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Abstract. We prove that for a general diffusion process, certain assumptions on its
behavior only within a fixed open subset of the state space imply the existence and sub-
Gaussian type off-diagonal upper bounds of the global heat kernel on the fixed open set.
The proof is mostly probabilistic and is based on a seemingly new formula, which we call
a multiple Dynkin-Hunt formula, expressing the transition function of a Hunt process in
terms of that of the part process on a given open subset. This result has an application
to heat kernel analysis for the Liouville Brownian motion, the canonical diffusion in a
certain random geometry of the plane induced by a (massive) Gaussian free field.
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1. Introduction

Let (M,d) be a locally compact separable metric space equipped with a σ-finite Borel
measure µ and let X =

(
{Xt}t∈[0,∞], {Px}x∈M∆

)
be a diffusion on M , where M∆ :=

M ∪ {∆} denotes the one-point compactification of M . The themes of this paper are
existence of the heat kernel pt(x, y) (the transition density of X with respect to µ) and
off-diagonal upper bounds of pt(x, y) of the form

pt(x, y) ≤ Ft(x, y) exp

(
−γ

(d(x, y)β
t

) 1
β−1

)
(1.1)
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for some γ ∈ (0,∞), β ∈ (1,∞) and a positive function Ft(x, y). In most typical cases,
Ft(x, y) is given either by the power function Ft(x, y) = c0t

−α for some c0, α ∈ (0,∞) or
by the volume function

Ft(x, y) = c0µ
(
B(x, t1/β)

)−1/2
µ
(
B(y, t1/β)

)−1/2
, (1.2)

where β is as in (1.1) and B(x, r) := {y ∈ M | d(x, y) < r} for (x, r) ∈ M × (0,∞).
For β = 2, (1.1) is called a Gaussian upper bound and has been extensively studied in

the classical setting where M is a complete Riemannian manifold. For example, when M
has non-negative Ricci curvature, the Gaussian bound (1.1) under (1.2), together with a
matching lower bound, has been proved for the Brownian motion on M by Li and Yau
[35] and for uniformly elliptic diffusions on M by Saloff-Coste [40]. It is also known by the
results of Grigor’yan [20, 21] and Saloff-Coste [39, 40] that these bounds are characterized
or implied by certain scale-invariant functional inequalities, such as Poincaré, local Sobolev
and relative Faber-Krahn inequalities, in conjunction with the volume doubling property

0 < µ(B(x, 2r)) ≤ cvdµ(B(x, r)) < ∞. (1.3)

Saloff-Coste’s proofs have developed from Moser’s iteration argument in [37, 38] combined
with Davies’ method in [14] for making the constant γ in (1.1) arbitrarily close to 1

4 , and
have been extended by Sturm [42, 43] to the framework of a general strongly local regular
Dirichlet space whose associated intrinsic metric is non-degenerate. This last property
basically means that for each relatively compact ball B(x, r) there exists a cutoff function
ϕ = ϕx,r satisfying 1B(x,r) ≤ ϕ ≤ 1B(x,2r) and “|∇ϕ| ≤ r−1” µ-a.e., which makes it
possible to apply the methods developed for Riemannian manifolds to an abstract setting.
It should also be noted that such cutoff functions allow us to deduce localized Gaussian
bounds from localized assumptions; for example, a Gaussian upper bound of pt(x, y) for
given x, y ∈ M is implied by a local Sobolev inequality on two balls B(x, rx) and B(y, ry)
alone. See [15, 23, 41, 42, 43] and references therein for further details of Gaussian bounds.

The values of β greater than 2 naturally appear in the study of diffusions on fractals.
Barlow and Perkins have proved in their seminal work [11] that the canonical diffusion
on the two-dimensional Sierpiński gasket satisfies (1.1) with (1.2) and β = log2 5 > 2 as
well as a matching lower bound, which indicate a lower diffusion speed of the heat and
are thereby called sub-Gaussian bounds. Such two-sided bounds with β > 2 have been
established also for nested fractals by Kumagai [33], affine nested fractals by Fitzsimmons,
Hambly and Kumagai [18] and Sierpiński carpets by Barlow and Bass [4, 5] (see also [8]),
which in turn have motivated a number of recent studies on characterizing sub-Gaussian
bounds, like [7, 10, 24, 27, 28, 32, 34] for two-sided and [1, 22, 25, 27, 31] for upper. A
huge technical difficulty in the sub-Gaussian case is that, even though we can construct
good cutoff functions similar to the Gaussian case a posteriori on the basis of sub-Gaussian

bounds as has been done in [1, 7, 27], it is hopeless to have such functions a priori ; indeed,
the natural distance function may well even not belong to the domain of the Dirichlet form
as proved in [29, Proposition A.3] for the two-dimensional Sierpiński gasket. Therefore
in getting sub-Gaussian bounds, practically we cannot use analytic methods developed
for Gaussian bounds, and most of the existent researches have made indispensable use of
arguments on the diffusion process instead.

While calculations with the diffusion enable us to estimate various analytic quantities
through probabilistic considerations, it is not clear whether they admit localized implica-
tions similar to the analytic proofs of Gaussian bounds, and there seems to be no result in
the literature stating such implications explicitly. In fact, unless the diffusion X has a cer-
tain prescribed local regularity property as in the case of Riemannian manifolds and that
of resistance forms treated in [32], localizing existence results for the heat kernel pt(x, y) is
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already highly non-trivial, since its existence on a given subset could be prevented by the
possibly very bad behavior of the diffusion outside the subset. These issues of localization
have been carefully avoided in the known probabilistic derivations of sub-Gaussian heat
kernel bounds, either by assuming as in [31] the ultracontractivity of the heat semigroup
and thereby the existence and boundedness of the heat kernel pt(x, y), or by assuming
good situations everywhere in every scale as in [22, 25, 28] and their descendants [24, 27].

The purpose of this paper is to provide a new probabilistic method of obtaining localized

existence and sub-Gaussian upper bounds of the heat kernel pt(x, y) of X from localized

assumptions on X. Now we briefly outline the statements of our main theorems.
The main localized existence theorem for the heat kernel (Theorem 5.4) is proved

for a Radon measure µ on M with full support and a µ-symmetric Hunt process X =(
{Xt}t∈[0,∞], {Px}x∈M∆

)
on M (not necessarily with continuous sample paths) whose

Dirichlet form (E ,F) is regular on L2(M,µ). Let U be a non-empty open subset of M , set
τU := inf{t ∈ [0,∞) | Xt ∈ M∆ \U} (inf ∅ := ∞) and let {TU

t }t∈(0,∞) denote the Dirichlet
heat semigroup on U . Then Theorem 5.4 states that for an interval I ⊂ (0,∞) and open
subsets V,W of M , a “µ-almost everywhere upper bound for {TU

t }t∈(0,∞) on I×V ×W by
a locally bounded upper semi-continuous kernel H = Ht(x, y)” yields a Borel measurable
function pU = pUt (x, y) with 0 ≤ pUt (x, y) ≤ Ht(x, y) such that for E-quasi-every x ∈ V ,
for any t ∈ I,

Px[Xt ∈ dy, t < τU ] = pUt (x, y) dµ(y) on W. (1.4)

In fact, the same sort of results along with some additional regularity properties of pt(x, y)
have been obtained for I = (0,∞) and U = V = W = M in [22, Sections 7 and 8] and [6,
Theorem 3.1], but our Theorem 5.4 should suffice for most applications since it already
guarantees the expected bound pUt (x, y) ≤ Ht(x, y) without requiring any regularity of the
heat kernel pUt (x, y).

The proof of Theorem 5.4 is mostly based on potential theory for regular symmetric
Dirichlet forms developed in [19, Chapters 2 and 4]; it should not be very difficult to
generalize Theorem 5.4 to a wider framework where the same kind of potential theory is
still available. As an intermediate step for the proof of Theorem 5.4, we also prove in
Proposition 5.6 that “for E-quasi-every x ∈ V ” in the above statement can be improved
to “for any x ∈ V ” if the inequality Px[Xt ∈ dy, t < τU ] ≤ Ht(x, y) dµ(y) holds on W for
any (t, x) ∈ I × V .

Next we turn to our second main theorem on localized sub-Gaussian upper bounds
of heat kernels (Theorem 6.2). For the reader’s convenience, we give here the precise
statement of a simplified version of it. For B ⊂ M , set τB := inf{t ∈ [0,∞) | Xt ∈ M∆\B}
(inf ∅ := ∞) and let B(B) denote its Borel σ-field under the relative topology inherited
from M .

Theorem 1.1. Let (M,d) be a locally compact separable metric space, let µ be a σ-finite
Borel measure µ on M and let X =

(
Ω,M, {Xt}t∈[0,∞], {Px}x∈M∆

)
be a Hunt process on

(M,B(M)) with life time ζ. Let N ∈ B(M) and assume that for any x ∈ M \N ,

Px

[
Xt ∈ M∆ \N for any t ∈ [0,∞), [0, ζ) ∋ t 7→ Xt ∈ M is continuous

]
= 1 (1.5)

(namely, M \N is X-invariant and the restriction X|M\N of X to M \N is a diffusion).
Let β ∈ (1,∞), let R ∈ (0,∞), let U be a non-empty open subset of M with diamU ≤ R

and let F = Ft(x, y) : (0, R
β ] × U × U → (0,∞) be Borel measurable. Let cF , αF , c, γ ∈

(0,∞) and assume that the following three conditions (DB)β, (DU)U,RF and (P)U,Rβ hold:

(DB)β For any (t, x, y), (s, z, w) ∈ (0, Rβ ]× U × U with s ≤ t,

Fs(z, w)

Ft(x, y)
≤ cF

(
t ∨ d(x, z)β ∨ d(y, w)β

s

)αF

. (1.6)
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(DU)U,RF For any (t, x) ∈ (0, Rβ)× (U \N) and any A ∈ B(U),

Px[Xt ∈ A, t < τU ] ≤

∫

A
Ft(x, y) dµ(y). (1.7)

(P)U,Rβ For any (x, r) ∈ (U \N)× (0, R) with B(x, r) ⊂ U and any t ∈ (0,∞),

Px[τB(x,r) ≤ t] ≤ c exp
(
−γ(rβ/t)

1
β−1

)
. (1.8)

Let ε ∈ (0, 1) and set U◦
εR := {x ∈ M | infy∈M\U d(x, y) > εR} (note that U◦

εR is an open
subset of U). Then there exists a Borel measurable function p = pt(x, y) : (0,∞) × (M \
N)× U◦

εR → [0,∞) such that for any (t, x) ∈ (0,∞)× (M \N) the following hold:

Px[Xt ∈ A] =

∫

A
pt(x, y) dµ(y) for any A ∈ B(U◦

εR), (1.9)

and furthermore for any y ∈ U◦
εR,

pt(x, y) ≤





cεFt(x, y) exp
(
−γε(d(x, y)

β/t)
1

β−1
)

if t < Rβ and x ∈ U,

cε(infU×U F(2t)∧Rβ ) exp
(
−γε(R

β/t)
1

β−1
)

if t < Rβ and x 6∈ U,

cε(infU×U FRβ ) if t ≥ Rβ

(1.10)

for some cε ∈ (0,∞) explicit in β, cF , αF , c, γ, ε and γε := (15ε)
β

β−1γ.

The strength of Theorem 1.1 is that the conditions (DU)U,RF and (P)U,Rβ are independent

of the behavior of X after exiting U and thereby completely localized within U but assure
nevertheless the existence and an upper bound of the heat kernel p = pt(x, y) for the global
transition function Px[Xt ∈ dy].

The power function Ft(x, y) = c0t
−α clearly satisfies (DB)β , and it is easy to see

that (DB)β holds also for the volume function (1.2) provided (1.3) is satisfied for any
(x, r) ∈ U × (0, R); see Example 5.10 for some more details. In view of these examples

of F = Ft(x, y), (DU)U,RF amounts to an on-diagonal upper bound of the heat kernel

pU = pUt (x, y) for {TU
t }t∈(0,∞), which is known to be implied in the setting of a regular

symmetric Dirichlet form by the local Nash inequality as shown in [31, Lemma 4.3] and
by the Faber-Krahn inequality as treated in [25, Subsection 5.2 and (5.48)].

The proof of Theorem 1.1 relies essentially only on two probabilistic iteration arguments
based on the strong Markov property ofX, where the series in the resulting upper estimates

are shown to converge to the desired bounds by making heavy use of the condition (P)U,Rβ .

In this sense, (P)U,Rβ could be considered as the probabilistic replacement for cutoff functions

with well-controlled energy. One iteration argument involves the behavior of X within U
alone and is used in the first step of the proof of Theorem 1.1 to obtain an off-diagonal
sub-Gaussian type upper bound of the Dirichlet heat kernel pU = pUt (x, y) on U without

assuming the symmetry of X (Proposition 6.5). The other iteration is formulated as an
equality, which we call a multiple Dynkin-Hunt formula, expressing the global transition
function Px[Xt ∈ A] in terms of Py[Xs ∈ A, s < τU ], (s, y) ∈ [0, t] × U , for each Borel

subset A of M with A ⊂ U (Theorem 3.3) and thus enabling us to deduce upper bounds

for the former from those for the latter together with (P)U,Rβ (Proposition 6.6).

Note that the case of bounded (M,d) has been excluded from the main results of
[1, 22, 24, 25, 27, 28], mainly due to their construction of the global heat kernel pt(x, y)
as the limit as U ↑ M of the Dirichlet heat kernel pUt (x, y) on U ; indeed, taking the
limit as U ↑ M is not allowed for bounded (M,d) since part of their conditions (FK)Ψ
(Faber-Krahn inequality) and (E)Ψ (mean exit time estimate, see (7.16) and (7.17) in
Theorem 7.3 below) must fail when the ball B(x, r) coincides with M . We expect that
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this difficulty can be overcome by applying the main results of this paper, so that their
results should be easily extended to the case of bounded (M,d). In fact, Barlow, Bass,
Kumagai and Teplyaev [9] have used an argument very similar to our proof of Theorem
3.3 and Proposition 6.6 in [9, Proof of Proposition 2.12] for the resolvent of the diffusion
to extend part of the main results of [24, 28] to the case of bounded (M,d). Our proof of
Theorem 1.1 has successfully localized their idea by working directly with the transition
function (semigroup) rather than the resolvent.

Finally, we remark that Theorem 1.1 has been recently applied in [2] to prove the
continuity and sub-Gaussian off-diagonal upper bounds of the heat kernel of the Liouville

Brownian motion, the canonical diffusion in a certain random geometry of R2 induced by a
(massive) Gaussian free field. These results in [2] have had to rely strongly on Theorem 1.1
due to the fact that the unboundedness of R2 precludes any uniform estimates of volumes
and exit times over the whole R

2 valid for almost every environment, as opposed to the
case of the two-dimensional torus, where the same kind of results have been obtained
independently and simultaneously in [36].

The rest of this paper is organized as follows. In Section 2, we collect basic definitions
and facts concerning Hunt processes. Section 3 formulates one of our two iteration ar-
guments as a multiple Dynkin-Hunt formula and proves it for an arbitrary Hunt process
(Theorem 3.3). In Section 4, we recall the notions of the symmetry of a Hunt process, the
associated symmetric Dirichlet form and its regularity, together with some basic potential
theory that is needed in Section 5 to state and prove our main localized existence theorem
for the heat kernel (Theorem 5.4). In Section 6 we state our main theorem on localized
sub-Gaussian upper bounds of heat kernels (Theorem 6.2) and a global version of it (Theo-
rem 6.4) and prove them on the basis of our other probabilistic iteration (Proposition 6.5)

and the multiple Dynkin-Hunt formula combined with the condition (P)U,Rβ (Proposition

6.6). Lastly, Section 7 is devoted to providing sufficient conditions for (P)U,Rβ (Theorems

7.2 and 7.3) as a localized version of the (well-)known results in [3, 22, 25].

