µ is supported by A.
Thus, A is thick by Lemma 3.9.
Now let us assume that (6.1) is not true, and prove that A is non-thick. We first

choose a natural K > 1 such that

∞X
k=K

sk(x0) < 1 ,

and denote A0 =
S∞
k=K Ak. Since the sets A and A

0 differ by a compact, they are
thick or non-thick simultaneously. There exists a positive superharmonic function
s0 on X such that s0(x0) <

1
2
and s0 ≥ 1 on the polar set

S∞
k=K Ak∩{sk < 1}. Then

the function

s := s0 +
∞X
k=K

sk

is a positive superharmonic function such that s ≥ 1 on A0, but s(x0) < 1. Therefore
A0 is non-thick.
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Corollary 6.2 In the notation of Proposition 6.1, A is thick is and only if

∞X
k=1

capAk
2k(d−2)

=∞. (6.2)

Let now Ωf be a set of revolution in Rd, d ≥ 3, as follows:

Ωf :=

½
x = (x1, x2, ...xd) ∈ Rd

¯̄
x1 ≥ 0,

q
x22 + x

2
3 + ...+ x

2
d ≤ f (x1)

¾
where f is a continuous non-negative function on [0,+∞).

 r

 Ω ƒ
 x1

r=f(x1)

Figure 9 Region Ωf

Proposition 6.3 Suppose that the function f satisfies the following regularity con-
dition

C−1 ≤ f(t)

f(τ)
≤ C, for all 1 ≤ τ ≤ t ≤ 2τ (6.3)

and is linearly bounded:
f(t) ≤ C (1 + t) . (6.4)

Then the set Ωf is thick if and only if

∞Z
1

fd−3(t)
td−2

dt =∞, d > 3, (6.5)

or ∞Z
1

dt

t log
³
1 + t

f(t)

´ =∞, d = 3. (6.6)

The proof can be easily obtained by Proposition 6.1 (see below the proof of
Proposition 6.4 for how to estimate sk(x0)).
Let us consider some examples. If d > 3 then one can see from (6.5) that Ωf is

thick for f(t) = t and non-thick for f(t) = t1−ε, ε > 0. If d = 3 then Ωf is thick
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for f(t) = t−N with any N > 0 and non-thick for f(t) = exp
¡− log1+ε t¢, ε > 0. In

particular, a half-space of Rd is always thick since it contains a thick Ωf (if d ≤ 2
then any non-polar set is thick).
Let us show that a hyperplane Σ in Rd is thick. Let Γ± be two half-spaces with

the boundary Σ. If s ≥ 0 is a superharmonic function on Rd such that s ≥ 1 on Σ
then by taking min (s, 1) , we may assume that s = 1 on Σ. Let us define two other
functions:

s±(x) =
½

1, if x ∈ Γ±
s(x), otherwise

.

Obviously, each function s+, s− is superharmonic, and by thickness of the half-space,
s± ≥ 1 on Rd. This implies s ≥ 1 on Rd and thickness of Σ.

6.2 Big and small measures in Rd

Let us denote by λ the Lebesgue measure in Rd. The following is a criterion of
bigness of a measure which is nearly rotationally invariant with respect to λ and
which is restricted to the domain of revolution Ωf . Note that by Proposition 3.4,
non-bigness in Rd is equivalent to smallness.

Proposition 6.4 Suppose that a function f satisfies the conditions (6.3), (6.4) and
a positive function q(x) ∈ L1loc

¡
Rd
¢
satisfies the condition

C−1 ≤ q(y)
q(x)

≤ C whenever 1 ≤ |x| ≤ |y| ≤ 2 |x| . (6.7)

Then the measure µ defined by
µ = q1Ωfλ

is big if and only if

∞Z
1

fd−3(t)
td−2

min
¡
1, q∗(t)f2(t)

¢
dt =∞, d > 3, (6.8)

or Z ∞

1

1

t

dt

q∗(t)−1f(t)−2 + log
³
1 + t

f(t)

´ =∞, d = 3. (6.9)

where
q∗(t) = q(t, 0, 0, ...0).

Examples. 1. Let q(x) = O
¡|x|−2¢ as x→∞, and f(t) ∼ t. Then both conditions

(6.8), (6.9) transform to
∞Z
tq∗(t)dt =∞. (6.10)

For example, it is satisfied (and the measure µ is big) if

q∗(t) ∼ 1

t2 log t
as t→ +∞
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and is not satisfied if for some ε > 0

q∗(t) ∼ 1

t2 log1+ε t
.

The condition (6.10) for bigness of the measure µ = q(x)λ (without restriction to
Ωf) was obtained in [8] and [2]. The situation when µ is supported by Ωf , is more
subtle for proving the bigness, and neither of the previous methods works. This
becomes especially transparent if we choose the function f(t) to grow sublinearly as
below, so that Rd cannot be covered by a finite number of congruent copies of Ωf .
2. Let d > 3 and let for large t

f(t) ∼ t

logα t

where 0 < α ≤ 1
d−3 so that (6.5) is satisfied and thus, Ω

f is thick (otherwise, any

measure supported by Ωf , is small). If

q∗(t) ∼ log
α(d−1)−1 t
t2

then it is easy to check that (6.8) holds and thus, µ = q(x)1Ωfλ is big. If for some
ε > 0

q∗(t) ∼ log
α(d−1)−1−ε t
t2

then µ is small.
3. If f(t) ∼ tα with α < 1 then Ωf is always thin provided d > 3, by Proposition

6.3. Let us consider the case d = 3 and put

f(t) ∼ t−N

with N > 0. By Proposition (6.3), Ωf is thick. Then for the function

q∗(t) ∼ t2N

log t
,

the measure µ is big whereas for the function

q∗(t) ∼ t2N

log1+ε t
, ε > 0

the measure µ is small (both follow from the criterion (6.9)).

Proof of Proposition 6.4. To apply Theorems 1.2 and 1.3, we have to estimate
the potentials sk = Gµk where µk = q1Ωfk

λ and Ωfk = Ωf ∩ ¡Bk\Bk−1¢ . Let us
introduce also the cylinders

Ck =

½
2k−1 ≤ x1 ≤ 2k,

q
x22 + x

2
3 + ...+ x

2
d ≤ f(2k)

¾
of height hk = 2

k−1 and of radius rk = f(2k), and the measures

νk = q
∗(2k)1Ckλ.
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Let s∗k := G
νk . It is clear from conditions (6.3), (6.4), and (6.7) that the ratio of sk(x)

and s∗k(x) is uniformly bounded from above and below for all x and k. Therefore, in
the criteria (1.5) and (1.6), we may replace the functions sk by s

∗
k.

First, we have to estimate sup and inf of s∗k over Ck. Since the measure νk has
a constant density on Ck, it amounts to computing G

1Ckλ. It is not difficult to
show that under the condition rk ≤ consthk, the function G1Ckλ has comparable
maximum and minimum on Ck which are of the order(

r2k, d > 3

r2k log
³
1 + hk

rk

´
, d = 3

.

