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1. Introduction

Let M be a Riemannian manifold, and ∆ be the Laplace-Beltrami operator on M. It is
known that there exists a unique minimal positive fundamental solution to the associated
heat equation, which is referred to as the heat kernel and denoted by pt(x, y) (x, y ∈ M,
t > 0).

For example, in IRn, the heat kernel is given by the explicit formula

pt(x, y) =
1

(4πt)n/2
exp

−|x− y|2
4t


which shows that pt(x, y) behaves like t−

n
2 for fixed x and y as t→ ∞. On other manifolds,

its behaviour may be described by different functions of t, depending on the geometry of
the manifold.

The major question on complete non-compact manifolds is: What geometric terms are
adequate to describe the long time behaviour of the heat kernel. Much has been known
about upper bounds. The seminal works of Nash [N], Aronson [Ar], Varopoulos [V2],
Carlen, Kusuoka, Stroock [CKS] and Davies [D1] have brought the understanding that
the uniform upper bounds of the heat kernel are closely related to isoperimetric type
inequalities including the Sobolev’s, Nash’s and the logarithmic Sobolev inequalities. More
recent works [G2], [Carr], [C2] revealed the importance of a Faber-Krahn type inequality
and of a generalized Nash inequality (see also the surveys [G4] and [C3]).

The situation is quite different with lower bounds of the heat kernel. Until recently, only
two methods were known:

• a comparison type theorem ([DGM], [ChY]) which requires a pointwise restriction on
the Ricci curvature;
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• using an upper bound of the heat kernel, together with a uniform Harnack inequality
or equivalent tools (see [N], [Ar], [LY], [FS], [BCF], [PE]).

The latter approach needs additional ingredients, essentially Poincaré type inequalities
and the doubling volume property (see [S], [G6]). In particular, this means that it can
only treat a polynomial decay of the heat kernel and that its natural range is limited to
manifolds with a non-negative Ricci curvature (up to quasi-isometry). On the other hand,
both above approaches give at the same time off-diagonal bounds for pt(x, y).

In the present paper, we propose an approach to the lower on-diagonal bounds for the
heat kernel that is independent of the upper bounds and that works even when the Harnack
principle is unknown or false. Therefore, the range of manifolds which can be treated by
our method is much wider than before. A first step in that direction (mostly for a discrete
time setting) appeared recently in the work of F.Lust-Piquard [L] but our results require
fewer hypotheses and yield sharper estimates.

We also take the classical route that goes from upper bounds to lower bounds, but
without assuming Poincaré inequalities, and we try to get endpoint results in that direction.
Let us mention at once that, for the time being, we are unable to get off-diagonal lower
bounds (anyway further assumptions are needed there).

We make alternatively two kinds of assumptions about the geometry of the manifold M :

− an anti-isoperimetric (or anti-Faber-Krahn) type inequality;
− an upper bound of the volume growth function or a doubling volume property

The estimates we obtain are also of two kinds:

− a sup-lower bound i.e. a lower bound for supx∈M pt(x, x);
− a pointwise lower bound i.e. a lower bound for pt(x, x) for a fixed given point x ∈M.

As was shown by E.B.Davies [D2], these two functions may behave differently as t→ ∞.

Let V (x, r) denote a volume of a geodesic ball of radius r and centre x ∈ M. For any
domain Ω ⊂ M we denote by λ1(Ω) the bottom of the L2-spectrum of −∆ on Ω with a
Dirichlet boundary condition.

The structure of the paper is as follows.
In §2, we show that a sup-lower bound follows from a doubling volume property: if for

some point x0 and any r > 0
V (x0, 2r) ≤ CV (x0, r)

then, for all t > 0 and some c > 0

sup
x
pt(x, x) ≥ c

V (x0,
√
t)
.

Let us emphasize that the results of §2 and partially of §3 are obtained in the setting of a
general semigroup theory.

In §3, we shall see that sup-lower bounds can be obtained from certain types of anti-
isoperimetric inequalities. Let us say that a manifold M satisfies an anti-Faber-Krahn
inequality if there is a family {Ωξ}ξ>0 of regions of M such that the volume of Ωξ is equal
to ξ and

(1.1) λ1(Ωξ) ≤ Λ(ξ)
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for some function Λ. Given an anti-Faber-Krahn inequality, we deduce a sup-lower bound

sup
x
pt(x, x) ≥ f(t)

where the function f depends on the function Λ (see Theorem 3.2). A similar statement is
true if (1.1) is replaced by another kind of anti-isoperimetric inequality where the boundary
area of a family of balls is bounded from above by a certain function of their volume.

In §4, we develop the same theory for random walks on graphs. In §5, we gather partial
results for upper and lower bounds in the case of a positive spectral gap.

In §6, we prove pointwise lower bounds of pt(x, x) in terms of a volume upper bound
and of the local geometry around x. In particular, we show that if for all r > r0 and some
x ∈M

(1.2) V (x, r) ≤ Crn

then for all t > t0

(1.3) pt(x, x) ≥ c

(t log t)
n
2
.

If (1.2) is replaced by a more general inequality

V (x, r) ≤ v(r)

with a virtually arbitrary function v(r) then we still have a pointwise lower bound of
pt(x, x) in terms of another function of t which is expressed via v(r) (see Theorem 6.1).

In §7, we prove that (1.3) can be sharpened to

pt(x, x) ≥ const
t

n
2

provided M satisfies the doubling volume property and one knows a priori an upper bound

pt(x, x) ≤ const
t

n
2
.

In §8 and §9, we show on examples of rotationally invariant manifolds that our results are
optimal, in particular, the logarithm in the denominator of (1.3) cannot be in general got
rid of.

In §10, we give a sup-lower bound under hypotheses similar to those of §6, but with a
weaker assumption on the local geometry.

2. Lower bounds and λ1

Let (X, µ) be a σ-finite measured space, and Tt a semigroup of symmetric contractions of
L2(X, µ). Denote by −A the infinitesimal generator of Tt. One has the following inequality

(2.1) exp

(
−2

(Af, f)
‖f‖2

2

t

)
≤ ‖Ttf‖2

2

‖f‖2
2

, ∀f ∈ D(A), ∀t > 0.
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This inequality can be easily proved by spectral theory ([C2]). It is the cornerstone of the
semigroup version ([C2]) of a theorem by the second author that relates upper bounds for
the heat kernel with Faber-Krahn type inequalities ([G2]). We will see that it gives a very
easy approach to sup-lower bounds for the heat kernels, and more generally the kernels
of symmetric Markov semigroups. In the case where (X, µ) is a Riemannian manifold M
equiped with its natural measure, and Tt is the heat semigroup, i.e. the heat kernel on a
Riemannian manifold, the technique of [G2] also applies.

Recall that if Tt has a kernel pt (and this is the case as soon as ‖Tt‖1→∞ < +∞), then
‖Tt‖1→∞ = supx∈X pt(x, x).

In the sequel, supx∈X pt(x, x) will simply mean +∞ if ‖Tt‖1→∞ = +∞.
Let D be a dense subset of D(A) \ {0} in L2 that is also contained in L1. One easily

deduces from (2.1):

2.1 Proposition.

sup
x∈X

pt(x, x) ≥ sup
f∈D

{
‖f‖2

2

‖f‖2
1

exp

(
−(Af, f)

‖f‖2
2

t

)}
.

Proof: For f ∈ D, multiplying (2.1) by ‖f‖2
2

‖f‖2
1

gives

‖f‖2
2

‖f‖2
1

exp

(
−2

(Af, f)
‖f‖2

2

t

)
≤ ‖Ttf‖2

2

‖f‖2
1

≤ ‖Tt‖2
1→2 .

Now ‖Tt‖2
1→2 = ‖T ∗

t Tt‖1→∞ = ‖T2t‖1→∞, and the proposition is proved.

2.2 Corollary.

sup
x∈X

pt(x, x) ≥ e−1 sup

{
‖f‖2

2

‖f‖2
1

; f ∈ D, (Af, f) ≤ 1
t
‖f‖2

2

}
.

Define

λ1(Ω) = inf
f∈D, suppf⊂Ω

(Af, f)
‖f‖2

2

,

where Ω is a measurable subset of X with finite measure |Ω| = µ(Ω). One gets from
Proposition 2.1

2.3 Proposition.

sup
x∈X

pt(x, x) ≥ sup
Ω

{
1
|Ω| exp (−λ1(Ω)t)

}
.

Proof: Fix Ω as above. If f ∈ D is supported in Ω, ‖f‖1 ≤ |Ω|1/2 ‖f‖2, therefore

sup
f∈D

{
‖f‖2

2

‖f‖2
1

exp

(
−(Af, f)

‖f‖2
2

t

)}
≥ sup

f∈D,suppf⊂Ω

{
1
|Ω| exp

(
−(Af, f)

‖f‖2
2

t

)}

=
1
|Ω| exp

(
− inf

f∈D, suppf⊂Ω

(Af, f)

‖f‖2
2

t

)
=

1
|Ω| exp (−λ1(Ω)t) .

It follows from Proposition 2.1 that

sup
x∈X

pt(x, x) ≥ 1
|Ω| exp (−λ1(Ω)t) ,

and one takes the supremum over Ω.
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2.4 Corollary.

sup
x∈X

pt(x, x) ≥ e−1 sup
Ω

{ 1
|Ω| ;λ1(Ω) ≤ 1

t
}.

In other terms, suppose that for some t ∈ IR∗
+, there exists Ωt such that λ1(Ωt) ≤ 1

t
and

|Ωt| ≤ v. Then supx∈X pt(x, x) ≥ 1/ev.

Let us recall that an upper bound of supx∈X pt(x, x) is equivalent to a Faber-Krahn
inequality of the type Λ(|Ω|) ≤ λ1(Ω), where Λ is a decreasing function (see [G2], [C2]).
In other terms, one gets an upper bound on the kernel if one knows that the λ1 of a set
cannot be small unless the set is sufficiently large. What the above corollary says is that
a lower bound follows if there are sets with a relatively small λ1 (the scale being given by
the time one is interested in) but that are not too large. The latter condition can be called
an anti-Faber-Krahn inequality. The version we have just presented is very primitive. We
shall give an optimal version in terms of a lower bound on supx∈X pt(x, x) as a function of
t in §3. However, Corollary 2.4 has the advantage that it can be used at a definite scale of
time.

Suppose now that X is a metric space. Then the general principle of Corollary 2.4 that
a lower bound of supx∈X pt(x, x) follows if one has an upper bound on the λ1 of a family of
sets whose volume is under control can be in particular applied to balls. Denote by B(x, r)
the ball of center x ∈ X and radius r > 0 for the metric on X .

2.5 Corollary. Suppose that there exists a one-to-one mapping ϕ from IR∗
+ to itself such

that for every r ∈ IR∗
+, there exists xr ∈M such that

λ1(B(xr, r)) ≤ 1
ϕ(r)

.

Then

sup
x∈X

pt(x, x) ≥ 1
eV (xϕ−1(t), ϕ−1(t))

, ∀t > 0.

Examples: Take for X the n-dimensional hyperbolic space Hn, with a sequence of arbi-
trarily large euclidean balls embedded in it whose radii do not grow too fast. Since for a
euclidean ball

λ1(B(x, r)) ≤ C

r2
,

then one shows easily using Corollary 2.5

sup
x∈X

pt(x, x) ≥ ct−n/2, ∀t > 0.

According to [HS], such a manifold being Cartan-Hadamard satisfies the euclidean isoperi-
metric inequality, therefore the above estimate is optimal. Analogously, one can easily build
n-manifolds with arbitrary volume growth such that

sup
x∈X

pt(x, x) ≥ ct−1/2, ∀t > 1,

just by inserting or gluing arbitrarily long tubes, i.e. products of Sn−1 by an interval.
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Corollary 2.5 is not optimal in general (see 3.3 below), but it is if for example ϕ(r) = r2,
and this will enable us to derive an optimal lower bound in the case where X has the
doubling volume property.

Assume that Tt is connected to the distance d on X , in the sense that there exists a
gradient ∇ on X such that |∇d| ≤ 1 and (Af, f) = ‖∇f‖2

2. The basic example is again the
heat semigroup on a Riemannian manifold, but also any semigroup generated by a second
order subelliptic operator on a manifold endowed with the associated distance. A general
framework can be found in a series of papers by Sturm (see for example [Stu]).

2.6 Lemma. Suppose that for some x0 ∈ X , one has the doubling volume property
V (x0, 2r) ≤ C V (x0, r), ∀r > 0. Then

λ1(B(x0, r)) ≤ 4C
r2
, ∀r > 0.

Proof: Fix r > 0. Let f = (r − d(x0, .))+, suitably regularised. Since |∇f | ≤ 1 on
B(x0, r) and zero elsewhere, ‖∇f‖2

2 ≤ V (x0, r). Now f ≥ r/2 on B(x0, r/2), therefore
‖f‖2

2 ≥ (r/2)2V (x0, r/2). It follows that

λ1(B(x0, r)) ≤ ‖∇f‖2
2

‖f‖2
2

≤ V (x0, r)
(r/2)2V (x0, r/2)

≤ 4C
r2
.