Notation. In this paper, we adopt the following notation and conventions.

(0) The symbols ⊂ and ⊃ for set inclusion allow the case of the equality.
(1) N = {n ∈ Z | n > 0}, i.e., 0 6∈ N.
(2) We set sup ∅ := 0 and inf ∅ := ∞. We write a ∨ b := max{a, b}, a ∧ b := min{a, b},

a+ := a∨ 0 and a− := −(a∧ 0) for a, b ∈ [−∞,∞], and we use the same notation also
for [−∞,∞]-valued functions and equivalence classes of them. All numerical functions
treated in this paper are assumed to be [−∞,∞]-valued.

(3) Let E be a topological space. The Borel σ-field of E is denoted by B(E). We set

C(E) := {u | u : E → R, u is continuous},

Cc(E) := {u ∈ C(E) | the closure of u−1(R \ {0}) in E is compact},

B(E) := {u | u : E → [−∞,∞], u is Borel measurable (i.e., B(E)-measurable)},

B+(E) := {u ∈ B(E) | u is [0,∞]-valued},

Bb(E) := {u ∈ B(E) | ‖u‖sup < ∞},

where ‖u‖sup := ‖u‖sup,E := supx∈E |u(x)| for u : E → [−∞,∞].

2. Basics on Hunt processes

In this section, we introduce our framework of a Hunt process. To keep the main results
of this paper accessible to those who are not familiar with the theory of Markov processes,
we explain basic definitions and facts in some detail. See [19, Section A.2] and [13, Section
A.1] for further details on Hunt processes.
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LetM be a locally compact separable metrizable topological space. The interior, closure
and boundary of A ⊂ M in M are denoted by intA, A and ∂A, respectively. Each A ⊂ M
is equipped with the relative topology inherited from M , so that its Borel σ-field B(A) can
be expressed as B(A) = {B ∩A | B ∈ B(M)}. Let M∆ := M ∪ {∆} denote the one-point
compactification of M , which satisfies B(M∆) = B(M)∪{A∪{∆} | A ∈ B(M)}. In what
follows, [−∞,∞]-valued functions on M are always set to be 0 at ∆ unless their values at
∆ are already defined: u(∆) := 0 for u : M → [−∞,∞].

Let X =
(
Ω,M, {Xt}t∈[0,∞], {Px}x∈M∆

)
be a Hunt process on (M,B(M)) with life time

ζ and shift operators {θt}t∈[0,∞]. By definition, (Ω,M) is a measurable space, {Xt}t∈[0,∞]

is a family of M/B(M∆)-measurable maps Xt : Ω → M∆ such that Xt(ω) = ∆ for any
t ∈ [ζ(ω),∞] for each ω ∈ Ω, where ζ(ω) := inf{t ∈ [0,∞) | Xt(ω) = ∆}, and {θt}t∈[0,∞]

is a family of maps θt : Ω → Ω satisfying Xs ◦ θt = Xs+t for any s, t ∈ [0,∞]. It is
further assumed that for each ω ∈ Ω, [0,∞) ∋ t 7→ Xt(ω) ∈ M∆ is right-continuous and
the limit Xt−(ω) := lims→t, s<tXs(ω) exists in M∆ for any t ∈ (0,∞); see [19, Section
A.2, (M.6)]. The pair X of such a stochastic process

(
Ω,M, {Xt}t∈[0,∞]

)
and a family

{Px}x∈M∆
of probability measures on (Ω,M) is then called a Hunt process on (M,B(M))

if and only if it is a normal Markov process on (M,B(M)) whose minimum completed
admissible filtration F∗ = {Ft}t∈[0,∞] is right-continuous and it is strong Markov and
quasi-left-continuous with respect to F∗; see [19, Section A.2, (M.2)–(M.5), the paragraph
before Lemma A.2.2, (A.2.3) and (A.2.4)] for the precise definitions of these notions.

For x ∈ M∆, the expectation (that is, the integration on Ω) under the measure Px is
denoted by Ex[(·)]. We remark that by [13, Exercise A.1.20-(i)], for each F∞-measurable
random variable Y : Ω → [0,∞] the function M∆ ∋ x 7→ Ex[Y ] ∈ [0,∞] is universally

measurable, i.e., measurable with respect to the universal σ-field B∗(M∆) of M∆ defined
as B∗(M∆) :=

⋂
ν B

ν(M∆); here ν runs through the set of probability (or equivalently,
σ-finite) measures on (M∆,B(M∆)) and Bν(M∆) denotes the ν-completion of B(M∆).

The Hunt processX gives rise to a family {Pt}t∈[0,∞) of Markovian kernels on (M,B(M))
called the transition function of X, which is defined by

Pt(x,A) := Px[Xt ∈ A], t ∈ [0,∞), x ∈ M, A ∈ B(M). (2.1)

Then for t ∈ [0,∞) and u ∈ B(M), we define

Ptu(x) :=

∫

M
u(y)Pt(x, dy) = Ex[u(Xt)] (2.2)

for x ∈ M satisfying Ex[u
+(Xt)] ∧ Ex[u

−(Xt)] < ∞, so that Pt(B
+(M)) ⊂ B+(M) and

Pt(Bb(M)) ⊂ Bb(M). Note that our convention of setting Ptu(∆) := 0 is consistent with
(2.2) for x = ∆ since E∆[u(Xt)] = E∆[u(∆)] = 0 by P∆[Xt = ∆] = 1. Obviously, if
u ∈ B(M) is [0, 1]-valued then so is Ptu, and the Markov property of X (see [19, (A.2.2)]
or [13, (A.1.3)]) easily implies the semigroup property

PtPsu = Pt+su, t, s ∈ [0,∞), u ∈ B+(M) ∪ Bb(M). (2.3)

Moreover, it easily follows from the sample path right-continuity of X and the Dynkin
class theorem [12, Chapter 0, Theorem 2.2] that

[0,∞)×M ∋ (t, x) 7→ Ptu(x) is Borel measurable for any u ∈ B+(M) ∪ Bb(M). (2.4)

Recall that σ : Ω → [0,∞] is called an F∗-stopping time if and only if {σ ≤ t} ∈ Ft for
any t ∈ [0,∞). For B ⊂ M∆, we define its entrance time σ̇B and exit time τB for X by

σ̇B(ω) := inf{t ∈ [0,∞) | Xt(ω) ∈ B}, ω ∈ Ω and τB := σ̇M∆\B, (2.5)
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and we also set σ̂B(ω) := inf{t ∈ (0,∞) | Xt−(ω) ∈ B} for ω ∈ Ω. If B ∈ B(M∆), then
σ̇B, τB, σ̂B are F∗-stopping times and

Px[σ̇B ≤ σ̂B] = 1 for any x ∈ M∆ (2.6)

by [19, Theorem A.2.3], where the case of ∆ ∈ B is easily deduced from that of B ∈ B(M)
by using the equalities σ̇B∪{∆} = σ̇B∧ζ and σ̂B∪{∆} = σ̂B∧σ̂{∆} for B ⊂ M and the quasi-
left-continuity [19, (A.2.4)] of X (see also [13, Theorem A.1.19 and Exercise A.1.26-(ii)]).
Note that if B ⊂ M∆, t ∈ [0,∞] and ω ∈ {σ̇B ≥ t} then σ̇B(ω) = t+ σ̇B(θt(ω)).

Next we introduce the part of X on open sets. Let U be a non-empty open subset of
M , let U∆ := U ∪ {∆U} denote its one-point compactification and define

XU
t (ω) :=

{
Xt(ω) if t < τU (ω),

∆U if t ≥ τU (ω),
(t, ω) ∈ [0,∞]× Ω (2.7)

and P∆U
:= P∆. Then XU :=

(
Ω,M, {XU

t }t∈[0,∞], {Px}x∈U∆

)
, called the part of X on U ,

is a Hunt process on (U,B(U)) by [19, Theorem A.2.10]. Its transition function is naturally
extended to (M,B(M)) as a family {PU

t }t∈[0,∞) of Markovian kernels on (M,B(M)) given
by (with the obvious convention that ∆U 6∈ M)

PU
t (x,A) := Px[X

U
t ∈ A] = Px[Xt ∈ A, t < τU ], t ∈ [0,∞), x ∈ M, A ∈ B(M). (2.8)

Also for t ∈ [0,∞) and u ∈ B(M), similarly to (2.2) we further define

PU
t u(x) :=

∫

M
u(y)PU

t (x, dy) =

∫

U
u(y)PU

t (x, dy) = Ex[u(Xt)1{t<τU}] (2.9)

for x ∈ M satisfying Ex[u
+(Xt)1{t<τU}] ∧ Ex[u

−(Xt)1{t<τU}] < ∞, where 1A : Ω → {0, 1}
denotes the indicator function of A ⊂ Ω given by 1A|A := 1 and 1A|Ω\A := 0. Then

PU
t u(x) = 0 for x ∈ M \ U , PU

t (B+(M)) ⊂ B+(M), PU
t (Bb(M)) ⊂ Bb(M), and (2.3) and

(2.4) hold with {PU
t }t∈[0,∞) in place of {Pt}t∈[0,∞).

3. A multiple Dynkin-Hunt formula for Hunt processes

As in Section 2, let M be a locally compact separable metrizable topological space and
let X be a Hunt process on (M,B(M)) with life time ζ and shift operators {θt}t∈[0,∞].
Throughout the rest of this paper, we fix this setting and follow the notation introduced in

Section 2.
In this section, we state and prove a multiple Dynkin-Hunt formula (Theorem 3.3 below)

which gives an expression of Ptu in terms of PU
s u, s ∈ [0, t], for a non-empty open subset

U of M and functions u ∈ B+(M)∪Bb(M) supported in U . It will be used later in Section
6 to deduce upper bounds for {Pt}t∈(0,∞) from those for {PU

t }t∈(0,∞).
The statement of Theorem 3.3 requires the following definition and proposition.

Definition 3.1. For σ : Ω → [0,∞] and B ⊂ M∆, the entrance time σ̇B,σ and exit time

τB,σ of B after σ for X are defined by (with the convention that [∞,∞) := ∅)

σ̇B,σ(ω) := inf{t ∈ [σ(ω),∞) | Xt(ω) ∈ B}, ω ∈ Ω and τB,σ := σ̇M∆\B,σ, (3.1)

so that σ̇B,σ(ω) = σ(ω) + σ̇B(θσ(ω)(ω)) and τB,σ(ω) = σ(ω) + τB(θσ(ω)(ω)) for any ω ∈ Ω.

Proposition 3.2. For any F∗-stopping time σ and any B ∈ B(M∆), the entrance time

σ̇B,σ and exit time τB,σ of B after σ for X are F∗-stopping times.

Proof. This proposition should be well-known, but we give an explicit proof for com-
pleteness. We follow [13, Proof of Theorem A.1.19]. For each t ∈ (0,∞), the set
{σ̇B,σ < t} = {ω ∈ Ω | σ̇B,σ(ω) < t} is equal to the projection on Ω of

{(s, ω) ∈ [0, t)× Ω | σ(ω) ≤ s, Xs(ω) ∈ B},
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which is easily shown to belong to the product σ-field B([0, t]) ⊗ Ft by the sample path
right-continuity of X and the assumption that σ is an F∗-stopping time. Therefore [16,
Chapter III, 13 and 33] imply that {σ̇B,σ < t} ∈ Ft, which means that σ̇B,σ, and hence
also τB,σ, are F∗-stopping times since F∗ is right-continuous. �

Now we state the main theorem of this section. Recall for σ : Ω → [0,∞] that the map
Xσ : Ω → M∆ is defined as Xσ(ω) := Xσ(ω)(ω) and that Xσ is F∞/B(M∆)-measurable if
σ is F∞-measurable by the sample path right-continuity of X.

Theorem 3.3 (A multiple Dynkin-Hunt formula). Let U be a non-empty open subset of

M , let B ∈ B(M) satisfy B ⊂ U and define F∗-stopping times τn and σn, n ∈ N, by

τ1 := τU and inductively σn := σ̇B,τn and τn+1 := τU,σn , n ∈ N. (3.2)

Then for any u ∈ B+(M) ∪ Bb(M) with u|M\B = 0 and any (t, x) ∈ [0,∞)×M ,

Ptu(x) = PU
t u(x) +

∑

n∈N

Ex

[
1{σn≤t}P

U
t−σn

u(Xσn)
]
. (3.3)

Note that by (2.4) for {PU
t }t∈[0,∞), the random variable 1{σn≤t}P

U
t−σn

u(Xσn) in (3.3) is

F∞-measurable for any u ∈ B+(M) ∪ Bb(M), any t ∈ [0,∞) and any n ∈ N.
Recall that the Dynkin-Hunt formula refers to (the heat kernel version of) the following

equality, which is an easy consequence of Proposition 3.4 below: for any non-empty open
subset U of M , any u ∈ B+(M) ∪ Bb(M) and any (t, x) ∈ [0,∞)×M ,

Ptu(x) = PU
t u(x) + Ex

[
1{τU≤t}Pt−τUu(XτU )

]
. (3.4)

(3.3) can be regarded as an indefinite iteration of (3.4) through restartingX at the entrance
time σ̇B,τU of B after τU , which is why we call (3.3) a multiple Dynkin-Hunt formula.

For the proof of Theorem 3.3 we need a variation of the strong Markov property of X
as in the following proposition. Recall for each F∗-stopping time σ that the collection

Fσ := {A ∈ F∞ | A ∩ {σ ≤ t} ∈ Ft for any t ∈ [0,∞)} (3.5)

is a σ-field in Ω with respect to which σ is measurable, that Xσ is Fσ/B
∗(M∆)-measurable

by [13, Exercise A.1.20-(ii)], and that the map θσ : Ω → Ω, θσ(ω) := θσ(ω)(ω), is F∞/F∞-
measurable by [13, Theorem A.1.21].

Proposition 3.4. Let σ be an F∗-stopping time, let τ : Ω → [0,∞] be F∞-measurable and

let T : Ω → [0,∞] be Fσ-measurable and satisfy σ(ω) ≤ T (ω) for any ω ∈ Ω. Then for

any x ∈ M∆ and any u ∈ Bb(M∆), it holds that for Px-a.e. ω ∈ {σ < ∞},

Ex

[
u(XT )1{T<σ+τ◦θσ}

∣∣ Fσ

]
(ω) = EXσ(ω)

[
u(XT (ω)−σ(ω))1{T (ω)−σ(ω)<τ}

]
. (3.6)

Proof. We follow [30, Proofs of Proposition 2.6.17 and Corollary 2.6.18]. For u ∈ Bb(M∆),
let Yu(ω) denote the right-hand side of (3.6) for ω ∈ {σ < ∞} and set Yu(ω) := 0 for
ω ∈ {σ = ∞}. Let x ∈ M∆. For the proof of (3.6) it suffices to show that Yu : Ω → R

possesses the following properties:

Yu is Fσ-measurable and Ex

[
u(XT )1{T<σ+τ◦θσ}1A

]
= Ex[Yu1A] for any A ∈ Fσ. (3.7)

We first prove (3.7) for u ∈ C(M∆). Let n ∈ N and define Tn : Ω → [0,∞] by

Tn|{σ+(k−1)2−n≤T<σ+k2−n} := σ + k2−n, k ∈ N and Tn|{T=∞} := ∞, (3.8)

so that Tn is Fσ-measurable and Tn − 2−n ≤ T ≤ Tn. Also define Yu,n in the same way as
Yu with Tn in place of T . Then Yu,n|{T=∞} = 0 = Yu|{T=∞}, and limn→∞ Yu,n = Yu on

{T < ∞} by Tn − 2−n ≤ T ≤ Tn, the sample path right-continuity of X and dominated
convergence. Also for k ∈ N, on {σ + (k − 1)2−n ≤ T < σ + k2−n} ∈ Fσ we have Yu,n =
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EXσ [u(Xk2−n)1{k2−n<τ}], and since the latter is Fσ-measurable by [13, Exercise A.1.20] so
are Yu,n and Yu = limn→∞ Yu,n. Now for A ∈ Fσ, thanks to dominated convergence,

Ex

[
u(XTn)1{Tn<σ+τ◦θσ}1A

]
=

∑

k∈N

Ex

[
1A∩{Tn=σ+k2−n<∞}

(
(u(Xk2−n)1{k2−n<τ}) ◦ θσ

)]

=
∑

k∈N

Ex

[
1A∩{Tn=σ+k2−n<∞}EXσ [u(Xk2−n)1{k2−n<τ}]

]

= Ex[Yu,n1A]

by the strong Markov property [13, Theorem A.1.21] of X at time σ, and we conclude
(3.7) by using Tn−2−n ≤ T ≤ Tn and the sample path right-continuity of X to let n → ∞.