Next, we have obviously

G1Ckλ(0) ∼ λ(Ck)

2k(d−2)
∼ hkr

d−1
k

2k(d−2)
.

Thus, by Theorems (1.2) and (1.3), µ is big if and only ifX
k

q∗(2k)hkrd−1k

2k(d−2)
1

1 + q∗(2k)r2k
=∞, case d > 3,

X
k

q∗(2k)hkr2k
2k

1

1 + q∗(2k)r2k log
³
1 + hk

rk

´ =∞, case d = 3,

which easily amounts toZ ∞ f(t)d−3

td−2
dt

q∗(t)−1f(t)−2 + 1
=∞, case d > 3,Z ∞ 1

t

dt

q∗(t)−1f(t)−2 + log
³
1 + t

f(t)

´ =∞, case d = 3,

i.e., (6.8) and 6.9.

6.3 A scattered measure in Rd which is big
The following measure appeared in [16], and its bigness was proved there by using
the scaling property of Rd. Let (Bk) be the sequence of balls in Rd of radii 2k, centred
at the origin x0 = 0. Let Ek be a Borel subset of Ak := Bk \Bk−1, E :=

S
k Ek and

let

q(x) :=
1

1 + |x|2 .
The measure µ is defined as

µ = q 1Eλ.

The claim is:

if for some ε > 0 and all k ≥ 1
λ (Ek) ≥ ελ (Ak)

then µ is big.
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Of course, we can assume d ≥ 3. The difficulty is that the measure µ may be very
scattered. However, this situation can be handled by Theorem 1.2. In the notations
of Theorem 1.2, we have

sk(x) =

Z
Ek

G(x, y)q(y)dλ(y).

For any x ∈ Ak, we have

sk(x) ≤ sup q(Ak)
Z
Ak

G(x, y)dλ(y) ≤ 42−k
Z
B(x,2k+1)

G(x, y)dy ≤ const.

Therefore, αk ≤ const.
Let us estimate s(x0) from below:

sk(x0) ≥ const

Z
Ek

|y|2−d |y|−2 dλ(y)

≥ const ελ (Ak) 2
−kd

≥ const.

Thus, the series (1.5) is divergent, and µ is big.
In the same way, one can prove bigness of µ for the function

q(x) ∼ 1

|x|2 log |x|
whereas for the function

q(x) ∼ 1

|x|2 log1+ε |x| , ε > 0,

µ is small.

6.4 Counter-example to Theorem 1.2

We will use here the notations of Theorems 1.2 and 1.3. There is a gap between the
condition (1.6) X

k

sk(x0)

1 + βk
<∞

for non-bigness of a measure µ and the condition (1.5)X
k

sk(x0)

1 + αk
=∞

which ensures bigness of µ. Recall that βk is infimum of sk(x) over Ak ∩A whereas
αk is a supremum of sk over the same set. In particular, βk ≤ αk.We will show here
that one cannot replace βk by αk in the former statement.
More precisely, we construct in Rd, d > 2, a big measure µ such thatX

k

sk(x0)

1 + αk
<∞. (6.11)
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Moreover, the measure µ will possess a stronger propertyX
k

G
µk
1+sk (x0) <∞ (6.12)

where
µk = 1Akµ.

Indeed, (6.12) implies (6.11) as follows:

sk(x0)

1 + αk
=

1

1 + αk
Gµk(x0) = G

µk
1+αk (x0) ≤ G

µk
1+sk (x0).

Let Bk be a sequence of concentric balls of radii 2
k as in Theorems 1.2 and 1.3.

Inside any annulus Ak = Bk\Bk−1, choose a very small ball bk so that the union of
all bk is a non-thick set. Let χ be any big measure on Rd, and let ν be a measure
supported by

S
k bk such that in each bk it is proportional to the equilibrium measure

γk of the ball bk :

ν =
X
k

akγk

with some coefficients ak > 0.

Ak+1

bk+2bk+1bk

Ak

Figure 10 Each ball bk carries its equilibrium measure

Let µ = χ+ ν. Regardless of choice of ak, the measure µ is big because χ is big.
Let νk := 1Akν = akγk and χk := 1Akχ then

µk
1 + sk

=
χk + νk

1 +Gχk +Gνk

≤ χk
1 +Gνk

+
νk

1 +Gνk

≤ χk
akGγk

+
νk

1 +Gνk
.

By choosing ak large enough, we can ensureX
k

G
χk

akG
γk (x0) <∞. (6.13)
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The measure ν is non-big because it is supported by a non-thick set. Thus, by
Theorem 1.2, we have X

k

G
νk

1+supGνk (x0) <∞. (6.14)

Since by the choice of γk we have supG
γk = 1 and Gγk ≡ 1 on bk then

νk
1 +Gνk

=
νk

1 + supGνk
,

and (6.14) implies X
k

G
νk

1+Gνk (x0) <∞

which together with (6.13) yields (6.12).

6.5 Counter-example to Theorem 5.2

Here we use the notations of Theorem 5.2. We will show that the hypothesis (5.5)X
k

inf
x∈Bk−2

tk(x)

1 + αk
=∞ (6.15)

cannot in general be relaxed to X
k

tk(x0)

1 + αk
=∞. (6.16)

Since, in the setting of Corollary 5.3, (6.16) does imply bigness of µ (note that
under hypotheses of Corollary 5.3, sk ∼ tk) then we are looking at a situation with
no uniform Harnack inequality. So, let us take X = H2 - the hyperbolic plane. We
will construct a non-big measure µ for which (6.16) holds.
LetBk be the concentric balls of radii 2

k centred at a point x0 ∈ H2. Let νk denote
the equilibrium measure of Ak := Bk\Bk−1 with respect to Bk+1. This means, in
particular, that νk is supported by Ak,

supGνk
Bk+1

= 1

and
Gνk
Bk+1
≡ 1 on Ak.

Since Gνk
Bk+1

is continuous and harmonic in Bk−1 then necessarily G
νk
Bk+1

≡ 1 on
Bk−1, too. In particular,

Gνk
Bk+1

(x0) = 1.
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  G

Ak+1

Bk+1

The measure  νk  is supported by   Ak

νk

Bk

1

Bk-1
x0

Ak

Bk+1

Figure 11 νk is the equilibrium measure of Ak

Now let Γ be a half-space in H2 containing x0 on its boundary. Let us define

µ = 1Γ
X
k

νk.