Now one deduces easily from 2.3 and 2.6 the following

2.7 Theorem. Suppose that for some x0 ∈ X , one has the doubling volume property
V (x0, 2r) ≤ C V (x0, r), ∀r > 0. Then

sup
x∈X

pt(x, x) ≥ e−4C

V (x0,
√
t)
, ∀t > 0.

Let us compare this statement with the first assertion in [L], Theorem 13. Our doubling
volume condition is much weaker, and we get a lower bound directly in terms of the volume
function rather than in terms of a polynomial upper bound. Subsequently, if for example
V (x, r) ≤ CrD log r, for all x ∈ X and large r, we get for large t

sup
x∈X

pt(x, x) ≥ c√
tD log t

instead of
sup
x∈X

pt(x, x) ≥ cε√
tD+ε

.

Remark: Since the above approach does not require Tt to be Markov, or any information
on the L1 − L1 or L∞ − L∞ norm of Tt, it might prove useful in the study of the heat
kernel on differential forms.
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3. Anti-Faber-Krahn and anti-isoperimetric inequalities

Let us return to the general setting of operator semigroups: let (X, µ) be a σ-finite mea-
sured space, and Tt a semigroup of symmetric contractions of L2(X, µ), with infinitesimal
generator −A and kernel pt when it exists (see §2).

Recall the following result on upper bounds, that first appeared in the context of the
heat kernel on a Riemannian manifold ([G2]), and was then generalised to the setting of
Markov semi-groups ([C2]). We shall say that an increasing differentiable function γ from
IR∗

+ into itself satisfies condition (D) if there exists α > 0 such that

f(u) ≥ αf(t), ∀u ∈ [t, 2t], ∀t > 0,

where f(t) = γ′(t)
γ(t) . This condition does not affect the rate of increase of γ(t) as t→ +∞.

For example, such functions as γ(t) = loga t, tb, exp(tc) all satisfy the condition (D),
provided a, b, c > 0. On the contrary, γ(t) = 1 − exp(−t) does not satisfy it.

3.1 Theorem. Let γ be an increasing C1 bijection of IR∗
+. Then

sup
x∈X

pt(x, x) ≤ 1
γ(t)

, ∀t > 0

implies

λ1(Ω) ≥ α

2
Λ(|Ω|),

for every Ω with finite measure in X , where Λ and γ are related by γ′(t) = γ(t)Λ(γ(t)) or

t =
∫ γ(t)

0

dv

vΛ(v)

provided the integral above converges. If Tt is Markov and γ satisfies (D) then a converse
holds: the inequality

λ1(Ω) ≥ Λ(|Ω|)
for every Ω with finite measure in X implies

sup
x∈X

pt(x, x) ≤ constδ

γ(δt)
, ∀t > 0, ∀δ ∈ (0, 1).

We are now able to state a symmetric theorem about lower bounds.

3.2 Theorem. Let γ and Λ be as above. Suppose that γ satisfies (D) and that for every
ξ ∈ IR∗

+, there exists Ωξ such that |Ωξ| ≤ ξ and λ1(Ωξ) ≤ Λ(ξ). Then

sup
x∈X

pt(x, x) ≥ 1
γ(Ct)

, ∀t > 0,

where C = 2/α, α being the constant in condition (D).
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Proof: From Proposition 2.3 one deduces

sup
x∈X

pt(x, x) ≥ sup
ξ>0

exp (−λ1(Ωξ)t)
|Ωξ| ,

therefore

sup
x∈X

pt(x, x) ≥ sup
ξ>0

exp (−Λ(ξ)t)
ξ

= sup
τ>0

exp (−Λ(γ(τ))t)
γ(τ)

= sup
τ>0

exp
(
−γ′(τ)

γ(τ) t
)

γ(τ)
,

if one sets τ = γ−1(ξ). In order to get the result, it suffices to find τ such that

exp
(
−γ′(τ)

γ(τ)
t
)

γ(τ)
≥ 1
γ(Ct)

,

i.e.
γ(Ct)
γ(τ)

≥ exp
(
γ′(τ)
γ(τ)

t

)
,

or

log γ(Ct) − log γ(τ) ≥ γ′(τ)
γ(τ)

t.

Choose now τ = t/α. One has then

log γ(Ct) − log γ(τ) = log γ(2τ)− log γ(τ) = τ
γ′(aτ)
γ(aτ)

,

with a ∈]1, 2[. By condition (D),

γ′(aτ)
γ(aτ)

≥ α
γ′(τ)
γ(τ)

,

hence

log γ(Ct) − log γ(τ) ≥ ατ
γ′(τ)
γ(τ)

=
γ′(τ)
γ(τ)

t.

The theorem is proved.

We can now state a more sophisticated version of Corollary 2.5.

3.3 Corollary. Let Br, r > 0, be a family of measurable subsets of X and ϕ a mapping
from IR∗

+ to itself such that for every r ∈ IR∗
+,

λ1(Br) ≤ 1
ϕ(r)

.

Let v be a one-to-one mapping from IR∗
+ to itself such that

|Br| ≤ v(r), ∀r > 0.
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Suppose that
∫
0
ϕ ◦ v−1(ξ) dξ

ξ converges and that γ defined by

t =
∫ γ(t)

0

ϕ ◦ v−1(ξ)
dξ

ξ

satisfies (D). Then

sup
x∈X

pt(x, x) ≥ 1
γ(Ct)

, ∀t > 0.

Proof: For ξ > 0, set Ωξ = Bv−1(ξ). One has

|Ωξ| ≤ ξ and λ1(Ωξ) ≤ 1
ϕ ◦ v−1(ξ)

,

therefore one can apply 3.2 with Λ = 1
ϕ◦v−1 , whence the result.

Remarks:
1. The above estimate is better than 2.5 if

γ(t) � v(ϕ−1(t)),

which is the case if

t�
∫ v(ϕ−1(t))

0

ϕ ◦ v−1(ξ)
dξ

ξ
.

This happens for example if ϕ ◦ v−1 grows faster than any power function.
2. When X is a metric space, a possible choice for Br is the family of balls B(x0, r),

x0 ∈ X , since it is natural to assume that one controls their volume. On the other hand,
there is no reason why their λ1 should be in general particularly small with respect to their
volume.

From now on, for the sake of simplicity, we will suppose that X = M is a Riemannian
n-manifold endowed with its Riemannian measure µ and that Tt is the heat semigroup
on M , but it is clear that the ideas below can be extended to more general geometries
(e.g. a Lie group endowed with Hörmander vector fields or more generally a differentiable
manifold endowed with a symmetric second-order subelliptic operator). Denote by S(x, r)
the n− 1 dimensional Hausdorff measure of the sphere ∂B(x, r).

3.4 Proposition. Fix x0 in M . Suppose that S(x0, r) is non-decreasing as a function of
r. Then

(3.1) λ1(B(x0, r)) ≤ 4
(
S(x0, r)
V (x0, r)

)2

.

Proof: Fix r > 0. We want to find a function f supported in B(x0, r) such that

‖∇f‖2
2

‖f‖2
2

≤ 4
(
S(x0, r)
V (x0, r)

)2

.
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Let r1 ∈]0, r[ to be chosen later, and f(y) = g(d(x0, y)), where

g(s) = inf
(

1, (
r − s

r1
)+

)

(of course g should be regularised, but for simplification we ignore this in the calculations
below).

Set S(x0, s) = ϕ(s). One has

‖∇f‖2
2

‖f‖2
2

=

∫ r

0
g′(s)2ϕ(s) ds∫ r

0
g(s)2ϕ(s) ds

.

Set A =
∫ r

0
g′(s)2ϕ(s) ds and B =

∫ r

0
g(s)2ϕ(s) ds. Then

A =
1
r21

∫ r

r−r1

ϕ(s) ds ≤ 1
r1
ϕ(r),

and

B ≥
∫ r−r1

0

ϕ(s) ds.

Therefore
A

B
=

‖∇f‖2
2

‖f‖2
2

≤ ϕ(r)

r1
∫ r−r1

0
ϕ(s) ds

,

and the claim will be proved if we are able to choose r1 such that

ϕ(r)

r1
∫ r−r1

0
ϕ(s) ds

≤ 4
(
S(x0, r)
V (x0, r)

)2

= 4
ϕ(r)2(∫ r

0
ϕ(s) ds

)2 ,
in other terms (∫ r

0

ϕ(s) ds
)2

≤ 4r1ϕ(r)
∫ r−r1

0

ϕ(s) ds.

Choose r1 such that

r1ϕ(r) =
∫ r−r1

0

ϕ(s) ds.

Then

(∫ r

0

ϕ(s) ds
)2

≤
(∫ r−r1

0

ϕ(s) ds+ r1ϕ(r)
)2

= 4r1ϕ(r)
∫ r−r1

0

ϕ(s) ds,

and we have what we wanted.
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Remarks:
1. If one does not assume S(x0, r) to be non-increasing, one gets

λ1(B(x0, r)) ≤ 4
(

sups≤r S(x0, s)
V (x0, r)

)2

.

In particular, if S(x0, r) is quasi-non-decreasing in r, i.e.

S(x0, r) ≤ KS(x0, s), r < s,

one gets (3.1) with a constant 4K2 instead of 4. Inequality (3.1) cannot be obtained in
general as follows from [CL].

2. Since λ1(B(x, r)) is by definition non-increasing in r, one can in fact replace (3.1) by:

λ1(B(x,R)) ≤ 4
(

inf
r≤R

S(x, r)
V (x, r)

)2

.

We shall see in Lemma 8.2 below that this estimate is optimal (up to constants) in the
case of rotationally invariant manifolds.

We shall now see that it follows from Theorem 3.2 and Proposition 3.4 that an anti-
isoperimetric inequality implies a lower bound on supx∈M pt(x, x). One says that M satis-
fies a ϕ-isoperimetric inequality, where ϕ is a non-decreasing function, if

|Ω|
ϕ(|Ω|) ≤ C |∂Ω| ,

for every compact domain Ω in M with smooth boundary. Such an inequality implies the
Faber-Krahn inequality

1
ϕ2(|Ω|) ≤ C′λ1(Ω)

(see [C3]). Let us say that M satisfies a ϕ-anti-isoperimetric inequality if there exists
x0 ∈M and c > 0 such that S(x0, r) is quasi-non-decreasing with respect to r and

V (x0, r)
ϕ(V (x0, r))

≥ cS(x0, r), ∀r > 0.

3.5 Corollary. Suppose that γ satisfies (D), that ϕ is non-decreasing and that they

are related by γ′(t) = γ(t)
ϕ2(γ(t)) or t =

∫ γ(t)

0
ϕ2(v)

v dv. If M satisfies a ϕ-anti-isoperimetric

inequality, then

sup
x∈X

pt(x, x) ≥ 1
γ(Ct)

, ∀t > 0,

where C = 8K2

αc2 .

Proof: By hypothesis
S(x0, r)
V (x0, r)

≤ c−1

ϕ(V (x0, r))
,

therefore by Proposition 3.4

λ1(B(x0, r)) ≤ 4K2c−2

ϕ2(V (x0, r))
.

The result then follows from Theorem 3.2.
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Examples:
1. If there exists x0 ∈M and C > 0 such that

S(x0, r) ≤ CV (x0, r)
D−1

D , ∀r > 0,

then
sup
x∈X

pt(x, x) ≥ ct−D/2, ∀t > 0.

2. If there exists x0 ∈M and c > 0 such that

S(x0, r) ≤ C
V (x0, r)

(logV (x0, r))1/α
, ∀r > r0,

then
sup
x∈X

pt(x, x) ≥ c exp(−ct α
α+2 ), ∀t > t0.

The last example shows that it would be desirable to extend Lemma 3.4 to other families
of sets than balls. Indeed there is no reason why a ϕ isoperimetric inequality should be
saturated by balls. For instance, on groups of exponential growth, one always has

1
log |Ω| ≤ C

|∂Ω|
|Ω| ,

([CS1]). If the group is in addition polycyclic, there always exists a family of sets Ωn and
c > 0 such that |Ωn| → +∞ and

c
|∂Ωn|
|Ωn| ≤ 1

log |Ωn|

([P]), but the Ωn’s are far from being balls, because they grow in a non-isotropic way.
Suppose however that one is able to show that for such sets

λ1(Ωn) ≤ C′
( |∂Ωn|

|Ωn|
)2

.

This would yield

λ1(Ωn) ≤ C”
(log |Ωn|)2 ,

therefore, by adapting Theorem 3.2, using the fact that Ωn has at most exponential growth,

pt(e) ≥ ce−Ct1/3
, ∀t > 1.

This would give another approach to the optimal lower bound for heat kernels on polycyclic
groups with exponential growth, that is due to Alexopoulos [Al]. We intend to come back
to these matters in a future paper with Christophe Pittet.
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4. Markov chains on graphs

Let T be a symmetric Markov operator acting on L2(X, µ). Our starting point will be
this time the inequality

(4.1)

(
‖Tf‖2

2

‖f‖2
2

)k

≤
∥∥T kf

∥∥2

2

‖f‖2
2

, ∀f ∈ L2, ∀k ∈ IN.

Again, this inequality can be proved by spectral theory, or even more directly (see [C2]).
One gets as in §2
4.1 Proposition.