Note that for u ∈ Bb(M∆) and {un}n∈N ⊂ Bb(M∆) such that supn∈N ‖un‖sup < ∞ and
limn→∞ un(y) = u(y) for any y ∈ M∆, if un satisfies (3.7) for any n ∈ N then so does u by
dominated convergence. Therefore it follows from the previous paragraph that (3.7) holds
for u = 1B with B ⊂ M∆ closed in M∆, hence also with B ∈ B(M∆) by the Dynkin class
theorem [12, Chapter 0, Theorem 2.2], and thus for any u ∈ Bb(M∆). �

Proof of Theorem 3.3. For n ∈ N, τn ≤ σn ≤ τn+1 by (3.1) and (3.2), and the sample path
right-continuity of X implies that Xτn ∈ M \U and τn < σn on {τn < ζ} and that Xσn ∈ B
and σn < τn+1 ∧ ζ on {σn < ∞}. Moreover, setting τ := limn→∞ τn = limn→∞ σn, we see
from the quasi-left-continuity [19, (A.2.4)] of X that for any x ∈ M ,

Px[τ < ζ] = Px[τ < ζ, limn→∞Xτn = Xτ = limn→∞Xσn ] = Px[∅] = 0. (3.9)

Let (t, x) ∈ [0,∞)×M . Then for each ω ∈ {Xt ∈ B, ζ ≤ τ}, t < ζ(ω) ≤ τ(ω) and hence
either t < τ1(ω), or τn(ω) ≤ t < τn+1(ω) for some n ∈ N, whence σn(ω) ≤ t < τn+1(ω) by
Xt(ω) ∈ B; namely {Xt ∈ B, ζ ≤ τ} ⊂ {t < τ1}∪

⋃
n∈N{σn ≤ t < τn+1}, and this union is

disjoint. Therefore for any u ∈ Bb(M) with u|M\B = 0, noting that τn+1 = σn + τU ◦ θσn

for any n ∈ N and using (3.9), dominated convergence and Proposition 3.4, we obtain

Ptu(x) = Ex[u(Xt)] = Ex[u(Xt)1{Xt∈B, ζ≤τ}]

= Ex

[
u(Xt)1{Xt∈B, ζ≤τ}

(
1{t<τ1} +

∑

n∈N

1{σn≤t<τn+1}

)]

= Ex[u(Xt)1{t<τU}] +
∑

n∈N

Ex[u(Xt)1{σn≤t<σn+τU◦θσn}
]

= PU
t u(x) +

∑

n∈N

Ex

[
1{σn≤t}Ex

[
u(Xt)1{t<σn∧t+τU◦θσn∧t}

∣∣ Fσn∧t

]]

= PU
t u(x) +

∑

n∈N

∫

{σn≤t}
EXσn∧t(ω)

[
u(Xt−σn(ω)∧t)1{t−σn(ω)∧t<τU}

]
dPx(ω)

= PU
t u(x) +

∑

n∈N

Ex

[
1{σn≤t}P

U
t−σn

u(Xσn)
]
,

where the equality in the fourth line holds since {σn ≤ t} ∈ Fσn∧t by [30, Lemma 1.2.16].
Thus we have proved (3.3) for u ∈ Bb(M) with u|M\B = 0, which easily implies (3.3) for

u ∈ B+(M) with u|M\B = 0 by monotone convergence. �

4. Symmetry of a Hunt process and the associated Dirichlet form

In this section, assuming the symmetry of our Hunt process X, we first recall that such
X naturally gives rise to a symmetric Dirichlet form, and then introduce related potential
theoretic notions. We refer the reader to [19, 13] for further details.
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4.1. The Dirichlet form of a symmetric Hunt process. In the rest of this paper, we
fix a metric d on M compatible with the topology of M , and a Radon measure µ on M
with full support, i.e., a Borel measure onM such that µ(K) < ∞ for anyK ⊂ M compact
and µ(U) > 0 for any U ⊂ M non-empty open. We set B(x, r) := {y ∈ M | d(x, y) < r}
for (x, r) ∈ M × (0,∞) and diamA := supx,y∈A d(x, y) for A ⊂ M . For q ∈ [1,∞), we set

‖u‖q := (
∫
M |u|qdµ)1/q for u ∈ B(M) and BLq(M,µ) := {u ∈ B(M) | ‖u‖q < ∞}, and we

also set 〈u, v〉 :=
∫
M uv dµ for u, v ∈ B+(M) and for u, v ∈ B(M) with ‖uv‖1 < ∞. For

‖ · ‖q and 〈·, ·〉, we use the same notation for µ-equivalence classes of functions as well.
Now we assume that X is µ-symmetric, i.e., 〈Ptu, v〉 = 〈u,Ptv〉 for any t ∈ (0,∞) and

any u, v ∈ B+(M). Then for each t ∈ (0,∞), as in [19, (1.4.13)] we can easily verify
that ‖Ptu‖2 ≤ ‖u‖2 for any u ∈ B+(M), so that Ptu is defined µ-a.e. and determines
an element Ttu of L2(M,µ) for each u ∈ L2(M,µ) independently of a particular choice
of a µ-version of u. Thus the transition function {Pt}t∈[0,∞) of X canonically induces a

symmetric contraction semigroup {Tt}t∈(0,∞) on L2(M,µ) which is also Markovian, i.e.,

0 ≤ Ttu ≤ 1 µ-a.e. for any t ∈ (0,∞) and any u ∈ L2(M,µ) with 0 ≤ u ≤ 1 µ-a.e.
This semigroup {Tt}t∈(0,∞) is in fact strongly continuous thanks to the sample path right-
continuity of X as shown in [19, Lemma 1.4.3-(i)] and hence determines a symmetric
Dirichlet form (E ,F) on L2(M,µ) by [19, Lemma 1.3.4-(i) and Theorem 1.4.1]. Namely,
we have a dense linear subspace F of L2(M,µ) and a non-negative definite symmetric
bilinear form E : F × F → R given by

F :=
{
u ∈ L2(M,µ)

∣∣∣ lim
t↓0

t−1〈u− Ttu, u〉 < ∞
}
,

E(u, v) := lim
t↓0

t−1〈u− Ttu, v〉, u, v ∈ F ,
(4.1)

respectively, and (E ,F) is closed (i.e., F forms a Hilbert space with inner product E1 :=
E + 〈·, ·〉) and Markovian (i.e., u+ ∧ 1 ∈ F and E(u+ ∧ 1, u+ ∧ 1) ≤ E(u, u) for any u ∈ F).
(E ,F) is called the Dirichlet form of the µ-symmetric Hunt process X. Note that by [19,
Lemma 1.3.3-(i)],

Tt(L
2(M,µ)) ⊂ F for any t ∈ (0,∞). (4.2)

In what follows we further assume that the Dirichlet form (E ,F) of X is regular on

L2(M,µ), i.e., that F ∩ Cc(M) is dense both in (F , E1) and in (Cc(M), ‖ · ‖sup). Note
that this framework actually contains any regular symmetric Dirichlet form on any locally
compact separable metric space (M,d) equipped with a Radon measure µ with full support,
since any such form can be realized as the Dirichlet form of some µ-symmetric Hunt process
on (M,B(M)) by the fundamental result [19, Theorem 7.2.1] from Dirichlet form theory.

4.2. Capacity, quasi-continuity and exceptional sets. The following potential the-
oretic notions are adopted from [19, Section 2.1] and [13, Sections 1.2 and 1.3].

Definition 4.1. (1) We define the 1-capacity Cap1 associated with (M,µ, E ,F) by

cap1(U) := inf{E1(u, u) | u ∈ F , u ≥ 1 µ-a.e. on U} for U ⊂ M open in M,

Cap1(A) := inf{cap1(U) | U ⊂ M open in M, A ⊂ U} for A ⊂ M (4.3)

(recall E1 := E+〈·, ·〉). Clearly, Cap1 extends cap1 and µ(A) ≤ Cap1(A) for A ∈ B(M).
(2) A subset N of M is called E-polar if and only if Cap1(N) = 0. Moreover, if A ⊂ M

and S(x) is a statement in x ∈ A, then we say that S holds E-q.e. on A if and only if
{x ∈ A | S(x) fails} is E-polar. When A = M we simply say “S holds E-q.e.” instead.

(3) Let U ⊂ M be open in M . A function u : U \N → [−∞,∞], with N ⊂ M E-polar, is
called E-quasi-continuous on U if and only if for any ε ∈ (0,∞) there exists an open
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subset V of M with U ∩ N ⊂ V and Cap1(V ) < ε such that u|U\V is R-valued and
continuous. When U = M , such u is simply called E-quasi-continuous instead.

Remark 4.2. There are several equivalent ways of defining the notions of E-polar sets and
E-quasi-continuous functions. See [13, Section 1.2 and Theorem 1.3.14] in this connection.

Note that Cap1 is countably subadditive by [19, Lemma 2.1.2 and Theorem A.1.2].
Let U ⊂ M be open inM . By [19, Lemma 2.1.4], if u, v are E-quasi-continuous functions

on U and u ≤ v µ-a.e. on U , then u ≤ v E-q.e. on U . In particular, for each u ∈ L2(M,µ),
an E-quasi-continuous µ-version of u, if it exists, is unique up to E-q.e. By [19, Theorem
2.1.3], each u ∈ F admits an E-quasi-continuous µ-version, which is denoted as ũ.

For each t ∈ (0,∞), while Ttu = Ptu µ-a.e. for any u ∈ L2(M,µ) by the definition of
Tt, more strongly it actually holds by [19, Theorem 4.2.3-(i)] that for any u ∈ BL2(M,µ),

Ptu is an E-quasi-continuous µ-version of Ttu. (4.4)

The following definition gives a probabilistic counterpart of the notion of E-polar sets.

Definition 4.3. A Borel set N ∈ B(M) is called properly exceptional for X if and only if
µ(N) = 0 and for any x ∈ M \N , Px[σ̇N ∧ σ̂N = ∞] = 1 or, by (2.6), equivalently

Px[σ̇N = ∞] = 1. (4.5)

Note that {σ̇N ∧ σ̂N = ∞} = {X0, Xt, Xt− ∈ M∆ \N for any t ∈ (0,∞)} ∈ F∞ and
that {σ̇N = ∞} = {Xt ∈ M∆ \N for any t ∈ [0,∞)} ∈ F∞. Every properly exceptional
set for X is E-polar by [19, Theorem 4.2.1-(ii)], and conversely any E-polar set is included
in a Borel properly exceptional set for X by [19, Theorem 4.1.1].

4.3. The Dirichlet form of the part process on open sets. Let U be a non-empty
open subset of M and set µ|U := µ|B(U). Recall that the part XU of X on U is a Hunt
process on (U,B(U)) defined in (2.7) and that its transition function naturally extends to
(M,B(M)) as a family {PU

t }t∈[0,∞) of Markovian kernels on (M,B(M)) given by (2.8). In

the present situation, the assumed µ-symmetry of X implies that XU is µ|U -symmetric.
More precisely, for any t ∈ (0,∞) and any u, v ∈ B+(M), we have 〈PU

t u, v〉 = 〈u,PU
t v〉 by

[19, Lemma 4.1.3] and hence also ‖PU
t u‖2 ≤ ‖u‖2 as in [19, (1.4.13)]. Thus we obtain a

Markovian symmetric contraction semigroup {TU
t }t∈(0,∞) on L2(M,µ) canonically induced

by {PU
t }t∈(0,∞) in the same way as for {Pt}t∈(0,∞). Moreover, under the natural identifica-

tion of L2(U, µ|U ) with the closed linear subspace {u ∈ L2(M,µ) | u = 0 µ-a.e. on M \ U}
of L2(M,µ), the strongly continuous Markovian semigroup on L2(U, µ|U ) induced by the
transition function of XU is easily shown to be given by {TU

t |L2(U,µ|U )}t∈(0,∞), and hence

(4.1) with TU
t in place of Tt gives the Dirichlet form (EU ,FU ) of X

U . In fact,

FU = {u ∈ F | ũ = 0 E-q.e. on M \ U} and EU = E|FU×FU
(4.6)

by [19, Theorem 4.4.2] and (EU ,FU ) is regular on L2(U, µ|U ) by [19, Lemma 1.4.2-(ii) and
Corollary 2.3.1]. (EU ,FU ) is called the part of the Dirichlet form (E ,F) on U .

For t ∈ (0,∞) and u ∈ BL2(M,µ), while TU
t u = PU

t u µ-a.e. by definition, more strongly

PU
t u is an E-quasi-continuous µ-version of TU

t u, (4.7)

similarly to (4.4). Indeed, since v := TU
t u ∈ FU ⊂ F by (4.2) and (4.6), v admits an

E-quasi-continuous µ-version ṽ and then ṽ = 0 = PU
t u E-q.e. on M \ U by (4.6). On

the other hand, (PU
t u)|U is a µ-version of v|U which is E-quasi-continuous on U by [19,

Theorem 4.4.3] and therefore (PU
t u)|U = ṽ|U E-q.e. on U by [19, Lemma 2.1.4]. Thus

PU
t u = ṽ E-q.e., which together with the E-quasi-continuity of ṽ yields (4.7).
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5. Localized quasi-everywhere existence of the heat kernel

As in Section 4, let (M,d) be a locally compact separable metric space equipped with
a Radon measure µ with full support, and let X be a µ-symmetric Hunt process on
(M,B(M)) whose Dirichlet form (E ,F) is regular on L2(M,µ). Throughout the rest of

this paper, we fix this setting and follow the notation introduced in Section 4 in addition

to that from Sections 2 and 3.
The purpose of this section is to prove Theorem 5.4 below on the existence of the heat

kernel pU = pUt (x, y) for {P
U
t }t∈(0,∞) on a given subset of (0,∞)×M×M under a suitable

upper bound on the Markovian semigroup {TU
t }t∈(0,∞) which is assumed only on the given

subset. In the case where the subset is the whole (0,∞) × M × M , similar results have
been obtained, e.g., in [22, Sections 7 and 8] and [6, Theorem 3.1].