Since
tk = G

1Γνk
Bk+1
≤ Gνk

Bk+1
≤ 1,

then αk = sup tk ≤ 1 and 1 + αk ≤ 2. By symmetry, we have

tk(x0) =
1

2
Gνk
Bk+1

(x0) =
1

2

whence (6.16) holds.
At the same time, the measure µ is non-big because it is supported by a half-

space of H2 which is non-thick. The easiest way to see that is to map conformally
H2 onto the unit disk D in R2. A two-dimensional conformal mapping preserves
superharmonic functions and thus, thickness. A half-disk is obviously non-thick in
D - one can construct its reduced function by solving the corresponding Dirichlet
problem in its complement. Therefore, Γ is non-thick either.
Incidentally, we have now an example of two non-thick sets whose union is thick

- two half-spaces in H2 which cover the whole space.

6.6 Harmonic functions with the third boundary condition

Let Γ be the half-space {x1 > 0} in Rd, and let Σ denote its boundary {x1 = 0} .
Given a non-negative continuous function q on Σ, we define the third boundary value
problem in Γ as follows: ½

∆u = 0 in Γ
∂u
∂x1
− qu = 0 on Σ

. (6.17)

It is assumed that the function u is continuous in Γ ∪ Σ. The boundary condition
is understood in a weak sense. The latter means the following: Let Σt := {x1 = t}
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and let y = (x2, x3, ...xd), then for any φ ∈ C∞0
¡
Rd
¢
,

lim
t→0+

Z
Σt

µ
∂u

∂x1
− qu

¶
φdy = 0. (6.18)

We denote by σ the (d− 1)-dimensional Lebesgue measure on Σ considered as a
measure on Rd.

_

 x1

∂
∂x1

Γ={x1>0}

Σ={x1=0}

Figure 12 Sets Γ and Σ

Proposition 6.5 The following statements are equivalent:

(1) There exists a non-zero bounded solution to (6.17);

(2) The measure qσ is non-big on Rd.

Moreover, the function L2qσ|Γ∪Σ is a solution to (6.17), and for any other solution
u of (6.17) satisfying the restriction |u| ≤ 1, we have |u| ≤ L2qσ.

Remark: The idea to consider the third boundary value problem was suggested to
us by V.A.Kondratiev.

Proof. The idea of the proof is to extend the solution u evenly in x1 to the
whole space Rd and to observe that the extended function satisfies the Schrödinger
equation (1.1) with µ = 2qσ. Let us note that 2qσ is a Kato measure on Rd which
follows from the fact that the singularity on the Green function G(x, y) is of order
|x− y|2−d which is locally uniformly σ-integrable.
Let u be a bounded smooth function on Γ, continuous on Γ ∪ Σ. Let us define

the function w on Rd as follows

w (x1, y) := u (|x1|, y) .
We claim that u is a solution to (6.17) if and only if

∆w = 2qwσ. (6.19)

Let us note that in both cases: “if” and “only if”, u is harmonic in Γ and thus,
the function w is harmonic off Σ. Indeed, either u is harmonic in Γ as a solution to
(6.17) or w is harmonic off Σ by (6.19) because the measure 2qσ is supported by Σ.
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We are left to show that the boundary condition (6.18) is equivalent to (6.19).
Fix a test function φ ∈ C∞0 (Rd). Applying Green’s formula, harmonicity of w off Σ
and the fact that w is even and continuous, we obtain

h∆w,φi = hw,∆φi =
Z
Rd

w∆φdx

= lim
t→0+


Z

{x1>t}

w∆φdx+

Z
{x1<−t}

w∆φdx


= lim

t→0+

Z
Σt

·
∂w

∂x1
φ− ∂φ

∂x1
w

¸
dy − lim

t→0+

Z
Σ−t

·
∂w

∂x1
φ− ∂φ

∂x1
w

¸
dy

= lim
t→0+

Z
Σt

∂w

∂x1
φdy −

Z
Σ

∂φ

∂x1
wdσ − lim

t→0+

Z
Σ−t

∂w

∂x1
φdy +

Z
Σ

∂φ

∂x1
wdσ

= 2 lim
t→0+

Z
Σt

∂u

∂x1
φdy

= 2 lim
t→0+

Z
Σt

·
∂u

∂x1
− qu

¸
φdy + 2

Z
Σ

qwφdσ , (6.20)

whence we see that the boundary condition (6.18) is equivalent to

h∆w,φi = 2hqwσ,φi
i.e. to (6.19).
The above argument shows that (1) =⇒ (2). Indeed, existence of a bounded

non-trivial solution u of (6.17) implies that equation (6.19) has a non-zero bounded
continuous solution w. Therefore, the measure 2qσ is non-big, and so is qσ by Lemma
3.7.
Let us verify (2) =⇒ (1). Since 2qσ is non-big and Kato, the function w := L2qσ

is a bounded continuous non-zero solution to (6.19) satisfying in addition 0 ≤ w ≤ 1.
We claim that w is even in x1. Indeed, the function ew(x1, y) := w(−x1, y) is also a
solution of (6.19) with the same additional properties, and since by Lemma 2.5 w
is the maximal such solution, then ew ≤ w. We conclude ew = w and w is even. Let
us set u := w|Γ∪Σ, then u is continuous in Γ ∪ Σ and harmonic in Γ. Moreover, we
see by (6.20) and (6.19) that the boundary condition (6.18) is satisfied, too.
We are left to prove the last statement of Proposition 6.5. The fact that u0 :=

L2qσ|Γ∪Σ is a solution to (6.17), was just shown above. Let u be another solution
of (6.17) such that |u| ≤ 1. We will verify that |u| ≤ u0. Indeed, if w is the even
extension of u to Rd, then w satisfies (6.19) and |w| ≤ 1. By Lemma 2.5, w ≤ w0 :=
L2qσ. Therefore, u ≤ u0. In the same way, −u ≤ u0 whence |u| ≤ u0.
Depending on q, the potential G2qσ may be both finite or infinite. The set Σ

is thick as we saw above so we cannot conclude a priori non-bigness of 2qσ. Both
existence and non-existence of a non-trivial bounded solution to (6.17) may actually
occur depending on the choice of the function q. Theorems 1.2 and 1.3 provide
efficient tools to verify that.
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7 Results for harmonic spaces

7.1 Harmonic spaces

A unifying concept in potential theory is the notion of a harmonic space. E.g.,
passing from solutions of ∆u = 0 to solutions of ∆u − uµ = 0 (µ being a Kato
measure) means passing from the classical harmonic space (X,H∆) to the harmonic
space (X,H∆−µ).
For sake of simplicity we shall restrict our attention to Bauer spaces (but of

course everything holds for general harmonic spaces and, in fact, could even be done
for balayage spaces or H-cones).
In the following let X be an arbitrary locally compact space with countable base.

For every open subset U ofX, let B(U) (resp. C(U)) be the set of all Borel measurable
(resp. continuous real) functions on U . As usual, given a set F of functions on U ,
Fb (resp. F+) will be the set of all bounded (resp. positive) functions in F . Let Uc
denote the family of all open relatively compact subsets of X.
A harmonic sheaf on X is a map H which to every open subset U of X assigns

a linear subspace H(U) of C(U) such that the following properties hold:

(S1) For any two open subsets U, V of X such that U ⊂ V , H(U) ⊂ H(V ).
(S2) For any family (Ui)i∈I of open subsets and any numerical function h on U =

∪i∈IUi, h ∈ H(U) if h|Ui ∈ H(Ui) for every i ∈ I.