∥∥T 2k
∥∥

1→∞ ≥ sup
f∈L1∩L2


‖f‖2

2

‖f‖2
1

(
‖Tf‖2

2

‖f‖2
2

)k

 .

For Ω a measurable subset of X with finite measure |Ω|, define

a(Ω) = sup
{‖Tf‖2

‖f‖2

; f ∈ L2, suppf ⊂ Ω
}
.

4.2 Proposition. ∥∥T 2k
∥∥

1→∞ ≥ sup
Ω

a(Ω)2k

|Ω| .

In view of the applications, it is convenient to formulate the above inequalities in terms
of the Dirichlet form E(f) = ‖f‖2

2 − ‖Tf‖2
2. Since ‖f‖2

2−‖Tf‖2
2

‖Tf‖2
2

≥ log ‖f‖2
2

‖Tf‖2
2
, one gets from

Proposition 4.1

4.3 Proposition.

∥∥T 2k
∥∥

1→∞ ≥ sup
f∈L1∩L2

{
‖f‖2

2

‖f‖2
1

exp

(
− E(f)

‖Tf‖2
2

k

)}
.

Define now

λ(Ω) = inf

{
E(f)

‖Tf‖2
2

; f ∈ L2, suppf ⊂ Ω

}
.

One gets

4.4 Proposition. ∥∥T 2k
∥∥

1→∞ ≥ sup
Ω

{
1
|Ω| exp (−λ(Ω)k)

}
.

13



Take now for X an infinite, connected graph. Write x ∼ y if x, y ∈ X are neighbours or
x = y. Let n(x) − 1 be the number of neighbours of x ∈ X . Assume that X is uniformly
locally finite, i.e. supx∈X n(x) < +∞. We shall endow X with the measure µ = n(x) dx,
that is equivalent to the counting measure, and with the natural graph metric d, i.e.
d(x, y) is the minimal number of steps necessary to join x to y. For x ∈ X and n ∈ IN, let
B(x, n) = {y ∈ X ; d(x, y) ≤ n} and denote by V (x, n) the cardinal of B(x, n). If f be a
finitely supported function on X , define the length of its gradient by

|∇Xf | (x) = |∇f | (x) =
∑

y∈X,x∼y

|f(x) − f(y)| .

Denote by |Ω| the cardinal of the set Ω ⊂ X , and define ∂Ω = {x ∈ Ω; ∃y �∈ Ω, y ∼ x}.
Let p be a Markov kernel onX , i.e. a function p : X×X → IR+ such that

∑
y∈X p(x, y) =

1, ∀x ∈ X . We shall say that p is admissible if it is reversible with respect to n, i.e.
p(x, y)n(x) = p(y, x)n(y), if there exists c > 0 satisfying p(x, y) ≥ c if x, y ∈ X are
neighbours or x = y, and if p has bounded range, i.e. there exists r0 such that p(x, y) = 0
as soon as d(x, y) ≥ r0. Denote by pk the kth iterated kernel of p: p1 = p and pk =∑

z∈X pk−1(x, z)p(z, y). The standard kernel q, defined by q(x, y) = 1
n(x) if y ∼ x, 0

otherwise, is admissible. If p is admissible and T is the operator defined by

Tf(x) =
∑
y∈X

p(x, y)f(y),

one checks easily that T is symmetric Markovian on �2(X) and that

C−1 ‖|∇f |‖2
2 ≤ E(f) ≤ C ‖|∇f |‖2

2 .

From now on, p will be an admissible kernel and T the associated operator. In the above
estimates we had to consider the quantity

λ(Ω) = inf

{
E(f)

‖Tf‖2
2

; f ∈ L2, suppf ⊂ Ω

}
.

but the natural geometric quantity is rather

λ1(Ω) = inf

{
E(f)

‖f‖2
2

; f ∈ L2, suppf ⊂ Ω

}
.

which is uniformly comparable to

inf

{
‖∇f‖2

2

‖f‖2
2

; f ∈ L2, suppf ⊂ Ω

}
.

However we have the

14



4.5 Lemma. There exists C > 0 such that

λ1(Ω) ≤ λ(Ω) ≤ Cλ1(Ω),

for every finite subset Ω of X .

Proof: The left-hand-side inequality is obvious. As for the other one, since T is Markov,
‖Tf‖2

2 ≤ ‖T |f |‖2
2, therefore

E(|f |)
‖f‖2

2

≤ E(f)
‖f‖2

2

,

which means that in λ1(Ω) one can restrict the infimum to nonnegative functions. Now, if
f ≥ 0,

‖Tf‖2
2 =

∑
x∈X

(
∑
y∈X

p(x, y)f(y))2 ≥ c
∑
x∈X

f2(x) = c ‖f‖2
2 ,

and
E(f)

‖Tf‖2
2

≤ c−1 E(f)

‖f‖2
2

,

which proves the claim by taking the infimum.

We refer to [C2], §IV, V for a characterisation of an upper bound on supx∈X pk(x, x) =∥∥T k
∥∥

1→∞ in terms of Faber-Krahn type inequalities and we pass to lower bounds. One
proves as in 2.6

4.6 Theorem. Suppose that for some x0 ∈ X , one has the doubling volume property
V (x0, 2n) ≤ C V (x0, n), ∀n ∈ IN∗. Then

sup
x∈X

pk(x, x) ≥ C′

V (x0,
√
k)
, ∀k ∈ IN∗.

Proof: One sees as in 2.6 that

λ1(B(x0, n)) ≤ C

n2
,

and the result for even k is a consequence of 4.4 and 4.5. Using p(x, x) ≥ c, one easily
derives a lower bound on pk(x, x) for every k.

The proof of the following statement is similar to the one of 3.2.

4.7 Theorem. Suppose that Λ and γ are as in 3.1, and that for every ξ ∈ IR∗
+, there

exists Ωξ such that |Ωξ| ≤ ξ and λ1(Ωξ) ≤ Λ(ξ). Then

sup
x∈X

pk(x, x) ≥ 1
γ(Ck)

, ∀k > 0,

where C > 0 depends on α, the constant in condition (D), on the constants of the graph
X , and on the constants of the kernel p.
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One says that X satisfies a ϕ-isoperimetric inequality if

|Ω|
ϕ(|Ω|) ≤ C |∂Ω| ,

for every finite subset Ω of X . Again, this inequality implies

1
ϕ2(|Ω|) ≤ C′λ1(Ω)

(see [C3]). Let us say that X satisfies a ϕ-anti-isoperimetric inequality, where ϕ is a non-
decreasing function, if there exist x0 ∈ X and K, c > 0 such that

S(x0, n) ≤ K S(x0, p), n > p,

and
V (x0, n)

ϕ(V (x0, n))
≥ cS(x0, n), ∀n ∈ IN∗.

One proves as in §3
4.8 Corollary. Suppose that γ satisfies (D), that ϕ is non-decreasing and that they

are related by γ′(t) = γ(t)
ϕ2(γ(t))

or t =
∫ γ(t)

0
ϕ2(v)

v
dv. If X satisfies a ϕ-anti-isoperimetric

inequality, then

sup
x∈X

pk(x, x) ≥ 1
γ(Ck)

, ∀k ∈ IN∗.

However, in our discrete setting, we can get a version of 3.4 for more general families of
sets than balls, and therefore generalise 4.8.

4.9 Proposition Let Ω be a finite subset ofX . Suppose that Ω = ∪n
i=1Ωi, where the Ωi are

disjoint, Ωn = ∂Ω, and all neighbours of points in Omegai are contained in Ωi−1∪Ωi∪Ωi+1.
Then, if ∀i = 1, ..., n, |Ωi| ≤ K |∂Ω|,

λ1(Ω) ≤ C

( |∂Ω|
|Ω|

)2

,

where C only depends on the constants of the graph X and K.

Remark: If one does not assume |Ωi| ≤ K |Ωn|, one gets still

λ1(Ω) ≤ C

(
maxi |Ωi|

|Ω|
)2

.
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Proof: Set αi = |Ωi| and βi =
∑i

j=1 αj , i = 1, ..., n. We can assume for example n ≥ 3

because otherwise |Ω| =
∑n

i=1 |Ωi| ≤ (K + 1) |∂Ω|, therefore |∂Ω|
|Ω| is bounded below, which

proves the claim since λ1(Ω) is obviously bounded above.
Let us first treat the case where, say, βn−1 ≤ αn, thus βn ≤ 2αn. Take f = 1Ω. Then

‖f‖2
2 = βn

and
‖∇f‖2

2 =
∑
x∈Ω

|∇f(x)|2 +
∑

x∈X\Ω
|∇f(x)|2 ≤ (N +N2)αn.

Therefore

λ1(Ω) ≤ ‖∇f‖2
2

‖f‖2
2

≤ N ′αn

βn
,

where N ′ = N +N2, and since
|∂Ω|
|Ω| =

αn

βn
≥ 1

2
,

one gets

λ1(Ω) ≤ 2N ′
( |∂Ω|

|Ω|
)2

.

Assume now that βn−1 > αn. Let f =
∑n

i=1 fi1Ωi
, where fi = 1 for 1 ≤ i ≤ p,

fi − fi+1 = 1
n−p for p ≤ i ≤ n, and p is to be chosen later. One has

‖f‖2
2 =

n∑
i=1

f2
i αi ≥ βp.

On the other hand

‖∇f‖2
2 =

n∑
i=1

∑
x∈Ωi

|∇f(x)|2 +
∑

x∈X\Ω
|∇f(x)|2 .

Let us estimate |∇f(x)|2 =
∑

y∈X,x∼y |f(x) − f(y)| . If x ∈ Ωi, 1 ≤ i ≤ p−1, |∇f(x)| = 0.
If x ∈ ∂Ωi, p ≤ i ≤ n, use hte fact that x has at most N neighbours y. If y ∈ Ωi,
|f(x) − f(y)| = 0; otherwise y ∈ Ωi−1 ∪ Ωi+1, and |f(x) − f(y)| ≤ 1

n−p . Thus

∑
x∈Ωi

|∇f(x)|2 ≤ Nαi

(n− p)2
.

One gets in the same way ∑
x∈X\Ω

|∇f(x)|2 ≤ N2αn

(n− p)2
,

so that

‖∇f‖2
2 ≤ N ′∑n

i=p αi

(n− p)2
.
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To prove the claim, we have to choose p ∈ {1, ..., n− 1} such that

(4.1)
N ′∑n

i=p αi

βp(n− p)2
≤ C

α2
n

β2
n

,

i.e.

β2
n

n∑
i=p

αi ≤ C

N ′ βp(n− p)2α2
n.

Since αi ≤ Kαn,
∑n

i=p αi ≤ K(n− p+ 1)αn ≤ 2K(n− p)αn, therefore it suffices to get

β2
n ≤ C

2KN ′ (n− p)βpαn.

If β1 = α1 > (n− 1)αn, then one easily gets (4.1) for p = 1. Otherwise, one can define

p = max{i = 1, ..., n− 2; βi ≤ (n− i)αn} + 1.

Then
βp−1 ≤ (n− p+ 1)αn,

therefore, since αp ≤ Kαn,

βp = βp−1 + αp ≤ K(n− p+ 2)αn

(one can always assume K ≥ 1). On the other hand, since βn−1 > αn, one certainly has

βp > (n− p)αn.

Now n− p+ 2 ≤ 3(n− p), and

(n− p)αn ≤ βp ≤ 3K(n− p)αn,

whence

β2
n ≤ (βp +K(n− p)αn)2 ≤ 16K2(n− p)2α2

n ≤ 16K2(n− p)βpαn.

The proposition is proved with C = 32KN ′.

One easily deduces from 4.9

4.10 Proposition Let Ω be a finite subset of X . Define ∂iΩ = {x ∈ Ω; d(x,Ωc) = i}. Let
p be the smallest integer such that ∂p+1Ω = ∅. Then, if ∀i = 1, ..., p, |∂iΩ| ≤ K |∂Ω|,

λ1(Ω) ≤ C

( |∂Ω|
|Ω|

)2

,

where C only depends on the constants of the graph X and on K.

Let us say that Ω is K-admissible if it satisfies the assumptions of Proposition 4.10. We
can now state
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4.11 Corollary. Suppose that γ satisfies (D), that ϕ is non-decreasing and that they are

related by γ′(t) = γ(t)
ϕ2(γ(t)) or t =

∫ γ(t)

0
ϕ2(v)

v dv. If there exists a family of K-admissible

sets Ωξ, ξ ∈ IR∗
+ such that such that |Ωξ| ≤ ξ and

abs∂Ωξ)
absΩξ)

≤ 1
ϕ(ξ)

, then

sup
x∈X

pk(x, x) ≥ 1
γ(Ck)

, ∀k ∈ IN∗.

5. Exponential decay

Let (X, µ) be a σ-finite measured space, and Tt a semi-group of symmetric contractions
of of L2(X, µ). Denote by −A the infinitesimal generator of Tt and pt its kernel when
it exists (see §2). Suppose λ0 = inff∈D

(Af,f)

‖f‖2
2

> 0. The above techniques also work in
that setting; however, they are less interesting because the corresponding results on upper
bounds are far from being complete. One deduces from 2.4

5.1 Proposition.

sup
x∈X

pt(x, x) ≥ e−1e−λ0t sup{ 1
|Ω| ;λ1(Ω) ≤ λ0 +

1
t
}.

