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1 Introduction and the main result

The purpose of this note is to provide a new proof for the explicit formulas of
the heat kernel on hyperbolic space. By definition, the hyperbolic space H

n

is a (unique) simply connected complete n-dimensional Riemannian manifold
with a constant negative sectional curvature −1.

Let ∆ denote the Laplacian on a Riemannian manifold X. The heat kernel
on X is a function p(x, y, t) on X ×X × (0,∞) which is the minimal positive
fundamental solution to the heat equation

∂v

∂t
= ∆v.

In other words, the Cauchy problem{
∂v
∂t

= ∆v,
v|t=0 = v0(x),

(1.1)

has a solution

v(x, t) =

∫
X

p(x, y, t) v0(y) dy, (1.2)
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provided that v0 is a bounded continuous function. If, in addition, v0 ≥ 0,
then (1.2) defines the minimal positive solution to (1.1) (see [4] for details).

If X is the Euclidean space R
n then the heat kernel is given by the classical

formula

p(x, y, t) =
1

(4πt)n/2
exp

(
−ρ2

4t

)
, (1.3)

where ρ = |x − y| . Due to homogeneity of the hyperbolic space, the heat kernel
on H

n also depends only on t and ρ (where ρ = dist(x, y) is now the geodesic
distance on H

n). Let us denote the heat kernel on H
n by pn(ρ, t). Then we

have the following.

Theorem 1.1 The heat kernel pn(ρ, t) on the hyperbolic space H
n is given by

the following formulas.

If n = 2m + 1, then

pn(ρ, t) =
(−1)m

2mπm

1

(4πt)
1
2

(
1

sinh ρ

∂

∂ρ

)m

e−m2t− ρ2

4t . (1.4)

If n = 2m + 2, then

pn(ρ, t) =
(−1)m

2m+ 5
2 πm+ 3

2

t−
3
2 e−

(2m+1)2

4
t

(
1

sinh ρ

∂

∂ρ

)m ∫ ∞

ρ

se−
s2

4t

(cosh s − cosh ρ)
1
2

ds .

(1.5)

In particular, if n = 1, then (1.4) coincides with the one-dimensional Eu-
clidean heat kernel (1.3). If n = 3, then (1.4) becomes

p3(ρ, t) =
1

(4πt)
3
2

ρ

sinh ρ
e−t− ρ2

4t , (1.6)

whereas (1.5) yields, for n = 2,

p2(ρ, t) =

√
2

(4πt)
3
2

e−
1
4
t

∫ ∞

ρ

se−
s2

4t

(cosh s − cosh ρ)
1
2

ds . (1.7)

The formulas (1.4) and (1.5) are not new. The heat kernel in dimension
two (formula (1.7)) was found by McKean [6] (see also [1, pp. 242-246]). The
three-dimensional case (formula (1.6)) was proved in [3, p. 396]. For n > 3, the
formulas (1.4) and (1.5) can be obtained inductively by using the recurrence
relation

pn+2(ρ, t) = −exp (−nt)

2π sinh ρ

∂

∂ρ
pn(ρ, t). (1.8)

The identity (1.8) is attributed in [3, p. 396] to Millson (unpublished). Its
proof can be found in [2, Theorem 2.1].

In this note, we provide an independent proof of (1.4) and (1.5) by using a
completely different approach, based on the following two ingredients:
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(1) the relation between the heat kernel and the wave kernel which follows
from the spectral theory;

(2) the explicit formula for the wave kernel on symmetric spaces which is
found in [5].

These are enough to derive (1.4) and (1.5) directly, without using (1.8).

2 Proof of the main theorem

Crucial for the proof is the following relation between the heat equation and
the wave equation. Let L denote an elliptic operator on a manifold X, and let
us consider the Cauchy problem for the wave equation in X × (−∞,∞),


∂2u
∂t2

= Lu,
u|t=0 = u0(x),
∂u
∂t

∣∣
t=0

= 0,
(2.1)

for a given u0 ∈ C(X). Assuming that the operator L is initially defined on
C∞

0 (X) and has a self-adjoint non-positive definite extension in L2(X) (which
will also be denoted by L), the solution to (2.1) can be represented as

u(x, t) = cos
(
t
√−L

)
u0(x).

Similarly, for the Cauchy problem for the heat equation in X × (0,∞){
∂v
∂t

= Lv,
v|t=0 = v0(x),

(2.2)

one has
v(x, t) = exp (tL) vo(x), t > 0.