The elements of H(U) are called harmonic functions on U .
A set V ∈ Uc is called regular if every f ∈ C(∂V ) possesses a unique continuous

extension HV f on V such that HV f is harmonic on V and HV f ≥ 0 if f ≥ 0.
The pair (X,H) is called a Bauer space if H has the following properties:

(B1) For every x ∈ X, there exists a harmonic function h defined in a neighbour-
hood of x such that h(x) 6= 0.

(B2) For every x ∈ X, there exists a base V of regular sets such that U ∩ V ∈ V
for any U, V ∈ V.

(B3) (Convergence property of Bauer) For any increasing sequence (hn) of positive
harmonic functions on an open set U , h = suphn ∈ H(U) if h is locally
bounded.

For each regular subset V of X, the map f 7→ HV f , f ∈ C(∂V ), defines a kernel
on X which again is denoted by HV (of course we take HV (x, ·) = δx for x ∈ X \V ).
For every open subset U of X, a lower semicontinuous function s : U →] −

∞,+∞] is called hyperharmonic on U provided that HV s ≤ s for every regular
V ∈ Uc. It is superharmonic on U if in addition the functions HV s are locally
bounded on V . A superharmonic function s ≥ 0 on U is called potential on U
if 0 is the largest harmonic minorant of s on U . We write S(U) (resp. P(U)) for
the set of all superharmonic functions (resp. potentials) on U . A function t on U
is called subharmonic if −t ∈ S(U). Every function s ∈ S+(U) admits a unique
decomposition s = h+p such that h ∈ H+(U) and p ∈ P(U) (Riesz decomposition).
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An open subset U of X is a P—set if there exists a strictly positive p ∈ P(U).
Any subset of a P—set is a P—set. It can be shown that X admits a covering by
P—sets. (X,H) is called P—harmonic if X itself is a P—set.
Examples. Let X denote an open subset of Rd, d ≥ 1.
1. Let

L =
1

2

rX
k=1

A2k +A0 (7.1)

where A0, A1, ..., Ar are C∞-vector fields on X and every C∞-vector field A =
(α1, ...,αd) : X → Rd is identified with the differential operator

Pd
i=1 αi

∂
∂xi
. The

corresponding sheaf is defined by

HL(U) = {h ∈ C∞(U) : Lh = 0} (U open ⊂ X).
Let L(A0, A1, ..., Ar) denote the (Lie) algebra generated by A0, A1, ..., Ar using the
(Lie) product [A,B] = AB−BA. Then (X,HL) is a Bauer space provided that, for
each x ∈ X,

{Z(x) : Z ∈ L(A0, A1, ..., Ar)} = Rd (7.2)

([5],[6]). A complete proof for this result using Hörmanders hypoellipticity theorem
can be found in [4]. In fact, a stronger convergence axiom holds (Doob’s convergence
axiom): If (hn) is an increasing sequence of harmonic functions on an open set U
such that h := suphn is finite on a dense subset of U , then h is harmonic. If 7.2
holds omitting A0, then even Brelot’s convergence axiom is satisfied: If (hn) is an
increasing sequence of harmonic functions on a domain U such that h := suphn is
not identically ∞, then h is harmonic.
Note that we get L = 1

2
∆ taking r = d, A0 = 0, Ak =

∂
∂xk

for 1 ≤ k ≤ d, and
L = 1

2

Pd−1
i=1

∂2

∂x2i
− ∂

∂xd
(operator of the heat equation, d ≥ 2) taking r = d − 1,

A0 = − ∂
∂xd
, Ak =

∂
∂xk

for 1 ≤ k ≤ d − 1. We point out that L can be fairly
degenerate, e.g., L = ∂2

∂x21
+ x1

∂
∂x2
− ∂

∂x3
on R3 with r = 1, A0 = x1

∂
∂x2
− ∂

∂x3
and

A1 =
∂

∂x1
. For sublaplacians see e.g.[14].

2. Using probabilistic techniques (martingales, limit theorem) and Krylov’s Har-
nack inequality it is possible to consider elliptic and parabolic operators where the
coefficients need not be differentiable (see [18]): Let aij, bi, c be continuous real
functions on X such that c ≤ 0. Consider the operator

L =
1

2

dX
i,j=1

aij
∂2

∂xi∂xj
+

dX
i=1

bi
∂

∂xi
+ c (7.3)

on X assuming that the matrix (aij(x))
d
i,j=1 is positive definite for every x ∈ X

(elliptic case) or the operator (for d ≥ 2)

L =
1

2

d−1X
i,j=1

aij
∂2

∂xi∂xj
+

d−1X
i=1

bi
∂

∂xi
+ c− ∂

∂xd

assuming that the matrix (aij(x))
d−1
i,j=1 is positive definite for every x ∈ X (parabolic

case). In both cases, the pair (X,HL) is a Bauer space if we define

HL(U) = {h ∈ C(U) : Lh = 0}.
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In fact, in the parabolic case, (X,HL) is P-harmonic and satisfies Doob’s conver-
gence axiom. And, in the elliptic case, (X,HL) always satisfies Brelot’s convergence
axiom and we have a P-harmonic space if e.g. one of the following conditions is
satisfied:

(i) c does not vanish identically on any connected component of X.

(ii) X is not dense in Rd and the functions bi are bounded on bounded subsets
of Rd.

3. It is easy to check that, except for P-harmonicity which has to be investigated
separately, nothing changes if X is a Riemannian manifold and L is a differential
operator on X which is locally of type 7.1 or 7.3.

In the following let (X,H) be a Bauer space. For simplicity let us assume that
(X,H) is P-harmonic.
The (H−)fine topology on X is the coarsest topology such that every function

s ∈ S+(X) is continuous. Every open subset of X is finely open.
For every A ⊂ X and s ∈ S+(X), we define

RAs = inf{v ∈ S+(X) : v ≥ s on A}
= inf{v ∈ S+(X) : v ≤ s on X, v = s on A},bRAs(x) = lim inf

y→x
RAs(y).

Then RSs ∈ S+(X) and, of course, bRAs ≤ RAs ≤ s.
If V ∈ Uc is regular, then

R{Vs = HV s (7.4)

for every s ∈ S+(X). For an arbitrary V ∈ Uc, the equation (7.4) is used to define
a kernel HV (uniqueness is already assured by having (7.4) for all continuous real
potentials). And then, for every hyperharmonic function s on an open subset U of
X, we have

HV s ≤ s
for every V ∈ Uc such that V ⊂ U . Moreover, HV s is harmonic on V if s is
superharmonic.
A sequence (Un) in Uc is called an exhaustion ofX if

S∞
n=1 Un = X and Un ⊂ Un+1

for every n ∈ N. We note that X may not admit an exhaustion by regular sets (e.g.,
if X is a W—shaped region in Rd × R and H is the sheaf of solutions of the heat
equation), and this is the reason why we need kernels HV for arbitrary V ∈ Uc.
We state two elementary, but useful facts.