5.2 Theorem. Suppose that for some t ∈ IR∗
+, there exists Ωt such that λ1(Ωt) ≤ λ0 + 1

t
and |Ωt| ≤ v. Then supx∈X pt(x, x) ≥ e−λ0t/ev.

One proves as in 3.2

5.3 Theorem. Let γ be an increasing C1 bijection of IR∗
+ satisfying (D). Let Λ be such

that γ′(t) = γ(t)Λ(γ(t)) or t =
∫ γ(t)

0
dv

vΛ(v) . If for every ξ ∈ IR∗
+, there exists Ωξ such that

|Ωξ| ≤ ξ and λ1(Ωξ) ≤ λ0 + Λ(ξ), then

sup
x∈X

pt(x, x) ≥ e−λ0t

γ(ct)
, ∀t > 0.

We now give partial results concerning upper bounds. The following is an adaptation of
[C1], §IV:

5.4 Theorem. Let Tt be as above, and ε ∈]0, 1[. Then

sup
x∈X

pt(x, x) ≤ Ce−λ0tt−ε, ∀ t ≥ 1

if and only if

‖f‖∞ ≤ C ‖f‖1−ε
2

∥∥∥(A− λ0)1/2f
∥∥∥ε

2
, ∀ f ∈ L2 ∩ D(A1/2)

such that
∥∥(A− λ0)1/2f

∥∥
2
≤ ‖f‖2 .

One deduces immediately from Theorem 5.4 that, if Tt is as above, if ε ∈]0, 1[ and

sup
x∈X

pt(x, x) ≤ Ce−λ0tt−ε, ∀ t ≥ 1,

then
λ1(Ω) ≥ λ0 + c |Ω|− 1

ε ,

as soon as |Ω| is large enough. We are going to show that this implication also holds for
ε > 1.
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5.5 Theorem. Let Tt be as above, and ε > 0. Then

sup
x∈X

pt(x, x) ≤ Ce−λ0tt−ε, ∀ t ≥ 1

implies

λ1(Ω) ≥ λ0 + c |Ω|− 1
ε ,

as soon as Ω is large enough.

Proof: According to 2.3 and the hypothesis,

1
|Ω| exp (−λ1(Ω)t) ≤ Ce−λ0tt−ε, ∀ t ≥ 1, ∀Ω,

therefore

λ1(Ω) ≥ 1
t

log
(
eλ0ttε

C |Ω|
)

= λ0 +
1
t

log
(

tε

C |Ω|
)
.

The result follows by choosing t = (eC |Ω|)1/ε.��

For example, on a co-compact covering manifold whose deck transformation group is
non amenable, an argument by T. Lyons shows that the hypothesis of 5.4 holds with ε = 1
(see the appendix of [CCMP]). Therefore, for Ω large,

λ1(Ω) ≥ λ0 + c |Ω|−1
.

One can of course wonder whether the converse of 5.4 holds. This is not likely to be
true, since for example if X is the hyperbolic space,

sup
x∈X

pt(x, x) ≤ Ce−λ0tt−3/2, ∀ t ≥ 1,

whereas one can check that the lower bound on λ1(Ω) is much better that the one given
by 5.5 (roughly λ1(Ω) ≥ λ0 + c

log|Ω|) .

The above results have discrete time analogues, in the spirit of [C1], §V and §4 above.
We leave the details to the reader.

Let us however point out the following facts. Let X = Γ be a non-amenable finitely
generated group and µ a symmetric probability measure on Γ with finite and generating
support. Let T the right convolution operator on �2(Γ) associated with µ, and let a =
‖T‖2→2; note that a < 1 since Γ is non-amenable. It was remarked by Guivarc’h ([Gu], see
also [La], prop. 2.1) that

µ(2k)({e}) =
∥∥T 2k

∥∥
1→∞ ≤ Ca2kk−1.

Using Proposition 4.2, one can as above deduce from this estimate that

a(Ω) ≤ a e−c|Ω|−1
, ∀Ω finite subset of Γ.
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In the case where Γ is the free group, since

µ(2k)({e}) =
∥∥T 2k

∥∥
1→∞ ≤ Ca2kk−3/2,

(see [La]), one gets
a(Ω) ≤ a e−c|Ω|−2/3

.

For comparison, in the amenable case, when Γ has polynomial growth of order D, this
formulation of the Faber-Krahn inequality gives

a(Ω) ≤ e−c|Ω|−2/D

,

and when it has intermediate or exponential growth of order α ∈]0, 1],

a(Ω) ≤ e−(C+C′ log|Ω|)−1−2/α

.

6. Pointwise lower bounds on general manifolds

We shall prove here pointwise heat kernel lower bounds under the assumption that we
are given an upper bound of the volume function. This hypothesis alone is still not enough
to produce any pointwise heat kernel lower bound what will be shown by the examples
below. So, we have to introduce additional hypotheses, and we will do that in two ways.

The first way is to assume that we know the geometry of the manifold near a point at
which we are looking at the heat kernel. It turns out that apart from the volume upper
bound, it suffices to know some geometric characteristics (such as certain isoperimetric
constants) in an arbitrarily small neighbourhood of the point.

The second way (which will be taken in the next section) is to assume that we are given
a proper upper bound of the heat kernel. The fact is that an upper bound of the heat
kernel and that of the volume growth function imply a lower on-diagonal bound for the
heat kernel. This idea was exploited in [St], [BCF], [CS2], and [L], but here we implement
it in a much more general setting.

In order to state the result of the first kind, we fix a point z ∈ M and assume that for
some r0 > 0 and for any r ≥ r0 the volume V (z, r) of the ball B(z, r) is bounded from
above by a function of the radius:

(6.1) V (z, r) ≤ v(r).

We suppose also that the function v(r) is regular in the following sense: it is a continuous
monotonically increasing function on [r0,+∞) and, in addition, the function

(6.2)
r2

log v(r)
is strictly increasing on [r0,+∞) and goes to ∞ as r → ∞. We will always assume that
v(r0) > 2 in order to keep log v(r0) away from 0.

Let us put

(6.3) t0 =
r20

log v(r0)
,

then the function (6.2) has an inverse defined on [t0,∞) which will be denoted by R(t).
In other words, R(t) satisfies the identity

(6.4) t =
R2(t)

log v(R(t))
.
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6.1 Theorem. Under the above assumptions, the following lower bound for the heat
kernel is valid for all t ≥ t0

(6.5) pt(z, z) ≥ 0.5
V (z,R(at))

where the constant a > 0 depends on the interior geometry of the ball B(z, r0) of center z
and radius r0 in the following sense:

(6.6) a = a(r0, n, κ(z, r0))

where n = dimM and κ(z, r0) is the Faber-Krahn isoperimetric constant in the ball
B(z, r0).

Remarks:
1. The explicit definition of κ(z, r0) is given below in the course of the proof. What is

important to underline is the fact that a is determined by an arbitrarily small neighbour-
hood of the point z and, therefore, does not depend on the global geometry of the manifold
in question.

2. The coefficient 0.5 in (6.5) can be replaced by any number < 1 at the expense of
increasing a.

3. As follows from (6.5) and (6.1) ,

(6.7) pt(z, z) ≥ 0.5
v(R(at))

.

If we rewrite the identity (6.4) in the form

log v(R(at)) =
R2(at)
at

we obtain obviously from (6.7)

pt(z, z) ≥ 1
2

exp
−R2(at)

at


which can be considered as an alternative way of writing (6.5) .

4. Theorem 6.1 applies on any complete manifold provided the volume of a ball is
growing, roughly speaking, slower than ecr2

. Indeed, given a point z and some r0 > 0,
a Faber-Krahn type inequality does hold in B(z, r0) just by compactness of the ball.
Therefore, we have some finite value for a by (6.6) . On the other hand, if the volume V (z, r)
grows essentially slower than ecr2

then it has an upper bound function v(r) satisfying the
above regularity conditions. Hence, all hypotheses of Theorem 6.1 hold, and so does the
lower bound (6.5) .

5. One can slightly generalize Theorem 6.1 by assuming that the function v(r) is defined
on an interval [r1,∞) where r1 > r0, and, respectively, the upper bound (6.1) of the volume
function is valid only for r ≥ r1. Then the conclusion (6.5) is true for t ≥ t1 (where t1 is
the bottom of the domain of R(t)) with a = (r0, r1, n, κ(z, r0)).

6. On a manifold of bounded geometry, for some r0 > 0 and for any z ∈M the isoperi-
metric constant κ(z, r0) is bounded away from zero. Therefore, the constant a can be taken
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the same for all z so that the lower bound (6.5) becomes uniform in z provided there is a
uniform upper bound of the volume.

7. If the volume V (z, r) grows as r → ∞ essentially faster than ecr2
then the manifold

may be stochastically incomplete (see [Az], [G5]). Our method of proof cannot handle such
a situation.

8. In the setting of Markov chains on graphs (and even in a more general operator
theoretic setting), Françoise Lust-Piquard already obtained in [L] essentially the analogue
of Theorem 6.1 (see below for some details). We owe her the observation that our method
works in this setting also, provided that instead of the integrated maximum principle (i.e.
the fact that E(z, t) is non-increasing in t), one estimates directly

∑
y∈X\B(x,R) pk(x, y)

(see §4 for notation) using the transmutation formula of [Carn] as in [L]. One could also
use the universal Gaussian estimate for Markov chains ([V1], [Carn]).

Examples:
1. If we take

v(r) = CrN

then we have
R(t) ∼

√
t log t,

and Theorem 6.1 yields

pt(z, z) ≥ 0.5
V (z,

√
at log at)

≥ const

(t log t)
N
2
.

As will be shown in §9, one cannot get an essentially better lower bound without assuming
anything else.

In particular, if M satisfies the doubling volume property around z, i.e.

V (z, 2r) ≤ constV (z, r), ∀r > 0,

then one can indeed take v(r) = CrN . The bound V (z, r) ≤ CrN may be very rough, but
the estimate

pt(z, z) ≥ 0.5
V (z,

√
at log at)

still holds.
Let us note that F.Lust-Piquard [L] obtained similar estimates in the discrete time

setting.
2. For an exponential volume growth

v(r) = exp(rα)

where α ∈ (0, 2), we have
R(t) ∼ t

1
2−α

and, thus,
pt(z, z) ≥ const exp(−constt

α
2−α ).

An example in §8 will show that the exponent t
α

2−α is sharp whenever α ≤ 1. This is better
that the exponent t

α(1+α)
2 obtained in a discrete setting in [L] for α ∈ (0, 1]. However, after
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reading a first version of the present paper, Françoise Lust-Piquard noticed that her own
argument could be modified in order to get the correct exponent (namely, in the proof of
her Theorem 3, in the case iii), one should sum as below over a series of annuli instead of
the exterior of a ball).
Proof of Theorem 6.1. We start with the following lemma which is the core of all
on-diagonal lower bounds. In the lemma below, we do not assume anything about the
manifold except for what is stated explicitly. We denote the Riemannian volume of a set
Ω ⊂M by µ(Ω) or |Ω|.
6.2 Lemma. Let the manifold M be stochastically complete and let z be a point in M.
Let us fix a time t > 0 and suppose that for some region Ω ⊂M

(6.8)
∫

M\Ω
pt/2(z, x)dx < ε

where ε ∈ (0, 1). Then

(6.9) pt(z, z) ≥ (1 − ε)2

|Ω| .

Proof of the lemma. The idea behind the proof is classical (see for example [St], lecture
III, [BCF], [CS2], and [L]).

The proof uses two crucial properties of the heat kernel:
1◦ The semigroup property which yields, in particular,

(6.10) pt(z, z) =
∫

M

p2
t/2(z, x)dx

2◦ The hypothesis of stochastic completeness which means that for all z ∈M, t > 0 (or,
which is the same, for some z ∈M, t > 0)

(6.11)
∫

M

pt(z, x)dx = 1.

We have by (6.10)

pt(z, z) =
∫

M

p2
t/2(z, x)dx ≥

∫
Ω

p2
t/2(z, x)dx

≥ 1
|Ω|
∫

Ω

pt/2(z, x)dx
2

=
1
|Ω|

1 −
∫

M\Ω
pt/2(z, x)dx


2

whence (6.9) follows. ��
To prove Theorem 6.1, we take Ω = B(z, R) where R ≥ r0 will be found to satisfy (6.8)

for some ε ∈ (0, 1). Eventually, R will be equal to R(at) for some (big) constant a.
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Let us note that under the hypotheses of Theorem 6.1 the manifold is stochastically
complete so we can apply Lemma 6.2. Indeed, the hypothesis that the function r2/ log v(r)
is increasing implies v(r) ≤ eCr2

and V (z, r) ≤ eCr2
for large r, which, in turn, implies

stochastic completeness by [G1] or [KL].
In order to estimate the integral (6.8) , we shall use the following quantity

E(z, t) =
∫

M

p2
t (z, x) exp

d2

4t

 dx

(where d = dist(z, x)) which is known to be finite on any manifold and, moreover, is a
decreasing function of t (see [G2] and [G3]). We have by the Cauchy-Schwarz inequality

∫
M\B(z,R)

pt/2(z, x)dx


2

≤
∫

M\B(z,R)

p2
t/2(z, x)e

d2
2t dx

∫
M\B(z,R)

e−
d2
2t dx

≤ E(z, t/2)
∫

M\B(z,R)

e−
d2
2t dx

where d = dist(z, x).
Let us introduce the notation†

I(z, R) =
∫

M\B(z,R)

e−
d2
2t dx

so that we can write down the following inequality

(6.12)


∫

M\Ω
pt/2(z, x)dx


2

≤ E(z, t/2)I(z, R)

which is true without any a priori assumptions. We will estimate from above each term on
the right hand side of (6.12) .