Remark 5.1. The µ-symmetry of X and the regularity of its Dirichlet form are assumed
mostly for the sake of simplicity of the framework. In fact, we need these assumptions
only in order to use potential theoretic results from [19, Chapters 2 and 4] in the proof of

Theorem 5.4; it should be possible to extend Theorem 5.4 to a more general framework
where the same kind of potential theory remains available, and the reader is referred to
Remarks 5.5, 6.1 and 7.1 for the precise settings actually required for the (other) results
in Sections 5, 6 and 7, respectively.

For A ⊂ M , let 1A : M → {0, 1} denote its indicator function given by 1A|A := 1 and
1A|M\A := 0. In what follows we allow an interval I ⊂ R to be a one-point set.

Definition 5.2. Let I ⊂ (0,∞) be an interval, V an open subset of M and W ∈ B(M).
A Borel measurable function H = Ht(x, y) : I×V ×W → [0,∞] is called a µ-upper bound
function on I × V ×W if and only if the following three conditions are satisfied:

(UB1) lim sups↓tHs(x, y) ≤ Ht(x, y) for any (t, x, y) ∈ I × V ×W with t < sup I.
(UB2) Ht(·, y) : V → [0,∞] is upper semi-continuous for any (t, y) ∈ I ×W .
(UB3) There exist {hn}n∈N ⊂ B+(M) and non-decreasing sequences {In}n∈N of open

subsets of I, {Vn}n∈N of open subsets of V and {Wn}n∈N of Borel subsets of W
with I =

⋃
n∈N In, V =

⋃
n∈N Vn and W =

⋃
n∈NWn such that for any n ∈ N,

∫

Wn

hn dµ < ∞ and Ht(x, y) ≤ hn(y) for any (t, x, y) ∈ In × Vn ×Wn. (5.1)

Remark 5.3. (1) In (UB3) we may assume that µ(Vn ∪ Wn) < ∞ for any n ∈ N, by
taking a non-decreasing sequence {Mn}n∈N of open subsets of M with Mn compact
and M =

⋃
n∈NMn and replacing Vn and Wn with Vn∩Mn and Wn∩Mn, respectively.

(2) It is easy to see that the condition (UB3) in Definition 5.2 is satisfied if W is open in
M and ‖H‖sup,K = sup(t,x,y)∈K Ht(x, y) < ∞ for any compact subset K of I×V ×W .

Theorem 5.4. Let I ⊂ (0,∞) be an interval, V an open subset of M , W ∈ B(M) and

let H = Ht(x, y) be a µ-upper bound function on I × V ×W . Let U be a non-empty open

subset of M . Then for each countable dense subset J of I satisfying max I ∈ J if max I
exists, the following three conditions are equivalent:

(1) For any t ∈ J and any v, w ∈ L2(M,µ) with (v1V ) ∧ (w1W ) ≥ 0 µ-a.e.,

〈v1V , T
U
t (w1W )〉 ≤

∫

V×W
v(x)Ht(x, y)w(y) d(µ× µ)(x, y). (5.2)

(2) For each t ∈ J and each w ∈ L2(M,µ) with w1W ≥ 0 µ-a.e.,

TU
t (w1W )(x) ≤

∫

W
Ht(x, y)w(y) dµ(y) for µ-a.e. x ∈ V. (5.3)
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(3) There exist a properly exceptional set N ∈ B(M) for X and a Borel measurable func-

tion pU = pUt (x, y) : I × (V \N)×W → [0,∞] such that for any (t, x) ∈ I × (V \N),

PU
t (x,A) =

∫

A
pUt (x, y) dµ(y) for any A ∈ B(W ), (5.4)

pUt (x, y) ≤ Ht(x, y) for any y ∈ W. (5.5)

We first show the following proposition, which is of independent interest and will be
used in the proof of the implication (2)⇒(3) of Theorem 5.4 and also in the proof of
Theorems 6.2 and 6.4 in the next section.

Remark 5.5. In fact, Proposition 5.6 below applies, without any changes in the proof, to

any locally compact separable metrizable topological space M , any σ-finite Borel measure

µ on M and any Hunt process X on (M,B(M)).

Proposition 5.6. Let I ∈ B([0,∞)), let V,W ∈ B(M) and let H = Ht(x, y) : I×V ×W →
[0,∞] be Borel measurable. Let U be a non-empty open subset of M . Then the following

two conditions are equivalent:

(1) For any (t, x) ∈ I × V and any A ∈ B(W ),

PU
t (x,A) ≤

∫

A
Ht(x, y) dµ(y). (5.6)

(2) There exists a Borel measurable function pU = pUt (x, y) : I × V × W → [0,∞] such
that (5.4) and (5.5) hold for any (t, x) ∈ I × V .

Proof. Since the implication (2)⇒(1) is immediate, it suffices to show the converse (1)⇒(2).
By the σ-finiteness of µ, we can choose {Wn}n∈N ⊂ B(W ) with W =

⋃
n∈NWn so that

Wn ⊂ Wn+1 and µ(Wn) < ∞ for any n ∈ N. We will construct for each n ∈ N a function

pU,n = pU,nt (x, y) : I × V × Wn → [0,∞] possessing the required properties with Wn in
place of W . If µ(Wn) = 0 then it suffices to set pU,n := 0 in view of (5.6), and therefore
we may assume µ(Wn) > 0. Let U = {Ak}k∈N be a countable open base for the topology
of M , set A0

k := M \Ak and A1
k := Ak for k ∈ N, and define

Ak := {
⋃

α∈IA
α
k | I ⊂ {0, 1}k}, k ∈ N, (5.7)

where Aα
k :=

⋂k
i=1A

αi

i for α = (αi)
k
i=1 ∈ {0, 1}k, so that {Ak}k∈N is a non-decreasing

sequence of σ-fields in M with
⋃

k∈NAk generating B(M). For k ∈ N, noting that M =⋃
α∈{0,1}k A

α
k and that Aα

k ∩ Aβ
k = ∅ for α, β ∈ {0, 1}k with α 6= β, define pU,n,k =

pU,n,kt (x, y) : I × V ×M → [0,∞) by, for α ∈ {0, 1}k and (t, x, y) ∈ I × V ×Aα
k ,

pU,n,kt (x, y) :=

{
µ(Aα

k ∩Wn)
−1PU

t 1Aα
k
∩Wn(x) if µ(Aα

k ∩Wn) > 0,

0 if µ(Aα
k ∩Wn) = 0.

(5.8)

Then pU,n,k is Borel measurable by (2.4) for {PU
t }t∈[0,∞). Furthermore for each (t, x) ∈

I×V , since PU
t (x, (·)∩Wn) is absolutely continuous with respect to µ((·)∩Wn) and f t,x

n :=
dPU

t (x,(·)∩Wn)
dµ((·)∩Wn)

≤ Ht(x, ·) µ-a.e. on Wn by (5.6), pU,n,kt (x, ·) is a version of the Ak-conditional
µ((·)∩Wn)
µ(Wn)

-expectation of f t,x
n and hence limk→∞ pU,n,kt (x, y) = f t,x

n (y) ≤ Ht(x, y) for µ-a.e.

y ∈ Wn by the martingale convergence theorem [17, Theorem 10.5.1]. Therefore the

function pU,nt (x, y) := Ht(x, y) ∧ lim infk→∞ pU,n,kt (x, y), (t, x, y) ∈ I × V × Wn, has the

desired properties. Now the proof of (2) is completed by setting pUt (x, y) := pU,nt (x, y) for
n ∈ N and (t, x, y) ∈ I × V × (Wn \Wn−1) (W0 := ∅) and using monotone convergence. �
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Proof of Theorem 5.4. The implication (2)⇒(1) is immediate, and it is easy to see from
(UB3) of Definition 5.2 and Remark 5.3-(1) that (1) implies (2). The implication (3)⇒(2)
also follows easily since TU

t u = PU
t u µ-a.e. for any t ∈ (0,∞) and any u ∈ BL2(M,µ).

Therefore it remains to prove (2)⇒(3). Let {hn}n∈N, {In}n∈N, {Vn}n∈N, {Wn}n∈N be as
in (UB3) with µ(Wn) < ∞ for any n ∈ N as noted in Remark 5.3-(1). Let Ak be as in
(5.7) for each k ∈ N and set A :=

⋃
k∈NAk, so that A is countable, generates B(M) and

satisfies ∅ ∈ A, M \A ∈ A for any A ∈ A and A ∪B ∈ A for any A,B ∈ A. By (4.7) and
[19, Theorem 2.1.2-(i)], there exists a non-decreasing sequence {Fk}k∈N of closed subsets
of M such that limk→∞Cap1(M \ Fk) = 0 and for each k ∈ N, µ(G ∩ Fk) > 0 for any
open subset G of M with G ∩ Fk 6= ∅ and {PU

t 1A∩Wn |Fk
| n ∈ N, t ∈ J , A ∈ A} ⊂ C(Fk).

Moreover, since

PU
t 1A∩Wn(x) = PU

t−l−1(P
U
l−11A∩Wn)(x) = Ex

[
PU
l−11A∩Wn(Xt−l−1)1{t−l−1<τU}

]

for l ∈ N and t ∈ [l−1,∞) by (2.3) for {PU
t }t∈[0,∞), an application of (4.7) and [19, Theorem

4.2.2] to PU
l−11A∩Wn with l, n ∈ N and A ∈ A yields an E-polar set N0 ∈ B(M) such that

(0,∞) ∋ t 7→ PU
t 1A∩Wn(x) ∈ R is right-continuous for any x ∈ M \ N0, any n ∈ N and

any A ∈ A. Then (M \
⋃

k∈N Fk) ∪N0 is E-polar and therefore by [19, Theorem 4.1.1] we
can take a properly exceptional set N ∈ B(M) for X satisfying (M \

⋃
k∈N Fk)∪N0 ⊂ N .

Let n ∈ N and (t, x) ∈ I × (V \N). We claim that for any A ∈ B(M),

PU
t 1A∩Wn(x) ≤

∫

A∩Wn

Ht(x, y) dµ(y), (5.9)

whose limit as n → ∞ results in (5.6) with V \N in place of V by monotone convergence,
thereby proving (2)⇒(3) by virtue of Proposition 5.6. Thus it remains to show (5.9). To
this end, let A ∈ A and choose k ∈ N with k ≥ n so that t ∈ Ik and x ∈ Vk ∩ Fk.

First we assume t ∈ J . Then PU
t 1A∩Wn ≤

∫
A∩Wn

Ht(·, y) dµ(y) µ-a.e. on V by (2), and

since µ(G ∩ Vk ∩ Fk) > 0 for any open subset G of M with x ∈ G we can take {xl}l∈N ⊂
Vk ∩ Fk such that liml→∞ xl = x in M and PU

t 1A∩Wn(xl) ≤
∫
A∩Wn

Ht(xl, y) dµ(y) for any

l ∈ N. Now (5.9) follows by utilizing PU
t 1A∩Wn |Fk

∈ C(Fk), Fatou’s lemma and (UB2) to
let l → ∞, where the use of Fatou’s lemma is justified by (5.1) with k in place of n.

Next for t ∈ I \ J , with k ∈ N as above, we can take a strictly decreasing sequence
{tl}l∈N ⊂ Ik ∩ J satisfying liml→∞ tl = t, and then PU

tl
1A∩Wn(x) ≤

∫
A∩Wn

Htl(x, y) dµ(y)

for any l ∈ N by the previous paragraph. Now letting l → ∞ yields (5.9) for this case
by the right-continuity of PU

(·)1A∩Wn(x), Fatou’s lemma and (UB1), where (5.1) with k in
place of n is used again to verify the applicability of Fatou’s lemma to the right-hand side.

Thus (5.9) has been proved for any A ∈ A. Further, we easily see from (5.1) with k in
place of n and the dominated convergence theorem that {A ∈ B(M) | A satisfies (5.9)} is
closed under monotone countable unions and intersections, and hence the monotone class
theorem [17, Theorem 4.4.2] implies that (5.9) holds for any A ∈ B(M). �

The rest of this section is devoted to presenting examples of µ-upper bound functions.
We start with a lemma which is mostly due to [28, Subsection 3.4].

Lemma 5.7. Let Ψ : [0,∞) → [0,∞) be a homeomorphism satisfying

c−1
Ψ

(R
r

)β1

≤
Ψ(R)

Ψ(r)
≤ cΨ

(R
r

)β2

for any r,R ∈ (0,∞) with r ≤ R (5.10)

for some cΨ, β1, β2 ∈ (0,∞) with 1 < β1 ≤ β2, and for (R, t) ∈ [0,∞)× (0,∞) define

Φ(R, t) := ΦΨ(R, t) := sup
r∈(0,∞)

{R

r
−

t

Ψ(r)

}
= sup

λ∈(0,∞)

{ R

Ψ−1(λ−1)
− λt

}
. (5.11)
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Then Φ = ΦΨ is a [0,∞)-valued lower semi-continuous function such that for any R, t ∈
(0,∞), Φ(·, t) is non-decreasing, Φ(R, ·) is non-increasing, Φ(0, t) = 0 < Φ(R, t),

aΦ(R, t) ≤ Φ(aR, t) for any a ∈ [1,∞), (5.12)

(cΨ2
β1)

− 1
β1−1 min

k∈{1,2}

(Ψ(R)

t

) 1
βk−1

≤ Φ(R, t) ≤ c
1

β1−1

Ψ max
k∈{1,2}

(Ψ(R)

t

) 1
βk−1

. (5.13)

Proof. The lower semi-continuity of Φ = ΦΨ is clear from (5.11), and the other assertions
except the upper inequality in (5.13) have been verified in [28, Remark 3.16 and Lemma
3.19]. To see the upper inequality in (5.13), let R, t, r ∈ (0,∞) and set a := RΨ(r)/(rt).
Noting that R/r− t/Ψ(r) = (a− 1)t/Ψ(r) ≤ 0 if a ≤ 1, we assume a > 1, and set β := β1
if r ≤ R and β := β2 if r > R. Then at/Ψ(r) = R/r ≤ (cΨΨ(R)/Ψ(r))1/β by (5.10), hence

Ψ(r) ≥ at(c−1
Ψ at/Ψ(R))

1
β−1 , and therefore

R

r
−

t

Ψ(r)
≤

R

r
=

at

Ψ(r)
≤

(cΨΨ(R)

at

) 1
β−1

≤ c
1

β1−1

Ψ max
k∈{1,2}

(Ψ(R)

t

) 1
βk−1

,

where the last inequality follows by a ≥ 1, 1 < β1 ≤ β2 and the fact that cΨ ≥ 1 by (5.10).
Now taking the supremum in r ∈ (0,∞) yields the desired inequality. �

Example 5.8. An important special case of Lemma 5.7 is that of Ψ(r) = rβ for some
β ∈ (1,∞) treated in [28, Example 3.17], where Φ = ΦΨ is easily evaluated as

Φ(R, t) = β
− β

β−1 (β − 1)
(Rβ

t

) 1
β−1

. (5.14)

The following lemma provides a class of typical µ-upper bound functions, which has
essentially appeared in [26, (6.10)]. Note that Lemma 5.9 and Example 5.10 below, as

well as Remark 5.3 above, apply to any locally compact separable metric space (M,d) and
any Radon measure µ on M (i.e., any Borel measure on M that is finite on compact sets).