Proposition 7.1 1. Let s ∈ S+(X) and let (Un) be an exhaustion of X. Then the
sequence (HUns) decreases to the harmonic part in the Riesz decomposition of s.
2. If s ∈ S(X) and p ∈ P(X) such that s+ p ≥ 0 then s ≥ 0.
We shall say that a sequence (xn) in U converging to a point z ∈ U is regular if

lim
n→∞

HUf(xn) = f(z) (7.5)

for every f ∈ C(X). Of course, a point z ∈ ∂U is regular if every sequence in U
which converges to z is regular. And U is regular if every boundary point of U is
regular. The following minimum principle is very useful (see e.g. [4, p. 107]):
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Proposition 7.2 (Minimum Principle) Let U ∈ Uc and s ∈ S(U) such that s is
lower bounded and lim infn→∞ s(xn) ≥ 0 for every regular sequence (xn) in U . Then
s ≥ 0.

A potential p ∈ C(X) is strict if, for each x ∈ X, the Dirac measure at x is
the only measure ρ ≥ 0 on X such that

R
p dρ = p(x) and

R
q dρ ≤ q(x) for every

q ∈ P(X). If p is strict, then of course, HUp < p on U for every U ∈ Uc. Our
assumption that (X,H) is P-harmonic implies the existence of strict potentials.
Our harmonic space (X,H) may (or may not) possess a Green function. A Borel

function GX : X ×X → [0,∞] is called a (measurable) Green function for (X,H)
provided the following hold:

(i) For every y ∈ X, GX(·, y) is a potential on X which is harmonic on {{y}.
(ii) For every p ∈ P(X) ∩ C(X) which is harmonic outside a compact set, there

exists a measure µ ≥ 0 on X such that

p =

Z
GX(·, y)µ(dy).

7.2 Perturbations of harmonic spaces

Let us now proceed to perturbation of (X,H). For our purpose it will be most
convenient to describe it in terms of the associated kernels.
We shall say that M = (KM

U )U∈Uc is a Kato family of potential kernels on X if
every KM

U , U ∈ Uc, is a kernel on U such that, for every f ∈ B+b (U), the function
KM
U f is a continuous bounded potential on U which is harmonic outside the support

of f and such that KM
U 1−KM

V 1 is harmonic on U ∩ V for all U, V ∈ Uc.
In the case of a Riemannian manifold X a Kato family M = (KM

U )U∈Uc of
potential kernels can be identified with a Kato measure µ by

KM
U = Kµ

U (U ∈ Uc)
(of course, we have an analogous identification if our harmonic space (X,H) admits
a Green function).
Defining sums and positive multiples of Kato families of potential kernels in the

obvious way we obtain a convex cone. We even have a multiplication by locally
bounded functions ϕ ∈ B+(X) given by

KϕM
U f := KM

U (ϕf) (U ∈ Uc).
For every p ∈ P(X)∩ C(X) there exists a unique Kato family M(p) of potential

kernels which is connected with p by

K
M(p)
U 1 = p−HUp (U ∈ Uc).

Now fix a Kato family M = (KM
U )U∈Uc. The compatibility condition K

M
U 1 −

KM
V 1 ∈ H(U ∩ U) implies that

KM
V = KM

W −HVKM
W (7.6)
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if V,W ∈ Uc, V ⊂W . This shows that

lim
n→∞

KM
V f(xn) = 0 (7.7)

for every f ∈ Bb(X) and every regular sequence (xn) in V . Defining

KM := sup
V ∈Uc

KM
V

we obtain a kernel KM on X such that, for every f ∈ B+(X), the function KMf is
hyperharmonic on X and, for every U ∈ Uc,

KM
U +HUK

M = KM

(see (2.3)).
As is the case of a Riemannian manifold, eachKM

V , V ∈ Uc, is a compact operator
on Bb(V ), I +KM

V is invertible, and (I +KM
V )

−1s ≥ 0 for every s ∈ S+b (V ) ([7, p.
103]). Hence the definition

HM
V := (I +KM

V )
−1HV (7.8)

yields a positive kernel on X. Define

HM = {HM(U) : U open ⊂ X}

where

HM(U) = {u ∈ C(U) : HM
V u = u for every V ∈ Uc such that V ⊂ U}.

It is not difficult to prove the following (see [7]):

Theorem 7.3 (X,HM) is a P—harmonic Bauer space.

The functions in HM(U) are called M—harmonic on U . The corresponding set
of M-superharmonic functions (M-potentials resp.) on U is denoted be MS(U)
(MP(U) resp.) and it is easy to show that, for every U ∈ Uc,

MHb(U) = (I +KM
U )

−1Hb(U),
MSb(U) = (I +KM

U )
−1Sb(U),

MPb(U) = (I +KM
U )

−1Pb(U).

If we are in the case of a Riemannian manifold where M corresponds to a Kato
measure µ, then a finely continuous locally bounded function u on an open set U
is M-harmonic (M-superharmonic, M-subharmonic resp.) if and only if ∆u = uµ
(∆u ≤ uµ, ∆u ≥ uµ resp.).
It is useful to note that the fine topology of (X,H) is the fine topology of

(X,HM). Moreover, it follows immediately from (7.6) and (7.7) that any regu-
lar sequence (xn) in U ∈ Uc (regular with respect to (X,H)) is also regular with
respect to (X,HM) (and conversely).

42



7.3 h-small and h-big families of potential kernels

We now extend what we did before on Riemannian manifolds to our more general
setup. In most cases it will be clear how to get the corresponding general proof and
then we shall simply omit it without further reference.
In the sequel, h always denotes a positive harmonic function on X. We stress

the fact that even for connected X the function h may vanish on a substantial part
of X without being identically zero! (It happens already for solutions of the heat
equation.)
Given a Kato familyM = (KM

U )U∈Uc we define a corresponding Liouville function
LMh by

LMh = inf
U∈Uc

HM
U h.

If (Uk) ⊂ Uc is any exhaustion of X then

LMh = lim
k→∞

HM
Uk
h.

Proposition 7.4 If M is a Kato family of potential kernels on X then LMh is
a continuous subharmonic function on X, 0 ≤ LMh ≤ h. The function LMh +
KMLMh is harmonic, LM +KMLMh ≤ h ≤ LMh +KMh. In particular, LMh is
M-harmonic.
If v is any M-(sub)harmonic function such that |v| ≤ h, then v ≤ Lh.

Since Kato families of potential kernels form a convex cone, we have a specific
order : M 0 ≺M if and only if there exists M 00 such that M 0 +M 00 =M .