Let us first estimate I(z, R) from above by decomposing it into a series of integrals over
the annuli. Namely, we take a sequence Rk = 2kR, k = 0, 1, 2... and write

I(z, R) ≤
∞∑

k=0

exp
−R

2
k

2t

µ(B(z, Rk+1) \B(z, Rk))

≤
∞∑

k=0

exp
−R

2
k

2t

V (z, Rk+1)

≤
∞∑

k=0

exp
−R

2
k+1

8t
+ log v(Rk+1)

 .

The idea of our further estimates is that the first (negative) term in the exponent overrides
the second (positive) one which ensures an upper bound for I(z, R). To make it rigorous,
let us take

(6.13) R = R(at)

† Let us note that I(z, R) depends on t as well but we suppress that in our notation in order not to

overload it.
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for some (big) a > 1 to be found later. It means that R ≥ r0 and

(6.14)
R2

log v(R)
= at

whence it follows

(6.15)
R2

k+1

log v(Rk+1)
≥ at

(because the function r2/ log v(r) is increasing in r) or

(6.16) log v(Rk+1) ≤
R2

k+1

at
.

Let us further suppose that

(6.17) a ≥ 16

which gives us from (6.16)

−R
2
k+1

8t
+ log v(Rk+1) ≤ (−1 +

8
a
)
R2

k+1

8t
≤ −1

2
R2

k+1

8t

Therefore, we obtain the following upper bound of I(z, R) :

I(z, R) ≤
∞∑

k=0

exp
−R

2
k+1

16t

 .

Substituting here Rk+1 = 2k+1R and R2/t = a log v(R) from (6.14) , we obtain

I(z, R) ≤
∞∑

k=0

exp
−4k a

4
log v(R)


or, by using 4k ≥ k + 1 and changing k + 1 to k

I(z, R) ≤
∞∑

k=1

v(R)−
a
4 k =

1
v(R)a/4 − 1

≤ 1
v(r0)a/4 − 1

.

To estimate E(z, t/2) we use the fact that it is decreasing in t whence we have for t ≥ t0

E(z, t/2) ≤ E(z, t0/2).

Returning to (6.12) , we have for R = R(at) and t ≥ t0

(6.18)


∫

M\B(z,R)

pt/2(z, x)dx


2

≤ E(z, t0/2)
v(r0)a/4 − 1

.
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Let us take a large enough to ensure that the right hand side in (6.18) is less than a given
ε2. Namely, we can take any (virtually, the smallest) a such that

(6.19) a ≥ 16 + 4
log(1 + ε−2E(z, t0/2))

log v(r0)

and for that a and for any t ≥ t0 we have by Lemma 6.2

pt(z, z) ≥ (1 − ε)2

V (z,R(at))
.

For a suitable ε one obtains (6.5) .
Let us discuss what our a depends on. If fact, what counts is an upper bound for a.

Therefore, we have to obtain an upper bound of E(z, t0/2). Let us note that in any ball
B(x, ρ) the geometry of the manifold is close to that of the Euclidean space. In particular,
a Faber-Krahn type inequality is true: for any region U ⊂ B(z, ρ)

(6.20) λ1(U) ≥ κ(z, ρ) |U |−2/n

where λ1(U) is the first Dirichlet eigenvalue in U , κ(z, ρ) is a positive number (“a Faber-
Krahn constant”), and n = dimM.

The following statement was proved in [G2], Theorem 6.2.

6.3 Proposition. ([G2]) Suppose that on a complete manifold M for some point z, for
some number ρ > 0, and for any precompact region U ⊂ B(z, ρ)

(6.21) λ1(U) ≥ κ |U |−ν

with some κ > 0. Then for any t > 0

(6.22) E(z, t) ≤ constν

κ1/ν min(t, ρ2)1/ν
.

Remark: Let us underline that the validity of (6.22) does not depend on geometry off
the ρ-neighbourhood of z. The key point is that in order to estimate E(z, t) for small t
(namely, for t < ρ2) it suffices to know the geometry of a small neighbourhood of the point
z. For larger t, one simply uses the general fact that E(z, t) is a decreasing function of t.

Let us take now ν = 2/n, ρ = r0, and κ = κ(z, r0) and obtain from (6.22)

E(z, t0/2) ≤ constn

 log v(r0)
κ(z, r0)r20


n
2

(we replaced here t0 by its value from (6.3) using the assumption that log v(r0) ≥ log 2).
Therefore, the number a satisfying (6.19) can be taken as

(6.23) a = 16 + sup
ξ>0

4
ξ

log

1 + constn

 ξ

κr20


n
2

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where we have replaced ε by its value from (1− ε)2 = 1
2 , put ξ = log v(r0), and maximized

in ξ.
If we set

η = constn

 ξ

κr20


n
2

we can rewrite (6.23) as follows

a = 16 +
constn

κr20
sup
η>0

log(1 + η)
η

2
n

.

Since the supremum on the right hand side is finite, we obtain finally

a = 16 +
constn

κr20
= a(r0, n, κ(z, r0))

which finishes the proof. ��

7. Manifolds with the doubling volume property

Now we turn to another kind of result where we will assume an upper bound of the heat
kernel. The main motivation is that if one has the doubling volume property, Theorem 6.1
yields

R(t) �
√
t log t

and

(7.1) pt(z, z) ≥ const
V (z,

√
t log t)

whereas one might expect the sharper

(7.2) pt(z, z) ≥ const
V (z,

√
t)
.

Indeed, let us recall that in the situation of non-negative Ricci curvature (where the dou-
bling volume property indeed holds) one has by the theorem of Li and Yau [LY] that for
all x ∈M and t > 0

C1

V (x,
√
t)

≤ pt(x, x) ≤ C2

V (x,
√
t)

where C1,2 = C1,2(n) > 0.
As will be explained in the examples below, the lower bound (7.1) cannot be replaced by

(7.2) so long as one stays in the setting of Theorem 6.1. In order to get (7.2) and, hence,
to be able to recover the non-negative curvature case, we have to make some further
hypotheses about the manifold.
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7.1 Theorem. Let us suppose that on a complete manifold M for a fixed point z, for all
r > 0,

(7.3) V (z, r) ≤ v(r)

where v(·) is an increasing continuous function such that

1◦ for some positive r0 and A, we have v(r0) > 2 and

v(2r) ≤ Av(r)

for all r ≤ r0;
2◦ for r ≥ r0, the function

r2

log v(r)

is increasing in r.

Let us suppose also that for some C > 0, T > 0 and for any t ∈ (0, T )

(7.4) pt(z, z) ≤ C

v(
√
t)
.

Then for some ε = ε(A,C) > 0 and for all positive

(7.5) t < min
T, εr20

log v(r0)


we have

(7.6) pt(z, z) ≥ c

v(
√
t)

where c = c(A,C) > 0.

If the doubling volume property 1◦ holds for all r > 0 (in other words, we can take
r0 = ∞) the statement can be simplified, and we get the following

7.2 Theorem. Let us suppose that on a complete manifold M for a fixed point z, for all
r > 0,

(7.7) V (z, r) ≤ v(r)

where v(·) is an increasing continuous function such that for all r > 0

(7.8) v(2r) ≤ Av(r)

for some positive A. Let us suppose also that for some C > 0, T > 0 and for any t ∈ (0, T )

(7.9) pt(z, z) ≤ C

v(
√
t)
.
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Then for all t ∈ (0, T )

(7.10) pt(z, z) ≥ c

v(
√
t)

where c = c(A,C) > 0.

Remarks:
1. The constant T in Theorem 7.2 may be equal to ∞, so if the upper bound (7.9) holds

for all t > 0, then so does the lower bound (7.10) . For example, this is the case when the
manifold has a non-negative Ricci curvature (see [LY]).

2. Suppose M has Ricci curvature bounded below by a (negative) constant −K. Fix a
point z ∈ M and some r0 > 0. It is well known that the doubling volume property holds
for the balls B(z, r) for r < r0, with a constant A = A(r0, K, dimM). On the other hand,
for large r, the volume V (z, r) grows at most exponentially. Therefore, the function v(r)
in (7.3) can be taken equal to V (z, r) for r < r0 and econst r for r > r0. The upper bound
(7.4) was proved by Li-Yau [LY] with C = C(T,K, dimM). Thus, we get by Theorem
7.1 the lower bound (7.6) . It was also proved in [V3], but our proof has the advantage
that it does not make a direct use of the curvature, and, therefore, it is applicable more
generally, for instance on a manifold that is quasi-isometric to one with a bounded below
Ricci curvature (but in this particular case one can also use the local parabolic Harnack
principle that holds on such a manifold - see [S]). Mutatis mutandis, the same remarks are
in order for Theorem 7.2.
Proof of Theorem 7.1. The approach to the proof is the same as in Theorem 6.1: given
t as in (7.5) , we will seek a number R > 0 such that

(7.11) E(z, t/2)I(z, R) ≤ 1
2

which will yield by (6.12) and by Lemma 6.2 that

(7.12) pt(z, z) ≥ const
V (z, R)

≥ const
v(R)

.

Let us note that the manifold in question is stochastically complete because the hypotheses
of Theorem 7.1 imply V (z, r) ≤ consteconstr2

. Therefore, Lemma 6.2 is applicable.
In order to estimate E(z, t/2), we apply the result of [G7] (see Theorem 1.1 there) which

states that the upper bound (7.4) alone (with a function v(r) satisfying 1◦) implies for all
positive

(7.13) t < min(T, r20)

that

(7.14) E(z, t) ≤ constA,C

v(
√
t)

.

If ε is small enough, namely,

(7.15) ε < log 2
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then (7.13) follows from (7.5) , and so does (7.14) .
In order to estimate I(z, R), we use the same decomposition as in the proof of Theorem

6.1, namely

(7.16) I(z, R) ≤
∞∑

k=0

exp
−R

2
k

2t

 v(Rk+1)

where Rk = 2kR and

(7.17) R = a
√
t

where a > 1 will be specified later. In fact, we will find first a = a(A,C, v(r0)), and only
after that ε = ε(A,C).

So far we only require that a and ε are related as follows:

(7.18) ε <
log v(r0)

a2
,

which ensures by (7.5) that R < r0.
Let N be the smallest integer for which

(7.19) RN > r0.

We split the sum in (7.16) into 2 parts: with k < N and with k ≥ N. In the first part, we
have Rk ≤ r0 and, thus, v(Rk+1) ≤ Av(Rk) ≤ A2v(Rk−1) ≤ ... ≤ Ak+1v(R). Therefore,

N−1∑
k=0

exp
−R

2
k

2t

 v(Rk+1) ≤
N−1∑
k=0

exp
−R

2
k

2t

Ak+1v(R)

≤ v(R)
∞∑

k=0

exp
−4kR

2

2t
+ (k + 1) logA


≤ v(R)

∞∑
k=1

exp
−ka

2

2
+ k logA


≤ v(R)

∞∑
k=1

exp
−ka

2

4


=

v(R)
ea2/4 − 1

where we have consecutively applied 4k ≥ k + 1, changed k + 1 to k, replaced R by a
√
t,

and taken a to be so large that

(7.20)
a2

4
≥ logA.

To estimate the second part of the sum in question, we first apply the hypothesis 2◦ of
the theorem in the form

log v(Rk+1)
R2

k+1

≤ log v(r0)
r20
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which implies

log v(Rk+1) ≤
R2

k+1

r20
log v(r0) ≤ 4k+1 log v(r0).

Therefore, we have
∞∑

k=N

exp
−R

2
k

2t

 v(Rk+1) ≤
∞∑

k=N

exp
−R

2
k

2t
+ 4k+1 log v(r0)


=

∞∑
k=N

exp
−4k+1

a2

8
− log v(r0)




≤
∞∑

k=N

exp
−4k+1 log v(r0)


≤

∞∑
k=1

exp
−k4N+1 log v(r0)


≤

∞∑
k=1

2−k4N+1

< 2−4N

≤ 2−
r2
0

a2t .