On the other hand, we have the following Fourier transform identity (where
t > 0):

e−tλ2

=
1

(4πt)
1
2

∫ ∞

−∞
e−

s2

4t eisλ ds =
1

(4πt)
1
2

∫ ∞

−∞
e−

s2

4t cos (sλ) ds,

where λ is either a real number or a self-adjoint operator. Put λ =
√−L; then

etL =
1

(4πt)
1
2

∫ ∞

−∞
e−

s2

4t cos
(
s
√−L

)
ds,

whence we have the following proposition.

Proposition 2.1 Let L be as above, and let v0 = u0 be a bounded continuous
function on X. Then the solutions u(x, t) of (2.1) and v(x, t) of (2.2) are
related as follows:

v(x, t) =
1

(4πt)
1
2

∫ ∞

−∞
e−

s2

4t u(x, s) ds. (2.3)
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Let us describe the next ingredient of the proof: the explicit formula for
u(x, s) on H

n. Let us denote by Sr(x) the geodesic sphere on H
n with centre

x ∈ H
n and radius r. It is known that the area of Sr(x) is equal to A(r) =

Ωn sinhn−1 r, where

Ωn :=
2π

n
2

Γ
(

n
2

) (2.4)

is the area of the unit sphere in R
n. For any number r > 0, denote by M r the

averaging operator on H
n :

(M rf)(x) :=
1

A(r)

∫
Sr(x)

f(y) dω(y), (2.5)

where dω is the area element of Sr(x). For convenience, let us denote

(
N r

m,kf
)
(x) :=

(
∂

∂ cosh r

)m (
M rf(x) sinhk s

)
, (2.6)

where k and m are non-negative integers.
The next assertion follows from the general mean value theorem for sym-

metric spaces and can be found in [5, Chapter 2].

Proposition 2.2 Let u(x, s) be the solution of the Cauchy problem on H
n ×

(−∞,∞) 


Lu = 0,
u|t=0 = u0,
∂u
∂t

∣∣
t=0

= u1,
(2.7)

where

L = ∆ +

(
n − 1

2

)2

(2.8)

and u0 and u1 are continuous initial functions. Then for any x ∈ H
n and

s > 0, we have the following.

If n ≥ 3 is odd, then

u(x, s) = cn

(
∂

∂s
N s

n−3
2

,n−2
u0 + N s

n−3
2

,n−2
u1

)
(2.9)

where

cn =
Ωn

2(n − 3)!!Ωn−1

=
1

(n − 2)!!
.

(We use the notation k!! := 1 · 3 · 5 · ... · k if k is odd, k!! = 2 · 4 · 6 · ... · k
if k is even and k!! = 1 if k ≤ 0.)

If n ≥ 2 is even, then the following equation holds:

1

2

∫ s

0

u(x, r) + u(x,−r)

(cosh s − cosh r)
1
2

dr = cnN s
n−2

2
,n−2

u0 (2.10)

where cn = Ωn√
2(n−3)!!Ωn−1

= π
2(n−2)!!

.
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Proposition 2.2 simplifies for the case u1 = 0, as follows.

Corollary 2.3 Assume, under the hypotheses of Proposition 2.2, that u1 = 0.
Then, for any x ∈ H

n and s > 0, we have the following.

If n ≥ 3 is odd, then

u(x, s) = cn
∂

∂s
N s

n−3
2

,n−2
u0(x). (2.11)

If n ≥ 2 is even, then

u(x, s) =
cn

π

∂

∂s

∫ s

0

sinh ρ

(cosh s − cosh ρ)
1
2

Nρ
n−2

2
,n−2

u0(x) dρ (2.12)

Proof. Since (2.11) is obvious from (2.9), let us concentrate on (2.12).
Observe that u1 = 0 implies that the solution u(x, t) is an even function in t.
Therefore (2.10) acquires the form∫ s

0

K(s, r)u(x, r) dr = cnN s
n−2

2
,n−2

u0(x), (2.13)

where we denote

K(s, r) :=
1

(cosh s − cosh r)
1
2

, s �= r.

By multiplying (2.13) by K(t, s) sinh s and integrating in s, we have, for any t
> 0,∫ t

0

K(t, s) sinh s

∫ s

0

u(x, r)K(s, r) dr ds = cn

∫ t

0

K(t, s) sinh sN s
n−2

2
,n−2

u0(x) ds .