Lemma 7.5 Let (Mn) be a sequence of Kato families of potential kernels which is
specifically increasing. If (supnK

Mn
U )U∈Uc is a Kato family M of potential kernels,

then inf LMnh = LMh.

Definition 7.1 A family M = (KM
U )U∈Uc of kernels K

M
U on U will be called a

smooth family of potential kernels on X if there exists a sequence (Mn) of Kato
families of potential kernels on X such that

KM
U =

∞X
n=1

KMn
U (U ∈ Uc).

It will be called proper if KM
U 1 ∈ P(U) for every U ∈ Uc.

If we have a corresponding Green function then such a smooth family M will
correspond to a smooth measure µ and M will be proper if µ is a Radon measure.
Let us mention that a perturbation by smooth proper families of potential kernels

(even by differences of such families) has already been studied in [15].
The setM+(H) of all smooth families of potential kernels is a convex cone and

its specific order extends the specific order introduced for Kato families of potential
kernels on X (sinceM 0,M 00,M ∈M+(H),M 0+M 00 =M ,M a Kato family, implies
that M 0,M 00 are Kato families!). It should be clear by now how to define ϕM for
ϕ ∈ B+(X) and M ∈ M+(X). And then, for any M ∈ M+(X), there exists a
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Kato family of potential kernels on X and ϕ ∈ B+(X) such that ϕN =M (in fact,
M = ϕM(p) for some p ∈ P(X) ∩ C(X) and ϕ ∈ B+(X)).
Given M ∈M+(H), we define the global (potential) kernel KM by

KM := sup
U∈Uc

KM
U = lim

k→∞
KM
Uk

where (Uk) is any exhaustion of X (recall that KM
U ≤ KM

V if U, V ∈ Uc, U ⊂ V ).
We might note that M = M(p) for some p ∈ P(X) ∩ C(X) if and only if KM1 ∈
P(X) ∩ C(X) and then of course p = KM1.

Proposition 7.6 For every f ∈ B+(X) the following holds:
(i) If M is a Kato family and f is bounded with compact support, then KMf is a

continuous bounded potential which is harmonic on {supp(f).

(ii) KMf is a positive hyperharmonic function. It is a potential if and only if it is
bounded by a superharmonic function.

Proof. (i) Choose U ∈ Uc containing the support of f . Then q := KM
U f is a

continuous real potential on U , harmonic on U \ supp(f) . There exists a (unique)
p ∈ P(X)∩C(X) (“Hervé—lifting”) such that p is harmonic on X \supp(f) and p−q
is harmonic on U . Fix an exhaustion (Uk) of X such that U ⊂ U1. Then it is easily
seen that KM

Uk
f = p − HUkp for every k ∈ N. Since limk→∞HUkp = 0, sequence

obtain that KMf = p.
(ii) The function f is a countable sum of positive bounded functions with compact

support and M is a countable sum of Kato families of potential kernels. Therefore,
by (i), KMf is a countable sum of continuous real potentials which are harmonic on
X \ supp(f). This implies (ii) (see e.g. [4]).
Given M ∈M+(H), we define a corresponding Liouville function LMh by

LMh = inf{LNh : N ∈M+(H), N Kato family }. (7.9)

Lemma 7.5 implies that
LMh = inf

n
LMnh (7.10)

for any sequence (Mn) of Kato families of potential kernels on X which is specifically
increasing to M .

Lemma 7.7 For every M ∈M+(H), 0 ≤ LMh ≤ h, the function LMh+KMLMh
is subharmonic, and LMh +KMLMh ≤ h ≤ LMh + KMh. In particular, LMh is
subharmonic.
If M is proper, then LMh+KMLMh is harmonic.

Lemma 7.8 Let M ∈M+(H) and let v be a finely continuous function on X such
that |v| ≤ h. Assume that, for every U ∈ Uc and for every Kato family N ∈M+(H)
such that N ≺ M , the function v + KN

U v
+ − KM

U v
− is subharmonic on U . Then

v ≤ LMh.
Proposition 7.9 Let M ∈M+(H), h ∈ H+(X). Then LMh can be characterized
in the following way:
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(1) LMh is the maximal finely continuous function v on X such that |v| ≤ h and,
for every U ∈ Uc, the function KM

U |v| is bounded and v+KM
U v is subharmonic

on U .

(1a) LMh is the maximal finely continuous function v on X such that |v| ≤ h,
KM |v| is h-bounded and v +KMv is subharmonic.

(2) IfM is proper, then LMh is the maximal finely continuous function v such that
|v| ≤ h and, for every U ∈ Uc, the function KM

U |v| is bounded and v+KM
U v is

harmonic on U .

(2a) If M is proper, then LMh is the maximal finely continuous function v such
that |v| ≤ h, KM |v| is h-bounded, and v +KMv is harmonic.

Given h ∈ H+(X), the subharmonic function LMh has a smallest harmonic
majorant PMh, namely

PMh = lim
U↑X

HUL
Mh, . (7.11)

Of course,
LMh ≤ PMh ≤ h,

and M is h-big if and only if PMh = 0.

Proposition 7.10 We have:

(1) For every h ∈ H+(X), LMh+KMLMh ≤ PMh.
(2) If M is proper, then LM +KMLM = PM .

(3) The operator PM on H+(X) is idempotent.

Proof. (1) By Lemma 7.7, we know that LMh + KMLMh is a subharmonic
minorant of h. In particular, KMLMh is a potential by Proposition 7.6. By (7.11),
this implies that LMh+KMLMh ≤ limU↑X HU(LMh+KMLMh) = PMh.
(2) If M is proper, we know in addition that LMh+KMLMh is harmonic, hence

PMh ≤ LMh+KMLMh.
(3) By Proposition 7.9 and (1), we conclude that LMh ≤ LM(PMh). Therefore,

by (7.11), PMh ≤ PM(PMh). The converse inequality is obvious.

Definition 7.2 We shall say that M is h—small, if PMh = h.

Lemma 7.11 M is h—small if and only if h− LMh is a potential.

Lemma 7.12 (Monotonicity of bigness and smallness) If N ≺M , then M is h—big
if N is big, and N is h—small if M is h—small.

Lemma 7.13 (A 0− 1 law) If LMh 6≡ 0 (i.e., if M is non-h—big) then

sup{L
Mh

h
(x) : x ∈ X, h(x) > 0} = 1.
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Lemma 7.14 We have LM + LN ≤ I + LM+N and PM + PN ≤ I + PM+N .
Lemma 7.15 If N is h—small, then PM+Nh = PMh.

Proposition 7.16 The following is true:

(1) If M is non-h—big and N is h—small, then M +N is non-h—big.

(2) The set of all h—small M ∈M+(H) is a convex cone.
(3) Any strictly positive multiple of an h—big M ∈M+(H) is h—big.
Lemma 7.17 (First case of h—smallness) If KMh is a potential, thenM is h—small.

We shall say that M ∈M+(H) is supported by a (Borel) set A if KM1{A = 0.

