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1 Introduction

The purpose of these notes is to give introduction to the subject of heat kernels on non-compact
Riemannian manifolds. By definition, the heat kernel for the Euclidean space Rn is the (unique)
positive solution of the following Cauchy problem in (0,+∞) × Rn{

∂u
∂t = ∆u ,
u(0, x) = δ(x− y),

where u = u(t, x) and y ∈ Rn. It is denoted by p(t, x, y) and is given by the classical formula

p(t, x, y) =
1

(4πt)n/2
exp

(
−|x− y|2

4t

)
. (1.1)

In other words, p(t, x, y) is a positive fundamental solution to the heat equation ∂u
∂t = ∆u . This

means, in particular, that the Cauchy problem{
∂u
∂t = ∆u,
u(0, t) = f(x)

is solved by

u(t, x) =
∫

Rn

p(t, x, y)f(y)dy,

provided f is a bounded continuous function.
Another definition of the heat kernel (which justifies the letter p) is as follows: it is the

transition density of the Brownian motion in Rn (up to the change of time t → t/2). Given
that much, it is not surprising that the heat kernel plays a central role in potential theory in
Rn.

Consider now an arbitrary smooth connected Riemannian manifold M . There is a natural
generalization of the Laplace operator linked to the Riemannian structure of M . It is called
the Riemannian Laplace operator or the Laplace-Beltrami operator and is also denoted by ∆.
It turns out that the notion of the heat kernel can be defined on any manifold. Let us denote it
also by p(t, x, y), where t > 0 and x, y ∈M . However, explicit formulas for p(t, x, y) exist only
for a few classes of manifolds possessing enough symmetries. The simplest explicit heat kernel
formula after (1.1) is one for the three-dimensional hyperbolic space H3 which reads as follows

p(t, x, y) =
1

(4πt)3/2
exp

(
−d

2

4t
− t

)
d

sinh d
, (1.2)

where d = d(x, y) is the geodesic distance between x, y ∈ H3. Clearly, there is certain similarity
between (1.1) and (1.2) (note that |x− y| is the geodesic distance in Rn) but there are also
two distinctions: the terms exp(−t) and d

sinhd in (1.2). They reflect the difference between the
geometries of the Euclidean and hyperbolic spaces.

It turns out that the heat kernel is rather sensitive to the geometry of manifolds, which
makes the study of the heat kernel interesting and rich from the geometric point of view. On
the other hand, there are the properties of the heat kernel which little depend on the geometry
and reflect rather structure of the heat equation. For example, the presence of the Gaussian
exponential term exp

(
− d2

4t

)
in the heat kernel estimates is one of such features.

Most part of these notes is devoted to the heat kernel upper estimates on arbitrary manifolds.
We discuss both general techniques of obtaining the heat kernel bounds, presented in Sections
3, 5, 6, and their applications for particular classes of manifolds, in Section 7. In Section 4,
we apply the heat kernel bounds to estimate eigenvalues of the Laplace operator. Many results
are supplied with proofs whose purpose is to demonstrate the underlying ideas rather than to
achieve the full generality.
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We do not aim at a detailed account of lower estimates of the heat kernel and touch only one
aspect of those in Section 5.3, not the least because this subject is so far not well understood.
Other results on the lower bounds of heat kernel on manifolds can be found in [15], [28], [67],
[78], [98], [110], [120], [123].

We have to skip some other interesting questions related to the heat kernels such as the Har-
nack inequality [67], [68], [98], [120], [121], comparison theorems [28], [52], short time asymp-
totics [62], [85], [105], [112], [119], [131], estimates of time derivatives of the heat kernel [44],
[49], [71], gradient estimates [82], [86], [98], [100], [125], [117], [138], [141], discretization tech-
niques [24], [25], [34], [88], homogenization techniques [2], [11], [90], [110], etc. Finally, we do
not treat heat kernels on underlying spaces other than Riemannian manifolds and for operators
other than the Laplace operator. See the following references for heat kernels

- on symmetric spaces [3];

- on groups and Lie groups [1], [13], [14], [108], [118], [135];

- for random walks on graphs [30], [53], [79], [83], [89], [114], [136];

- for second order elliptic operators with lower order terms [40], [59], [99], [107], [111], [123],
[137];

- for higher order elliptic operators [6], [47], [48];

- for subelliptic operators [11], [12], [91], [92];

- for non-linear p-harmonic Laplacian [54];

- for Laplacian on exterior differential forms [56], [57], [58];

- for abstract local Dirichlet forms [127], [128];

- for Brownian motion on fractals [7], [8], [9], [10].

Needless to say that this list of references is very far from being complete.

Notation. The letters C, c and their modifications C′, c′, C1, c1 etc. are used for positive
constants which may be different in different context.

Acknowledgment. The author thanks with great pleasure E.B.Davies and Yu.Safarov for
inviting him to give a series of lectures at the Instructional Conference on Spectral Theory and
Geometry held in Edinburgh, April 1998.

2 Construction of the heat kernel on manifolds

2.1 Laplace operator

The Laplace operator in Rn is defined by

∆ =
n∑
i=1

∂2

∂2X i

where X1, X2,..., Xn are the Cartesian coordinates. In order to write down the Laplace
operator in an arbitrary curvilinear coordinate system x1, x2,..., xn let us first note that the
length element

ds2 =
(
dX1

)2
+
(
dX2

)2
+ ...+ (dXn)2
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takes in the coordinates x1, x2,..., xn the following form

ds2 =
n∑

i,j=1

gij(x)dxidxj (2.1)

where (gij) is a symmetric positive definite matrix. The change of variables in ∆ gives then

∆ =
1√
g

n∑
i,j=1

∂

∂xi

(√
ggij

∂

∂xj

)
(2.2)

where g := det (gij) and
(
gij

)
= (gij)

−1.
LetM be an arbitrary smooth connected n-dimensional Riemannian manifoldM . In general,

there is no selected coordinate system on M but one can still define the Laplace operator in any
chart x1, x2, ..., xn by using (2.2), where gij is now the Riemannian metric tensor on M (which
determines the length by (2.1)). The definition (2.2) is covariant, that is, in any other chart
this operator will have the same form. Hence, ∆ is defined on all of M . The Laplace operator
can also be represented as ∆ = div∇, where the gradient ∇ and the divergence div are defined
by

(∇u)i =
n∑
j=1

gij
∂u

∂xj

and

divF =
1√
g

n∑
i,j=1

∂

∂xi
(√
gF i

)
.

The Riemannian structure allows to introduce on M volumes of all dimensions. Particularly
important for us will be the Riemannian n-volume µ defined by

dµ =
√
gdx1dx2...dx3.

The Stokes’s theorem implies the following integration-by-parts formula∫
Ω

v∆u dµ = −
∫

Ω

(∇u,∇v) dµ, (2.3)

where Ω is a pre-compact open subset of M , u and v are C2 functions in Ω such that one of
them vanishes in a neighborhood of the boundary ∂Ω, and (·, ·) means the inner product of the
vector fields induced by the Riemannian tensor. More generally, if u, v ∈ C1

(
Ω
) ∩ C2(Ω) and

∂Ω ∈ C1 then ∫
Ω

v∆u dµ =
∫
∂Ω

v
∂u

∂ν
dσ −

∫
Ω

(∇u,∇v) dµ, (2.4)

where σ is the surface area, that is, the (n− 1)-dimensional Riemannian measure on M , and ν
is the outward normal vector field on ∂Ω.

See [22] and [119] for a detailed account of the notions of Riemannian geometry related to
the Laplace operator.

2.2 Eigenvalues and eigenfunctions of the Laplace operator

Given a precompact open set Ω ⊂M , consider the Dirichlet eigenvalue problem in Ω{
∆u+ λu = 0,
u|∂Ω = 0. (2.5)

To be exact, we should define a weak solution to (2.5). Consider the spaces

L2 (Ω) :=
{
f :

∫
Ω

f2dµ <∞
}
,
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W 2
1 (Ω) :=

{
f ∈ L2 (Ω) : |∇f | ∈ L2(Ω)

}
,

where ∇f is understood in the sense of distributions, and define
o

H1 (Ω) to be the closure of
C∞

0 (Ω) in W 2
1 (Ω).

We define a weak solution to (2.5) as a function u ∈
o

H1 (Ω) that satisfies the equation
∆u + λu = 0 in the sense of distributions. The latter can be shown to be equivalent to the
integral identity ∫

Ω

(∇u,∇v) dµ = λ

∫
uvdµ, ∀v ∈

o

H1 (Ω).

The standard technique of the spectral theory of elliptic operators implies that there exists
an orthonormal basis {φk}∞k=1 in L2(Ω) such that each φk is a weak eigenvalue of ∆ in Ω with
an eigenvalue λk = λk(Ω), and

0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk −→
k→∞

∞.

If Ω is connected then λ1(Ω) is a single eigenvalue, that is, λ2(Ω) > λ1(Ω), and φ1(x) 
= 0 in
Ω. It is also possible to prove that if M \ Ω is non-empty then λ1(Ω) > 0. On the other hand,
if M is compact then we may take Ω = M in which case λ1(M) = 0, with the eigenfunction
φ1(x) ≡ µ(M)−1/2 = const, but λ2(M) > 0.

The operator ∆ can be considered as a unbounded operator in L2(Ω), with the domain
C∞

0 (Ω). As such, it turns out to be essentially self-adjoint. Its closure is called the Dirichlet
Laplace operator and will be denoted by ∆Ω. It has the domain

Dom(∆Ω) =
(
f ∈

o

H1 (Ω) : ∆f ∈ L2(Ω)
)

and the spectrum spec(−∆Ω) = {λk}∞k=1 (it is sometimes convenient to refer to −∆Ω rather
than to ∆Ω because the former is positive definite). Clearly, in the basis {φk} the operator
−∆Ω is represented by the (infinite) diagonal matrix

−∆Ω = diag (λ1, λ2, ..., λk, ...) .

By the spectral theory, one can define f(−∆Ω) where f is a function on spec (−∆Ω). Par-
ticularly important is the operator exp (t∆Ω) where t is a real parameter. In the basis {φk}, it
has the matrix

exp (t∆Ω) = diag
(
e−tλ1 , e−tλ2 , ..., e−tλk , ...

)
. (2.6)

Hence, if t ≥ 0 then exp (t∆Ω) is a bounded self-adjoint operator in L2(Ω).

2.3 Heat kernel in precompact regions

Consider the following initial-boundary problem in (0,∞) × Ω


∂u
∂t = ∆u,
u(0, x) = f(x),
u(t, x)|x∈∂Ω = 0.

(2.7)

We understand it in a weak sense, as an evolution equation in L2(Ω). Namely, we interpret
u(t, x) as a function from [0,∞) to L2(Ω) such that

1. u is Fréchet differentiable in t > 0 and its Fréchet derivative u̇ is equal to ∆u (which, in
particular, means that ∆u ∈ L2(Ω));

2. u is L2-continuous at t = 0 and u(0, ·) = f ;

3. for each t > 0, u(t, ·) ∈
o

H1 (Ω).
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φ1

φ2

φ3

L2(Ω)

f

u(t, )

Figure 1 Function u(t, x) as a path in L2(Ω)

It is easy to verify that the evolution equation u̇ = ∆u has solution

u = et∆Ωf. (2.8)

Let us write this down in the basis {φk}. The function f ∈ L2(Ω) has the following expansion
in this basis

f =
∞∑
k=1

akφk

where
ak =

∫
Ω

f(y)φk(y)dµ(y) .

Then, by (2.6),

et∆Ωf(x) =
∞∑
k=1

ake
−tλk(Ω)φk(x)

=
∞∑
k=1

e−tλk(Ω)φk(x)
∫

Ω

f(y)φk(y)dµ(y)

=
∫

Ω

{ ∞∑
k=1

e−tλk(Ω)φk(x)φk(y)

}
f(y)dµ(y).