Lemma 5.9. Let Ψ and Φ = ΦΨ be as in Lemma 5.7. Let I ⊂ (0,∞) be an interval,

let V,W be open subsets of M and let F = Ft(x, y) : I × V × W → (0,∞) be a Borel

measurable function satisfying (UB1) and (UB2) of Definition 5.2 and the following Ψ-
doubling condition (DB)Ψ:

(DB)Ψ There exist αF , cF ∈ (0,∞) such that for any (t, x, y), (s, z, w) ∈ I × V ×W with

s ≤ t,
Fs(z, w)

Ft(x, y)
≤ cF

( t ∨Ψ(d(x, z)) ∨Ψ(d(y, w))

s

)αF

. (5.15)

Also let c1, c2 ∈ (0,∞) and define H = Ht(x, y) : I × V ×W → (0,∞) by

Ht(x, y) := Ft(x, y) exp
(
−c1Φ(c2d(x, y), t)

)
. (5.16)

Then F = Ft(x, y) and H = Ht(x, y) are µ-upper bound functions on I × V ×W .

Proof. It is immediate to see thatH = Ht(x, y) is Borel measurable and satisfies (UB1) and
(UB2), from the corresponding properties of F = Ft(x, y) and the lower semi-continuity
of Φ. Also (DB)Ψ easily implies that F = Ft(x, y) and hence H = Ht(x, y) are bounded
on each compact subset of I × V ×W , so that they satisfy (UB3) by Remark 5.3-(2). �

Example 5.10. Let Ψ be as in Lemma 5.7.

(1) A continuous function F = Ft(x, y) : (0,∞)×M ×M → (0,∞) of the form

Ft(x, y) = c3t
−α1

(
log(2 + t−1)

)α2
(
log(2 + t)

)α3 (5.17)

for some c3, α1 ∈ (0,∞) and α2, α3 ∈ R clearly satisfies (UB1), (UB2) and (DB)Ψ.
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(2) Let R ∈ (0,∞], let V,W be open subsets of M with (diamV )∨ (diamW ) ≤ R and let
ν be a Borel measure on M satisfying the volume doubling property

0 < ν(B(x, 2r)) ≤ cvdν(B(x, r)) < ∞ (5.18)

for any (x, r) ∈ (V ∪ W ) × (0, R) for some cvd ∈ (0,∞). Then for each c4 ∈ (0,∞),
the function F = Ft(x, y) : (0,Ψ(R)]× V ×W → (0,∞) ((0,∞) in place of (0,Ψ(R)]
for R = ∞) defined by

Ft(x, y) := c4ν
(
B(x,Ψ−1(t))

)−1/2
ν
(
B(y,Ψ−1(t))

)−1/2
(5.19)

is easily proved to be upper semi-continuous and satisfy (DB)Ψ thanks to (5.18) and
(5.10), and in particular it is Borel measurable and satisfies (UB1) and (UB2).

6. Localized upper bounds of heat kernels for diffusions

In this section, we state and prove the main theorem of this paper on deducing heat
kernel upper bounds for {Pt}t∈(0,∞) from those for {PU

t }t∈(0,∞) (Theorem 6.2 below). The
arguments heavily rely on the decay estimate (6.3) for the exit probabilities Px[τB(x,r) ≤ t],
for which reasonable sufficient conditions will be presented in the next section. In the rest

of this paper, we fix a homeomorphism Ψ : [0,∞) → [0,∞) and cΨ, β1, β2 ∈ (0,∞) with

1 < β1 ≤ β2 satisfying (5.10), and Φ = ΦΨ denotes the function given by (5.11).
Throughout this section, we fix an arbitrary properly exceptional set N ∈ B(M) for X

such that for any x ∈ M \N ,

Px

[
[0, ζ) ∋ t 7→ Xt ∈ M is continuous

]
= 1, (6.1)

where {[0, ζ) ∋ t 7→ Xt ∈ M is continuous} ∈ F∞ by [16, Chapter III, 13 and 33]. Accord-
ing to [19, Theorem 4.5.1], such N exists if and only if (E ,F) is local, i.e., E(u, v) = 0
for any u, v ∈ F with suppµ[u], suppµ[v] compact and suppµ[u] ∩ suppµ[v] = ∅. Here for
u ∈ B(M) or its µ-equivalence class, suppµ[u] denotes its µ-support defined as the smallest
closed subset of M such that u = 0 µ-a.e. on M \ suppµ[u], which exists since M has a

countable open base for its topology. Note that suppµ[u] = u−1(R \ {0}) for u ∈ C(M).

Remark 6.1. In fact, Theorems 6.2, 6.4, Propositions 6.5 and 6.6 below apply, without any

changes in the proofs, to any locally compact separable metric space (M,d), any σ-finite
Borel measure µ on M , any Hunt process X on (M,B(M)) and any N ∈ B(M) satisfying
(4.5) and (6.1) for any x ∈ M \N .

Theorem 6.2. Let R ∈ (0,∞), let U be a non-empty open subset of M with diamU ≤ R
and let F = Ft(x, y) : (0,Ψ(R)]×U×U → (0,∞) be a Borel measurable function satisfying

(DB)Ψ of Lemma 5.9 with I = (0,Ψ(R)] and V = W = U . Let c, γ ∈ (0,∞) and assume

that the following two conditions (DU)U,RF and (P)U,RΨ are fulfilled:

(DU)U,RF For any (t, x) ∈ (0,Ψ(R))× (U \N) and any A ∈ B(U),

PU
t (x,A) ≤

∫

A
Ft(x, y) dµ(y). (6.2)

(P)U,RΨ For any (x, r) ∈ (U \N)× (0, R) with B(x, r) ⊂ U and any t ∈ (0,∞),

Px[τB(x,r) ≤ t] ≤ c exp(−Φ(γr, t)). (6.3)

Let ε ∈ (0, 1) and set U◦
εR := {x ∈ M | infy∈M\U d(x, y) > εR} (note that U◦

εR is an open
subset of U). Then there exists a Borel measurable function p = pt(x, y) : (0,∞) × (M \
N)× U◦

εR → [0,∞) such that for any (t, x) ∈ (0,∞)× (M \N) the following hold:

Pt(x,A) =

∫

A
pt(x, y) dµ(y) for any A ∈ B(U◦

εR), (6.4)
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and furthermore for any y ∈ U◦
εR,

pt(x, y) ≤





cεFt(x, y) exp
(
−Φ(γεd(x, y), t)

)
if t < Ψ(R) and x ∈ U,

cε(infU×U F(2t)∧Ψ(R)) exp(−Φ(γεR, t)) if t < Ψ(R) and x 6∈ U,

cε(infU×U FΨ(R)) if t ≥ Ψ(R)

(6.5)

for some cε ∈ (0,∞) explicit in cΨ, β1, β2, cF , αF , c, γ, ε and γε :=
1
5εγ.

In light of the equivalence stated in Proposition 5.6 and the examples of Borel measur-

able functions F = Ft(x, y) satisfying (DB)Ψ in Example 5.10, (DU)U,RF of Theorem 6.2

amounts to an on-diagonal upper bound of the heat kernel pU = pUt (x, y) for {P
U
t }t∈(0,∞).

Note that the two conditions (DU)U,RF and (P)U,RΨ involve only the part XU of X on U
and hence are independent of the behavior of X after exiting U , on account of (2.8) and
the obvious fact that τB(ω) = inf{t ∈ [0,∞) | XU

t (ω) ∈ U∆ \B} for B ⊂ U and ω ∈ Ω.

Remark 6.3. Theorem 5.4 tells us that (DU)U,RF of Theorem 6.2 is implied, at the price of
replacing N with a larger properly exceptional set for X, by its “µ-a.e.” counterpart for
the Markovian semigroup {TU

t }t∈(0,∞) provided F = Ft(x, y) is a µ-upper bound function
on (0,Ψ(R)) × U × U . Remember, though, that we have proved Theorem 5.4 only for a

Radon measure µ on M with full support and a µ-symmetric Hunt process X on (M,B(M))
whose Dirichlet form (E ,F) is regular on L2(M,µ); recall Remark 5.1 in this connection.

We also have a global version of Theorem 6.2 for the case where its assumptions are
valid on B(y0,

R′

2 ) for any (y0, R
′) ∈ M × (0,∞) with R′ ≤ R, as follows. Set Ψ(∞) := ∞.

Theorem 6.4. Let δ ∈ (0, 1], let R ∈ (0,∞] satisfy R ≥ δ diamM and let F = Ft(x, y) :
(0,Ψ(R)]×M ×M → (0,∞) be a Borel measurable function satisfying (DB)Ψ of Lemma

5.9 with I = (0,Ψ(R)] and V = W = M ((0,∞) in place of (0,Ψ(R)] for R = ∞). Let

c, γ ∈ (0,∞) and assume that the two conditions (DU)
B(y0,R′/2),R′

F and (P)
B(y0,R′/2),R′

Ψ
from Theorem 6.2 are fulfilled for any (y0, R

′) ∈ M × (0,∞) with R′ ≤ R. Then there

exists a Borel measurable function p = pt(x, y) : (0,∞)× (M \N)×M → [0,∞) such that

for any (t, x) ∈ (0,∞)× (M \N), (6.4) with B(M) in place of B(U◦
εR) holds and

pt(x, y) ≤

{
c′δ−β2αFFt(x, y) exp

(
−Φ(γ′δd(x, y), t)

)
if t < Ψ(R),

c′δ−β2αF (infM×M FΨ(R)) if t ≥ Ψ(R)
(6.6)

for any y ∈ M for some c′ ∈ (0,∞) explicit in cΨ, β1, β2, cF , αF , c, γ and γ′δ :=
1
40δγ.

The rest of this section is devoted to the proof of Theorems 6.2 and 6.4. We start with
the proof of the following proposition, which, in view of Proposition 5.6, can be considered
as a localized version of [26, Theorem 6.3]. Its proof in [26] is based on a general comparison
inequality [26, Theorem 5.1] among the heat kernels on different open sets which heavily

relies on the symmetry of the Markovian semigroups {TU
t }t∈(0,∞); see also [22, Theorem

10.4] for an alternative probabilistic proof of the same comparison inequality. Here we
give a new proof which does not require the µ-symmetry of X.

Proposition 6.5. Under the same assumptions as those of Theorem 6.2, there exists

c′ε ∈ (0,∞) explicit in cΨ, β1, β2, cF , αF , c, γ, ε such that, with γε := 1
5εγ, for any (t, x) ∈

(0,Ψ(R))× (U \N) and any A ∈ B(U◦
εR),

PU
t (x,A) ≤

∫

A
c′εFt(x, y) exp

(
−Φ(γεd(x, y), t)

)
dµ(y). (6.7)

Proof. Let (t, x) ∈ (0,Ψ(R))× (U \N). Let y0 ∈ U◦
εR \ {x}, set r := 1

4εd(x, y0) ∈ (0, 14εR]
and let A ∈ B(B(y0, r)). We first verify (6.7) for such A. Since A ⊂ B(y0, r) ⊂ B(y0, 4r) ⊂
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U by y0 ∈ U◦
εR and r ∈ (0, 14εR], if t ≥ Ψ((2+4/ε)r) then (6.7) is immediate from (DU)U,RF

and the upper inequality in (5.13), and therefore we may assume t < Ψ((2+4/ε)r). We set

rn := r+2−n/(2β2)r and σn := σ̇B(y0,rn) for n ∈ N, so that B(y0, r) ⊂ B(y0, rn) ⊂ B(y0, rk)
and hence σk ≤ σn ≤ σ̇B(y0,r) for any k ∈ {1, . . . , n}.

Let ω ∈ {[0, ζ) ∋ s 7→ Xs ∈ M is continuous}. It is easy to see that for B ⊂ M ,

if X0(ω) 6∈ intB and σ̇B(ω) < ∞ then Xσ̇B
(ω) ∈ ∂B. (6.8)

Assume further that ω ∈ {Xt ∈ B(y0, r), X0 = x}. Then since X0(ω) = x 6∈ B(y0, 4r) by
d(x, y0) > εd(x, y0) = 4r and σ̇B(y0,r)(ω) ≤ t by Xt(ω) ∈ B(y0, r), it follows from (6.8)
that Xσ̇B(y0,r)

(ω) ∈ ∂B(y0, r) and hence that

σn(ω) ≤ σ̇B(y0,r)(ω) < t for any n ∈ N. (6.9)

In particular, σn+1(ω) ≤
1
2(σn(ω)+ t) for some n ∈ N; indeed, otherwise for any n ∈ N we

would have σn+1(ω) ≥
1
2(σn(ω)+ t), or equivalently t−σn+1(ω) ≤

1
2(t−σn(ω)), and hence

0 < t− σ̇B(y0,r)(ω) ≤ t−σn(ω) ≤ 21−n(t−σ1(ω)) by (6.9), contradicting limn→∞ 2−n = 0.
Thus, setting Ω1 := Ω and

Ωn := {σk+1 >
1
2(σk + t) for any k ∈ {1, . . . , n− 1}}, n ∈ N \ {1}, (6.10)

we obtain

{Xt ∈ B(y0, r), X0 = x, [0, ζ) ∋ s 7→ Xs ∈ M is continuous}

⊂
⋃

n∈N

(
Ωn ∩ {σn+1 ≤

1
2(σn + t)}

)
, where the union is disjoint. (6.11)

Note that Ωn ∈ Fσn for any n ∈ N since Fσk
⊂ Fσn by σk ≤ σn and [30, Lemma 1.2.15]

for any k ∈ {1, . . . , n}. Now by (6.11) along with A ⊂ B(y0, r), Px[X0 = x] = 1 and (6.1),

PU
t (x,A) = Px[Xt ∈ A, t < τU ]

= Px

[
{Xt ∈ A, t < τU} ∩

⋃
n∈N

(
Ωn ∩ {σn+1 ≤

1
2(σn + t)}

)]

=
∑

n∈N

Px

[
{Xt ∈ A, t < τU} ∩

(
Ωn ∩ {σn+1 ≤

1
2(σn + t)}

)]
. (6.12)

Let n ∈ N, set σn,t := σn ∧ t and Ω′
n := Ωn ∩ {σn ≤ t, σn,t ≤ τU}, so that Ω′

n ∈ Fσn,t by
Ωn ∈ Fσn and [30, Lemma 1.2.16]. Then {Xt ∈ A} ⊂ {σn ≤ t} by A ⊂ B(y0, rn), clearly
τU = σn,t+τU ◦θσn,t on {σn,t ≤ τU}, and by σn ≤ σn+1 we also have σn+1 = σn+σn+1◦θσn ,

which easily implies that {σn ≤ t, σn+1 ≤
1
2(σn+ t)} = {σn+2σn+1 ◦ θσn ≤ t}. Therefore,

{Xt ∈ A, t < τU} ∩
(
Ωn ∩ {σn+1 ≤

1
2(σn + t)}

= {Xt ∈ A} ∩ Ωn ∩ {σn ≤ t < τU , σn+1 ≤
1
2(σn + t)}

= {Xt ∈ A} ∩ Ωn ∩ {σn ≤ t < τU , σn,t ≤ τU , σn + 2σn+1 ◦ θσn ≤ t}

= {Xt ∈ A} ∩ Ω′
n ∩ {σn,t + 2σn+1 ◦ θσn,t ≤ t < σn,t + τU ◦ θσn,t}. (6.13)
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Noting that (σn,t +2σn+1 ◦ θσn,t)∧ (σn,t + τU ◦ θσn,t) = σn,t + ((2σn+1)∧ τU ) ◦ θσn,t , we see
from (6.13), Ω′

n ∈ Fσn,t and Proposition 3.4 that

Px

[
{Xt ∈ A, t < τU} ∩

(
Ωn ∩ {σn+1 ≤

1
2(σn + t)}

)]

= Ex

[
1A(Xt)1Ω′

n∩{σn,t+2σn+1◦θσn,t≤t<σn,t+τU◦θσn,t}

]

= Ex

[
1Ω′

n
1A(Xt)

(
1{t<σn,t+τU◦θσn,t}

− 1{t<σn,t+((2σn+1)∧τU )◦θσn,t}

)]

= Ex

[
1Ω′

n
Ex

[
1A(Xt)1{t<σn,t+τU◦θσn,t}

∣∣ Fσn,t

]]

− Ex

[
1Ω′

n
Ex

[
1A(Xt)1{t<σn,t+((2σn+1)∧τU )◦θσn,t}

∣∣ Fσn,t

]]

=

∫

Ω′
n

EXσn,t (ω)

[
1A(Xt−σn,t(ω))1{t−σn,t(ω)<τU}

]
dPx(ω)

−

∫

Ω′
n

EXσn,t (ω)

[
1A(Xt−σn,t(ω))1{t−σn,t(ω)<(2σn+1)∧τU}

]
dPx(ω)

=

∫

Ω′
n

EXσn,t (ω)

[
1A(Xt−σn,t(ω))

(
1{t−σn,t(ω)<τU} − 1{t−σn,t(ω)<(2σn+1)∧τU}

)]
dPx(ω)

=

∫

Ω′
n

EXσn,t (ω)

[
1A(Xt−σn,t(ω))1{2σn+1≤t−σn,t(ω)<τU}

]
dPx(ω)

=

∫

Ω′
n∩{Xσn∈(∂B(y0,rn))\N}

EXσn,t (ω)

[
1A(Xt−σn,t(ω))1{2σn+1≤t−σn,t(ω)<τU}

]
dPx(ω), (6.14)

where the equality in the last line follows since 1{σn≤t} = 1{σn≤t,Xσn∈(∂B(y0,rn))\N} Px-a.s.
by x ∈ M \ (N ∪B(y0, 4r)), Px[X0 = x] = 1, (6.1), (6.8) and (4.5).