Lemma 7.18 (Second case of non-h—bigness and h—smallness) If M is supported
by a set A and A is non-h—thick (h—thin resp.) thenM is non-h—big (h—small resp.).

Theorem 7.19 For any P-harmonic space (X,H) and any M ∈M+(H), the fol-
lowing statements are equivalent:

(i) M is non-h—big (h-small resp.).

(ii) M can be represented as a sum M = M1 + M2 of two smooth families of
potential kernels where M1 is supported by a non—h—thick set (h-thin set resp.)
and KM2h is a potential.

(iii) There is an open set A which is non-h—thick (h-thin resp.) and such that for
M2 := 1{AM , the function K

M2h is an h—bounded potential.

If M is a Kato family then each of (i)-(iii) is equivalent to:

(iv) There is an open set A which is non—h—thick (h-thin resp.) such that for
M2 := 1{AM , the function K

M2h is a continuous h—bounded potential.

Moreover, we have the following result:

Proposition 7.20 For every c > 0, P cM = PM .

Proof. By monotonicity, it suffices to show that PMh ≤ P 2Mh for every h ∈
H+(X). Applying Lemma 7.14 to the function PMh, we obtain by Proposition 7.16
that

2PMh = 2PM(PM)h ≤ PMh+ P 2M(PMh) ≤ PMh+ P 2Mh,
hence PMh ≤ P 2Mh.
Corollary 7.21 If M is a Kato family of potential kernels, then limε↓0 LεMh =
PMh.

Proof. Since
LεMh+ εKMLεMh = P εMh = PMh

for every ε > 0, the (εM)—harmonic functions LεMh are increasing to a harmonic
function u ≤ PMh as ε decreases to zero. Clearly, LMh ≤ u, hence PMh ≤ u. Thus
PMh = u.
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8 Relations to minimality of h

Let us first consider a simple sufficient condition for h-bigness:

Proposition 8.1 Let M be a Kato family of potential kernels on X, let (Un) be an
exhaustion of X, and let (αn) be a sequence in [0, 1] such that

∞X
n=1

αn =∞

and
HM
Un+1

h ≤ (1− αn)h on Un

for every n ∈ N. Then M is h—big.

Proof. Fix n ∈ N. Our assumption implies that
HM
Um+1

h ≤ (1− αm)h on ∂Um

for every m ∈ N. Induction on k yields that, for every k ∈ N,

HM
Un+1

HM
Un+2

...HM
Un+k+1

h ≤ (1− αn)(1− αn+1) ...(1− αn+k)h on Un.

Since LMh is M—harmonic and LMh ≤ h, we know that, for every k ∈ N,

LMh = HM
Un+1

HM
Un+2

...HM
Un+k+1

LMh

≤ HM
Un+1

HM
Un+1

...HM
Un+k+1

h

and hence

LMh ≤
n+kY
m=n

(1− αm)h on Un.

Letting k tend to infinity we obtain that LMh = 0 on Un. Thus L
Mh = 0 on X, i.e.,

M is h—big.
M ∈M+(H) is called strictly positive, if KM

U 1V 6= 0 for every U ∈ Uc and every
finely open non-empty subset V of U , i.e. if M is not supported by a finely closed
proper subset of X. In the case of a Riemannian manifold X where M can be
identified with a smooth measure µ by

KM
U = Kµ

U (U ∈ Uc),
M is strict if and only if µ(V ) > 0 for every finely open V 6= ∅.
Clearly, M(p) is strict if p ∈ P(X) ∩ C(X) is a strict potential. Conversely, it is

not difficult to see the following: If M ∈M+(H) is strict, then there exists a Kato
family N of potential kernels on X such that N is strict and N ≺ M , and we may
even get N =M(p) for some strict p ∈ P(X) ∩ C(X).
The following result allows us to find sections which are h—big.

Proposition 8.2 Suppose that M is strictly positive. Then there exists a locally
bounded function ϕ ∈ B+(X) such that ϕM is h—big.
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Proof. By our previous considerations we may assume that M is a Kato family.
Let (Un) be an exhaustion of X and define

Wn = U2n+1 \ U2n−1.
Then there exists a sequence (kn) in N such that, for every n ∈ N,

HknM
Wn

h <
1

2
h on ∂U2n.

Indeed (see [14, p. 144]), fix n ∈ N and define
fk = H

kM
Wn
h, k ∈ N.

The sequence (fk) is decreasing. Let

f = inf fk.

Since fk + kK
M
Wn
fk = h, we obtain that

s := sup
k
kKM

Wn
fk

is superharmonic on Wn and f + s = h. Therefore f is finely continuous. Moreover,

kKM
Wn
f ≤ kKM

Wn
fk ≤ h

for every k ∈ N, hence KM
Wn
f = 0. Since M is strictly positive, this implies that

f = 0 on Wn. In particular, an application of Dini’s lemma yields the existence of
a natural number kn such that fkn <

1
2
h on ∂U2n.

Define

ϕ =
∞X
n=1

kn1Wn .

Then, for every n ∈ N, ϕ ≤ max(k1, ..., kn) on U2n+1 and

HϕM
U2n+1

h ≤ HϕM
Wn
h = HknM

Wn
h <

1

2
h on ∂U2n,

hence by the minimum principle

HϕM
U2n+1

h ≤ 1
2
h on U2n.

By Proposition 8.1 (looking at the sequence (U2n−1)) we conclude that ϕM is h—big.

We intend to show that h is minimal if and only if each M is either h-small or
h-big. To that end we have to look more closely at h-thick and h-thin sets.
Of course, every subset of an h-thin set is h-thin, and every subset ofX containing

an h-thick set is h-thick. Given A ⊂ X, there always exist a Borel (even a Gδ-) set

A0 ⊂ X such that A ⊂ A0 and bRA0h = bRAh (see e.g. [4, p. 250]). In particular,
every h-thin set A is contained in a Borel set A0 which is h-thin. Now suppose for a
moment that A ⊂ X is not h-thick, i.e., suppose that there exists a superharmonic
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function s ≥ 0 on X such that s ≥ h on A and s(x) < h(x) for some x ∈ X. Let s0
be a strictly positive real superharmonic function on X . If x ∈ X and s(x) < h(x)
then s(x) + εs0(x) < h(x) if ε > 0 is sufficiently small and s ≥ h on A implies that
s + εs0 > h on A, hence on an open neighbourhood of A. So a subset A of X is
h-thick if and only if every open neighbourhood of A is h-thick.
Since bRA∪Bh ≤ bRAh + bRBh, the union of two h-thin sets is always h-thin. In

general, however, the union of two sets which are not h-thick may be h-thick: In
Example 1 the intervals ]0, 1

2
] and [1

2
, 1[ are not 1-thick, but of course ]0, 1[ is 1-thick.

The following equivalences (which of course are partly known) show that this cannot
happen if h is minimal.