Here we have assumed that the constant a satisfies the inequality

(7.21) a2 > 16 log v(r0);

then we used the inequality

4k+1 = 4N+14k−N ≥ 4N+1(k −N + 1)

and changed k to k −N + 1. Finally, we used that v(r0) > 2 and RN = 2NR > r0 which
yields 4N >

r2
0

R2 = r2
0

a2t .
Hence, we have the following upper bound of I(z, R)

(7.22) I(z, R) ≤ v(R)
ea2/4 − 1

+ 2−
r2
0

a2t

under the assumptions about ε and a made above.
Combining this with the upper bound (7.14) of E(z, t/2) we have by (6.12)

(7.23)


∫

M\B(z,R)

pt/2(z, x)dx


2

≤ E(z, t/2)I(z, R)

≤ constA,C

v(
√
t/2)

v(R)
ea2/4 − 1

+
constA,C

v(
√
t/2)

2−
r2
0

a2t .

Next we have by the property 1◦

v(R)
v(
√
t/2)

=
v(R)

v(R/(
√

2a))
≤ Alog2 a+2 = A2aα
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where α = log2A, whence it follows that the first summand on the right hand side of (7.23)
does not exceed

constA,C
aα

ea2/4 − 1

which is arbitrarily small provided a ≥ constA,C with a large enough constant constA,C .
Collecting together all restrictions on a including (7.20) , (7.21) , and the one above, we

can now choose a as follows

(7.24) a2 = constA,C log v(r0)

for a large enough constA,C .
Let us estimate the second summand (7.23) by applying the inequality

1
v(
√
t/2)

=
1

v(r0)
v(r0)

v(
√
t/2)

≤ constA

v(r0)

 r0√
t

α

which implies that the second term on the right hand side of (7.23) is no bigger than

(7.25)
constA,C

v(r0)

 r0√
t

α

2−
r2
0

a2t .

Let us denote ξ = r0√
t log v(r0)

. According to the hypothesis (7.5) , we have

(7.26) ξ ≥ 1√
ε
.

On the other hand, we rewrite (7.25) as

(7.27) constA,C
logα/2 v(r0)

v(r0)
ξα2−cξ2

where c = c(A,C) > 0. Note that the two log v(r0) - one from the definition of ξ and the
other from the definition (7.24) of a2 - cancel at the exponent of 2.

Now it is obvious that by taking small enough ε = ε(A,C) we make ξ large by (7.26) ,
and the expression (7.27) becomes arbitrarily small independently of v(r0). At the same
time, we can satisfy our previous assumptions on ε, namely, (7.15) and (7.18) (note, that
log v(r0) cancels also in (7.18) ).

Therefore, we have (7.11) , and by (7.12)

(7.28) pt(z, z) ≥ const
v(a

√
t)
,

whence (7.6) follows upon one more application of the doubling property. ��
Theorem 7.2 can be obtained either from Theorem 7.1 by an appropriate passage to the

limit as r0 → ∞ or directly by a simplified version of the above argument. Let us note that
we do not have to treat any longer the case k > N. In particular, the constant a depends
now only on A and C.
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As a bonus, we get under the hypotheses of Theorem 7.2 that

(7.29) V (z, r) ≥ constA,C v(r)

for any r ∈ (0, a
√
T ). Indeed, by (7.4) , (7.12) , (7.17) we have for any t ∈ (0, T )

C

v(
√
t)

≥ pt(z, z) ≥ const
V (z, a

√
t)

whence (7.29) follows for r = a
√
t.

Of course, it is desirable to have geometric conditions under which the hypotheses of
Theorem 7.1 or 7.2 do hold. The next statement provides such conditions in terms of a
Faber-Krahn type inequality.

7.3 Corollary. Suppose that for some point z, for all r > 0, and for all precompact
regions U ⊂ B(z, r)

(7.30) λ1(U) ≥ α

r2

V (z, r)
|U |

β

with positive α, β. Then we have for all t > 0 and some C, c > 0 depending on α, β

(7.31)
c

V (z,
√
t)

≤ pt(z, z) ≤ C

V (z,
√
t)
.

Proof: We claim that (7.30) implies
(a) the doubling volume property: for all r > 0 and for some A = A(α, β)

(7.32) V (z, 2r) ≤ AV (z, r).

(b) the heat kernel upper bound: for all t > 0 and for some C = C(α, β)

(7.33) pt(z, z) ≤ C

V (z,
√
t)
.

Therefore, we can apply Theorem 7.2 with v(r) = V (z, r) and obtain also for all t > 0

(7.34) pt(z, z) ≥ c

V (z,
√
t)

with c = c(α, β) > 0. Of course, (a) and (b) imply always the lower bound (7.34) no matter
why they do hold. In other words, the upper bound (7.33) is always sharp whenever there
is the doubling volume property.

Let us explain how to get (7.32) and (7.33) from (7.30) . The upper bound in (7.33)
follows immediately from Proposition 6.3. Indeed, given R > 0, we can rewrite (7.30) in
the form (6.21)

λ1(U) ≥ κ |U |−ν
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where ν = β and

(7.35) κ =
α

R2
V (z, R)β.

Then we have by (6.22)

E(z, t) ≤ R2/βconstα,β

V (z, R) min(t, R2)1/β

or

(7.36) E(z, t) ≤ constα,β

V (z, R) min(t/R2, 1)1/β
.

We are left to put here R =
√

2t (note that (7.36) is true for all positive t and R) and to
observe the obvious inequality

pt(z, z) =
∫

M

p2
t/2(z, x)dx ≤ E(z, t/2)

which gives us immediately the upper bound in (7.33) .
The doubling volume property (7.32) follows from the following result of Carron (see

Proposition 2.4 in [Carr]).

7.4 Proposition. ([Carr]) Suppose that on a complete manifold M for some region
Ω ⊂M and for any precompact subregion U ⊂ Ω

λ1(U) ≥ κ |U |−ν

with some positive κ, ν. Then for any ball B(x, r) ⊂ Ω

(7.37) V (x, r) ≥ constνκ
1/νr2/ν

where constν > 0.

Indeed, let us apply this proposition in Ω = B(z, ρ) with some ρ > 0 and notice that we
have the Faber-Krahn constant κ in Ω determined by (7.35) (replace there R by ρ). Then
as follows from (7.37) , for any r < ρ

V (z, r) ≥ constα,β

V (z, ρ)β

ρ2

1/β

r2/β

or

V (z, r) ≥ constα,β

 r

ρ

2/β

V (z, ρ)

whence we get the doubling volume property (7.32) by taking ρ = 2r. ��

Remark: The isoperimetric inequality (7.30) is known to hold on manifolds of non-
negative Ricci curvature (see [G6]). In this case, z may be any point, β = 2/n and α = α(n).
On the other hand, as proved in [G2] (see Proposition 5.2 there) the assumption that (7.30)
holds uniformly for all z ∈ M is equivalent to the conjunction of the doubling volume
property (7.32) and the upper bound (7.33) (again for all z ∈M).

Hence, the hypothesis (7.30) can be regarded as an optimal geometric assumption under
which one has the double sided heat kernel estimate (7.31) .
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8. Upper bounds on rotationally invariant manifolds

In the next section, we will present some examples which are to show to what extend
Theorems 6.1 and 7.1 are sharp. All examples will be manifolds possessing a rotational
symmetry. In order to show that a lower bound of the heat kernel is sharp, one has to
obtain an upper bound. This is why in this section, we are mainly concerned with heat
kernel upper bounds on rotationally invariant manifolds.

We start with a general on-diagonal upper bound, then apply it to a specific manifold. In
Proposition 8.1 below, we do not assume a priori anything about the manifold in question
except for being a smooth connected Riemannian manifold.

8.1 Proposition. Let u(x, t) be a C2 non-negative subsolution to the heat equation for
all x ∈M and t > 0, i.e.

ut − ∆u ≤ 0, u(x, t) ≥ 0.

Let we have in addition that

1◦ for all t > 0

(8.1)
∫

M

u(x, t)dx ≤ 1;

2◦ for all t > 0, s > 0 the superlevel set

Ut,s = {x : u(x, t) > s}
is precompact.

Moreover, let us suppose that for any set U = Ut,s there is a Faber-Krahn type isoperimetric
inequality

(8.2) λ1(U) ≥ Λ(|U |)

where Λ(·) is a continuous positive decreasing function on (0,+∞). Then for all t > 0 and
δ ∈ (0, 1)

(8.3)
∫

M

u2(x, t)dx ≤ 2
δγ(2(1 − δ)t)

where the function γ(·) is defined from the identity

(8.4) t =
∫ γ(t)

0

dξ

ξΛ(ξ)

(assuming that the integral in (8.4) converges at 0).

Remark: If we take u(x, t) = pt(z, x) and replace 2t by t, then (8.3) will give an upper
bound

(8.5) pt(z, z) ≤ 2
δγ((1− δ)t)

.
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This upper bound was proved in [G2] (Theorem 1.1 there) but under the hypothesis that
the isoperimetric inequality (8.2) holds for all bounded regions U rather than only for
superlevel sets of u. In fact, the analysis of the proof [G2] shows that the inequality (8.2)
is required only for the sets Ut,s.

Proof of Proposition 8.1. First of all, we need to replace the function u(x, t) by one
with a compact support to avoid difficulties with integration at infinity. To this end, let us
introduce a function ϕ(s) being a non-negative, smooth, increasing, and convex function
on [0,∞) so that for some ε > 0

(8.6) ϕ(s) ≤ (s− ε)+.

In fact, we would take the function

(8.7) ϕ(s) = (s− ε)+

if it were smooth. The function ϕ which will be used below can be always thought of as a
smooth approximation to (8.7) .

Let us put
v(x, t) = ϕ(u(x, t))

so that
vt − ∆v = ϕ′(u)(ut − ∆u) − ϕ′′ |∇u|2 ≤ 0

since we have assumed ϕ′ ≥ 0, ϕ′′ ≥ 0. We want to replace in all our considerations the
function u by v and in the end to pass to the limit when ε → 0 and ϕ(s) ↑ s. Indeed,
all hypotheses of Proposition 8.1 hold for v as well because, as we have shown, v is a
non-negative subsolution to the heat equation, then by (8.6) we have v ≤ u, and, finally,
the superlevel sets of v are those of u.

Let us take
I(t) =

∫
M

v2(x, t)dx.

This integral is finite because suppv(·, t) lies in Ut,ε which is compact. We have by the
standard Nash argument

I ′(t) = 2
∫

M

vv′dx ≤ 2
∫

M

v∆vdx

= −2
∫

M

|∇v|2 dx.

On the other hand, we can estimate the Dirichlet integral
∫

M
|∇v|2 dx from below by means

of (8.2) . Indeed, for any s > 0 we have

v2 ≤ (v − s)2+ + 2sv

whence
I(t) ≤

∫
{v>s}

(v − s)2dx+ 2s
∫

M

vdx
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≤
∫
{v>s} |∇(v − s)|2 dx
λ1({v(x, t) > s}) + 2s

where we have applied (8.1) and the variational property of the first Dirichlet eigenvalue.
Next we note that

µ({v(x, t) > s}) ≤ s−1

∫
M

vdx ≤ s−1

which implies by (8.2)
λ1({v(x, t) > s}) ≥ Λ(s−1)

and

I(t) ≤
∫

M
|∇v|2 dx

Λ(s−1)
+ 2s,

∫
M

|∇v|2 dx ≥ (I(t) − 2s)Λ(s−1).

Therefore, we obtain

(8.8) I ′(t) ≤ −2(I(t) − 2s)Λ(s−1)

which is true for any s > 0. Let us take

2s = δI(t)

for some δ ∈ (0, 1). We get from (8.8)

(8.9) I ′(t) ≤ −2(1 − δ)IΛ(
2
δI

).

Now we can solve the differential inequality (8.9) by dividing it by IΛ( 2
δI

) and by inte-
grating it over the interval [t0, t] where 0 < t0 < t

∫ t

t0

I ′dt
IΛ( 2

δI
)
≤ −2(1 − δ)(t− t0)

which yields after the change ξ = 2
δI

∫ 2
δI(t)

2
δI(t0)

dξ

ξΛ(ξ)
≥ 2(1 − δ)(t− t0).

Letting t0 ↓ 0, we obtain ∫ 2
δI(t)

0

dξ

ξΛ(ξ)
≥ 2(1 − δ)t.

Comparison with the definition (8.4) of the function γ(·) implies that

2
δI(t)

≥ γ(2(1− δ)t)
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or

(8.10)
∫

M

v2(x, t)dx ≤ 2
δγ(2(1− δ)t)

.

We are left to pass to the function u in this inequality. It is obvious that there exist a
sequence of functions ϕk, k = 1, 2, ... satisfying all the conditions above, and ϕk(s) ↑ s
(with the corresponding εk ↓ 0) so that we have a sequence of the functions vk = ϕk(u) ↑ u
as k → ∞. Since the estimate (8.10) holds for any vk then, by passing to the limit, the
same is valid for u. ��

Next we consider a rotationally invariant manifold M which is topologically IRn. Let us
fixed a point z ∈ IRn, and define the Riemannian metric in the polar coordinates (r, θ)
centered at the point z, in the following way

(8.11) ds2 = dr2 + h2(r)dθ2.

The function h(r) is a smooth positive function which is equal to r in a small neighbourhood
of 0 so that near the point z the metric is exactly Euclidean.