The kernel in the curly brackets is called the heat kernel of Ω and will be denoted by pΩ(t, x, y).
Hence, we have

pΩ(t, x, y) :=
∞∑
k=1

e−tλk(Ω)φk(x)φk(y) (2.9)

and the weak solution u(t, x) to (2.7) is given by

u(t, x) = et∆Ωf =
∫

Ω

pΩ(t, x, y)f(y)dµ(y). (2.10)

Note that (2.10) is just another way to write down (2.8). Hence, the operator et∆Ω has the
integral kernel pΩ(t, x, y).

The eigenfunction φk(x) are C∞-smooth, by the local elliptic regularity. The sequence {λk}
obeys Weyl’s asymptotic formula

λk(Ω) ∼ cn

(
k

µ(Ω)

)2/n

, k → ∞,
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and, hence, is growing fast enough to ensure convergence of (2.9) locally in any Cm(Ω). Hence,
pΩ ∈ C∞((0,∞) × Ω × Ω). The solution u(t, x) defined by (2.10) is then C∞-smooth and
satisfies the heat equation in the classical sense. If f is continuous then it is possible to show
that u(t, x) is continuous in the classical sense in [0,∞) × Ω and u(t, x) = f(x).

Since φk ∈
o

H1 (Ω), we obtain that pΩ is also in
o

H1 (Ω) as a function of x (or y). If the
boundary ∂Ω is smooth, then this implies that pΩ(t, x, y) extends continuously to Ω and that pΩ

vanishes on ∂Ω. In particular, the function u defined by (2.10) is also continuous on (0,∞)×∂Ω
and u(t, x) = 0 for all t > 0 and x ∈ ∂Ω.

Other simple properties of pΩ are as follows:

(a) As a function of t and x, the function pΩ(t, x, y) satisfies the heat equation

∂pΩ

∂t
= ∆pΩ

and the initial value
pΩ(t, ·, y) → δy as t→ 0 + .

(b) The semigroup property: for all t, s > 0 and x, y ∈ Ω,

pΩ(t+ s, x, y) =
∫

Ω

pΩ(t, x, z)pΩ(s, x, y)dµ(z), (2.11)

which is another way to write down the identity e(t+s)∆Ω = et∆Ωes∆Ω .

(c) The symmetry
pΩ(t, x, y) = pΩ(t, y, x). (2.12)

The latter is obvious from (2.9) but would not be so transparent if we were to define pΩ as
a kernel which solves the initial-boundary problem (2.7) by (2.10).

If Ω is connected and M \ Ω is non-empty then λ1(Ω) > 0 is a single eigenvalue, φ1(x) 
= 0
in Ω, and (2.9) implies

pΩ(t, x, y) ∼ e−tλ1(Ω)φ1(x)φ1(y), t→ ∞. (2.13)

If M is compact then we may take Ω = M in which case (2.9) yields

pM (t, x, y) =
1

µ(M)
+

∞∑
k=2

e−tλk(M)φk(x)φk(y). (2.14)

In particular, we have
pM (t, x, y) → µ(M)−1, t→ ∞. (2.15)

2.4 Maximum principle and positivity of the heat kernel

The properties of the heat kernel pΩ discussed above follows from the self-adjointness of the
Laplace operator in L2(Ω). However, there is another aspect of the Laplace operator which
cannot be derived only from the spectral properties. For example, it is known that pΩ(t, x, y) > 0
for all t > 0 and x, y ∈ Ω. However, the positivity of the heat kernel is not at all obvious from
the eigenfunction expansion (2.9), because the eigenfunctions φk are signed (except for φ1).

Here we consider another property of the heat equation which is called the maximum
(minimum) principle and which is responsible for the positivity of the heat kernel. Denote
ΩT = (0, T )× Ω, which is a cylinder in [0,∞)×M , and define its parabolic boundary ∂pΩT by

∂pΩT := ∂ΩT \ {(t, x) : t = T } .

In other words, ∂pΩT is the part of the boundary ∂Ω without the top of the cylinder.
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p T

T but not p T

Figure 2 The parabolic boundary ∂pΩT

Proposition 2.1 (The maximum/minimum principle) Let u(t, x) ∈ C2(ΩT ) ∩ C(Ω) solve the
heat equation in ΩT . Then

sup
Ωt

u = sup
∂pΩT

u (2.16)

and
inf
ΩT

u = inf
∂pΩT

u . (2.17)

If the initial function f in the initial-boundary problem (2.7) is non-negative then the min-
imum principle (2.17) implies that a (classical) solution u(t, x) of (2.7) should be non-negative,
too. If ∂Ω is smooth then the function u = et∆Ωf is a classical solution to (2.7) whence

et∆Ωf ≥ 0, ∀f ∈ C∞
0 (Ω), f ≥ 0.

Therefore, the kernel pΩ of the operator et∆Ω must be non-negative. By applying the strong
version of the minimum principle, one can show that, in fact, pΩ must be strictly positive in
(0,∞) × Ω.

A non-smooth boundary ∂Ω can be handled, too. However, we will always assume that ∂Ω
is smooth if this simplifies the argument.

Another consequence of the maximum principle is the inequality

et∆Ω1 ≤ 1. (2.18)

Indeed, u = et∆Ω1 solves the problem (2.7) with f ≡ 1 and, obviously, sup∂pΩT
u ≤ 1. Hence,

by (2.16), we have supΩT
u ≤ 1 which means u ≤ 1 everywhere. Clearly, (2.18) and (2.10) imply∫

Ω

pΩ(t, x, y)dµ(y) ≤ 1. (2.19)

The third consequence of the maximum principle is the monotonicity of pΩ with respect to
Ω: if Ω ⊂ Ω′, where Ω′ is also a precompact open subset of M then

pΩ(t, x, y) ≤ pΩ′(t, x, y). (2.20)

Of course, one should specify the range of t, x, y in (2.20). If we extend pΩ(t, x, y) by 0 for
x, y /∈ Ω then (2.20) holds for all t > 0 and x, y ∈M .

Let us sketch the proof of (2.20). For any function f ∈ C∞
0 (Ω), f ≥ 0, we compare the

functions u = et∆Ωf and u′ = et∆Ω′f in ΩT . Both have the same initial datum, but on the
boundary ∂Ω, we have u(t, x) = 0 ≤ u′(t, x). Hence,

inf
∂pΩT

(u′ − u) ≥ 0,

and the minimum principle (2.17) implies u′−u ≥ 0 in ΩT and u′ ≥ u. Clearly, et∆Ω′f ≥ et∆Ωf
implies pΩ′ ≥ pΩ, which was to be proved.
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2.5 Heat semigroup on a manifold

The monotonicity of the heat kernel pΩ with respect in Ω allows to construct the heat kernel p
on the entire manifold M by taking the limit as “Ω →M”. The latter means that we consider
an exhaustion sequence {Ωk} that is a sequence of precompact open sets Ωk ⊂ M such that
∂Ωk is smooth, Ωk ⊂ Ωk+1 and

∞⋃
k=1

Ωk = M .

Such sequence can be constructed on any manifold. Then we define

p(t, x, y) := lim
k→∞

pΩk
(t, x, y). (2.21)

Since pΩk+1 ≥ pΩk
, the limit exists (finite or infinite) and does not depend on the choice of

{Ωk}. As follows from (2.19), ∫
M

p(t, x, y)dµ(y) ≤ 1,

so that p is finite almost everywhere. By the convergence properties of solutions to the parabolic
equations, p(t, x, y) is finite everywhere and C∞-smooth.

Clearly, p(t, x, y) inherits all previously discussed properties of pΩ(t, x, y) except for the
eigenfunction expansion (2.9). Moreover, it is possible to define the Dirichlet extension of
the Laplace operator ∆ on M (denote it ∆M ) and to show that p(t, x, y) is the kernel of the
semigroup et∆M acting in L2(M) (see [55]). However, the spectrum of ∆M is not necessarily
discrete as for a precompact region Ω. This is why it is not possible in general to define the
heat kernel by the eigenfunction expansion (2.9).

After the heat kernel has been constructed by (2.21), we can give a shorter definition.

Definition 2.2 The heat kernel p(t, x, y) on M is the smallest positive fundamental solution
to the heat equation on (0,∞) ×M .

A “fundamental solution” means that{
∂p
∂t = ∆xp,
p(t, ·, y) −→

t→0
δy.

(2.22)

If q(t, x, y) is another positive fundamental solution then the minimum principle implies q ≥ pΩ

for any precompact region Ω. By (2.21), we obtain q ≥ p and p is the smallest one.
The purpose of all constructions in this section was to provide the (sketch of) proof of

the existence of the smallest positive fundamental solution and to obtain its most important
properties. The full justification of the above constructions can be found in [55], [22].

As an example of application, let us consider a direct Riemannian product M = M ′ ×M ′′

whereM ′ andM ′′ are Riemannian manifolds. It is easy to see that ∆ = ∆′+∆′′ and µ = µ′×µ′′,
where the dashes refer to the manifolds M ′ and M ′′, respectively. The heat kernel on M is also
a direct product of the heat kernels in M ′ and M ′′, that is,

p(t, x, y) = p′(t, x′, y′)p′′(t, x′′, y′′) , (2.23)

where x = (x′, x′′) ∈M and y = (y′, y′′) ∈M . Indeed, one first proves the obvious modification
of (2.23) for a precompact region Ω = Ω′ × Ω′′ ⊂ M directly by (2.9), and then passes to the
limit as in (2.21).

In particular, the heat kernel (1.1) in Rn can be obtained from the heat kernel in R1 by
iterating (2.23). If M ′ = Rm and M ′′ = K where K is a compact manifold then, by (2.23),
(1.1) and (2.15), the heat kernel on M = Rm ×K has the following asymptotic

p(t, x, x) ∼ µ′′(K)−1 (4πt)−m/2 , t→ ∞. (2.24)
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3 Integral estimates of the heat kernel

In this section, we introduce an integral version of the maximum principle and apply it to
estimate some integrals of the heat kernel.

3.1 Integral maximum principle

Lemma 3.1 (Aronson [4]) Let Ω ⊂M be a precompact region. Suppose that u(t, x) ∈ C2
(
ΩT

)
solves the heat equation in ΩT and satisfies the boundary condition u|∂Ω = 0. Let ξ(t, x) be a
locally Lipschitz function on (0,∞) ×M such that

ξt +
1
2
|∇ξ|2 ≤ 0. (3.1)

Then the function

J(t) :=
∫

Ω

u2(t, x)eξ(t,x)dµ(x) (3.2)

is non-increasing in t.

Why is this called a maximum principle? Indeed, assume u ≥ 0 and consider another
function

S(t) = sup
x∈Ω

u(t, x).

By applying (2.16) in Ωs,t := (s, t) × Ω where t > s > 0, we obtain

S(s) = sup
∂pΩs,t

u = sup
Ωs,t

u ≥ S(t),

that is, S(t) is non-increasing.
It is possible to prove that the following function

Sα(t) = ‖u(·, t)‖Lα(Ω)

is non-increasing for all α ∈ [1,∞]. If α = 2 then this amounts to Lemma 3.1 with ξ ≡ 0.
Hence, Lemma (3.1) is a weighted version of the fact that S2(t) is non-increasing, whereas the
classical maximum principle implies that S∞(t) is non-increasing.

Non-trivial examples of function ξ satisfying (3.1) are as follows:

ξ(t, x) =
d2(x)

2t

and

ξ(t, x) = ad(x) − a2

2
t, a ∈ R,

provided d(x) is a Lipschitz function such that

|∇d| ≤ 1.

Proof of Lemma 3.1. Let us differentiate J(t) and show that J ′ ≤ 0. Indeed, we have, by
using ξt ≤ − 1

2 |∇ξ|2, ut = ∆u and by (2.3),

J ′(t) =
∫

Ω

u2ξte
ξ + 2

∫
Ω

uute
ξ

≤ −1
2

∫
Ω

u2 |∇ξ|2 eξ + 2
∫

Ω

u∆u eξ

= −1
2

∫
Ω

u2 |∇ξ|2 eξ − 2
∫

Ω

u (∇u,∇ξ) eξ − 2
∫

Ω

|∇u|2 eξ

= −1
2

∫
Ω

(u∇ξ + 2∇u)2 eξ, (3.3)

10



which is non-positive.
One can get from (3.3) a sharper estimate for the decay of J(t). Indeed, let us observe that

1
2

(u∇ξ + 2∇u)2 eξ = 2|∇(ueξ/2)|2.