(2.14)
The left-hand side is computed by changing the order of integration:∫ t

0

dr

∫ t

r

u(x, r)K(t, s)K(s, r) sinh s ds = π

∫ t

0

u(x, r) dr, (2.15)

where we have used the identity∫ t

r

K(t, s)K(s, r) sinh s ds =

∫ b

a

dξ√
(b − ξ)(ξ − a)

= π .

By (2.14) and (2.15),

π

∫ t

0

u(x, r) dr = cn

∫ t

0

K(t, s) sinh sN s
n−2

2
,n−2

u0(x) ds

whence we obtain (2.12) by differentiating in t.
Our next goal will be to extend (2.11) and (2.12) to the case s < 0. Fix x,

and denote, for any ρ > 0,

U(ρ) :=

∫
Sρ(x)

u0(y) dω(y) = A(ρ) Mρu0(x), (2.16)

and extend U(ρ) to non-positive ρ by U(0) = 0 and U(ρ) = U(|ρ|).
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Lemma 2.4 We have U(r) ∈ Cn−1(−∞,∞). Moreover, U (l)(0) = 0 for any
l = 0, 1, ..., n − 1.

Proof. The function u0 is infinitely smooth, and so is U(ρ) for ρ �= 0. To
handle the case ρ = 0, let us rewrite (2.16) in the polar coordinates y = (ρ, θ)
centred at x:

U(ρ) =

∫
Sn

u0(ρ, θ) A(ρ) dθ.

The trouble is that the distance function ρ(y) := dist(x, y) is not smooth at
y = x. However, its square ρ2 is infinitely smooth in y, which implies that the
function u0 is C∞ in ρ2. Since

∂

∂ρ
= 2ρ

∂

∂(ρ2)
,

it is not difficult to see by induction that
(

∂
∂ρ

)k

is a sum of the terms propor-

tional to

ρ2j−k

(
∂

∂ (ρ2)

)j

,

where j = 1, 2, ..., k.

Obviously, the function
(

∂
∂ρ

)m

A has, at ρ = 0, a zero of order ρn−1−m,

that is, it can be represented as(
∂

∂ρ

)m

A = ρn−1−mAm(ρ),

where Am(ρ) is a continuous function of ρ. When differentiating l times the
product u0(ρ, θ)A(ρ) in ρ, we have the sum of the terms proportional to(

∂

∂ρ

)k

u0 ·
(

∂

∂ρ

)l−k

A,

which splits further, to the sum of terms as

ρ2j−k

(
∂

∂ (ρ2)

)j

u0 · ρn−1−l+kAl−k(ρ) = ρ2j+(n−1−l)

(
∂

∂ (ρ2)

)j

u0 · Al−k(ρ).

If l ≤ n − 1, then the latter function is continuous up to ρ = 0 and vanishes
at ρ = 0 whence we obtain U ∈ Cn−1 and U(0) = U ′(0) = U ′′(0) = ... =
U (n−1)(0) = 0.

Corollary 2.5 We have the following, under the hypotheses of Corollary 2.3,
for all x ∈ H

n and s ∈ (−∞,∞).

If n ≥ 3 is odd, then

u(x, s) =
cn

Ωn

∂

∂s

(
1

sinh s

∂

∂s

)n−3
2
[

1

sinhs
U(s)

]
. (2.17)
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If n ≥ 2 is even, then

u(x, s) =
cn

πΩn

∂

∂s

∫ s

0

K(s, ρ) sinh ρ

(
1

sinh ρ

∂

∂ρ

)n−2
2
(

1

sinh ρ
U(ρ)

)
dρ .

(2.18)

Proof. Indeed, (2.17) coincides with (2.11) if s > 0. Since both sides
of (2.17) are even functions in s, (2.17) holds also for s < 0. The case s = 0
follows by continuity. Each derivation ∂

∂s
of U(s), or division by sinh s, reduces

smoothness at 0 by at most 1. After n − 1 such operations as in (2.17), we
still have a continuous function on the right-hand side of (2.17). In particular,
this argument shows that the right-hand side of (2.17) has meaning for s = 0.

The equation (2.18) follows in the same way from (2.12).
Proof of Theorem 1.1. It is clear from (2.8) that

et∆ = exp

(
−
(

n − 1

2

)2

t

)
etL,

so the kernels of the semigroups et∆ and etL are related by the same equation.
Therefore it will suffice to find the kernel of the semigroup etL. Note that the
operator L is non-positive definite, for the top of the spectrum of ∆ in L2(Hn)
is equal to −(n−1

2
)2.