The formula (8.11) means that the distance in M in the radial direction (i.e. the distance
from the point z) is exactly a Euclidean one, whereas the metric to the angular direction
at a point x is proportional to the Euclidean one with the coefficient h(r)/r where r =
dist(x, z). Therefore, we can find the area of any sphere ∂B(z, r) as

S(r) = ωnr
n−1

h(r)
r

n−1

or
S(r) = ωnh

n−1(r)

(where ωn is the area of the unit sphere in IRn).
This shows that off a small neighbourhood of 0, the function S(r) can be chosen arbi-

trarily so long as it is positive and smooth. In fact, in our examples, we will work with the
volume function

V (r) = |B(z, r)| =
∫ r

0

S(ξ)dξ

which, therefore, can be taken also arbitrarily (away from 0) with the only restriction to
be positive, smooth, and with a positive derivative.

The only additional restriction we impose now on the function V (·) is

V (∞) = ∞

i.e. the total volume of the manifold is infinite.
Our main goal is the heat kernel at the pole z, namely, pt(z, z). Let us first estimate

it from above by using Proposition 8.1. To that end, we put u(x, t) = pt(z, x) as was
suggested in the remark after Proposition 8.1. In order to apply that proposition, we need
to know the level sets of u(x, t).

Let us first observe that this function is rotationally symmetric (which follows from
the fact that we deal with the minimal heat kernel pt(z, x)) i.e. u(x, t) depends only on
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r = dist(z, x) and t. To simplify notations, we will often write u(r, t) instead of u(x, t)
assuming r = dist(x, z).

As was proved in [ChY] (see Lemma 2.3 there), the function u(r, t) is decreasing in
r. Therefore, any superlevel set Us,t of this function is necessarily a ball centered at the
point z, or the whole manifold if infx∈M u(x, t) > 0. But the latter cannot happen since
the volume of the manifold was assumed to be infinite whereas the function u(·, t) has a
finite integral. Thus, the sets Us,t are exactly the balls, and in order to be able to apply
Proposition 8.1, we have to estimate from below the first eigenvalue of any ball B(z, R).

8.2 Lemma. For any ball B(z, R) on any rotationally invariant manifold M the following
is true

(8.12) λ1(B(z, R)) ≥ 1
4

 inf
r≤R

S(r)
V (r)

2

Remark: Since
S(r)
V (r)

∼ n

r
→ ∞

as r → 0, then the right hand side of (8.12) is strictly positive.

Proof: In fact, the inequality (8.12) is similar to the Cheeger inequality [Ch], and we use
the same argument for the proof.

Let ϕ(x) denote the first Dirichlet eigenfunction in the ball B(z, R) so that we have

λ1(B(z, R)) =

∫
B(z,R)

|∇ϕ|2 dx∫
B(z,R)

ϕ2dx
.

Since the first eigenfunction is unique (up to a multiplicative constant), then it must be
rotationally invariant, too i.e. we can write ϕ(x) = ϕ(r). By the maximum principle, ϕ(r)
is decreasing in r. Therefore, the superlevel sets of ϕ(r) are the balls with the center z as
well.

Let us put
ψ = ϕ2

and note ∫ |∇ψ| dx∫ |ψ| dx =

∫
2ϕ |∇ϕ|∫
ϕ2

≤
2
∫ ϕ2

∫ |∇ϕ|2 1
2

∫
ϕ2

= 2


∫ |∇ϕ|2∫

ϕ2


1
2

whence it follows

(8.13) λ1(B(z, R)) ≥ 1
4


∫ |∇ψ|∫

ψ

2

.

To estimate the right hand side integrals in (8.13) , let us consider the superlevel sets of
the function ψ

Ωs = {x ∈M : ψ(x) > s}
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and apply the coarea formula∫
|∇ψ| dx =

∫ ∞

0

∫
∂Ωs

1dσ
ds =

∫ ∞

0

Area(∂Ωs)ds.

As follows from above any set Ωs is a ball centered at the point z of some radius ρ ≤ R.
Obviously, we have

Area(∂Ωs) = S(ρ) ≥ inf
r≤R

S(r)
V (r)

V (ρ) = inf
r≤R

S(r)
V (r)

|Ωs|

which implies ∫
|∇ψ| dx ≥ inf

r≤R

S(r)
V (r)

∫ ∞

0

|Ωs| ds = inf
r≤R

S(r)
V (r)

∫
ψdx

and together with (8.13) gives (8.12) . ��
As a consequence of Proposition 8.1 and Lemma 8.2, we obtain the following upper

bound for the heat kernel.

8.3 Theorem. Let the manifold M be rotationally invariant and of infinite volume. Let
also the function

S(r)
V (r)

be nonincreasing on (0, R). Then for any t ∈ (0, T ) and any δ ∈ (0, 1)

(8.14) pt(z, z) ≤ 2(1 − δ)−1

V (R∗(δt))

where

(8.15) T = 4
∫ R

0

V (ξ)
S(ξ)

dξ

and the function R∗(·) is defined on (0, T ) by means of the identity

(8.16) t = 4
∫ R∗(t)

0

V (ξ)
S(ξ)

dξ.

Remarks:
1. The integrals in (8.15) and (8.16) converge because the integrand is nondecreasing.
2. The number R may be equal to ∞ as well. If this is the case then we have by (8.15)

T = ∞, and the upper bound (8.14) holds for all t > 0.
3. If R <∞ then both definition (8.16) of R∗(t) and the heat kernel upper bound (8.14)

can be extended up to t = T.

Examples: In all examples below R = T = ∞.
1. Let V (r) = rn, then (8.16) gives

R∗(t) =
√
n

2
t
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and we get from (8.14)

pt(z, z) ≤ constn

tn/2
.

By Theorem 7.1 we have also the lower bound

pt(z, z) ≥ constn

tn/2
.

Let us note that by Theorem 6.1 we would have only

pt(z, z) ≥ const
(t log t)n/2

.

2. If V (r) = ekr for large r (and polynomial for small r) then for large t

R∗(t) =
k

4
t+ const

and

pt(z, z) ≤ constk

1 − δ
exp(−k

2

4
δt).

Taking δ = 1 − 1/t, we can write

pt(z, z) ≤ constkt exp(−k
2

4
t)

which gives a sharp exponent k2

4 t. It is not clear whether the polynomial multiple t in front
of the exponential is necessary in general.

3. For V (r) = erν

, ν ∈ (0, 1), we have for large t

R∗(t) = (
ν

4
t+ const)

1
2−ν

and taking δ = 1
2

(8.17) pt(z, z) ≤ 4 exp
−constνt

ν
2−ν


To check to what extent (8.17) is sharp, let us apply Theorem 6.1 which yields in this case

R(t) = t
1

2−ν

and
pt(z, z) ≥ 1

2
exp
−ct ν

2−ν


which is in a good agreement with (8.17) , at least as far as the exponent t

ν
2−ν is concerned.

Proof of Theorem 8.3. Indeed, let us take u(x, t) = pt(z, x) and try and apply Propo-
sition 8.1. As we know already, any superlevel set U of the function u(·, t) is a ball of some
radius ρ centered at the point z. By Lemma 8.2, we have

λ1(U) ≥ 1
4

 inf
r≤ρ

S(r)
V (r)

2

.
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Let us introduce a function Λ(·) by the identity

Λ(V (ρ)) =
1
4

 inf
r≤ρ

S(r)
V (r)

2

which is to be true for any ρ > 0. The function Λ(·) is defined on (0,∞), and is decreasing.
Let us note also that for ρ < R we have

(8.18) Λ(V (ρ)) =
1
4

 S(ρ)
V (ρ)

2

which follows from decreasing of S(r)/V (r) on (0, R).
Since we have for any superlevel set U

λ1(U) ≥ Λ(V (ρ)) = Λ(|U |)
then we can apply Proposition 8.1 and obtain

(8.19) pt(z, z) =
∫

M

u2(x, t/2)dx ≤ 2(1 − δ)−1

γ(δt)

(we have changed here δ to 1 − δ and t to t/2) where γ(·) is defined from (8.4) :

t =
∫ γ(t)

0

dξ

ξΛ(ξ)
.

Now let us assume that

(8.20) γ(t) < V (R)

(which is a restriction on t) and change the variable ξ = V (ρ). Since ξ < V (R) then ρ < R,
and for those ρ the function Λ(V (ρ)) is defined by (8.18) . Hence, we have

t =
∫ V −1(γ(t))

0

S(ρ)dρ
V (ρ)Λ(V (ρ))

= 4
∫ V −1(γ(t))

0

V (ρ)
S(ρ)

dρ.

By comparing to the definition (8.16) of R∗(t) we see that

V −1(γ(t)) = R∗(t)

and
γ(t) = V (R∗(t))

which together with (8.19) yields the upper bound (8.14) .
We are left only to realize that the restriction (8.20) is equivalent to t < T. Indeed, let

us define tmax from the equation

γ(tmax) = V (R)

which implies by the definition of γ(·) that

tmax =
∫ V (R)

0

dξ

ξΛ(ξ)

or, after the same change of variable as above,

tmax = 4
∫ R

0

V (ρ)
S(ρ)

dρ = T,

what was to be proved. ��
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8.4 Corollary. Under the conditions of Theorem 8.3, we have for all t < min(T,R2)

(8.21) pt(z, z) ≤ 2e(1 − δ)−1

V (
√
δt)

Remarks:
1. If R = ∞ then (8.21) is valid for all t > 0.
2. Of course, replacing R∗(t) by

√
t can make the upper bound not very sharp as occurs

for large t for a superpolynomial (or exponential) function V (r). But for a polynomial
situation what this statement is aimed at, (8.21) is as sharp as (8.14) .
Proof: It is clear from comparison of (8.14) and (8.21) that it is sufficient to prove

(8.22) V (
√
t) ≤ eV (R∗(t)).

To prove (8.22) , let us put

g(r) =
V (r)
S(r)

and observe that

(8.23)
∫ r2

r1

dr

g(r)
= log

V (r2)
V (r1)

for any couple r2 > r1 > 0. If for a given t, R∗ = R∗(t) ≥ √
t then (8.22) is obvious. Let

us suppose R∗ <
√
t. Then we have by (8.23)

(8.24) log
V (

√
t)

V (R∗)
=
∫ √

t

R∗

dr

g(r)
≤

√
t−R∗

g(R∗)

where we have used the fact that g(r) is increasing on (0, R) and
√
t < R. On the other

hand, we have R∗(t) < R and by the definition of R∗(t)

t = 4
∫ R∗(t)

0

g(r)dr ≤ 4R∗g(R∗) ≤ (R∗ + g(R∗))2.

It implies √
t−R∗ ≤ g(R∗)

and by (8.24)

log
V (

√
t)

V (R∗)
≤ 1

what was to be proved. ��
8.5 Corollary. Under the hypotheses of Theorem 8.3, let the function V (r) satisfy in
addition the doubling property

(8.25) V (2r) ≤ AV (r)

for some constant A and for all r > 0. Then we have for any t ∈ (0, T )

(8.26)
C1

V (
√
t)

≤ pt(z, z) ≤ C2

V (
√
t)

where C1,2 > 0 depend only on A.

Indeed, the upper bound in (8.26) follows from (8.21) because the constant δ in V (
√
δt)

can be taken out due to (8.25) . The lower bound (8.26) follows from the upper one and
from the doubling volume property by Theorem 7.2. ��
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9. Some examples

We continue considering the rotationally invariant manifold M constructed in the previ-
ous section. In the examples below, we will vary the volume function V (r) although staying
within the following limitations:
(a) The total volume V (∞) = ∞.
(b) For some number r0 > 0 and for all r ∈ (0, r0) the function V (r) is equal to the

Euclidean volume function i.e.

V (r) = υnr
n

where υn is the volume of the unit ball in IRn. This ensures that the manifold in
question has exactly Euclidean metric in the ball B(z, r0).

(c) For all r > 0 we would like to have a polynomial upper bound

(9.1) V (r) ≤ Crn

with some constant C and n = dimM.

The purpose of our examples is the following.
1◦ In Theorem 6.1, one cannot make the lower bound (6.5) independent of the geometry

of a small neighbourhood of the point z. Namely, given only the upper bound (9.1) of the
volume function, one cannot get any lower bound for pt(z, z). In fact, we will show that
by allowing r0 to be arbitrarily small while keeping the same volume upper bound (9.1) ,
one can make pt(z, z) arbitrarily small for a given t.

2◦ For the polynomial upper bound (9.1) and with a fixed r0, Theorem 6.1 yields for
large t

(9.2) pt(z, z) ≥ constr0,n,C

(t log t)n/2
.

We will show that one cannot get rid of the log here. More precisely, we will construct the
function V (r) such that for the corresponding heat kernel the quantity

inf
t>t0

pt(z, z)tn/2

is arbitrarily small whereas we have according to (9.2)

inf
t>t0

pt(z, z)(t log t)n/2 ≥ const > 0.

Both examples will eventually come out from the same volume function V (r) which is
defined for r ≤ ρ as follows:

V (r) =

{
Crn , r ≤ r0

Crn
0 exp(η(r − r0)) , r0 ≤ r ≤ ρ

where the numbers r0 < ρ are so far arbitrary, C = υn, and η is chosen to ensure (9.1) for
r = ρ. Namely, we put

V (ρ) = Cρn
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which gives us the following value for η

(9.3) η =
n log ρ

r0

ρ− r0
.