By the variational property of λ1 (Ω),∫
Ω

|∇(ueξ/2)|2dµ ≥ λ1 (Ω)
∫

Ω

|ueξ/2|2 = λ1 (Ω)J(t).

Hence, (3.3) yields J ′ ≤ −2λ1 (Ω) J whence

J(t) ≤ J(t0) exp (−2λ1 (Ω) (t− t0)) , ∀t ≥ t0 > 0. (3.4)

If ξ(t, x) ≡ 0 and u(t, x) = pΩ(t, x, x0) then, by (2.12) and (2.11),

J(t) =
∫

Ω

p2
Ω(t, x, x0)dµ(x) = pΩ(2t, x0, x0).

Therefore, as a consequence of Lemma 3.1, pΩ(t, x0, x0) is non-increasing in t. By letting
Ω ↗M we see that p(t, x0, x0) is non-increasing in t either.

3.2 The Davies inequality

The following theorem shows why the Gaussian exponential term is relevant to the heat kernel
upper bounds on arbitrary manifolds.

Theorem 3.2 (Davies [45]) Let M be an arbitrary Riemannian manifold and let A and B be
two µ-measurable sets on M . Then∫

A

∫
B

p(t, x, y)dµ(x)dµ(y) ≤
√
µ(A)µ(B) exp

(
−d

2(A,B)
4t

)
, (3.5)

where d(A,B) is the geodesic distance between A and B (if A and B intersect then d(A,B) = 0).

The first proof. By the approximation argument, it suffices to prove (3.5) for compact A
and B. Furthermore, if A and B are compact then it suffices to prove (3.5) for the heat kernel
pΩ of any precompact open set Ω containing A and B.

A
Bd(A,B)

Ω

Figure 3 Sets A and B

Consider the function u(t, x) = et∆Ω1A. We can write∫
B

∫
A

pΩ(t, x, y)dµ(y)dµ(x) =
∫
B

(∫
Ω

pΩ(t, x, y)1Adµ(y)
)
dµ(x)

=
∫
B

u(t, x)dµ(x)

≤ µ(B)1/2
(∫

B

u2(t, x)dµ(x)
)1/2

. (3.6)
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Let us set, for some α > 0,

ξ(t, x) := αd(x,A) − α2

2
t

and consider the function
J(t) :=

∫
Ω

u2(t, x)eξ(t,x)dµ(x) ,

which, by Lemma (3.1) is non-increasing in t > 0. If x ∈ B then

ξ(t, x) ≥ αd(B,A) − α2

2
t,

whence

J(t) ≥
∫
B

u2(t, x)eξ(t,x)dµ(x)

≥ exp
(
αd(A,B) − α2

2
t

)∫
B

u2(t, x)dµ(x). (3.7)

On the other hand, if x ∈ A then ξ(0, x) = 0. By the continuity of J(t) at t = 0+, we have

J(t) ≤ J(0) =
∫

Ω

eξ(0,x)1Adµ(x) = µ(A). (3.8)

Combining (3.6), (3.7) and (3.8), we obtain∫
A

∫
B

pΩ(t, x, y)dµ(x)dµ(y) ≤
√
µ(A)µ(B) exp

(
−α

2
d(A,B) +

α2

4
t

)
.

Setting here α = d(A,B)/t we finish the proof.

Remark 3.3 Using (3.4) instead of the monotonicity of J gives the better inequality∫
A

∫
B

p(t, x, y)dµ(x)dµ(y) ≤
√
µ(A)µ(B) exp

(
−λ1(M)t− d2(A,B)

4t

)
, (3.9)

where
λ1 (M) := inf

Ω⊂⊂M
λ1 (Ω) . (3.10)

It is possible to show that λ1(M) is the bottom of the spectrum of the operator −∆M in
L2(M,µ). Sometimes λ1(M) is called the spectral radius of the manifold M .

The second proof. Assume again that A and B are two compact subsets of a precompact
region Ω. Fix some Lipschitz function ψ(x) on Ω and consider the integral

J̃(t) :=
∫

Ω

u2(t, x)eψ(x)dµ(x),

where u(t, x) solves the heat equation in R+ ×Ω and vanishes on ∂Ω. Easy computation shows
that

J̃ ′(t) = 2
∫

Ω

u∆u eψ = −2
∫

Ω

|∇u|2 eψ − 2
∫

Ω

ueψ (∇u,∇ψ) .

Applying the inequality

−2u (∇u,∇ψ) ≤ 2 |∇u|2 +
1
2
u2 |∇ψ|2 ,

we obtain
J̃ ′(t) ≤ 1

2

∫
Ω

u2eψ |∇ψ|2 dµ. (3.11)
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Let us set ψ(x) = αd(x,A), for some α > 0. Then |∇ψ| ≤ α and (3.11) implies J̃ ′ ≤ 1
2α

2J̃
whence

J̃(t) ≤ J̃(0) exp(
1
2
α2t). (3.12)

Let us apply the above to the function u = et∆Ω1A. Since

J̃(0) =
∫

Ω

1A exp (αd(x,A)) dµ(x) = µ(A) ,

(3.12) implies ∫
Ω

u2(t, x) exp (αd(x,A)) dµ(x) ≤ µ(A) exp(
1
2
α2t)

and ∫
B

u2(t, x)dµ(x) ≤ µ(A) exp
(
−αd(A,B) +

1
2
α2t

)
.

Choosing α = d(A,B)/t and applying (3.6), we finish the proof.
The third proof. This proof is less elementary than the previous two, but it yields the

better estimate:∫
A

∫
B

p(t, x, y)dµ(x)dµ(y) ≤
√
µ(A)µ(B)

∫ ∞

δ

1√
πt

exp
(
−s

2

4t

)
ds, (3.13)

where δ = d(A,B). Indeed, it is possible to prove that∫ ∞

δ

1√
πt

exp
(
−s

2

4t

)
ds ≤ min(1,

2√
π

√
t

δ
) exp

(
−δ

2

4t

)
. (3.14)

Therefore, (3.13) is better than (3.5) when δ >>
√
t.

The inequality (3.13) is a particular case of a more general inequality of Cheeger, Gromov
Taylor [27, Proposition 1.1], which says the following. Let φ ∈ L1(R+) and Φ be its cos-Fourier
transform, that is,

Φ(λ) =
∫ ∞

0

φ(s) cos(sλ)ds. (3.15)

The function Φ is bounded and continuous so that we can consider the bounded operator
Φ(

√−∆M ) in L2(M,µ) in the sense of the spectral theory. Then, for any function f ∈ L2(M,µ)
and any δ > 0, we have∥∥∥Φ(

√
−∆M ) f

∥∥∥
L2(M\suppδf)

≤ ‖f‖
∫ ∞

δ

|φ(s)| ds (3.16)

where suppδf means the δ-neighborhood of supp f and ‖·‖ = ‖·‖L2(M).
Given (3.16), let us take another function g ∈ L2(M,µ) and suppose that the distance

between the supports of f and g is at least δ. Then (3.16) yields∫
M

gΦ
(√

−∆M

)
f dµ ≤ ‖f‖ ‖g‖

∫ ∞

δ

|φ(s)| ds (3.17)

(see also [32, Proposition 3.1]). Fix some t > 0 and take

φ(s) =
1√
πt

exp
(
−s

2

4t

)
.

Then Φ(λ) = exp
(−tλ2

)
and Φ(

√−∆M ) = exp (t∆M ) which is the heat semigroup. Hence,
(3.17) implies

∫
M

∫
M

g(x)p(t, x, y)f(y)dµ(y)dµ(x) ≤ ‖f‖ ‖g‖
∞∫
δ

1√
πt

exp
(
−s

2

4t

)
ds,
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and (3.13) follows by taking f = 1A and g = 1B.
The proof of (3.16) is based on the fact that the function

u(t, ·) = cos(t
√

−∆M )f

solves the Cauchy problem for the wave equation{
utt = ∆u
u|t=0 = f and ut|t=0 = 0.

The wave equation possesses the finite propagation speed equal to 1, which means that the
support of the solution at time t lies in the t-neighborhood of the support of the initial data.
Hence,

suppu(t, ·) ⊂ supptf . (3.18)

Denote w = Φ(
√−∆M ) f . Then, by (3.15),

w(x) =
∫ ∞

0

φ(s) cos(s
√
−∆M )f(x)ds =

∫ ∞

0

φ(s)u(s, x)ds.

If x /∈ supptf then, by (3.18), u(s, x) = 0 for all s ≤ t. Hence, for those x, we have

w(x) =
∫ ∞

t

φ(s)u(s, x)ds =
∫ ∞

t

φ(s) cos(s
√
−∆M )f(x)ds

and, using |cos| ≤ 1,

‖w‖L2(M\supptv)
≤

∫ ∞

t

φ(s)
∥∥∥cos(s

√
−∆M )

∥∥∥
L2→L2

‖f‖ds

= ‖f‖
∫ ∞

t

φ(s)ds,

which was to be proved.
Lemma 3.1 and Theorem 3.2 can be used for obtaining heat kernel upper and lower bounds,

estimating the eigenvalues of the Laplace operator, obtaining conditions for stochastic com-
pleteness etc. Some of the applications are show in the next sections.

3.3 Stochastic completeness

A Riemannian manifold M is called stochastically complete if, for all x ∈M and t > 0,∫
M

p(t, x, y)dµ(y) = 1. (3.19)

In term of the Brownian motion Xt, (3.19) means that the total probability of Xt to be found
on M is equal to 1. The opposite can happen, for example, if M is an open bounded region on
Rn and Xt is the Brownian motion on M with the killing boundary conditions on ∂M . Indeed,
the process Xt riches the boundary in finite time with positive probability and then Xt stops
existing as a point in M , which makes the integral in (3.19) smaller than 1. However, Azencott
[5] showed that even a geodesically complete manifold may be stochastically incomplete. On
such a manifold, the Brownian particle moves away extremely fast so that it covers an infinite
distance in a finite time. This happens for a geometric reason - the manifold like that has a lot
of space in a neighborhood of infinity which “draws” there a Brownian particle.

The following theorem provides a test for stochastic completeness in terms of the volume
growth.

Theorem 3.4 ([65]) Let M be a geodesically complete manifold. Assume that, for some point
x ∈M , ∫ ∞ rdr

logV (x,R)
= ∞, (3.20)

where V (x, r) = µ(B(x, r)). Then M is stochastically complete.
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For example, (3.20) holds if V (x,R) ≤ C exp
(
CR2

)
. In particular, a geodesically complete

manifold with bounded below Ricci curvature is stochastically complete. This was first proved
by Yau [140].

The proof of Theorem 3.4 can be found in [65] and [74]. It uses the same approach as
in the proof of Lemma 3.1 but in a more sophisticated way. A reader interested in further
consideration of stochastic completeness and related questions is referred to the survey [74].

4 Eigenvalues estimates

In this section we show an application of Theorem 3.2 for eigenvalue estimates. Let M be a
compact connected Riemannian manifold. Denote by

0 = λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤ ...

the eigenvalues of −∆M and by φk(x) their corresponding eigenfunctions forming an orthonor-
mal basis in L2(M).

Theorem 4.1 (Chung – Grigor’yan – Yau [31]) Let M be a compact Riemannian manifold.
Let A1, A2,...,Ak be k disjoint closed set on M . Denote

δ := min
i�=j

d(Ai, Aj).

Then

λk ≤ 4
δ2

max
i�=j

(
log

2µ(M)√
µ(Ai)µ(Aj)

)2

. (4.1)

In particular, if we have two sets A1 = A and A2 = B then (4.1) becomes

λ2(M) ≤ 4
δ2

(
log

2µ(M)√
µ(A)µ(B)

)2

, (4.2)

where δ = d(A,B).

A1
A2

Μ

A3

Ak

δ

Figure 4 Sets Ai on a compact manifold M

Proof. We first prove (4.2). By the eigenfunction expansion (2.9), we can write, for any t > 0,∫
A

∫
B

p(t, x, y)dµ(x)dµ(y) =
∞∑
i=1

e−tλi

∫
A

φi(x)dµ(x)
∫
B

φi(y)dµ(y).