Proposition 8.3 The following statements are equivalent:

(i) h is minimal.

(ii) Every subset A of X is either h-thin or h-thick.

(iii) For all A,B ⊂ X which are not h-thick the union A ∪B is not h-thick.

(iv) For every (Borel) subset A of X the set A or the complement of A is h-thick.

Proof. (i) =⇒ (ii): Suppose that A is not h-thick. Choose an open neighbour-
hood U of A which is not h-thick. Then RUh is a positive superharmonic function.
There exist g ∈ H+(X) and p ∈ P(X) such that RUh = g + p, but g 6= h since
RUh 6= h. So g = αh for some 0 ≤ α < 1. Since RUh = h on U , we obtain that
p = (1− α)h on U , hence

1

1− α
p ≥ RUh ≥ g.

So g = 0, RUh = p.
(ii) =⇒ (iii): Trivial since the union of two h-thin sets is h-thin.
(iii) =⇒ (iv): Trivial since X is h-thick.
(iii) =⇒ (i): Suppose that h is not minimal. Then there exist h1, h2 ∈ H+(X) \

{0} such that h1+h2 = h and h1 is not a multiple of h2. We may choose x1, x2 ∈ X
and 0 < α <∞ such that h1(x1) > αh2(x1) and h1(x2) < αh2(x2). Define

A = {h1 ≤ αh2}.

Then RAh1 ≤ αh2, hence bRAh1(x1) < h1(x1).
So A is not h1—thick. Moreover,

bR{Ah2 ≤ 1

α
h1,

hence bR{Ah2(x2) < h2(x2).
So {A is not h2—thick. Since bRBh = bRBh1 + bRBh2 for every B ⊂ X, we finally
obtain that bRAh 6= h and bR{Ah 6= h, i.e., A and {A are not h-thick.
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Corollary 8.4 The following statements are equivalent:

(i) h is minimal.

(ii) Every M is h-small or h-big.

(iii) For all M,N which are not h-big, the sum M +N is not h-big.

Proof
(i) =⇒ (ii): Proposition 7.13.
(ii) =⇒ (iii): Trivial by Proposition 7.16.
(iii) =⇒ (i): Suppose that h is not minimal. By Proposition 8.3, there is a Borel

subset A of X such that A and {A are not h-thick. Using Proposition 8.2 choose
M ∈M+(X) such that h is M—big. Then M = 1AM + 1{AM and 1AM and 1{AM
are not h-big by Lemma 7.18.

9 Appendix

9.1 Proof of Proposition 2.1

(1) Fix a sequence {fn} in Bb(V ) such that 0 ≤ fn ≤ 1 for every n ∈ N and choose
B0 ∈ Or such that B ⊂ B0. Then the sequence {Kµ

B0fn} (extend fn by 0) in Cb(B0)
is equicontinuous, since GµB0 is a continuous real potential on B

0. So there exists a
subsequence {gn} of {fn} such that (Kµ

B0gn) converges uniformly on B. This implies
that the sequence {Kµ

Bgn} = {Kµ
B0gn −HBKµ

B0gn} converges uniformly on B.
(2) Let w = s+Kµ

Bs+ t and let C be a compact subset of {s+ > 0} = {s > 0}
. Then w +Kµ

Bs
− is a positive superharmonic function on B and

w +Kµ
Bs
− = s+Kµ

Bs
+ + t ≥ Kµ

Bs
+ ≥ Kµ

B(1Cs
+) on C.

Since Kµ
B(1Cs

+) is harmonic on BrC and vanishes on ∂B, the minimum principle
implies that

w +Kµ
Bs
− ≥ Kµ

B(1Cs
+) on B r C.

Since C is an arbitrary compact subset of {s+ > 0}, we thus conclude that w +
Kµ
Bs
− ≥ Kµ

Bs
+, i.e., s+ t = w −Kµ

Bs ≥ 0.
(3) It suffices to note that I + Kµ

B is injective by (2), hence surjective as well
since Kµ

B is compact.
(4) and (5). Let u = Hµ

Bf = (I +K
µ
B)
−1HBf . Then

u+Kµ
Bu = HBf.

In particular, u is continuous on B and tends to f at the boundary of B. Moreover,

∆u− uµ = ∆(u+Kµ
Bu) = ∆HBf = 0.

Suppose that v is any continuous real function on B such that ∆v − vµ = 0 and v
tends to f at ∂B. Then s := u− v tends to zero at ∂B and satisfies

∆(s+Kµ
Bs) = ∆s− sµ = 0,
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i.e., s+Kµ
Bs is harmonic. Hence s+K

µ
Bs = 0, and s = 0 by item (2).

Now assume that f ≥ 0. Then u ≥ 0 by item (2), and u ≤ u +Kµ
Bu = HBf .

Finally, fix a Kato measure ν on X and let w = Hµ+ν
B f . Then the continuous

function s = u− w tends to zero at ∂B and

s+Kµ+ν
B s = (u+Kµ

Bu) +K
ν
Bu− (w +Kµ+ν

B w) = Kν
Bu

is a positive superharmonic function, hence s ≥ 0 by item (2).

9.2 Kato measures and smooth measures

Proposition 9.1 Let µ ≥ 0 be a measure on (X,B(X)). Then the following state-
ments are equivalent:

(1) µ is smooth.

(2) µ is the limit of an increasing sequence of Kato measures.

(3) µ has a density with respect to a Kato measure.

Proof. (1) =⇒ (2): Since finite sums of Kato measures are Kato measures, we
may assume that µ is a smooth Radon measure with compact support. Then Gµ

is a potential on Rd. In particular, the set {Gµ = ∞} is a polar set and hence
µ({Gµ =∞}) = 0. Therefore, defining

An = {n− 1 ≤ Gµ < n}, νn = 1Anµ,

we have µ =
P∞

n=1 νn where G
νn ≤ n since Gνn ≤ Gµ ≤ n on An. Being bounded

each Gνn is the sum of continuous potentials Gνnm, m ∈ N. It now suffices to take

µn =
nX

i,j=1

νij.

(2) =⇒ (3): Let (µn) be a sequence of Kato measures which is increasing to µ
and let (Un) ⊂ Uc be an exhaustion of X. Then νn := 1Unµn ↑ µ as n → ∞ and
Gνn ∈ Cb(X) for every n ∈ N. There exist αn > 0 such that ν :=

P∞
n=1 αnνn satisfies

Gν ∈ Cb(X). Then ν is a Kato measure. Clearly, each νn possesses a density with
respect to ν and so does µ.
(3) =⇒ (2): Let ν be a Kato measure and µ = ϕν, ϕ ∈ B+(X). Then every

µn := 1{ϕ≤n}ν, n ∈ N, is a Kato measure and µn ↑ µ.
(2) =⇒ (1): It suffices to recall that a Kato measure does not charge polar sets

(the minimum principle implies that Gν cannot be a continuous real potential if ν
is supported by a polar set).
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