Let ω ∈ Ω′
n ∩ {Xσn ∈ (∂B(y0, rn)) \N}, set s := t− σn,t(ω) and z := Xσn,t(ω), so that

σn,t(ω) = σn(ω), s = t − σn(ω) ∈ [0, t] and z = Xσn(ω) ∈ (∂B(y0, rn)) \N by σn(ω) ≤ t.
The integrand in (6.14) is Ez[1A(Xs)1{2σn+1≤s<τU}], which is 0 if s = 0 by Pz[X0 = z] = 1
and z 6∈ B(y0, rn) ⊃ B(y0, r) ⊃ A. Assume s > 0 and set σn+1,s := σn+1 ∧ s. Noting that
τU = σn+1,s + τU ◦ θσn+1,s on {σn+1,s ≤ τU} and that {σn+1 ≤

s
2 , σn+1,s ≤ τU} = {σn+1 ≤

τU ∧ s
2} ∈ Fσn+1,s by [30, Lemma 1.2.16], we see from Proposition 3.4 that

Ez[1A(Xs)1{2σn+1≤s<τU}]

= Ez

[
1A(Xs)1{s<τU}1{σn+1≤s/2, σn+1,s≤τU}

]

= Ez

[
1A(Xs)1{s<σn+1,s+τU◦θσn+1,s}

1{σn+1≤τU∧(s/2)}

]

= Ez

[
1{σn+1≤τU∧(s/2)}Ez

[
1A(Xs)1{s<σn+1,s+τU◦θσn+1,s}

∣∣ Fσn+1,s

]]

=

∫

{σn+1≤τU∧(s/2)}
EXσn+1,s (ω

′)

[
1A(Xs−σn+1,s(ω′))1{s−σn+1,s(ω′)<τU}

]
dPz(ω

′)

= Ez

[
1{σn+1≤τU∧(s/2), Xσn+1∈(∂B(y0,rn+1))\N}P

U
s−σn+1

(Xσn+1 , A)
]
, (6.15)

where again the last equality follows since 1{σn+1≤s/2} = 1{σn+1≤s/2, Xσn+1∈(∂B(y0,rn+1))\N}

Pz-a.s. by z ∈ M \ (N ∪B(y0, rn)), Pz[X0 = z] = 1, (6.1), (6.8) and (4.5).
Further let ω′ ∈ {σn+1 ≤ τU ∧ s

2 , Xσn+1 ∈ (∂B(y0, rn+1)) \ N}, set u := s − σn+1(ω
′)

and w := Xσn+1(ω
′), so that 0 < s

2 ≤ u ≤ s ≤ t < Ψ(R), w ∈ (∂B(y0, rn+1)) \N ⊂ U \N
and d(w, x) ≤ d(w, y0) + d(y0, x) = rn+1 + 4r/ε < (2 + 4/ε)r. Then by (DB)Ψ and the
assumption that t < Ψ((2 + 4/ε)r),

Fu(w, y)

Ft(x, y)
≤ cF

( t ∨Ψ(d(w, x))

u

)αF

≤ cF

(Ψ((2 + 4/ε)r)

s/2

)αF



20 ALEXANDER GRIGOR’YAN AND NAOTAKA KAJINO

for any y ∈ U , which together with A ⊂ U and (DU)U,RF yields

PU
s−σn+1(ω′)(Xσn+1(ω

′), A) = PU
u (w,A) ≤

∫

A
Fu(w, y) dµ(y)

≤ cF

(Ψ((2 + 4/ε)r)

s/2

)αF
∫

A
Ft(x, y) dµ(y). (6.16)

Recalling that z = Xσn(ω) ∈ (∂B(y0, rn)) \N , we have (z, rn − rn+1) ∈ (U \N)× (0, R),
B(z, rn − rn+1) ⊂ U , and τB(z,rn−rn+1) ≤ σn+1 by B(y0, rn+1) ⊂ M \ B(z, rn − rn+1).

Therefore it follows from (6.15), (6.16) and (P)U,RΨ for (z, rn − rn+1) that

Ez[1A(Xs)1{2σn+1≤s<τU}]

≤ cF

(Ψ((2 + 4/ε)r)

s/2

)αF

Pz[σn+1 ≤ τU ∧ s
2 ]

∫

A
Ft(x, y) dµ(y)

≤ cF

(Ψ((2 + 4/ε)r)

s/2

)αF

Pz[τB(z,rn−rn+1) ≤
s
2 ]

∫

A
Ft(x, y) dµ(y)

≤ ccF

(Ψ((2 + 4/ε)r)

s/2

)αF

exp
(
−Φ(γ(rn − rn+1),

s
2)
) ∫

A
Ft(x, y) dµ(y). (6.17)

We easily see from ω ∈ Ω′
n ⊂ Ωn and (6.10) that 0 < s = t− σn(ω) ≤ 21−nt, and then

by t < Ψ((2 + 4/ε)r) we have Ψ((2 + 4/ε)r)/(2n/2s/2) ≥ 2n/2 > 1, which together with

(5.13), rn − rn+1 = (1− 2−1/(2β2))2−n/(2β2)r, (5.10) and 1 < β1 ≤ β2 implies that

Φ(γ(rn − rn+1),
s
2) ≥ (cΨ2

β1)
− 1

β1−1 min
k∈{1,2}

(Ψ(γ(rn − rn+1))

s/2

) 1
βk−1

≥ cε,1 min
k∈{1,2}

(Ψ((2 + 4/ε)r)

2n/2s/2

) 1
βk−1

= cε,1

(Ψ((2 + 4/ε)r)

2n/2s/2

) 1
β2−1

≥ cε,12
n

2(β2−1) (6.18)

for some cε,1 ∈ (0,∞) explicit in cΨ, β1, β2, γ, ε. (6.18) in turn yields

(Ψ((2 + 4/ε)r)

s/2

)αF

exp
(
−Φ(γ(rn − rn+1),

s
2)
)

≤
(Ψ((2 + 4/ε)r)

s/2

)αF

exp

(
−cε,1

(Ψ((2 + 4/ε)r)

2n/2s/2

) 1
β2−1

)

≤
(Ψ((2 + 4/ε)r)

2n/2s/2

)αF

2αFn/2 exp

(
−
cε,1
2

(Ψ((2 + 4/ε)r)

2n/2s/2

) 1
β2−1

−
cε,1
2

2
n

2(β2−1)

)

≤ cε,22
−αFn/2, (6.19)

where cε,2 := 25αF (β2−1)
(
αF (β2 − 1)/(ecε,1)

)3αF (β2−1)
. By (6.17) and (6.19),

Ez[1A(Xs)1{2σn+1≤s<τU}] ≤
ccF cε,2

2αFn/2

∫

A
Ft(x, y) dµ(y) (6.20)

for s = t − σn,t(ω) and z = Xσn,t(ω) for any ω ∈ Ω′
n ∩ {Xσn ∈ (∂B(y0, rn)) \ N}, and

therefore from (6.14), (6.20) and Ω′
n ⊂ {σn ≤ t} we obtain

Px

[
{Xt ∈ A, t < τU} ∩

(
Ωn ∩ {σn+1 ≤

1
2(σn + t)}

)]

≤
ccF cε,2

2αFn/2
Px[σn ≤ t]

∫

A
Ft(x, y) dµ(y). (6.21)
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To conclude (6.7) from (6.12) and (6.21), we show that

Px[σn ≤ t] ≤ c exp(−Φ(γr, t)). (6.22)

Indeed, setting σ := σ̇B(y0,3r), we have σ ≤ σn by B(y0, rn) ⊂ B(y0, 3r) and hence σn =
σ + σn ◦ θσ. Therefore {σn ≤ t} ⊂ {σ ≤ t, σn ◦ θσ ≤ t}, and then by the strong Markov
property [13, Theorem A.1.21] of X at time σ,

Px[σn ≤ t] ≤ Px[σ ≤ t, σn ◦ θσ ≤ t] = Ex[1{σ≤t}(1{σn≤t} ◦ θσ)]

= Ex

[
1{σ≤t}EXσ [1{σn≤t}]

]

= Ex

[
1{σ≤t,Xσ∈(∂B(y0,3r))\N}PXσ [σn ≤ t]

]
, (6.23)

where the last equality follows since 1{σ≤t} = 1{σ≤t,Xσ∈(∂B(y0,3r))\N} Px-a.s. by x ∈ M \
(N ∪B(y0, 4r)), Px[X0 = x] = 1, (6.1), (6.8) and (4.5). Moreover, for z ∈ (∂B(y0, 3r))\N ,
B(y0, rn) ⊂ M \B(z, r) by rn < 2r, hence σn ≥ τB(z,r), and therefore noting that (z, r) ∈

(U \ N) × (0, R) and that B(z, r) ⊂ B(y0, 4r) ⊂ U , we see from (P)U,RΨ for (z, r) that
Pz[σn ≤ t] ≤ Pz[τB(z,r) ≤ t] ≤ c exp(−Φ(γr, t)), which together with (6.23) yields (6.22).

Now (6.7) with c′ε := c2cF cε,2/(2
αF /2 − 1) is immediate from (6.12), (6.21), (6.22) and

the fact that d(x, y) ≤ d(x, y0)+d(y0, y) < 4r/ε+r < 5r/ε for any y ∈ A by A ⊂ B(y0, r).
Finally, we prove (6.7) for general A ∈ B(U◦

εR). Note that (6.7) holds for A = {x} by

(DU)U,RF . In particular, (6.7) is valid for any A ∈ B(U◦
εR) if U

◦
εR\{x} = ∅, and thus we may

assume U◦
εR \{x} 6= ∅. Let {yk}k∈N be a countable dense subset of U◦

εR \{x} and set B0 :=

U◦
εR ∩ {x}, B1 := B(y1,

1
4εd(x, y1)) and Bk := B(yk,

1
4εd(x, yk)) \

⋃k−1
j=1 B(yj ,

1
4εd(x, yj))

for k ∈ N \ {1}. Then {Bk}k∈N∪{0} ⊂ B(U), and it is easy to see that U◦
εR ⊂

⋃
k∈N∪{0}Bk,

where the union is disjoint. Now for any A ∈ B(U◦
εR), since A ∩ B0 ∈ {∅, {x}} and

A ∩ Bk ∈ B
(
B(yk,

1
4εd(x, yk))

)
for k ∈ N, we have already proved (6.7) with A ∩ Bk in

place of A for any k ∈ N ∪ {0}, and therefore

PU
t (x,A) = PU

t

(
x,

⋃
k∈N∪{0}

(A ∩Bk)
)
=

∑

k∈N∪{0}

PU
t (x,A ∩Bk)

≤
∑

k∈N∪{0}

∫

A∩Bk

c′εFt(x, y) exp
(
−Φ(γεd(x, y), t)

)
dµ(y)

=

∫

A
c′εFt(x, y) exp

(
−Φ(γεd(x, y), t)

)
dµ(y) (6.24)

by monotone convergence, completing the proof of Proposition 6.5. �

Theorems 6.2 and 6.4 are easy consequences of Propositions 5.6, 6.5, and 6.6 below.

Proposition 6.6. Under the same assumptions as those of Theorem 6.2, there exists

c′′ε ∈ (0,∞) explicit in cΨ, β1, β2, cF , αF , c, γ, ε such that, with γε := 1
5εγ, for any (t, x) ∈

(0,Ψ(R))× (M \N) and any A ∈ B(U◦
εR),

Pt(x,A) ≤ PU
t (x,A) + c′′ε(infU×U Ft) exp(−Φ(γεR, t))µ(A). (6.25)

Proof. If U = M , then (6.25) is trivially valid since Xt = XU
t and hence Pt = PU

t for any
t ∈ [0,∞). Therefore we may assume U 6= M . Set B := U◦

(ε/2)R, so that B is open in M

and B ⊂ U , and define F∗-stopping times τn and σn, n ∈ N, by (3.2). For each n ∈ N, as
noted at the beginning of the proof of Theorem 3.3, on {σn < ∞} we have Xσn ∈ B ⊂ U ,
τn ≤ σn < ζ, hence Xτn ∈ M \ U and τn < σn by the sample path right-continuity of X,
and we also easily see that

Xσn ∈ (∂B) \N on {σn < ∞ = σ̇N , [0, ζ) ∋ t 7→ Xt ∈ M is continuous}. (6.26)
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Let (t, x) ∈ (0,Ψ(R))× (M \N) and A ∈ B(U◦
εR). Since 1A|M\B = 0 by A ⊂ U◦

εR ⊂ B,
from Theorem 3.3 with u = 1A we obtain

Pt(x,A) = PU
t (x,A) +

∑

n∈N

Ex

[
1{σn≤t}P

U
t−σn

(Xσn , A)
]
. (6.27)

Noting (6.26), to estimate each term of the series in (6.27) let s ∈ [0, t], z ∈ (∂B) \N
and let c′ε ∈ (0,∞) and γε =

1
5εγ be as in Proposition 6.5. We claim that

PU
s (z,A) ≤ c′εcF cε,3(infU×U Ft)µ(A) (6.28)

for some cε,3 ∈ (0,∞) explicit in cΨ, β1, β2, αF , γ, ε. Indeed, (6.28) trivially holds for s = 0
since PU

0 (z,A) = Pz[X0 ∈ A, 0 < τU ] = 0 by Pz[X0 = z] = 1 and z 6∈ B ⊃ A, and thus we
may assume s ∈ (0, t]. Then s ∈ (0,Ψ(R)), z ∈ U \N by B ⊂ U , and hence an application
of Proposition 6.5 yields (6.7) with (s, z) in place of (t, x). Let y ∈ U◦

εR and x0, y0 ∈ U . By
(DB)Ψ, 0 < s ≤ t < Ψ(R) and diamU ≤ R we have Fs(z, y) ≤ cF (Ψ(R)/s)αFFt(x0, y0),
and furthermore we easily see from z ∈ ∂B = ∂U◦

(ε/2)R that d(z, y) > 1
2εR, so that

exp
(
−Φ(γεd(z, y), s)

)
≤ exp

(
−Φ(12εγεR, s)

)
by the monotonicity of Φ(·, s). These facts,

(5.13) and (5.10) together imply that

Fs(z, y) exp
(
−Φ(γεd(z, y), s)

)

≤ cF

(Ψ(R)

s

)αF

Ft(x0, y0) exp
(
−Φ(12εγεR, s)

)

≤ cF

(Ψ(R)

s

)αF

Ft(x0, y0) exp

(
−(cΨ2

β1)
− 1

β1−1 min
k∈{1,2}

(Ψ(12εγεR)

s

) 1
βk−1

)

≤ cF cε,3Ft(x0, y0),

and taking the infimum in (x0, y0) ∈ U × U shows that for any y ∈ U◦
εR,

Fs(z, y) exp
(
−Φ(γεd(z, y), s)

)
≤ cF cε,3(infU×U Ft). (6.29)

Then (6.28) is immediate from (6.7) with (s, z) in place of (t, x), A ⊂ U◦
εR and (6.29).