Denote
ai :=

∫
A

φi(x)dµ(x) = (1A, φi)L2(M) , bi := (1B, φi)L2(M)
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and observe that ai and bi are the Fourier coefficients of the functions 1A and 1B in the basis
{φi}, whence

∞∑
i=1

a2
i = ‖1A‖2

L2(M) = µ(A) and
∞∑
i=1

b2i = µ(B).

Since φ1 ≡ 1/
√
µ(M) (cf. (2.14)), we obtain

a1 = (1A,
1√
µ(M)

)L2(M) =
µ(A)√
µ(M)

and b1 =
µ(B)√
µ(M)

.

Thus, we have

∫
A

∫
B

p(t, x, y)dµ(X)dµ(y) = a1b1 +
∞∑
i=2

e−tλiaibi

≥ a1b1 − e−tλ2

( ∞∑
i=2

a2
i

)1/2 ( ∞∑
i=2

b2i

)1/2

≥ µ(A)µ(B)
µ(M)

− e−tλ2
√
µ(A)µ(B).

Comparing with the Davies inequality (3.5), we obtain

√
µ(A)µ(B)e−

δ2
4t ≥ µ(A)µ(B)

µ(M)
− e−tλ2

√
µ(A)µ(B)

and

e−tλ2 ≥
√
µ(A)µ(B)
µ(M)

− e−
δ2
4t

Choosing t so that

e−
δ2
4t =

1
2

√
µ(A)µ(B)
µ(M)

,

we conclude

λ2 ≤ 1
t

log
2µ(M)√
µ(A)µ(B)

=
4
δ2

(
log

2µ(M)√
µ(A)µ(B)

)2

,

which is (4.2).
Let us now turn to the case k > 2. Consider the following integrals

Jlm :=
∫
Al

∫
Am

p(t, x, y)dµ(x)dµ(y)

and denote
a
(l)
i := (1Al

, φi).

Then exactly as above, we have

Jlm =
∞∑
i=1

a
(l)
i a

(m)
j

=
µ(Al)µ(Am)

µ(M)
+
k−1∑
i=2

e−λita
(l)
i a

(m)
i +

∞∑
i=k

e−λita
(l)
i a

(m)
i

≥ µ(Al)µ(Am)
µ(M)

+
k−1∑
i=2

e−λita
(l)
i a

(m)
i − e−λkt

√
µ(Al)µ(Am). (4.3)
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On the other hand, by Theorem 3.2,

Jlm ≤
√
µ(Al)µ(Am)e−

δ2
4t . (4.4)

Therefore, we can further argue as in the case k = 2 provided the middle term in (4.3) can be
discarded, that is,

k−1∑
i=2

e−λita
(l)
i a

(m)
i ≥ 0. (4.5)

Let us show that (4.5) can be achieved by choosing l,m. To that end, let us interpret the
sequence a(j) :=

(
a
(j)
2 , a

(j)
3 , ..., a

(j)
k−1

)
as a (k − 2)-dimensional vector in Rk−2. Here j ranges

from 1 to k so that we have k vectors a(j) in Rk−2. Let us introduce the inner product of vectors
u = (u2, ..., uk−1) and v = (v2, ..., vk−1) in Rk−2 by

(u, v)t :=
k−1∑
i=2

e−λituivi (4.6)

and apply the following elementary fact:

Lemma 4.2 From any n+ 2 vectors in n-dimensional Euclidean space, it is possible to choose
two vectors with non-negative inner product.

Note that n+2 is the smallest number for which the statement of Lemma 4.2 is true. Indeed,
if e1, e2, ..., en denote an orthonormal basis in the given space, let us set v := −e1−e2− ...−en.
Then any two of the following n+ 1 vectors

e1 + εv, e2 + εv, ...., en + εv, v

have a negative inner product, provided ε > 0 is small enough.
Lemma 4.2 is easily proved by induction in n. The inductive step is shown on Fig. 5.

Indeed, assume that the n+ 2 vectors v1, v2, ..., vn+2 form pairwise obtuse angles. Denote by
E the hyperplane orthogonal to vn+2 and by v′i the projection of vi onto E. Each vector vi
with i ≤ n+ 1 can be represented as

vi = v′i − εivn+2

with εi := − (vi, vn+2) > 0. Therefore,

(vi, vj) =
(
v′i, v

′
j

)
+ εiεj |vn+2|2 ,

and we see that (vi, vj) ≥ 0 provided
(
v′i, v

′
j

) ≥ 0. The latter is true by the inductive hypothesis,
for some i, j, whence the former holds, too.

E

Figure 5 The vectors v′i are projections of vi’s onto E
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Let us finish the proof of Theorem 4.1. Fix some t > 0. By Lemma 4.2, we can find l,m so
that

(
a(l), a(m)

)
t
≥ 0 and (4.5) holds. Then (4.3) and (4.4) yield

e−tλk ≥
√
µ(Al)µ(Am)
µ(M)

− e−
δ2
4t ,

and we are left to choose t. However, t should not depend on l,m because we use t to define
the inner product (4.6) before choosing l,m. So, we first write

e−tλk ≥ min
i,j

√
µ(Ai)µ(Aj)
µ(M)

− e−
δ2
4t

and then define t by

e−
δ2
4t =

1
2

min
i,j

√
µ(Ai)µ(Aj)
µ(M)

,

whence (4.1) follows.
Somewhat sharper estimates of the eigenvalues can be obtained by using (3.13) instead of

(3.5) - see [32].

5 Pointwise estimates of the heat kernel

We discuss here two methods of obtaining the Gaussian upper bounds of the heat kernel
p(t, x, y), that is, the estimates containing the factor exp

(
− d2

Ct

)
where d = d(x, y). The first

approach is based on properties of weighted integrals of the heat kernel in the spirit of Lemma
3.1. The second method is based on Theorem 3.2 and on certain mean-value inequality.

5.1 Gaussian upper bounds for the heat kernel

Let M be so far an arbitrary Riemannian manifold. We start we an observation that

p(t, x, x) =
∫
M

p2(t/2, x, z)dµ(z) (5.1)

which follows from the semigroup identity (2.11) and the symmetry (2.12) of the heat kernel.
Using the semigroup identity again and the Cauchy–Schwarz inequality, we obtain

p(t, x, y) =
∫
M

p(t/2, x, z)p(t/2, y, z)dµ(z)

≤
(∫

M

p2(t/2, x, z)dµ(z)
) 1

2
(∫

M

p2(t/2, y, z)dµ(y)
) 1

2

,

whence, by (5.1),
p(t, x, y) ≤

√
p(t, x, x)p(t, y, y). (5.2)

For example, if we knew an on-diagonal estimate like

p(t, x, x) ≤ f(t), ∀x ∈M,

it would imply the off-diagonal estimate

p(t, x, y) ≤ f(t), ∀x, y ∈M.

However, the latter does not take into account the distance between x and y. To fix that, we
will modify the above argument to introduce the Gaussian factor.
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Let us consider the following weighted integral of the heat kernel:

ED(t, x) :=
∫
M

p2(t, x, z) exp
(
d2(x, z)
Dt

)
dµ(z), (5.3)

where D > 0 will be specified later. In the limit case D = ∞, we obtain by (5.1)

E∞(t, x) = p(2t, x, x), (5.4)

and (5.2) can be rewritten as

p(t, x, y) ≤
√
E∞(t/2, x)E∞(t/2, y).

It turns out that a similar estimate holds for a finite D.

Lemma 5.1 ([69, Proposition 5.1])We have, for any D > 0 and all x, y ∈M , t > 0,

p(t, x, y) ≤
√
ED(t/2, x)ED(t/2, y) exp

(
−d

2(x, y)
2Dt

)
. (5.5)

Proof. For any points x, y, z ∈ M, let us denote α = d(y, z), β = d(x, z) and γ = d(x, y). By
the triangle inequality, α2 + β2 ≥ 1

2γ
2.

β

α

γ

x

z

y

Figure 6 Distances α, β, γ

We have then

p(t, x, y) =
∫
M

p(t/2, x, z)p(t/2, y, z)dµ(z)

≤
∫
M

p(t/2, x, z)e
β2

Dt p(t/2, y, z)e
α2
Dt e−

γ2

2Dt dµ(z)

≤
(∫

M

p2(t/2, x, z)e
2β2
Dt dµ(z)

) 1
2
(∫

M

p2(t/2, y, z)e
2α2
Dt dµ(y)

) 1
2

e−
γ2
2Dt

=
√
ED(t/2, x)ED(t/2, y) exp

(
−d

2(x, y)
2Dt

)
,

which was to be proved.
It is not a priori clear that ED(t, x) is finite. Indeed, it is easy to see that in Rn, ED = ∞

for all D ≤ 2. Nevertheless, the following is true.

Theorem 5.2 ([66], [69]) For any manifold M , ED(t, x) is finite for all D > 2, t > 0, x ∈M .
Moreover, ED(t, x) is non-increasing in t.

The most non-trivial part of this theorem is the finiteness of ED. The non-increasing of ED
is an immediate consequence of Lemma 3.1.

Furthermore, the function
ED(t, x) exp (2λ1(M)t)
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is also non-increasing in t, which follows from (3.4) (recall that the spectral radius λ1(M) is
defined by (3.10)). Inequality (5.5) implies, for all t0 > 0 and t > 0,

p(t, x, y) ≤
√
ED(τ/2, x)ED(τ/2, y)eλ1(M)t0 exp

(
−λ1(M)t− d2(x, y)

2Dt

)
, (5.6)

where τ = min(t, t0). Indeed, if t ≥ t0 then (5.6) follows from (5.5) and

ED (t/2, x) exp (λ1(M)t) ≤ ED(t0/2) exp (λ1(M)t0) . (5.7)

If t < t0 then (5.6) follows from (5.5) directly.
If λ1(M) > 0 then (5.6) provides already a good upper bound of the heat kernel which can

be rewritten as follows, for t > t0,

p(t, x, y) ≤ Φ(x, y) exp
(
−λ1(M)t− d2(x, y)

2Dt

)
, (5.8)

where
Φ(x, y) :=

√
ED(t0/2, x)ED(t0/2, y)eλ1(M)t0 .

However, if λ1(M) = 0 then (5.6) is of no use and, by Lemma 5.1, the question of obtaining
the long time behaviour of p(t, x, y) amounts to the same question for ED(t, x). The latter is
reduced by the following theorem to the on-diagonal rate of decay of p(t, x, x) in t.

Theorem 5.3 (Ushakov [129], Grigor’yan [72]) Assume that, for some x ∈ M and for all
t > 0,

p(t, x, x) ≤ C

f(t)
, (5.9)

where f(t) is an increasing positive function on (0,+∞) satisfying certain regularity condition
( see below). Then, for all D > 2 and t > 0,

ED(t, x) ≤ C′

f(εt)
, (5.10)

for some ε > 0 and C′.

Remark 5.4 If (5.9) holds for t ≤ t0 then (5.10) also holds for t ≤ t0. Indeed, extend the
function f(t) by the constant f(t0) for t > t0. Then (5.9) is true for all t because p(t, x, x) is
non-increasing in t as was remarked at the end of Section 3.1. Hence, by Theorem 5.3, (5.10)
is true, too.

The regularity condition is the following: there are numbers A ≥ 1 and a > 1 such that

f(as)
f(s)

≤ A
f(at)
f(t)

, for all 0 < s < t. (5.11)

The constants ε and C′ in the statement of Theorem 5.3 depend on A and a. There are two
simple situations when (5.11) holds:

1. f(t) satisfies the doubling condition, that is, for some A > 1,

f(2t) ≤ Af(t), ∀t > 0. (5.12)

Then (5.11) holds with a = 2 because

f(2s)
f(s)

≤ A ≤ A
f(2t)
f(t)

.
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2. f(t) has at least polynomial growth in the sense that, for some a > 1, the function
f(at)/f(t) is increasing in t. Then (5.11) holds for A = 1.

If f is differentiable then (5.11) is implied by either of the following properties of the function
l(ξ) := log f(eξ) defined in (−∞,+∞):

1. l′ is uniformly bounded (for example, this is the case when f(t) = tN or f(t) = logN (1+ t)
where N > 0);

2. l′ is monotone increasing (for example, f(t) = exp(tN )).