We also need to extend V (r) for r > ρ. It can be done in any way with the only requirement
that (a) and (c) hold.

It is trivial to check that the function V (r) defined this way does satisfy (a),(b),(c).
The function V (r) is virtually smooth except for the point r = r0 and, possibly, r = ρ
at which it is only continuous. Of course, it can be made smooth by adjusting in a small
neighbourhood of the points r0, ρ so that it will not affect all our estimates below. Hence,
we will neglect non-smoothness of V and work with it as if it were a smooth function.

Now we would like to apply Theorem 8.3 to get an upper bound for pt(z, z). First of all,
let us check that the ratio S(r)

V (r) is non-increasing on (0, ρ). Indeed, we have

S(r)
V (r)

=
V ′(r)
V (r)

=



n

r
, r < r0

η , r0 < r ≤ ρ

where we see from that non-increasing of S(r)
V (r) will follow from

(9.4) η ≤ n

r0
.

In view of (9.3) , the inequality (9.4) will follow from

n log ρ
r0

ρ− r0
≤ n

r0

which can be rewritten in the form

log
ρ

r0
≤ ρ

r0
− 1

which is evidently true whenever ρ > r0.
In order to apply Theorem 8.3, we have first to calculate R∗(t) from (8.16) . Let us

define t0 and τ as follows

(9.5) t0 = 4
∫ r0

0

V (r)
S(r)

dr =
2
n
r20 , τ = 4

∫ ρ

0

V (r)
S(r)

dr.

Then for any t ∈ (t0, τ ], the function R∗(t) is determined by

t = 4
∫ R∗(t)

0

V (r)
S(r)

dr = t0 +
∫ R∗(t)

r0

η−1dr = t0 + 4η−1(R∗(t) − r0)

whence we get

(9.6) R∗(t) = r0 +
η

4
(t− t0).
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In particular, we have from (9.6) and R∗(τ) = ρ

(9.7) τ = t0 +
4
η
(ρ− r0).

Let us rewrite the upper bound (8.14) in the following way

(9.8) pt(z, z) ≤ 2t
(t− s)V (R∗(s))

for any 0 < s < t ≤ τ (we have just denoted δt by s).
We apply (9.8) for t = τ and for

(9.9) s = τ − 4
η2
.

First we have to make sure that s ∈ (t0, τ). To that end, it is sufficient to show that

τ − t0 ≥ 4
η2
.

This will follow from
η

4
(τ − t0) ≥ 1

η

which is by (9.7) the same as

ρ− r0 ≥ 1
η

or, by (9.3) ,
n log

ρ

r0
≥ 1.

This is true if we assume for all our further considerations that ρ ≥ er0.
Therefore, we have for the chosen t and s by (9.8) , (9.6) , (9.9) , (9.7) , and (9.3)

pτ (z, z) ≤ 2τ
(τ − s)Crn

0

exp(−η(R∗(s) − r0))

=
2τ

(τ − s)Crn
0

exp(−η
2

4
(s− t0))

=
η2τ

2Crn
0

exp
−η

2

4

(
(ρ− r0)

4
η
− 4
η2

)
=

η2τ

2Crn
0

exp
−n log

ρ

r0
+ 1


=
eη2τ

2Cρn
.

Thus, we obtain

(9.10) pτ (z, z) ≤ eη2τ

2Cρn
.
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We consider r0, ρ as parameters to be chosen. All other parameters η, t0, τ are determined
by (9.3) , (9.5) , and (9.7) respectively. The two examples below differ by the choice of
r0, ρ. In the first example, we take ρ to be large enough (eventually we let ρ → ∞) while
r0 is defined by

(9.11) r0 = exp
−ρ

2

n


and, therefore, r0 will go to 0.

We have by (9.3) and (9.11) the lower and upper bounds for η :

(9.12) η ≥ n log 1
r0

ρ
= ρ

and

(9.13) η =
n log ρ+ n log 1

r0

ρ− r0
=
n log ρ+ ρ2

ρ− r0
≤ 2ρ

for large enough ρ. Let us estimate also τ from (9.7) and (9.12) :

τ = t0 +
4(ρ− r0)

η
≤ 2
n
r20 + 4 − 4r0

ρ

which implies

(9.14) τ < 4

for large enough ρ (because of (9.11) ).
Finally, we use the fact that pt(z, z) is decreasing in t and the upper bounds (9.13) and

(9.14) of η and τ respectively to get from (9.10)

p4(z, z) ≤ pτ (z, z) ≤ 8e
C
ρ2−n

whence we see that for large enough ρ (and for n > 2) the value of p4(z, z) may be
arbitrarily small whereas we have the uniform upper bound (9.1) for the volume V (r)
which remains the same regardless of whatever ρ, r0 are chosen.

In the second example, we keep r0 > 0 fixed while ρ will be again large. We have from
(9.10)

τ
n
2 pτ (z, z) ≤ eη2τ

n
2 +1

2Cρn
=

e

2C
η2

ρn

t0 +
4
η
(ρ− r0)

n
2 +1

Now we let ρ → ∞ while r0 stays constant. Then t0 does not change whereas η → 0
because as follows from (9.3)

η ∼ n
log ρ
ρ

as ρ→ ∞. Therefore, we get for large enough ρ

τ
n
2 pτ (z, z) ≤ const

η2

ρn

ρ

η

n
2 +1

= const(ρη)−
n
2 +1,
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and

(9.15) τ
n
2 pτ (z, z) ≤ const(log ρ)−

n
2 +1

which can be made arbitrarily small provided ρ is large enough and n > 2.
Thus, the quantity

t
n
2 pt(z, z)

does not have a lower bound while by Theorem 6.1 the quantity

(t log t)
n
2 pt(z, z)

is bounded from below by a positive constant.��

Remarks:
1. Let us notice also that the same example shows that for any ε > 0 the quantity

t
n
2 log

n
2 −1−ε tpt(z, z)

does not have any lower bound either. Indeed, as follows from (9.7)

log τ ∼ log ρ

as ρ→ ∞. Therefore, we get from (9.15)

τ
n
2 log

n
2 −1−ε τpτ (z, z) ≤ const(log ρ)−ε → 0

as ρ→ ∞.
2. Since η stays bounded as ρ goes to zero, the family of manifolds built above has

uniformly bounded geometry. This indicates that by discretisation, one should be able to
draw the same conclusion for random walks on graphs. In other terms, Theorem 3, (ii) in
[L] is likely to be optimal.

10. Lower bounds and volume growth

Let us suppose that for some point z ∈M and for some numbers 0 < r0 < r1 < r2 ≤ ∞
we have for any r ∈ (r1, r2)

(10.1) V (z, r) ≤ v(r)

and

(10.2) V (z, r0) ≥ v0

where v(·) is a continuous increasing function on [r1, r2), and v0 > 0. Under these condi-
tions, we would like to have a lower bound for supx pt(x, x). To introduce it, we define a
function R(t) similar to that of §6. Namely, let us assume in addition that v(r1) > 2, and
the function

(10.3)
r2

log v(r)

is strictly increasing on (r1, r2). Therefore, it has an inverse function which will be denoted
by R(t). Let the domain of R(t) be the interval (t1, t2).
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10.1 Theorem. Let the manifold M be stochastically complete. Then under the above
assumptions, we have for any t ∈ (t1, t2)

(10.4) sup
x
pt(x, x) ≥ 0.5

V (z,R(at))

where a = a(r0, r1, v0).

Remarks:
1. Let us notice the following distinctions of this theorem from Theorem 6.1. While the

latter provides a stronger conclusion - a pointwise lower bound rather than sup−lower
bound, the former requires less in the hypotheses. Indeed, instead of a Faber-Krahn in-
equality in the ball B(z, r0), we now need to know only a lower bound of the volume
V (z, r0). Then, the upper bound of the volume function must not necessarily be true up
to ∞, or, in other words, r2 may be finite as well as infinite. Thus, Theorem 10.1 applies
also for a certain bounded range of radii. The question whether it is possible to drop the
condition (10.2) remains open.

2. If r2 = ∞ then the hypothesis of stochastic completeness is superfluous because it
follows from increasing of the function (10.3) in the same way as in Theorem 6.1.

3. Let us mention also that a particular case of this theorem for a function

v(r) = exp(rα), α ∈ (0, 1]

was proved by F.Lust-Piquard [L] by a different method.
Proof of the theorem. The main tool in the proof is the inequality proved first by
Takeda [T] which provides an upper bound of the double integral of the heat kernel taken
over a direct product of a ball and the exterior of its enlargement. There are different
versions of that inequality: the original one by [T], a numerically improved one by T.Lyons
[Ly], and one obtained by purely analytic methods in [G3]. For technical reasons, we will
use the third version. It says that on an arbitrary complete manifold M , for any point
z ∈M, and for any radii 0 < r < R the following inequality holds

(10.5)
∫

B(z,r)

∫
M\B(z,R)

pt(x, y)dxdy ≤
√
V (z, r)V (z, R)F

R − r√
2t


where

(10.6) F (ξ) = (ξ +
1
ξ
) exp

−ξ
2

2
+

1
2


(different versions of Takeda’s inequality have different functions F ).

The expression for F (ξ) can be slightly simplified for ξ ≥ 1 which is the only case we
shall need. Indeed, one can check easily that for such ξ we have the inequality

ξ +
1
ξ
≤ exp

ξ2
4

+
1
2


which yields

(10.7) F (ξ) ≤ exp
−ξ

2

4
+ 1

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whenever ξ ≥ 1.
The inequality (10.5) implies obviously that for some y ∈ B(z, r)

∫
M\B(z,R)

pt(x, y)dx ≤
√
V (z, R)
V (z, r)

F

R− r√
2t


or, using the fact that the manifold is stochastically complete,

∫
B(z,R)

pt(x, y)dx ≥ 1 −
√
V (z, R)
V (z, r)

F

R − r√
2t

 .

Therefore, for some x ∈ B(z, R)

(10.8) pt(x, y) ≥
1 −

√
V (z,R)
V (z,r)

F
R−r√

2t


V (z, R)

.

Since by the semigroup property pt(x, y) ≤
√
pt(x, x)pt(y, y) then (10.8) implies

(10.9) sup
x∈B(z,R)

pt(x, x) ≥
1 −

√
V (z,R)
V (z,r)

F
R−r√

2t


V (z, R)

.

Let us now fix some t ∈ (t1, t2), put r = r0 and optimize (or nearly optimize) the inequality
(10.9) with respect to R ∈ (r1, r2). We can rewrite (10.9) as follows

(10.10) sup
x
pt(x, x) ≥

1 −
√

v(R)
v0

F
R−r0√

2t


V (z, R)

.

It will imply

(10.11) sup
x
pt(x, x) ≥ 0.5

V (z, R)

provided R is chosen so that √
v(R)
v0

F

R− r0√
2t

 ≤ 1
2
.

This inequality follows in turn from the next one which is obtained by applying the upper
bound (10.7) for the function F

(10.12)
v(R)
v0

exp
−(R− r0)2

4t
+ 2
 ≤ 1

4

provided R is so that

(10.13)
R− r0√

2t
≥ 1.
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Thus, we will have the heat kernel lower bound (10.11) whenever we have chosen R ∈
(r1, r2) satisfying (10.13) and (10.12) .

We claim that this is true for R = R(at) with a suitable constant a. Let us check first
(10.13) . We have by the definition of the function R

(10.14) at =
R2

log v(R)
.

Therefore,
(R− r0)2

2t
= (1 − r0

R
)2
R2

2t
≥ (1 − r0

r1
)2
a

2
log v(R)

≥ (1 − r0
r1

)2
a

2
log 2

(where we have used v(R) ≥ v(r1) ≥ 2) whence (10.13) follows provided

(10.15) a ≥ 2
(1 − r0

r1
)2 log 2

.

To check (10.12) , let us transform it to the form

4t ≤ (R− r0)2

log v(R)
v0

+ 4

(where we have used 2 + log 4 < 4). Taking into account (10.14) , this will follow from

4
a

R2

log v(R)
≤ (R− r0)2

log v(R)
v0

+ 4

or from

a ≥
 2R
R − r0

2 log v(R)
v0

+ 4

log v(R)
.

This inequality will, in turn, follow from

a ≥
 2

1 − r0
R

21 +
4 − log v0
log v(R)

 .

If log v0 ≥ 4 then this inequality follows from

(10.16) a ≥
 2

1 − r0
r1


2

otherwise it follows from

(10.17) a ≥
 2

1 − r0
r1


21 +

4 − log v0
log 2


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where we have used that v(R) ≥ v(r1) ≥ 2.
Let us take a = a(r0, r1, v0) to satisfy all (10.15) , (10.16) , (10.17) . For this a and for

R = R(at), we have (10.13) and (10.12) and, thereby, the lower bound (10.11) what was
to be proved. ��
Remark: The basic inequality (10.9) is applicable also under different assumptions about
the manifold. For example, let us assume that the volume function V (z, r) satisfies the
doubling volume condition. Then by taking R = const

√
t and r = 1

2R one obtains for
suitable constants

sup
x
pt(x, x) ≥ const

v(
√
t)

which coincides with Theorem 2.7.
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