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1 Introduction and the main result

The purpose of this note is to provide a new proof for the explicit formulas of
the heat kernel on hyperbolic space. By definition, the hyperbolic space H"
is a (unique) simply connected complete n-dimensional Riemannian manifold
with a constant negative sectional curvature —1.

Let A denote the Laplacian on a Riemannian manifold X. The heat kernel
on X is a function p(z,y,t) on X x X x (0,00) which is the minimal positive
fundamental solution to the heat equation

ov
— = Av.
o

In other words, the Cauchy problem

o _
{ or = A, (1.1)

U|t:0 = Uo(ff),

has a solution
ot = [ play0)wls) dy, (1.2)
X
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provided that vy is a bounded continuous function. If, in addition, vy > 0,
then (1.2) defines the minimal positive solution to (1.1) (see [4] for details).

If X is the Euclidean space R™ then the heat kernel is given by the classical
formula

L S
)= e () (1)

where p = |z — y| . Due to homogeneity of the hyperbolic space, the heat kernel
on H" also depends only on ¢t and p (where p = dist(z,y) is now the geodesic
distance on H"). Let us denote the heat kernel on H" by p,(p,t). Then we
have the following.

Theorem 1.1 The heat kernel p,(p,t) on the hyperbolic space H" is given by
the following formulas.

If n=2m+ 1, then

pn(p,t)—(_l)m ! ( ! a)mem%‘%. (1.4)

- ompgm (47?15)5 sinhpﬁ_p

If n =2m + 2, then

52
o) = D" tze”mz“%( L 3) / ( S s
p

gm+3 m+3 sinh p 8_p cosh s — cosh p)
(1.5)

1
2

In particular, if n = 1, then (1.4) coincides with the one-dimensional Eu-
clidean heat kernel (1.3). If n = 3, then (1.4) becomes

1 2
T P e i, (1.6)
(47t)> sinh p

p3(p> t) =

whereas (1.5) yields, for n = 2,

2

2 1 0 _th
polpt) = Y2 e / ( . ds (1.7)
P

(47t) cosh s — cosh p)

[SI[oV

1 .
2

The formulas (1.4) and (1.5) are not new. The heat kernel in dimension
two (formula (1.7)) was found by McKean [6] (see also [1, pp. 242-246]). The
three-dimensional case (formula (1.6)) was proved in [3, p. 396]. For n > 3, the
formulas (1.4) and (1.5) can be obtained inductively by using the recurrence

relation (—nt) 0
exp (—nt
ia(pot) = — AT 9 (0 ). 1.8
Prt2(p; 1) 2rsinhp 957 (p,t) (1.8)
The identity (1.8) is attributed in [3, p. 396] to Millson (unpublished). Its
proof can be found in [2, Theorem 2.1].
In this note, we provide an independent proof of (1.4) and (1.5) by using a

completely different approach, based on the following two ingredients:
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(1) the relation between the heat kernel and the wave kernel which follows
from the spectral theory;

(2) the explicit formula for the wave kernel on symmetric spaces which is
found in [5].

These are enough to derive (1.4) and (1.5) directly, without using (1.8).

2 Proof of the main theorem

Crucial for the proof is the following relation between the heat equation and
the wave equation. Let L denote an elliptic operator on a manifold X, and let
us consider the Cauchy problem for the wave equation in X x (—o0, 00),

%2—3 = Lu

¢ )

uli=o0 = uo(z), (2.1)
@’ =0

ot le=o0 =

for a given ug € C'(X). Assuming that the operator L is initially defined on
C§°(X) and has a self-adjoint non-positive definite extension in £*(X) (which
will also be denoted by L), the solution to (2.1) can be represented as

u(z,t) = cos <t\/——L> uo(z).

Similarly, for the Cauchy problem for the heat equation in X x (0, c0)
v
== Lv
ot ' 2.2
{ U|t:0 = U0($)> ( )

one has
v(x,t) =exp (tL) vy(z), t>0.

On the other hand, we have the following Fourier transform identity (where
t>0):

e | B L[~ 2
et W/ e~ w e g = m )1 / e 4 cos (sA) ds,
)2 J -0 mt)2 J—oo

where ) is either a real number or a self-adjoint operator. Put A = /—L; then

1 o2
el = / e~ 4 Ccos <3\/ —L) ds,

(4mt)z J-o

whence we have the following proposition.

Proposition 2.1 Let L be as above, and let vy = ug be a bounded continuous
function on X. Then the solutions u(x,t) of (2.1) and v(x,t) of (2.2) are
related as follows:

v(z,t) = ! /00 e’%u(x, s)ds. (2.3)

(4mt)2 J-o



Let us describe the next ingredient of the proof: the explicit formula for
u(z,s) on H". Let us denote by S,(z) the geodesic sphere on H" with centre
x € H" and radius r. It is known that the area of S,(z) is equal to A(r) =
Q, sinh” ' r, where .