On the other hand, (5.11) fails if l′ = exp (−ξ) (it is unbounded as ξ → −∞) which
corresponds to f(t) = exp

(−t−1
)
. Also, (5.11) may fail if l′ is oscillating.

By putting together Theorem 5.3 and Lemma 5.1, we obtain

Corollary 5.5 Assume that, for some points x, y ∈M and for all t > 0,

p(t, x, x) ≤ C

f(t)
and p(t, y, y) ≤ C

g(t)
, (5.13)

where f and g are increasing positive function on (0,+∞) satisfying the regularity condition
(5.11) as above. Then, for all t > 0, D > 2 and for some ε > 0

p(t, x, y) ≤ C′√
f(εt)g(εt)

exp
(
−d

2(x, y)
2Dt

)
. (5.14)

Remark 5.6 By using (5.6) instead of (5.5) we obtain, for all t0 > 0,

p(t, x, y) ≤ C′eλ1(M)t0√
f(ετ )g(ετ )

exp
(
−λ1(M)t− d2(x, y)

2Dt

)
, (5.15)

where τ = min(t, t0). Note that (5.13) may be assumed only for t ≤ t0. One can always extend
f(t) and g(t) for t > t0 by the constants f(t0) and g(t0), respectively, and (5.13) will continue
to be true by the non-increasing of p(t, x, x) in t.

Hence, the question of obtaining the Gaussian upper bounds of the heat kernel is reduced
to obtaining the on-diagonal estimates (5.13), which will be considered in Section 6.

For the proof of Theorem 5.3, the reader is referred to [72]. The proof uses the integral
maximum principle of Lemma 3.1. Note that if f and g satisfy the doubling property (5.12)
then ε in (5.14) and (5.15) can be absorbed into the constant C′.

The finiteness of ED(t, x) in Theorem 5.2 can be deduced from Theorem 5.3. All that one
needs is the initial upper bound p(t, x, x) ≤ Cxt

−n/2 , for small t, which can be obtained by
Theorem 5.8 from the next Section. See [66] or [69] for details.

Historically, the first method of obtaining the Gaussian upper bounds for the heat kernel of
a uniformly elliptic operators in Rn with variable coefficients was introduced by Aronson [4].
He used the integral maximum principle but in a different way. The estimates of Aronson use
the Euclidean distance rather than the Riemannian distance associated with the coefficients.
Varadhan [130], [131] first realized that the Riemannian distance should be used instead. His
result implies that, on any manifold,

lim
t→0+

t log p(t, x, y) = −1
4
d2(x, y).

The first uniform Gaussian estimates for the heat kernel on manifolds was obtained by Cheng,
Li and Yau [29], for manifolds of bounded geometry (see Section 7 below). They were later
improved by Cheeger, Gromov and Taylor [27] by using (3.16). The sharp heat kernel estimates
for the manifolds of non-negative Ricci curvature was obtained by Li and Yau [98]. Further
progress in Gaussian upper bounds (under non-curvature assumptions) is due to Davies [41],
[42], [43]. See also [135]. The approach to the Gaussian bounds we have adopted here is due to
the author [69], [72].
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5.2 Mean-value property

Here we present an alternative method of obtaining Gaussian upper bounds like (5.14), which
avoids using ED(t, x) and, instead, is based on Theorem 3.2 and on the mean-value property.
This method was introduced by Davies [45]. The treatment of this section is close to that in
[97] and [37].

Fix some distinct points x, y ∈M and consider the balls B(x, r), B(y, r). By Theorem 3.2,
we have ∫

B(x,r)

∫
B(y,r)

p(t, ξ, η)dµ(η)dµ(ξ) ≤
√
V (x, r)V (y, r) exp

(
− (d− 2r)2+

4t

)
, (5.16)

where V (x, r) := µ(B(x, r)) and d = d(x, y). If we knew that the value of the heat kernel at
(t, x, y) can be estimated via the integral in (5.16) then we could obtain from (5.16) an upper
bound for p(t, x, y). This can be done by using the following mean-value property.

Definition 5.7 We say that the manifold M admits the mean-value property (MV) if, for all
t > τ > 0, ξ ∈ M and for any positive solution u(s, η) of the heat equation in the cylinder
(t− τ, t] ×B(ξ,

√
τ), we have

u(t, ξ) ≤ C

τV (ξ,
√
τ )

t∫
t−τ

∫
B(ξ,

√
τ)

u(s, η)dµ(η)ds. (5.17)

M

s

B( , )
_

(t, )

(t- , )

us= u

t

t-

Figure 7 Cylinder (t− τ, t) ×B(ξ,
√
τ)

The geometric assumptions which imply (MV), will be discussed in Section 6.4. Here we only
mention that (5.17) holds, for example, if M is a geodesically complete manifold of nonnegative
Ricci curvature.

Theorem 5.8 (Li – Wang [97], Coulhon – Grigor’yan [37]) Assume that the mean-value prop-
erty (MV) holds on the manifold M . Then, for all x ∈M and t > 0,

p(t, x, x) ≤ C

V (x,
√
t)
. (5.18)

Moreover, for all x, y ∈M , t > 0, D > 2,

p(t, x, y) ≤ C′√
V (x,

√
t/2)V (y,

√
t/2)

exp
(
−d

2(x, y)
2Dt

)
. (5.19)
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Hence, (5.19) holds on complete manifolds of non-negative Ricci curvature. For those man-
ifolds, this estimate was first proved by different method by Li and Yau [98]. Moreover, they
proved also a matching lower bound for the heat kernel which shows that (5.19) is sharp up to
the values of the constants (see Sections 5.3 and 7.8 for the lower bounds of the heat kernel).
In Rn, we have V (x,

√
t) � tn/2 so that (5.18) and (5.19) give the correct rate for the long time

decay of the heat kernel.
Proof of Theorem 5.8. Let us start with the consequence of (2.19)∫

M

p(s, x, z)dµ(z) ≤ 1 (5.20)

and integrate it in time s: ∫ t

0

∫
M

p(s, x, z)dµ(z) ≤ t.

Applying (5.17) for u = p(·, x, ·), we obtain

p(t, x, x) ≤ C

tV (x,
√
t)

∫ t

0

∫
B(x,

√
t)

p(s, x, z)dµ(z) ≤ C

V (x,
√
t)
,

which is exactly (5.18).
To show (5.19), we argue similarly but use (5.16) instead of (5.20). We start with (5.17)

applied to the function u = p(·, ·, y),

p(t, x, y) ≤ C

τV (x,
√
τ )

t∫
t−τ

∫
B(x,

√
τ)

p(s, ξ, y)dµ(ξ)ds, (5.21)

for some τ ∈ (0, t). On the other hand, also by (5.17) applied to the function u = p(·, ξ, ·),

p(s, ξ, y) ≤ C

τV (y,
√
τ )

s∫
s−τ

∫
B(y,

√
τ)

p(θ, ξ, η)dµ(η)dθ. (5.22)

Combining (5.21) and (5.22), we see that p(t, x, y) is bounded above by

C2

τ2V (x,
√
τ )V (y,

√
τ )

t∫
t−τ

s∫
s−τ

∫
B(x,

√
τ)

∫
B(y,

√
τ)

p(θ, ξ, η)dµ(η)dµ(ξ)dθds

≤ C2

τV (x,
√
τ)V (y,

√
τ)

t∫
t−2τ

∫
B(x,

√
τ)

∫
B(y,

√
τ)

p(θ, ξ, η)dµ(η)dµ(ξ)dθ ,

where we have assumed τ ≤ t/2. Using (5.16), we obtain

p(t, x, y) ≤ C2

τ
√
V (x,

√
τ )V (y,

√
τ )

t∫
t−2τ

exp

(
− (d− 2

√
τ )2+

4θ

)
dθ

≤ 2C2√
V (x,

√
τ)V (y,

√
τ)

exp

(
− (d− 2

√
τ )2+

4t

)
. (5.23)

Choose τ = t/2 (which is the maximal τ we can take). If d ≥ C
√
t where C is large enough

then
(d− 2

√
τ)2+

4t
≥ (

1 − o(C−1)
) d2

4t
,
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and (5.23) implies (5.19). If d ≤ C
√
t then the Gaussian term in (5.19) is of the order 1, and

(5.19) follows again from (5.23) by discarding the Gaussian term in (5.23).
Theorem 5.8 admits a localized version. We say that the manifold M admits a restricted

mean-value property (MVxyτ 0), for some x, y ∈M and τ0 ∈ R+, if the inequality (5.17) holds
for all τ ∈ (0, τ0] and for ξ = x and ξ = y. If M admits (MVxyτ0) then a slight modification
of the above proof yields the estimate

p(t, x, y) ≤ C′√
V (x,

√
τ )V (y,

√
τ )

exp
(
−λ1(M)t− d2(x, y)

2Dt

)
(5.24)

where τ = min(t/2, τ0). The term λ1(M)t appears if one applies (3.9) instead of (3.5) and uses
the boundedness of τ .

Observe that the property (MVxyτ 0) holds on any manifold. Namely, for any given x, y ∈
M , there exists τ0 such that (MVxyτ0) is true (which provides another proof of (5.8)). However,
the constant C in the mean-value inequality (5.17) depends on the certain geometric properties
of the balls B(x,

√
τ0) and B(y,

√
τ0).

If the volume function V (x, ·) satisfies the doubling condition (5.12) then (5.19) follows also
from (5.18), by Theorem 5.3. In this case,

√
t/2 in (5.19) can be replaced by

√
t. It is not

known whether there exists a manifold with (MV ) for which V (x, ·) is not doubling. Assuming
the volume doubling property, one can improve the estimate (5.19) of Theorem 5.8 as follows.

Theorem 5.9 Assume that the mean-value property (MV) holds on the manifold M and, for
all r′ ≥ r and x ∈M ,

V (x, r′)
V (x, r)

≤ C

(
r′

r

)N
, (5.25)

with some N > 0. Then, for all x, y ∈M and t > 0,

p(t, x, y) ≤ C′√
V (x,

√
t)V (y,

√
t)

(
1 +

d√
t

)N−1

exp
(
−d

2

4t

)
(5.26)

where d = d(x, y).

Remark 5.10 Although (5.25) looks stronger than the doubling property for V (x, ·), these
two properties are, in fact, equivalent. However, we have preferred (5.25) because the exponent
N enters the estimate (5.26) in the sharp way. Indeed, as was shown by Molchanov [105], if M
is the sphere Sn and x and y are conjugate points on Sn then

p(t, x, y) ∼ c

tn/2

(
d√
t

)n−1

exp
(
−d

2

4t

)
, t→ 0.

Hence, the exponent N − 1 in the polynomial correction term in (5.26) is sharp. See [51] for
further results containing the polynomial correction term.

Proof. If d2 < 4t then (5.26) follows from (5.19). Assume now d2 ≥ 4t and follow the argument
of the previous proof. However, let us use (3.13) and (3.14) instead of (3.5). Then, instead of
(5.23), we obtain

p(t, x, y) ≤ 4C2√
V (x,

√
τ)V (y,

√
τ)

√
t

(d− 2
√
τ )+

exp

(
− (d− 2

√
τ)2+

4t

)
, (5.27)

for any τ ≤ t/2. Let us choose τ = t2

d2 which smaller than t/2, by d2 > 2t. Then we have

(d− 2
√
τ )2

4t
≥ d2

4t
− d

√
τ

t
=
d2

4t
− 1.
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Also, d− 2
√
τ = d− 2 td ≥ 1

2d, whence
√
t

d− 2
√
τ
≤ 2

√
t

d
.

Finally, by (5.25),

V
(
x,

√
τ
)

= V (x,
√
t

√
t

d
) ≥ C−1V (x,

√
t)
(√

t

d

)N
.

After substituting all these inequalities into (5.27), we obtain (5.26).
For other application of the mean-value property see [95], [94], [96], [97].

5.3 On-diagonal lower bounds and the volume growth

Here we show how to apply Theorem 5.2 to obtain on-diagonal lower bounds of the heat kernel.