We shall use the notation u(x, t) and v(x, t) for the solutions to the ini-
tial problems (2.1) and (2.2), respectively, for the operator (2.8). The initial
function u0 = v0 is supposed to be in C∞

0 (Hn).
Case I: n = 2m + 1.
We have, by (2.3) and (2.17),

v(x, t) =
cn

(4πt)
1
2

∫ ∞

−∞
e−

s2

4t
∂

∂s

(
1

sinh s

∂

∂s

)n−3
2
[

1

sinhs
U(s)

]
ds , (2.19)

whence we obtain, by integration by parts,

v(x, t) =
cnΩ−1

n

(4πt)
1
2

∫ ∞

−∞
e−

s2

4t
∂

∂s

(
1

sinh s

∂

∂s

)m−1 [
1

sinhs
U(s)

]
ds

=
(−1)mcnΩ−1

n

(4πt)
1
2

∫ ∞

−∞

{(
1

sinh s

∂

∂s

)m

e−
s2

4t

}
U(s) ds

=
2(−1)mcnΩ−1

n

(4πt)
1
2

∫ ∞

0

{(
1

sinh s

∂

∂s

)m

e−
s2

4t

}
U(s) ds

=
2(−1)mcnΩ−1

n

(4πt)
1
2

∫
Hn

(
1

sinh ρ

∂

∂ρ

)m

e−
ρ2

4t u0(y) dy,

where ρ = dist(x, y).
Observing that

2cnΩ
−1
n =

1

(n − 3)!!Ωn−1
=

1

2mπm
,
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we conclude that the operator etL is an integral operator with kernel

(−1)m

2mπm

1

(4πt)
1
2

(
1

sinh ρ

∂

∂ρ

)m

e−
ρ2

4t .

Therefore the heat kernel pn(ρ, t) of et∆ is

pn(ρ, t) =
(−1)m

2mπm

1

(4πt)
1
2

(
1

sinh ρ

∂

∂ρ

)m

e−m2t− ρ2

4t ,

which was to be proved.
Case II: n = 2m + 2.
We have, by (2.3) and (2.18), by changing the order of the integrals and

by integration by parts,

v(x, t)

=
c′n√

t

∫ ∞

−∞
e−

s2

4t

[
∂

∂s

∫ s

0

K(s, ρ) sinh ρ

(
1

sinh ρ

∂

∂ρ

)m(
1

sinh ρ
U(ρ)

)
dρ

]
ds

=
c′n√

t

∫ ∞

−∞

2s

4t
e−

s2

4t

[∫ s

0

K(s, ρ) sinh ρ

(
1

sinh ρ

∂

∂ρ

)m(
1

sinh ρ
U(ρ)

)
dρ

]
ds

=
c′n
t

3
2

∫ ∞

0

(∫ ∞

ρ

se−
s2

4t K(s, ρ)ds

)
sinh ρ

(
1

sinh ρ

∂

∂ρ

)m(
1

sinh ρ
U(ρ)

)
dρ

=
(−1)mc′n

t
3
2

∫ ∞

0

(
1

sinh ρ

∂

∂ρ

)m(∫ ∞

ρ

se−
s2

4t K(s, ρ)ds

)
U(ρ) dρ

=
(−1)mc′n

t
3
2

∫
Hn

((
1

sinh ρ

∂

∂ρ

)m ∫ ∞

ρ

se−
s2

4t K(s, ρ)ds

)
u0(y) dy,

where c′n = cn

2π
3
2 Ωn

= 1

2m+ 5
2 πm+ 3

2
.

This shows that the kernel of the integral operator etL is

(−1)m

2m+ 5
2 πm+ 3

2

t−
3
2

(
1

sinh ρ

∂

∂ρ

)m ∫ ∞

ρ

se−
s2

4t

(cosh s − cosh ρ)
1
2

ds,

whence the heat kernel is

p2m+2(x, y, t) =
(−1)m

2m+ 5
2 πm+ 3

2

e−t
(2m+1)2

4 t−
3
2

(
1

sinh ρ

∂

∂ρ

)m ∫ ∞

ρ

se−
s2

4t

(cosh s − cosh ρ)
1
2

ds.
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