0, = I?L" (2.4)

3)
is the area of the unit sphere in R”. For any number r > 0, denote by M" the
averaging operator on H" :

(M 1)(e) = 4

7) Sy(z)

f(y) dw(y), (2.5)

where dw is the area element of S,.(z). For convenience, let us denote

(ankf) (x) == (8008sh7“) (Mrf(x) sinh® s) , (2.6)

where k and m are non-negative integers.
The next assertion follows from the general mean value theorem for sym-
metric spaces and can be found in [5, Chapter 2].

Proposition 2.2 Let u(z,s) be the solution of the Cauchy problem on H"™ X

(_OO’ OO)
Lu =0,
zé|t:0 = U, (2.7)
a_?’t 0 = U1

where

L:A+(n;1>2 (2.8)

and ug and uy are continuous initial functions. Then for any x € H" and
s > 0, we have the following.

If n > 3 is odd, then

0 s
U(.’L’, S) = Cn (%N"QS,TLQ Up + N"T*?’,nf2 ul) (29)

where
Q, 1
Cp = = :
2(n —3)1Q,1  (n—2)!l
(We use the notation k' :=1-3-5-...-kifk is odd, k! =2-4-6-...- k
if k is even and k' =1 if k <0.)

If n > 2 s even, then the following equation holds:

1 /7 —
—/ u(@,r) +ul, 7“1) dr = ¢, N} U (2.10)
0

2 (cosh s — coshr)z 2

Qn __
V2(n=3)10,_1 ~ 2(n-2)1 "

where ¢, =
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Proposition 2.2 simplifies for the case u; = 0, as follows.

Corollary 2.3 Assume, under the hypotheses of Proposition 2.2, that u; = 0.
Then, for any x € H" and s > 0, we have the following.

Ifn > 3 is odd, then

0
u(z,s) = cnaN%meuo(x). (2.11)

If n > 2 s even, then

n 0 [° inh
u(z,s) = 22 Nt w(@)dp (2.12)
795 Jo (coshs— coshp)? 2
Proof.  Since (2.11) is obvious from (2.9), let us concentrate on (2.12).

Observe that u; = 0 implies that the solution u(x,t) is an even function in .
Therefore (2.10) acquires the form

/ K(s,r)u(z,r)dr = c,Nu—z _,uo(z), (2.13)
0 27

where we denote

1
K(s,r):= -, S#T.
(cosh s — coshr)z

By multiplying (2.13) by K (¢, s) sinh s and integrating in s, we have, for any ¢

>0

t s t
/K(t, s) sinhs/ u(z,r)K(s,r) drds:cn/ K(t,s)sinhsNy_» = uo(z)ds.
0 0 0 2

(2.14)
The left-hand side is computed by changing the order of integration:

/Ot dr /rt u(z,r)K(t,s)K(s,r)sinhsds = W/Otu(x,r) dr, (2.15)

where we have used the identity

/TK(t,s)K(s,r)sinhsds:/a (b—cg(f—a) =T

By (2.14) and (2.15),

t t
7T/ u(z,r)dr = cn/ K(t,s)sinhsNy_» = ,ug(z)ds
0 0 27
whence we obtain (2.12) by differentiating in t. ®

Our next goal will be to extend (2.11) and (2.12) to the case s < 0. Fix z,
and denote, for any p > 0,

U = [ o) det) = Alp) M), (2.16)
and extend U(p) to non-positive p by U(0) = 0 and U(p) = U(]p|).
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Lemma 2.4 We have U(r) € C"(—00,00). Moreover, UD(0) = 0 for any
1=01,..,n—1.

Proof. The function wug is infinitely smooth, and so is U(p) for p # 0. To
handle the case p = 0, let us rewrite (2.16) in the polar coordinates y = (p, 6)
centred at x:

U(p) = / uolp,6) Alp) db.

The trouble is that the distance function p(y) := dist(x,y) is not smooth at
y = x. However, its square p? is infinitely smooth in 3, which implies that the
function wug is C* in p?. Since
0 0
_ = 2p ,
9(p?)

k
it is not difficult to see by induction that a%) is a sum of the terms propor-

Obviously, the function <a%> A has, at p = 0, a zero of order p"~1=™,

that is, it can be represented as

a " _ n—1-m
(a_p) A=p An(p),

tional to

where j = 1,2, ..., k.

where A,,(p) is a continuous function of p. When differentiating ! times the
product ug(p, #)A(p) in p, we have the sum of the terms proportional to

a k a l—k
(a—p> (a—p> 4

which splits further, to the sum of terms as

p2j—k; 0 ju . pn_l—l—I—kAl k(p) — p2j+(n—1—l) 0
a2(p?)) - 0

W) o - A-k(p):

If | < n —1, then the latter function is continuous up to p = 0 and vanishes
at p = 0 whence we obtain U € C"! and U(0) = U'(0) = U"(0) = ... =
Ur=1(0) = 0.