Theorem 5.11 (Coulhon – Grigor’yan [36]) Let M be a geodesically complete Riemannian
manifold. Assume that, for some point x ∈M and all r > r0,

V (x, r) ≤ CrN , (5.28)

with some positive constants C and N . Then, for all t > t0,

p(t, x, x) ≥ 1/4
V (x,K

√
t log t)

, (5.29)

where K > 0 depend on x, r0, C,N and t0 := max(r20 , e).

Proof. Take some ρ > 0 and denote Ω = B(x, ρ). By the semigroup identity, we have

p(2t, x, x) =
∫
M

p2(t, x, y)dµ(y)

≥
∫

Ω

p2(t, x, y)dµ(y)

≥ 1
µ(Ω)

(∫
Ω

p(t, x, y)dµ(y)
)2

=
1

µ(Ω)

(
1 −

∫
M\Ω

p(t, x, y)dµ(y)

)2

. (5.30)

In the last line, we have used the stochastic completeness of M , that is,∫
M

p(t, x, y)dµ(y) = 1.

By Theorem 3.4, this follows from the geodesic completeness of M and from the volume growth
hypothesis (5.28).

Next we will choose ρ = ρ(t) so that∫
M\B(x,ρ)

p(t, x, y)dµ(y) ≤ 1
2
. (5.31)

Assume for the moment that (5.31) holds. Then (5.30) yields

p(2t, x, x) ≥ 1/4
V (x, ρ(t))

.
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To match (5.29), we need to estimate ρ(t) as follows

ρ(t) ≤ const
√
t log t. (5.32)

Let us prove (5.31) with ρ(t) satisfying (5.32). We apply again the Cauchy–Schwarz in-
equality as follows, denoting d = d(x, y) and taking some D > 2,


 ∫
M\B(x,ρ)

p(t, x, y)dµ(y)




2

≤
∫
M

p2(t, x, y) exp
(
d2

Dt

) ∫
M\B(x,ρ)

exp
(
− d2

Dt

)

= ED(t, x)
∫

M\B(x,ρ)

exp
(
− d2

Dt

)
dµ(y), (5.33)

where ED(t, x) is defined by (5.3). By Theorem 5.2, we have, for all t > t0,

ED(t, x) ≤ ED(t0, x) <∞. (5.34)

Since x is fixed, we can consider ED(t0, x) as a constant. Let us now estimate the integral in
(5.33) assuming that ρ = ρ(t) > r0. By splitting the integral over the complement of B(x, ρ)
into the sum of the integrals over the annuli B(x, 2k+1ρ) \ B(x, 2kρ), k = 0, 1, 2, ..., and using
the hypothesis (5.28), we obtain

∫
M\B(x,ρ)

exp
(
−d(x, y)

2

Dt

)
dµ(y) ≤

∞∑
k=0

exp
(
−4kρ2

Dt

)
V (x, 2k+1ρ) (5.35)

≤ C2NρN
∞∑
k=0

2Nk exp
(
−4kρ2

Dt

)
. (5.36)

y

x

2k 2k+1

Figure 8 Annulus B(x, 2k+1ρ) \B(x, 2kρ)

Assuming ρ2/t ≥ 1, the sum in the line above is majorized by a geometric series whence∫
M\B(x,ρ)

exp
(
−d(x, y)

2

Dt

)
dµ(y) ≤ C′ρN exp

(
− ρ2

Dt

)
. (5.37)

By setting ρ(t) = K
√
t log t with K large enough, we make the integral above arbitrarily small,

whence (5.31) follows by (5.33) and (5.34). To finish the proof, we have to make sure that
ρ(t) > r0. Indeed, this follows from t > t0 = max(r20 , e) and K > 1.

One may wonder what is geometric background of the quantity ED(t0, x) which we have
interpreted as a constant. In fact, an upper bound of it can be proved in terms of an intrinsic
geometric property of the ball B(x, ε), for arbitrarily small ε - see [66] (this can be extracted
also from Theorems 5.3 and 6.7). The geometric property in question is a Sobolev inequality

26



in B(x, ε) which holds because the geometry of B(x, ε) is nearly Euclidean. In particular, the
constant K does not depend on x if the manifold M has bounded geometry (see Section 7.5).

Note that no off-diagonal lower bound of the heat kernel can be proved under such a mild
assumption as (5.28). Indeed, the manifold M may consist of two large parts connected by a
thin tube. Suppose that x belongs to one part and y - to another.

x
y

Figure 9 Manifold with a bottleneck

Then by making the tube thinner, one can get p(t, x, y) to be arbitrarily small, without
violating the volume growth (5.28). It is especially clear from the probabilistic point of view
since the probability of the Brownian motion Xt getting from x to y can be arbitrarily small
when the tube shrinks. Hence, the situation with off-diagonal lower bounds for the heat kernel
is entirely different than that of upper bounds. As we have seen in Section 5.1, an on-diagonal
upper bound of the heat kernel implies a Gaussian off-diagonal upper bound (see, for example,
Corollary 5.5). On the contrary, the on-diagonal lower bound of the heat kernel in general does
not imply anything about the off-diagonal values of the heat kernel.

Comparing the lower bound (5.29) with the upper bounds (5.18) and (5.19) (which hold,
for example, on non-negatively curved manifolds) we see that both are governed by the volume
of balls but with different radii1. Indeed, the former radius is of the order

√
t log t whereas the

later is of the order
√
t. The radius

√
t matches the heat kernel behaviour in Rn where we have

p(t, x, x) =
1

(4πt)n/2
=

const
V (x,

√
t)
.

There is an example [36] showing that in the lower bound (5.29), one cannot in general get
rid of log t assuming only the hypotheses of Theorem 5.11. However, under certain additional
hypotheses, it is possible as is shown by the following statement (cf. Theorem 5.8).

Theorem 5.12 (Coulhon – Grigor’yan [36]) Let M be a geodesically complete Riemannian
manifold. Assume that, for some point x ∈M and all r > 0

V (x, 2r) ≤ CV (x, r) (5.38)

and, for all t > 0,

p(t, x, x) ≤ C

V (x,
√
t)
. (5.39)

Then, for all t > 0,
p(t, x, x) ≥ c

V (x,
√
t)
, (5.40)

where c > 0 depends on C.

Proof. The proof follows almost the same line as the proof of Theorem 5.11. The difference
comes when estimating ED(t, x). Instead of using the monotonicity of ED(t, x), we apply
Theorem 5.3. Indeed, by Theorem 5.3, the hypotheses (5.39) and (5.38) yield

ED(t, x) ≤ C′

V (x,
√
t)
.

1The function ρ(t) satisfying (5.31) is closely related to the escape rate of the Brownian motion - see [75],
[73] and [76].

27



By substituting this into (5.33) and applying the doubling property (5.38) to estimate the sum
in (5.35), we obtain instead of (5.37)∫

M\B(x,ρ)

exp
(
−d(x, y)

2

Dt

)
dµ(y) ≤ C′′ exp

(
− ρ2

Dt

)
. (5.41)

Hence, the integral in (5.41) can be made arbitrarily small by choosing ρ = K
√
t with K large

enough.
Finally, one uses again the doubling property to write

p(2t, x, x) ≥ 1/4
V (x, ρ(t))

≥ c

V (x,
√

2t)
,

finishing the proof.
Theorem 5.11 can be extended to a more general volume growth assumption as follows.

Theorem 5.13 ([36, Theorem 6.1]) Let M be a geodesically complete Riemannian manifold.
Assume that, for some point x ∈M and all r > r0,

V (x, r) ≤ V(r) ,

where V(r) > 2 is a continuous increasing function on (r0,∞) such that r2

logV(r) is strictly
decreasing in r. Define the function ρ(t) by

t =
ρ2(t)

logV(ρ(t))
,

for t > t0 = t0(r0). Then, for all t > t0,

p(t, x, x) ≥ 1/4
V (x, ρ(Kt))

,

where K > 1 depends on x and r0.

For example, of V(r) = exp (rα), 0 < α < 2, then we obtain ρ (t) � t
1

2−α and

p(t, x, x) ≥ c exp
(−Ct α

2−α
)
. (5.42)

As we will see in Section 7.7, if α ≤ 1 then the exponent α
2−α in (5.42) is sharp - cf. (7.56).

However, (5.42) is not sharp if α > 1, that is, if V (x, r) grows superexponentially in r. In-
deed, p(t, x, x) cannot decay faster than exponentially in t as is said by the following statement.

Proposition 5.14 For any manifold M , for any x ∈ M and ε > 0, there exists c = cx > 0
such that

p(t, x, x) ≥ cx exp (− (λ1(M) + ε) t) , ∀t > 0, (5.43)

where λ1(M) is the spectral radius defined by (3.10).

Proof. Take a precompact region Ω containing x and such that

λ1 (Ω) ≤ λ1(M) + ε.

We have p(t, x, x) ≥ pΩ(t, x, x) and, by the eigenfunction expansion (2.9),

pΩ(t, x, x) =
∞∑
k=1

e−λk(Ω)tφ2
k(x) ≥ e−λ1(Ω)tφ2

1(x),

whence (5.43) follows.
Combining Proposition 5.14 with the upper bound (5.8), we obtain

Corollary 5.15 (Li [93]) For any manifold M and for all x ∈M ,

lim
t→∞

log p(t, x, x)
t

= −λ1(M).
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6 On-diagonal upper bounds and Faber-Krahn inequali-
ties

In this section, we discuss mainly on-diagonal upper bounds of the heat kernel of the type

p(t, x, x) ≤ C

f(t)
. (6.1)

As we know from Section 5.1, the on-diagonal upper bound implies the off-diagonal Gaussian
upper bound (5.14). The main emphasis will be made on geometric background of the estimate
(6.1). We will consider two situations when the estimate (6.1) is well understood:

1. a uniform estimate when (6.1) is meant to hold for all t > 0 and x ∈ M with the same
function f ;

2. a “relative” estimate when the function f(t) depends on x as follows: f(t) = V (x,
√
t)

(cf. (5.18)).

6.1 Polynomial decay of the heat kernel

Here we describe in the historical order the results related to the heat kernel upper bound

p(t, x, x) ≤ C

tn/2
, ∀x ∈M, t > 0, (6.2)

which is obviously motivated by the heat kernel in Rn. One may ask under what geometric
assumptions (6.2) holds? Historically the first result was obtained by Nash [109] who discovered
a simple method of deducing (6.2) from the Sobolev inequality. The latter is the following
assertion

for any f ∈ C∞
0 (M), f ≥ 0,

(∫
M

f
2n

n−2 dµ

)n−2
n

≤ C

∫
M

|∇f |2 dµ (6.3)

(of course, we assume n > 2 here).
It is well known that the Sobolev inequality (6.3) holds in Rn. However, for a general

manifold, it may not be true. In fact, the Sobolev inequality is quite sensitive to the geometry
of the manifold and can be regarded itself as a geometric condition. It can be deduced from
the following isoperimetric inequality: for all precompact regions Ω with smooth boundary

σ (∂Ω) ≥ cµ (Ω)
n−1

n (6.4)

(see [61] and [101]). The inequality (6.4) is well-known in Rn. It is an obvious consequence of
the isoperimetric property of a ball in Rn: any region of the same volume as the ball has larger
boundary area unless it is the ball. We will discuss the isoperimetric type inequalities in more
details in Section 7.

Following Nash’s argument, let us prove the following Theorem.

Theorem 6.1 If the Sobolev inequality (6.3) is true on M then (6.2) holds, too.

Proof. By the exhaustion argument, it suffices to prove (6.2) for pΩ where Ω is a precompact
open subset of M with smooth boundary. Fix y ∈ Ω and denote u(t, x) = p(t, x, y) and

J(t) :=
∫

Ω

u2(t, x)dµ(x).