Let n ∈ N. By (4.5), (6.1), (6.26) and (6.28),

Ex

[
1{σn≤t}P

U
t−σn

(Xσn , A)
]
= Ex

[
1{σn≤t,Xσn∈(∂B)\N}P

U
t−σn

(Xσn , A)
]

≤ c′εcF cε,3(infU×U Ft)µ(A)Px[σn ≤ t], (6.30)

and we need to estimate Px[σn ≤ t]. Recall that τn ≤ σn ≤ τn+1 = σn + τU ◦ θσn as
mentioned in the proof of Theorem 3.3. Assume n ≥ 2. For each ω ∈ {σn ≤ t}, since
0 ≤ σk(ω) ≤ σn(ω) ≤ t for any k ∈ {1, . . . , n}, we have t ≥ σn(ω) ≥ σn(ω) − σ1(ω) =∑n−1

k=1(σk+1(ω)−σk(ω)) and therefore τU ◦θσk
(ω) = τk+1(ω)−σk(ω) ≤ σk+1(ω)−σk(ω) ≤

t
n−1 for some k ∈ {1, . . . , n − 1}. Thus {σn ≤ t} ⊂

⋃n−1
k=1{σk ≤ t, τU ◦ θσk

≤ t
n−1} and

hence

Px[σn ≤ t] ≤ Px

[
n−1⋃

k=1

{σk ≤ t, τU ◦ θσk
≤ t

n−1}

]
≤

n−1∑

k=1

Px[σk ≤ t, τU ◦ θσk
≤ t

n−1 ]. (6.31)

Furthermore by using first the strong Markov property [13, Theorem A.1.21] of X at time
σk and then (4.5), (6.1) and (6.26) we see that for any k ∈ {1, . . . , n− 1},

Px[σk ≤ t, τU ◦ θσk
≤ t

n−1 ] = Ex[1{σk≤t}(1{τU≤t/(n−1)} ◦ θσk
)]

= Ex

[
1{σk≤t}PXσk

[τU ≤ t
n−1 ]

]

= Ex

[
1{σk≤t,Xσk

∈(∂B)\N}PXσk
[τU ≤ t

n−1 ]
]

≤ c exp
(
−Φ(12εγR, t

n−1)
)
; (6.32)
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here the last inequality follows from the fact that for any z ∈ (∂B) \N , τB(z,εR/2) ≤ τU by

B(z, 12εR) ⊂ U and hence Pz[τU ≤ t
n−1 ] ≤ Pz[τB(z,εR/2) ≤

t
n−1 ] ≤ c exp

(
−Φ(12εγR, t

n−1)
)

by (P)U,RΨ for (z, 12εR). Also, by the monotonicity of Φ(·, t
n−1) and Φ(γεR, ·), (5.12), (5.13),

(5.10), 1 < β1 ≤ β2 and t < Ψ(R), for some cε,4 ∈ (0,∞) explicit in cΨ, β1, β2, γε,

Φ(12εγR, t
n−1) ≥ Φ(2γεR, t

n−1) ≥ 2Φ(γεR, t
n−1)

≥ Φ(γεR, t) + (cΨ2
β1)

− 1
β1−1 min

k∈{1,2}

( Ψ(γεR)

t/(n− 1)

) 1
βk−1

≥ Φ(γεR, t) + cε,4(n− 1)
1

β2−1 . (6.33)

From (6.31), (6.32) and (6.33) we conclude that for any n ∈ N \ {1},

Px[σn ≤ t] ≤ c(n− 1)e−cε,4(n−1)
1

β2−1
exp(−Φ(γεR, t))

≤ ccε,5(n− 1)−2 exp(−Φ(γεR, t)), (6.34)

where cε,5 :=
(
3(β2−1)/(ecε,4)

)3(β2−1)
. For Px[σ1 ≤ t], set B′ := U◦

(ε/4)R and σ := σ̇B′,τU =

σ̇B′,τ1 (recall Definition 3.1), so that we have (6.26) with B′ and σ in place of B and σn,

respectively, by substituting 1
2ε for ε. Noting that σ1 = σ + σ̇B ◦ θσ by B ⊂ B′ and thus

that {σ1 ≤ t} ⊂ {σ ≤ t, σ̇B ◦ θσ ≤ t}, from the strong Markov property [13, Theorem
A.1.21] of X at time σ, (4.5), (6.1) and (6.26) we obtain

Px[σ1 ≤ t] ≤ Px[σ ≤ t, σ̇B ◦ θσ ≤ t] = Ex[1{σ≤t}(1{σ̇B≤t} ◦ θσ)]

= Ex

[
1{σ≤t}PXσ [σ̇B ≤ t]

]

= Ex

[
1{σ≤t,Xσ∈(∂B′)\N}PXσ [σ̇B ≤ t]

]

≤ c exp(−Φ(γεR, t)); (6.35)

here, similarly to (6.32), the last inequality holds since for any z ∈ (∂B′) \N , τB(z,εR/4) ≤

σ̇B by B(z, 14εR) ⊂ U \ B and hence Pz[σ̇B ≤ t] ≤ Pz[τB(z,εR/4) ≤ t] ≤ c exp(−Φ(γεR, t))

by (P)U,RΨ for (z, 14εR) and the monotonicity of Φ(·, t).
Now (6.25) with c′′ε := cc′εcF cε,3(2cε,5 + 1) is immediate from (6.27), (6.30), (6.34) and

(6.35), completing the proof of Proposition 6.6. �

Proof of Theorem 6.2. Let c′ε, c
′′
ε ∈ (0,∞) be as in Propositions 6.5 and 6.6, respectively,

and let γε := 1
5εγ. We show that Theorem 6.2 can be concluded from Proposition 5.6

applied to I = (0,∞), V = M \ N , W = U◦
εR, M in place of U , and H = Ht(x, y) :

(0,∞)× (M \N)× U◦
εR → [0,∞) given by

Ht(x, y) :=





(c′ε + c′′ε)Ft(x, y) exp
(
−Φ(γεd(x, y), t)

)
if t < Ψ(R) and x ∈ U,

c′′εcF 2
αF (infU×U FΨ(R)/2n) exp(−Φ(γεR, t)) if Ψ(R)

2n+1 ≤ t < Ψ(R)
2n and x 6∈ U,

cε(infU×U FΨ(R)) if t ≥ Ψ(R),

(6.36)
where n ∈ N ∪ {0} in the second line and cε := ((c′ε + c′′ε)cF 2

αF ) ∨ (c′′εc
2
F 2

2αF ). Obviously
H = Ht(x, y) is Borel measurable, and by using (DB)Ψ it is easily seen to be less than or
equal to the right-hand side of (6.5), so that it remains to verify that

Pt(x,A) ≤

∫

A
Ht(x, y) dµ(y) (6.37)

for any (t, x) ∈ (0,∞)×(M\N) and any A ∈ B(U◦
εR). Note that by (DB)Ψ and diamU ≤ R

we also have

HΨ(R)/2(z, y) ≤ cε(infU×U FΨ(R)) for any (z, y) ∈ (M \N)× U◦
εR. (6.38)
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Let (t, x) ∈ (0,∞)×(M \N) and A ∈ B(U◦
εR). If t < Ψ(R) and x ∈ U , then (6.37) easily

follows from Propositions 6.5 and 6.6 in view of the fact that Φ(γεR, t) ≥ Φ(γεd(x, y), t)
for any y ∈ U◦

εR by diamU ≤ R and the monotonicity of Φ(·, t). If t < Ψ(R) and x 6∈ U ,
then we see from (DB)Ψ that c′′ε(infU×U Ft) exp(−Φ(γεR, t)) ≤ Ht(x, y) for any y ∈ U◦

εR,
which together with Proposition 6.6 and PU

t (x,A) = 0 immediately implies (6.37).
Now assume t ≥ Ψ(R). Since Pt−Ψ(R)/2(x,N) = Px[Xt−Ψ(R)/2 ∈ N ] = 0 by (4.5) and

PΨ(R)/2(z,A) ≤

∫

A
HΨ(R)/2(z, y) dµ(y) ≤

∫

A
Ht(x, y) dµ(y)

for any z ∈ M \N by the previous paragraph, (6.38) and (6.36), from (2.3) we get

Pt(x,A) = Pt−Ψ(R)/2(PΨ(R)/21A)(x) =

∫

M\N
PΨ(R)/2(z,A)Pt−Ψ(R)/2(x, dz)

≤

∫

M\N

(∫

A
Ht(x, y) dµ(y)

)
Pt−Ψ(R)/2(x, dz)

≤

∫

A
Ht(x, y) dµ(y).

Thus (6.37) has been proved and hence Theorem 6.2 follows from Proposition 5.6. �

Proof of Theorem 6.4. Define H = Ht(x, y) : (0,∞) × (M \ N) × M → [0,∞) by the
right-hand side of (6.6), so that it is clearly Borel measurable. Thanks to Proposition
5.6, it suffices to show (6.37) for any (t, x) ∈ (0,∞) × (M \ N) and any A ∈ B(M) for
some c′ ∈ (0,∞) explicit in cΨ, β1, β2, cF , αF , c, γ. For applications of Theorem 6.2 and
Proposition 6.6, we remark that for any (y0, R

′) ∈ M × (0,∞),

if we set U := B(y0,
R′

2 ) then diamU ≤ R′ and B(y0,
R′

4 ) ⊂ U◦
(1/4)R′ . (6.39)

Let (t, x) ∈ (0,∞)× (M \N). If R = ∞, then for any A ∈ B(M) and any n ∈ N with
n > Ψ−1(t), in view of (6.39) we can apply Theorem 6.2 with n,B(x, n2 ),

1
4 in place of

R,U, ε respectively and A ∩B(x, n4 ) in place of A in (6.4) and obtain

Pt(x,A ∩B(x, n4 )) ≤

∫

A∩B(x,n/4)
Ht(x, y) dµ(y)

with c′ = c1/4, which yields (6.37) by using monotone convergence to let n → ∞.

Thus we may assume R < ∞. Let y0 ∈ M and A ∈ B(B(y0,
R
4 )). We claim that (6.37)

holds for such A. Indeed, setting U := B(y0,
R
2 ), we have (6.37) with Ht(x, y) replaced by

H̃t(x, y) :=





c1/4Ft(x, y) exp
(
−Φ( 1

20γd(x, y), t)
)

if t < Ψ(R) and x ∈ U,

c′′1/4(infU×U Ft) exp(−Φ( 1
20γR, t)) if t < Ψ(R) and x 6∈ U,

c1/4(infU×U FΨ(R)) if t ≥ Ψ(R)

(6.40)

since Theorem 6.2 and Proposition 6.6 with ε = 1
4 are applicable by (6.39) and PU

t (x,A) =
0 if x 6∈ U . Moreover, if t ≤ Ψ(R) then for any y ∈ M and any z, w ∈ U ,

infU×U Ft ≤ Ft(z, w) ≤ cF

( t ∨Ψ(d(x, z)) ∨Ψ(d(y, w))

t

)αF

Ft(x, y)

≤ cF

(Ψ(δ−1R)

t

)αF

Ft(x, y)

≤ cF c
αF

Ψ δ−β2αF

(Ψ(R)

t

)αF

Ft(x, y) (6.41)

by (DB)Ψ, diamM ≤ δ−1R and (5.10) (even if x ∈ N), hence

c1/4(infU×U FΨ(R)) ≤ c1/4cF c
αF

Ψ δ−β2αF (infM×M FΨ(R)), (6.42)
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and we also easily see from (6.41), (5.12), (5.13), (5.10) and R ≥ δ diamM that

c′′1/4(infU×U Ft) exp(−Φ( 1
20γR, t))

≤ c′′1/4cF c
αF

Ψ δ−β2αF

(Ψ(R)

t

)αF

Ft(x, y) exp(−2Φ( 1
40γR, t))

≤ c′′δ−β2αFFt(x, y) exp
(
−Φ(γ′δd(x, y), t)

)
(6.43)

for any y ∈ M for some c′′ ∈ (0,∞) explicit in cΨ, β1, β2, cF , αF , c, γ. Therefore putting

c′ := c′′ ∨ (c1/4cF c
αF

Ψ ), we have H̃t(x, y) ≤ Ht(x, y) for any y ∈ M by (6.40), (6.42) and

(6.43), and thus the inequality (6.37) follows from that with H̃t(x, y) in place of Ht(x, y).
Now let {yk}k∈N be a countable dense subset of M and set B1 := B(y1,

R
4 ) and Bk :=

B(yk,
R
4 ) \

⋃k−1
j=1 B(yj ,

R
4 ) for k ∈ N \ {1}, so that {Bk}k∈N ⊂ B(M) and M =

⋃
k∈NBk,

where the union is disjoint. Then for any A ∈ B(M), for each k ∈ N we have (6.37) with
A ∩ Bk in place of A by the previous paragraph and A ∩ Bk ∈ B(B(yk,

R
4 )), from which

(6.37) follows in exactly the same way as (6.24), completing the proof of Theorem 6.4. �

7. Exit probability estimates for diffusions

As already mentioned at the beginning of Section 6, the purpose of this section is to

provide reasonable sufficient conditions for the exit probability estimate (P)U,RΨ of Theorem
6.2. Recall that since Section 6 we have fixed Ψ, cΨ, β1, β2 and Φ = ΦΨ as in Lemma 5.7.

In this section, we fix an arbitrary properly exceptional set N ∈ B(M) for X satisfying

both (6.1) and Px[ζ < ∞, Xζ− ∈ M ] = 0 (7.1)

for any x ∈ M \ N , where Xζ−(ω) := Xζ(ω)−(ω) (X0− := X0, X∞− := ∆ = X∞), so
that Xζ− : Ω → M∆ is F∞/B(M∆)-measurable by the left-continuity of [0,∞) ∋ t 7→
Xt−(ω) ∈ M∆. By [19, Theorem 4.5.3], such N exists if and only if (E ,F) is strongly local,
i.e., E(u, v) = 0 for any u, v ∈ F with suppµ[u], suppµ[v] compact and u = c µ-a.e. on a
neighborhood of suppµ[v] for some c ∈ R.

Below we will also consider the situation where the set N fixed above satisfies

both (6.1) and Px[ζ < ∞] = 0 (7.2)

for any x ∈ M \N , more strongly than (7.1). By [19, Theorem 4.5.1 and Exercise 4.5.1],
such a properly exceptional set N ∈ B(M) for X exists if and only if (E ,F) is local and
conservative, i.e., Tt1 = 1 µ-a.e. for any (or equivalently, for some) t ∈ (0,∞), where
1 := 1M ; recall (see, e.g., [13, (1.1.9) and (1.1.11)]) that for a Markovian bounded linear
operator T : L2(M,µ) → L2(M,µ), T |L2(M,µ)∩L∞(M,µ) can be uniquely extended to a
linear operator T : L∞(M,µ) → L∞(M,µ) such that limn→∞ Tun = Tu µ-a.e. for any
u ∈ L∞(M,µ) and any {un}n∈N ⊂ L∞(M,µ) with un ≤ un+1 µ-a.e. for any n ∈ N and
limn→∞ un = u µ-a.e.