Corollary 2.5 We have the following, under the hypotheses of Corollary 2.3,
for all x € H" and s € (—00, 00).

Ifn > 3 is odd, then

¢, 0 1 0 "z 1
u(z, s) = 0, Os (sinhs%) [sinhs U(S)] ' (2.17)




If n > 2 s even, then

e [ , 1 o\ [/ 1
u(z,s) = WQn%/O K(s, p)sinhp (sinhpﬁ_p) (sinhpU(p)) dp.
(2.18)

Proof.  Indeed, (2.17) coincides with (2.11) if s > 0. Since both sides
of (2.17) are even functions in s, (2.17) holds also for s < 0. The case s = 0
follows by continuity. Each derivation % of U(s), or division by sinh s, reduces
smoothness at 0 by at most 1. After n — 1 such operations as in (2.17), we
still have a continuous function on the right-hand side of (2.17). In particular,
this argument shows that the right-hand side of (2.17) has meaning for s = 0.

The equation (2.18) follows in the same way from (2.12).

Proof of Theorem 1.1. 1t is clear from (2.8) that

n—1\>
etA = exp <— ( 5 > t) etL7

so the kernels of the semigroups e’ and e*” are related by the same equation.
Therefore it will suffice to find the kernel of the semigroup e*’. Note that the
operator L is non-positive definite, for the top of the spectrum of A in £2(H")
is equal to —(25%)2.

We shall use the notation u(x,t) and v(z,t) for the solutions to the ini-
tial problems (2.1) and (2.2), respectively, for the operator (2.8). The initial
function ug = vy is supposed to be in C§°(H").

Case I: n =2m + 1.

We have, by (2.3) and (2.17),

G [ 28 (1 9N\T[ 1
v, t) = (47t)2 / ¢ os (Siﬂhs%) [sinth(S)] s, (2.19)

—00

whence we obtain, by integration by parts,

C Q_l o0 2 0 1 ) m—1 1
t = n-m -T2 o p
v(zx,t) (47rt)% /Ooe 95 (sinhs@s) Linth(S)] S
—_1\m -1 o] m )
= (1)—0"19"/ '1 g g U(s) ds
(4mt)> _» | \sinh s s
—_1\ym —1 [ee) m )
= 2<1>—C"IQH/ '1 g g U(s) ds
(4mt)> 0 sinh s 0s

2(—1)anQ_1 1 o\™ 2
= n o o> d
(4rt)2 /JHI (sinh pap) e uo(y) dy,

where p = dist(z, y).
Observing that

2¢,0 1 =




tL

we conclude that the operator e'” is an integral operator with kernel

(=)™ 1 <1 g)mezpj'

2mqm (47rt)% sinh p dp

Therefore the heat kernel p,(p,t) of e!® is

(_1)m 1 ( 1 g)me—m%—é

2magm (4@)% sinh p Op

pa(p,t) =

which was to be proved.

Case II: n = 2m + 2.

We have, by (2.3) and (2.18), by changing the order of the integrals and
by integration by parts,

v(z,t)

c 1 o\ 1
= % _Ooe [83/ K(s p)smhp( 1nhp8p> <sinhpU(p)) dp} ds
— %/Oo . [/ K(s,p Smhp(sinhpa_) (sinhpU(p)) dﬂ} ds

[T ([ s iR Gs s (e ) () ) a
— n 4t 1n

i) \J, I A Sinhpap simhp )
_ (—1)’”0%/00 1 o\" /Oo 5
a +5 o \sinhpdp p 86 K(S s | Ute)dr
_ (—1)3 Cn/ ((1 2) / se 4tK3pdS uo(y) dy,

5 n sinh p dp 0

Cn _ 1
3 - 5 3
272 Qp 2m+§ﬂ_m+§

This shows that the kernel of the integral operator e is

8

where ¢, =

$2

(=)™ s 1 o\" [ se”dt
15 +§t S T ds,
2mt ety sinh p Op p (coshs — cosh p)z

whence the heat kernel is

2
—1)m 12 1 o™ [ 52
Pomi2(T,y,t) = %eﬂe%t,% ( ‘ _> / ( se” 4 s,
p

2mta ity sinh p dp cosh s — cosh p)2
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