Arguing as in Section 3.1, we obtain

J ′(t) = 2
∫
u ut dµ = 2

∫
u∆u dµ = −2

∫
|∇u|2 dµ. (6.5)
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As in Section 3.1, we can conclude from (6.5) that J(t) is non-increasing. However, we can go
further by estimating the right hand side of (6.5) by using (6.3). Indeed, it is easy to see that
the Sobolev inequality extends to functions like u(·, t) vanishing on ∂Ω whence

∫
|∇u|2 dµ ≥ c

(∫
u

2n
n−2 dµ

)n−2
n

. (6.6)

We would like to have on the right hand side of (6.6)
∫
u2 in order to be able to create a

differential inequality for J(t). To that ends, we use the Hölder interpolation inequality

(∫
uαdµ

) 1
α−1

(∫
udµ

)α−2
α−1

≥
∫
u2dµ, (6.7)

which is true for all α > 2. Naturally, we take here α = 2n
n−2 and obtain from (6.6) the Nash

inequality ∫
|∇u|2 dµ ≥ c

(∫
u2dµ

)n+2
n

(∫
udµ

)− 4
n

. (6.8)

Observing that ∫
u(t, x)dµ(x) =

∫
pΩ(t, x, y)dµ(x) ≤ 1,

we deduce from (6.5) and (6.8) the differential inequality

J ′ ≤ −cJ n+2
n .

By integrating it from 0 to t, we find J(t) ≤ Ct−n/2. We are left to observe that by the
semigroup property J(t) = pΩ(2t, y, y), whence (6.2) follows.

In 1967, Aronson [4] proved his famous two-sided Gaussian estimates for the heat kernel
associated with a uniformly elliptic operator in Rn (see also [116], [60], [124]). In our notation,
the Aronson upper bound can be written in the form

p(t, x, y) ≤ C

tn/2
exp

(
−d

2(x, y)
Ct

)
, (6.9)

assuming that manifold M is Rn equipped with a Riemannian metric that is quasi-isometric
to the Euclidean one. Now we know that (6.9) follows from (6.2) by Theorem 5.3. The proof
of Aronson was different and used the integral maximum principle (see Lemma 3.1). Some
versions of his proof can be found in [116], [66], [69].

In 1985, Varopoulos [133] proved that the Sobolev inequality is not only sufficient but also
necessary for the on-diagonal upper bound (6.2). Another proof of that will follow from the
results of Section 6.2 (cf. Theorem 6.5).

Two years later, Carlen, Kusuoka and Stroock [19] proved that (6.2) is also equivalent to
the Nash inequality (6.8). They were also able to localize the heat kernel estimates for small
and large time t so that the exponent n could be different for t → 0 and for t → ∞. Another
method of doing so will be considered in Sections 6.3 and 6.2.

In 1987-89, Davies [41], [42], [43] proved that the on-diagonal upper bound (6.2) is equivalent
to the log-Sobolev inequality: for any f ∈ C∞

0 (M), f ≥ 0, and for any ε > 0,∫
f2 log

f

‖f‖2

dµ ≤ ε

∫
|∇f |2 dµ+ β(ε)

∫
f2dµ (6.10)

where ‖f‖2 =
(∫
f2dµ

)1/2 and β(ε) = C − n
4 log ε. Davies also created a powerful method of

proving the off-diagonal upper bounds like (6.9) using (6.10), which is called the semigroup
perturbation method. A detailed account of it can be found in [43]. In the present paper,
we have focused on two more recent methods of obtaining the Gaussian bounds - one based
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on the Davies inequality (3.5) and on the mean value property (5.17), and the other based on
Ushakov’s argument, which was stated in Corollary 5.5.

In 1994, Carron [20] and the author [69] proved that the on-diagonal upper bound (6.2) is
equivalent to the Faber-Krahn inequality: for all precompact open sets Ω ⊂M ,

λ1 (Ω) ≥ cµ (Ω)−2/n
, (6.11)

where λ1 (Ω) is the lowest eigenvalue of the Dirichlet Laplace operator in Ω. The classical
theorem of Faber and Krahn says that (6.11) holds in Rn with the constant c such that the
equality in (6.11) is attained when Ω is a ball. In general, we do not need a sharp constant in
(6.11) to obtain the heat kernel estimates.

By the variational principle, we have

λ1(Ω) = inf
f∈C∞

0 (Ω)
f �≡0

∫
Ω
|∇f |2 dµ∫
Ω
f2dµ

. (6.12)

Hence, (6.11) can be rewritten as∫
Ω

|∇f |2 dµ ≥ cµ (Ω)−2/n
∫

Ω

f2dµ, ∀f ∈ C∞
0 (Ω) . (6.13)

It is not difficult to deduce the Nash inequality (6.8) directly from (6.13) - see Lemma 6.3 below.
Hence, we have the following equivalences:

log-Sobolev inequality (6.10) ⇔ Sobolev inequality (6.3)
� �

Off-diagonal Gaussian bound (6.9) ⇔ On-diagonal bound (6.2)
� �

Faber-Krahn inequality (6.11) ⇔ Nash inequality (6.8)

In the next sections, we will discuss similar relationships between more general heat kernel
upper bounds and modifications of the Faber-Krahn inequality.

6.2 Arbitrary decay of the heat kernel

It is natural to ask what geometric or functional-analytic properties of the manifold M are
responsible for the heat kernel bound as follows:

p(t, x, x) ≤ C

f(t)
, ∀x ∈M, t > 0, (6.14)

where f(t) is a prescribed2 increasing function on (0,∞). The case f(t) = tn/2 was considered
above. However, there are plenty of simple examples of manifolds where such a function is
not enough to describe the heat kernel behaviour. To start with, let us consider the manifolds
M = Rm×Sk of the dimension n = m+ k. Since the local structure of M is similar to that of
Rn, one may expect that, for short time t, we have p(t, x, x) � t−n/2 like in Rn (cf. (5.24)).
However, in the large scale, M resembles Rm and, by (2.24), the long time asymptotic of
p(t, x, x) also looks like in Rm. This motivates considering the following function

f(t) =
{
tn/2, t ≤ 1,
tm/2, t > 1.

(6.15)

2As Proposition 5.14 says, p(t, x, x) decays at most exponentially as t → ∞. Therefore, f(t) should grow at
most exponentially, too.
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On the hyperbolic space, the heat kernel decays exponentially in time as is seen from (1.2).
One may presume that there are manifolds with superpolynomial but subexponential decay of
p(t, x, x) as t→ ∞, and this is true. This motivates us to consider the function

f(t) =
{
tn/2, t ≤ 1,
exp (tα) , t > 1.

(6.16)

It is natural to try and extend the results of the preceding section to a wider class of functions
f . The extension of the log-Sobolev inequality matching rather general f(t) was obtained by
Davies and can be found in his book [43]. A generalized Faber-Krahn inequality equivalent in
some sense to (6.14), was obtained by the author [69] and will be discussed below. Finally, a
generalized Nash inequality, also equivalent to (6.14), is due to Coulhon [35]. It seems that a
proper generalization of the Sobolev inequality is not know yet (see [21], though).

Suppose that M is connected, non-compact and geodesically complete, and let Ω be a pre-
compact region in M with smooth boundary. By (2.13), the long time asymptotic of pΩ(t, x, x)
reads as follows:

pΩ(t, x, x) ∼ exp (−λ1 (Ω) t)φ2
1(x), t→ ∞. (6.17)

One may want to pass to the limit in (6.17) as Ω →M . Since λ1 (Ω) is decreasing on enlargement
of Ω, the limit limΩ→M λ1 (Ω) exists and coincides with the spectral radius λ1 (M) (see (3.10)).
If λ1 (M) > 0 then one may expect that p(t, x, x) behaves like exp (−λ1(M)t) as t→ ∞. Indeed,
(5.7) and (5.4) imply

p(t, x, x) ≤ exp (−λ1 (M) (t− t0)) p(t0, x, x) . (6.18)

This estimate is good when λ1 (M) > 0 (cf. (5.43)) but becomes trivial if λ1(M) = 0.
As the matter of fact, λ1(M) = 0 for all geodesically complete manifolds with subexponential
volume growth (which follows from the theorem of Brooks [17]). The latter means that, for
some x ∈M ,

V (x, r) = exp (o(r)) , r → ∞.

Hence, the case λ1(M) = 0 is most interesting from our point of view. One may wonder, if the
rate of convergence of λ1(Ω) to 0 as Ω →M affects the rate of convergence of p(t, x, x) to 0 as
t→ ∞. In fact, it does if one understands the former as a Faber-Krahn type inequality

λ1 (Ω) ≥ Λ(µ(Ω)), (6.19)

where Λ is a positive decreasing function on (0,∞). As we have mentioned in the previous
section, (6.19) is true on Rn with the function Λ(v) = cv−2/n. It turns out that inequality
(6.19) can be proved in many interesting cases with various functions Λ. We will call Λ a
Faber-Krahn function of M, assuming that (6.19) holds for all precompact Ω ⊂M .

( )

Figure 10 Example of a Faber-Krahn function

Theorem 6.2 ([69]) Assume that manifold M admits a Faber-Krahn function Λ. Let us define
the function f(t) by

t =
∫ f(t)

0

dv

vΛ(v)
, (6.20)
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assuming the convergence of the integral in (6.20) at 0. Then, for all t > 0, x ∈M , and ε > 0,

p(t, x, x) ≤ 2ε−1

f((1 − ε) t)
. (6.21)

Examples: 1. If Λ(v) = cv−2/n then (6.20) yields f(t) = c′tn/2. Hence, (6.21) amounts to
(6.2).

2. Let

Λ(v) �
{
v−2/n, v ≤ 1,
v−2/m, v > 1.

(6.22)

For example, the manifold M = K × Rm, where K is a compact manifold of the dimension
n−m, admits the Faber-Krahn function (6.22) (see Section 7.5). Then (6.20) gives

f(t) �
{
tn/2, t ≤ 1,
tm/2, t > 1,

and
sup
x
p(t, x, x) ≤ c

tm/2
, ∀t > 1.

3. Assume
Λ(v) � log−α v, v > 2,

and Λ(v) � v−2/n for v < 2 (see Section 7.6 for examples of manifolds with this Λ). Then, for
large t,

f(t) � c1 exp
(
c2t

1
1+α

)
and

sup
x
p(t, x, x) ≤ C exp

(
−ct 1

1+α

)
.

4. Let us take
Λ(v) ≡ λ1(M), v > 1,

and Λ(v) � v−2/n for v < 1 (note that the constant function Λ(v) ≡ λ1(M) satisfies (6.19) but
the integral (6.20) diverges, so we have to modify it near v = 0). Then, for large t,

f(t) � exp (λ1(M)t)

and
sup
x
p(t, x, x) ≤ C exp (− (λ1(M) − ε) t) .

In fact, in this case ε can be taken 0 (this can be seen from the proof below or from (6.18)).
Proof of Theorem 6.2. Fix a point y ∈M . We will prove that, for any precompact open set
Ω with smooth boundary,

pΩ(t, y, y) ≤ Cε
f((1 − ε) t)

,

provided y ∈ Ω. Let us start as in the proof of Theorem 6.1: denote u(t, x) = pΩ(t, x, y),

J(t) :=
∫

Ω

u2(t, x)dµ(x)

and obtain
J ′(t) = −2

∫
Ω

|∇u|2 dµ. (6.23)

Next, we have to estimate
∫ |∇u|2 dµ from below via

∫
u2dµ. The simplest way to do so is by

using the variational property of the first eigenvalue which gives∫
Ω

|∇u|2 dµ ≥ λ1 (Ω)
∫

Ω

u2dµ ≥ Λ(µ(Ω))
∫

Ω

u2dµ.

However, this is not suitable for us because the resulting estimate of u will depend on Ω. The
following lemma provides a more sophisticated way of applying (6.19).
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Lemma 6.3 Assuming that (6.19) holds, we have, for any non-negative function u ∈ C2(Ω) ∩
C
(
Ω
)

vanishing on ∂Ω,

∫
|∇u|2 ≥ (1 − ε)

(∫
u2

)
Λ

(
2
ε

(∫
u
)2∫
u2

)
, (6.24)

for any ε ∈ (0, 1).

Remark 6.4 If Λ(v) = cv−2/n then (6.24) becomes the Nash inequality (6.8). Hence, (6.24)
can be considered as a generalized Nash inequality.