Remark 7.1. In fact, Theorems 7.2 and 7.3 below apply, without any changes in the proofs,

to any locally compact separable metric space (M,d), any Hunt process X on (M,B(M))
and any N ∈ B(M) satisfying (4.5) and (7.1) for any x ∈ M \N .

The main result of this section is the following theorem, which is a localized version of
an unpublished result [22, Theorem 9.1] by the first named author. We refer the reader
to [25, Subsection 5.4] for an alternative analytic approach. We set e−∞ := 0.

Theorem 7.2. Let U be a non-empty open subset of M and let R ∈ (0,∞]. Then among

the following seven conditions, the latter six (2)–(7) are equivalent and imply (1):
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(1) There exist ε ∈ (0, 12) and δ ∈ (0,∞) such that for any (x, r) ∈ (U \N)× (0, R) with

B(x, r) ⊂ U and B(x, r) compact and for any t ∈ (0, δΨ(r)],

Px[Xt ∈ M∆ \B(x, r)] ≤ ε. (7.3)

(2) There exist ε ∈ (0, 1) and δ ∈ (0,∞) such that for any (x, r) ∈ (U \N) × (0, R) with

B(x, r) ⊂ U and B(x, r) compact,

Px[τB(x,r) ≤ δΨ(r)] ≤ ε. (7.4)

(3) There exists ε ∈ (0,∞) such that for any (x, r) ∈ (U \ N) × (0, R) with B(x, r) ⊂ U

and B(x, r) compact,

Ex[τB(x,r) ∧Ψ(r)] ≥ εΨ(r). (7.5)

(4) There exist ε ∈ (0, 1) and δ ∈ (0,∞) such that for any (x, r) ∈ (U \N) × (0, R) with

B(x, r) ⊂ U and B(x, r) compact,

Ex

[
exp

(
−
τB(x,r)

δΨ(r)

)]
≤ ε. (7.6)

(5) There exist c, γ ∈ (0,∞) such that for any (x, r) ∈ (U \N)× (0, R) with B(x, r) ⊂ U

and B(x, r) compact and for any λ ∈ (0,∞),

Ex[e
−λτB(x,r) ] ≤ c exp

(
−

γr

Ψ−1(λ−1)

)
. (7.7)

(6) There exist c, γ ∈ (0,∞) such that for any (x, r) ∈ (U \N)× (0, R) with B(x, r) ⊂ U

and B(x, r) compact and for any t ∈ (0,∞),

Px[τB(x,r) ≤ t] ≤ c exp(−Φ(γr, t)). (7.8)

(7) There exist c, γ ∈ (0,∞) such that for any (x, r) ∈ (U \N)× (0, R) with B(x, r) ⊂ U

and B(x, r) compact and for any t ∈ (0,∞),

Px[τB(x,r) ≤ t] ≤ c exp

(
−γ

(Ψ(r)

t

) 1
β2−1

)
. (7.9)

Moreover, if N satisfies (7.2) for any x ∈ M \ N , then with “and B(x, r) compact”

all removed, still the conditions (2)–(7) are equivalent, imply (1) and are implied by the

following condition (1)′:

(1)′ There exist ε ∈ (0, 12) and δ ∈ (0,∞) such that for any (x, r) ∈ (U \N)× (0, R2 ) and

any t ∈ (0, δΨ(r)],

Px[Xt ∈ M \B(x, r)] ≤ ε. (7.10)

Proof. We follow [22, Proof of Theorem 9.1]; for the implications (4)⇒(5)⇒(6)⇒(7) see
also [28, Proofs of Lemma 3.14, Theorem 3.15 and Corollary 3.20].

We treat the two cases simultaneously, one with “andB(x, r) compact” kept and without

(7.2) and the other with “and B(x, r) compact” removed and (7.2) assumed. Let (x, r) ∈
(U \ N) × (0, R) satisfy B(x, r) ⊂ U and set τ := τB(x,r). We assume in the former case

that B(x, r) is compact, while not in the latter case. It easily follows either from (7.1) and

the compactness of B(x, r) or from (7.2), together with Px[X0 = x] = 1 and (4.5), that

Px

[
τB(x,ρ) < ∞, XτB(x,ρ)

6∈ (∂B(x, ρ)) \N
]
= 0 for any ρ ∈ (0, r]. (7.11)

(2)⇒(3): Since Px[τ > δΨ(r)] = 1− Px[τ ≤ δΨ(r)] ≥ 1− ε by (7.4),

Ex[τ ∧Ψ(r)] ≥ Ex[(τ ∧Ψ(r))1{τ>δΨ(r)}] ≥ (δ ∧ 1)Ψ(r)Px[τ > δΨ(r)] ≥ (1− ε)(δ ∧ 1)Ψ(r).
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ρ

τ

τ

τ

Figure 1. Proof of (4)⇒(5): the exit times τk, τk+1 and τB(y,ρ)

(3)⇒(4): For λ, t ∈ (0,∞), by considering the case of τ ≥ t and that of τ ≤ t separately
we easily see that e−λτ ≤ 1 − λe−λt(τ ∧ t), and therefore for any δ ∈ (0,∞), setting
λ := (δΨ(r))−1 and t := Ψ(r), taking Ex[(·)] and applying (7.5), we obtain

Ex

[
exp

(
−

τ

δΨ(r)

)]
≤ 1−

1

δΨ(r)
e−1/δ

Ex[τ ∧Ψ(r)] ≤ 1−
ε

δ
e−1/δ.

(4)⇒(5): Let λ ∈ [(δΨ(r))−1,∞), set n := max{k ∈ N | λδΨ(r/k) ≥ 1} and ρ := r/n.
Also set Bk := B(x, kρ) and τk := τBk

for k ∈ {1, . . . , n}. We claim that

Ex[e
−λτk+1 ] ≤ εEx[e

−λτk ] for any k ∈ {1, . . . , n} with k < n. (7.12)

To see (7.12), let k ∈ {1, . . . , n} satisfy k < n and let y ∈ (∂Bk) \ N . Then obviously

(y, ρ) ∈ (U \N)× (0, R), B(y, ρ) ⊂ Bk+1 ⊂ B(x, r) ⊂ U , hence τB(y,ρ) ≤ τk+1, and B(y, ρ)

is compact if B(x, r) is. Thus (4) applies to (y, ρ), so that from (7.6) we obtain

Ey[e
−λτk+1 ] ≤ Ey[e

−λτB(y,ρ) ] ≤ Ey

[
exp

(
−
τB(y,ρ)

δΨ(ρ)

)]
≤ ε, (7.13)

noting that λ ≥ (δΨ(ρ))−1 by the choice of n. Now since τk+1 = τk + τk+1 ◦ θτk , it follows
by the strong Markov property [13, Theorem A.1.21] of X, (7.11) and (7.13) that

Ex[e
−λτk+1 ] = Ex[e

−λτk(e−λτk+1 ◦ θτk)] = Ex

[
e−λτkEx[e

−λτk+1 ◦ θτk | Fτk ]
]

= Ex

[
e−λτkEXτk

[e−λτk+1 ]
]

= Ex

[
1{Xτk

∈(∂Bk)\N}e
−λτkEXτk

[e−λτk+1 ]
]

≤ εEx[e
−λτk ].

Thus we have proved (7.12), which together with τ = τn and (7.6) for (x, ρ) yields

Ex[e
−λτ ] ≤ εn−1

Ex[e
−λτ1 ] ≤ εn−1

Ex

[
exp

(
−

τ1
δΨ(ρ)

)]
≤ εn < ε−1 exp

(
−

γr

Ψ−1(λ−1)

)
,

where γ := η log(ε−1) with η := (δ/cΨ)
1/β1 ∧ 1 and the last inequality follows since 1 >

λδΨ( r
n+1) ≥ λΨ( ηr

n+1) by the choice of n and (5.10) and hence n+ 1 > ηr/Ψ−1(λ−1).

(7.7) therefore holds for λ ∈ [(δΨ(r))−1,∞). On the other hand, for λ ∈ (0, (δΨ(r))−1),
since λ−1 > δΨ(r) ≥ Ψ(ηr) by (5.10) and hence Ψ−1(λ−1) > ηr, we have Ex[e

−λτ ] ≤ 1 <

eγ/η exp
(
−γr/Ψ−1(λ−1)

)
, completing the proof of (4)⇒(5).
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(5)⇒(6): For any t, λ ∈ (0,∞), we see from (7.7) that

Px[τ ≤ t] = Px[e
−λt ≤ e−λτ ] ≤ eλtEx[e

−λτ ] ≤ c exp
(
λt−

γr

Ψ−1(λ−1)

)
,

and taking the infimum of the right-hand side in λ ∈ (0,∞) shows (7.8) in view of (5.11).
(6)⇒(7): Since Ψ(γr) ≥ c−1

Ψ (γβ2∧1)Ψ(r) with γ ∈ (0,∞) as in (6) by (5.10), if Ψ(γr) ≥ t
then (7.9) is immediate from (7.8) and the lower inequality in (5.13), whereas if Ψ(γr) < t

then we have Px[τ ≤ t] ≤ 1 ≤ c′ exp
(
−γ′(Ψ(r)/t)

1
β2−1

)
for some c′, γ′ ∈ (0,∞) explicit in

cΨ, β1, β2, γ.

(7)⇒(2),(1): For any ε ∈ (0, c ∧ 1
2), setting δ :=

(
γ/ log(c/ε)

)β2−1
∈ (0,∞), for any

t ∈ (0, δΨ(r)] we see from {Xt ∈ M∆ \B(x, r)} ⊂ {τ ≤ δΨ(r)} and (7.9) that

Px[Xt ∈ M∆ \B(x, r)] ≤ Px[τ ≤ δΨ(r)] ≤ c exp
(
−γδ

− 1
β2−1

)
= ε.

(1)′⇒(2) under (7.2): Note that (7.10) is valid also for t = 0 since Py[X0 = y] = 1 for

y ∈ M . Let t := c−1
Ψ 2−β2δΨ(r), so that t ∈ (0, δΨ( r2)] by (5.10). We first show that

Px[τ ≤ t, Xt ∈ B(x, r2)] ≤ ε. (7.14)

Indeed, if y ∈ (∂B(x, r)) \N , then clearly B(x, r2) ⊂ M \B(y, r2), (y,
r
2) ∈ (U \N)× (0, R2 )

by B(x, r) ⊂ U and hence (1)′ applies to (y, r2), so that (7.10) yields

Py[Xs ∈ B(x, r2)] ≤ Py[Xs ∈ M \B(y, r2)] ≤ ε (7.15)

for any y ∈ (∂B(x, r)) \N and any s ∈ [0, t] ⊂ [0, δΨ( r2)]. Then since {τ ≤ t} ∈ Fτ∧t by
[30, Lemma 1.2.16], it follows from Proposition 3.4, (7.11) and (7.15) that

Px[τ ≤ t, Xt ∈ B(x, r2)] = Ex[1{τ≤t}1B(x,r/2)(Xt)]

= Ex

[
1{τ≤t}Ex[1B(x,r/2)(Xt) | Fτ∧t]

]

=

∫

{τ≤t}
EXτ∧t(ω)[1B(x,r/2)(Xt−τ(ω)∧t)] dPx(ω)

=

∫

{τ≤t,Xτ∈(∂B(x,r))\N}
PXτ (ω)[Xt−τ(ω) ∈ B(x, r2)] dPx(ω)

≤ εPx[τ ≤ t, Xτ ∈ (∂B(x, r)) \N ] ≤ ε.

Now noting that Px[Xt = ∆] = 0 by (7.2), from (7.10) for (x, r2) and (7.14) we obtain

Px[τ ≤ t] = Px[τ ≤ t, Xt = ∆] + Px[τ ≤ t, Xt ∈ M \B(x, r2)] + Px[τ ≤ t, Xt ∈ B(x, r2)]

≤ Px[Xt = ∆] + Px[Xt ∈ M \B(x, r2)] + ε

≤ 2ε < 1,

which, in view of t = c−1
Ψ 2−β2δΨ(r), completes the proof of (1)′⇒(2) under (7.2). �

At the last of this paper, as an application of Theorem 7.2 we state and prove a localized
version of the well-known fact that the comparability of the mean exit time Ex[τB(x,r)] to
Ψ(r) implies the exit probability estimate (7.8). This fact was first observed by M. T.
Barlow as treated in [3, Proof of Theorem 3.11], and the proof below is also based on an
idea of his in [3].

Theorem 7.3. Let U be a non-empty open subset of M , let R ∈ (0,∞], and assume that

there exists cE ∈ (0,∞) such that for any (x, r) ∈ (U \N)× (0, 2R),

Ex[τB(x,r)] ≤ cEΨ(r), (7.16)

and for any (x, r) ∈ (U \N)× (0, R) with B(x, r) ⊂ U and B(x, r) compact,

Ex[τB(x,r)] ≥ c−1
E Ψ(r). (7.17)
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Then Theorem 7.2-(6) holds.
Moreover, additionally if N satisfies (7.2) for any x ∈ M \ N and if (7.17) holds for

any (x, r) ∈ (U \ N) × (0, R) with B(x, r) ⊂ U , then Theorem 7.2-(6) with “and B(x, r)
compact” removed holds.

Proof. As in the proof of Theorem 7.2, we treat the two cases simultaneously, one with
“and B(x, r) compact” kept and without (7.2) and the other with “and B(x, r) compact”
removed and (7.2) assumed. Let (x, r) ∈ (U \N)× (0, R) satisfy B(x, r) ⊂ U . We assume

in the former case that B(x, r) is compact, while not in the latter case. We claim that

Px[τB(x,r) ≤
1
2c

−1
E Ψ(r)] ≤ 1− (c2EcΨ2

β2+1)−1, (7.18)

which together with the implication (2)⇒(6) of Theorem 7.2 shows the assertions.
To see (7.18) we follow [3, Proof of Lemma 3.16]. Set τ := τB(x,r) and t := 1

2c
−1
E Ψ(r).

By using (7.17), the obvious relation τ ≤ t + (τ − t)1{t<τ} = t + (τ ◦ θt)1{t<τ} and the
Markov property [13, Theorem A.1.21] of X at time t, we have

2t = c−1
E Ψ(r) ≤ Ex[τ ] ≤ t+ Ex[(τ ◦ θt)1{t<τ}] = t+ Ex

[
1{t<τ}EXt [τ ]

]
. (7.19)

Note that Xt ∈ B(x, r) on {t < τ}, that Px[Xt ∈ N ] = 0 by (4.5), and that for any
y ∈ B(x, r) \ N , τ ≤ τB(y,2r) by B(x, r) ⊂ B(y, 2r) and hence Ey[τ ] ≤ Ey[τB(y,2r)] ≤

cEΨ(2r) ≤ cEcΨ2
β2Ψ(r) by (7.16) and (5.10). It follows from (7.19) and these facts that

t ≤ Ex

[
1{t<τ}EXt [τ ]

]
= Ex

[
1{t<τ,Xt∈B(x,r)\N}EXt [τ ]

]
≤ cEcΨ2

β2Ψ(r)(1− Px[τ ≤ t]),

which immediately implies (7.18). �
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