Proof. The proof follows the argument of Gushchin [80]. Denote for simplicity A =
∫
udµ and

B =
∫
u2dµ. For any positive s, we have the obvious inequality

u2 ≤ (u− s)2+ + 2su,

which implies, by integration,

B ≤
∫

{u>s}

(u− s)2dµ+ 2sA. (6.25)

Applying the Faber-Krahn inequality (6.19) in the region Ωs := {u > s} (observe that u − s
vanishes on the boundary ∂Ωs), we get

∫
Ωs

(u − s)2dµ ≤
∫
Ωs

|∇u|2 dµ
Λ (µ(Ωs))

. (6.26)

s={u>s}

s

0

u(x)

Figure 11 Applying a Faber-Krahn inequality for the region Ωs

Unlike Ω, the region Ωs admits estimating of its volume via the function u, as follows

µ(Ωs) ≤ 1
s

∫
Ω

u dµ = s−1A.

Hence, (6.25) and (6.26) imply

B ≤
∫
Ωs

|∇u|2 dµ
Λ (s−1A)

+ 2sA

whence ∫
Ω

|∇u|2 dµ ≥ (B − 2sA) Λ
(
s−1A

)
.

Taking here s = εB
2A , we finish the proof.

Applying Lemma 6.3 to estimate the right hand side of (6.23) and taking into account that∫
u(t, x)dµ(x) ≤ 1,
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we obtain

J ′ ≤ −2 (1 − ε) JΛ
(

2
ε

1
J

)
.

Dividing this inequality by the right hand side, integrating it against dt from 0 to t and changing
the variables v = 2ε−1J−1, we obtain

∫ 2ε−1J−1

0

dv

vΛ(v)
≥ 2 (1 − ε) t

whence, by the definition (6.20) of function f ,

J(t) ≤ 2ε−1

f(2(1 − ε)t)
.

We are left to notice that J(t) = pΩ (2t, y, y), and (6.21) follows.
If the function Λ satisfying the hypotheses of Theorem 6.2 is continuous then f(t) ∈ C1(R+)

and

f ′ > 0, f(0) = 0, f(∞) = ∞ and
f ′

f
is non-increasing. (6.27)

Conversely, if f ∈ C1 (R+) satisfies (6.27) then Λ from (6.20) can be recovered by

Λ(f(t)) =
f ′

f
. (6.28)

The following Theorem is almost converse to Theorem 6.2.

Theorem 6.5 ([69]) Let the heat kernel on the manifold M admit the following estimate

sup
x
p(t, x, x) ≤ 1

f(t)
, ∀t > 0, (6.29)

where f ∈ C1 (R+) satisfies (6.27) and certain regularity condition below. Then M admits the
Faber-Krahn function cΛ(v) where Λ is defined by (6.28).

Moreover, for any precompact region Ω ⊂M and any integer k ≥ 1,

λk(Ω) ≥ cΛ
(
µ (Ω)
k

)
. (6.30)

We say that a function g(t) has at most polynomial decay if, for some α > 0 and a ∈ [1, 2],

g(at) ≥ αg(t), ∀t > 0. (6.31)

The the regularity condition in the statement of Theorem 6.5 is as follows: the function g :=
(log f)′ has at most polynomial decay. For example, the latter holds if, for some large A > 0,

f ′′

f ′ ≥ f ′

f
− A

t
.

All examples of f considered above, satisfy this condition. On the contrary, f(t) = 1−e−t does
not satisfy it.
Proof. The hypotheses (6.29) implies pΩ(t, x, x) ≤ 1

f(t) whence

∫
Ω

pΩ(t, x, x)dµ(x) ≤ µ(Ω)
f(t)

.

On the other hand, by the eigenfunction expansion (2.9),∫
Ω

pΩ(t, x, x)dµ(x) =
∫

Ω

∞∑
i=1

e−λi(Ω)tφ2
i (x)dµ(x) =

∞∑
i=1

e−λi(Ω)t.
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The right hand side here is bounded from below by ke−λk(Ω)t, whence

µ(Ω)
f(t)

≥ ke−λk(Ω)t

and
λk(Ω) ≥ 1

t
log

kf(t)
µ(Ω)

. (6.32)

This inequality holds for all t > 0 so that we can choose t. Let us find t from the equation

f(t/2) = µ(Ω)/k.

For this t, we obtain from (6.32)

λk(Ω) ≥ 1
t

(log f(t) − log f(t/2)) =
1
2
g(θ),

where g := (log f)′ and θ ∈ (t/2, t). By the regularity condition (6.31), we have g(θ) ≥ αg(t/2).
Finally, we apply (6.28):

g(t/2) =
f ′(t/2)
f(t/2)

= Λ (f(t/2)) = Λ(
µ(Ω)
k

)

whence

λk(Ω) ≥ α

2
Λ(
µ(Ω)
k

),

which was to be proved.
It is follows from Theorems 6.2 and 6.5 that the heat kernel upper bound (6.29) is equiv-

alent to the certain Faber-Krahn type inequality, up to some constant multiples. Clearly, the
generalized Nash inequality (6.24) involved in the proof of Theorem 6.2, is also equivalent to
each of these hypotheses. The latter was further developed in an abstract semigroup setting by
Coulhon [35]. He also gave another proof of the first part of Theorem 6.5 avoiding usage of the
eigenfunction expansion.

Putting together Theorems 6.2 and 6.5, we obtain

Corollary 6.6 Suppose that the function Λ satisfies the hypotheses of Theorems 6.2 and 6.5.
If, for any precompact open set Ω ⊂M ,

λ1(Ω) ≥ Λ(µ(Ω)) (6.33)

then, for all integers k ≥ 1,
λk(Ω) ≥ cΛ(Cµ(Ω)). (6.34)

For example, for the Euclidean function Λ(v) = cv−2/n, we obtain

λk(Ω) ≥ c′
(

k

µ(Ω)

)2/n

.

Note that (6.34) does not follow from (6.33) for an individual set Ω: it is essential that (6.33)
holds for all Ω.

By reverting the Faber-Krahn inequality (6.33), it is possible to prove some lower bounds
of the heat kernel - see [36, Theorem 3.2].
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6.3 Localized upper estimate

We consider here the localized version of Theorem 6.1.

Theorem 6.7 ([66], [69]) Suppose that, for some x ∈M and r > 0, the following Faber-Krahn
inequality holds: for any precompact open set Ω ⊂ B(x, r)

λ1(Ω) ≥ aµ (Ω)−2/n
, (6.35)

where a > 0 and n > 0. Then, for any t > 0,

p(t, x, x) ≤ Ca−n/2

min(t, r2)n/2
, (6.36)

where C = C(n).

Remark 6.8 This theorem contains Theorem 6.1 as r → ∞, taking into account that (6.35)
is equivalent to (6.3). However, the method of proof of Theorems 6.1 and 6.2 does not work in
the setting of Theorem 6.7 because it requires (6.35) for all Ω, not only for those in B(x, r).

The coefficient a in (6.36) can be absorbed into the constant C. However, by varying the
ball B(x, r), we may have different a for different balls so that the exact dependence on a in
(6.36) may be crucial. In the next section we will consider a setting where a depends explicitly
on B(x, r).

Proof. We start with the following mean-value type inequality.

Lemma 6.9 Suppose that the Faber-Krahn inequality (6.35) holds for any precompact open set
Ω ⊂ B(x, r). Then, for any τ ∈ (0, r2], t ≥ τ and for any positive solution u of the heat equation
in the cylinder (t− τ, t] ×B(x,

√
τ), we have

u(t, x) ≤ Ca−n/2

τ1+n/2

t∫
t−τ

∫
B(x,

√
τ)

u(s, y)dµ(y)ds, (6.37)

where C = C(n).

Remark 6.10 The term τ1+n/2 is proportional to the volume of the cylinder of the height τ
and of the base being a ball of radius

√
τ in Rn. This reflects the fact that the Faber-Krahn

inequality (6.35) is optimal in Rn but may not be optimal in M . A different type of the mean-
value property (5.17) related to the volume V (x,

√
τ ) on M was considered in Section 5.2 (see

also the next section).

The proof of (6.37) consists of two steps. The first step is the L2-mean-value inequality,
that is, (6.37) for u2 instead of u, which was proved in [67, Theorem 3.1]. Alternatively, the
L2-mean-value inequality follows from the first part of the Moser iteration argument [106], given
the equivalence of (6.35) and certain Sobolev inequality (see [20]). The second step is to derive
(6.37) from the L2-mean-value inequality. This is done by using the argument of Li and Schoen
[95] (see also [97] and [37]).

The estimate (6.36) follows from Lemma 6.9 similarly to the first part of the proof of
Theorem 5.8. Indeed, integrating in time the inequality∫

M

p(s, x, y)dµ(y) ≤ 1

we obtain, for all t ≥ τ > 0, ∫ t

t−τ

∫
M

p(s, x, y)dµ(y) ≤ τ .
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Hence (6.37) yields, for u = p(·, x, ·) and for τ ∈ (0, r2],

p(t, x, x) ≤ Ca−n/2

τ1+n/2

∫ t

t−τ

∫
M

p(s, x, y)dµ(y) ≤ Ca−n/2

τn/2
.

Clearly, (6.36) follows if we choose τ = min(t, r2).

Corollary 6.11 Suppose that, for all x ∈ M and some r > 0, the Faber-Krahn inequality
(6.35) holds, for any precompact open set Ω ⊂ B(x, r). Then, for any D > 2 and all x, y ∈M ,
t > 0,

p(t, x, y) ≤ Ca−n/2

min(t, r2)n/2
exp

(
−d

2(x, y)
2Dt

)
, (6.38)

where C = C(n,D).

The estimate (6.38) follows from (6.36) and from the inequality (5.14) of Corollary 5.5. If
we use (5.15) instead of (5.14) then we obtain

p(t, x, y) ≤ Ca−n/2eλ1(M)t0

min(t, t0)n/2
exp

(
−λ1(M)t− d2(x, y)

2Dt

)
(6.39)

where t0 = r2. By absorbing a and t0 into C, we can rewrite (6.39) as follows:

p(t, x, y) ≤ C′

min(t, 1)n/2
exp

(
−λ1(M)t− d2(x, y)

2Dt

)
. (6.40)

6.4 Relative Faber-Krahn inequality and the decay of the heat kernel
as V (x,

√
t)−1.

We return here to heat kernel upper bound

p(t, x, x) ≤ C

V (x,
√
t)
, (6.41)

which was discussed already in Section 5.17. Similarly to the equivalence

On-diagonal bound (6.2)⇐⇒Faber-Krahn inequality (6.11)

mentioned in Section 6.1, we will show that (6.41) is “almost” equivalent to the relative Faber-
Krahn inequality defined as follows.

Definition 6.12 We say that M admits the relative Faber-Krahn inequality if, for any ball
B(x, r) ⊂M and for any precompact open set Ω ⊂ B(x, r),

λ1(Ω) ≥ b

r2

(
V (x, r)
µ(Ω)

)ν
, (6.42)

with some positive constants b, ν.

B(x,R)

Ω

Figure 12 Subset Ω of the ball B(x,R)
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It is easy to see that (6.42) holds in Rn with ν = 2/n. It is possible to prove that the
relative Faber-Krahn inequality holds on any geodesically complete manifold of non-negative
Ricci curvature - see [67]. In general, a non-negatively curved manifold admits no uniform
Faber-Krahn function in the spirit of Section 6.2. The inequality (6.42) was designed to over-
come this difficulty. It provides a lower bound for λ1 (Ω), which takes into account not only
volume µ(Ω) but also location of the set Ω, via the ball B(x, r).

We say that the volume function V (x, r) satisfies the doubling property if, for some constant
C,

V (x, 2r) ≤ CV (x, r), ∀x ∈M, r > 0. (6.43)
Now we can state the main theorem of this section.

Theorem 6.13 ([69, Proposition 5.2]) Let M be a geodesically complete manifold.
If M admits the relative Faber-Krahn inequality then the heat kernel satisfies the upper bound

(6.41), for all x ∈M and t > 0, and the volume function V (x, r) satisfies the doubling property
(6.43).

Conversely, the heat kernel upper bound (6.41) and the doubling volume property (6.43)
imply (6.42).

Proof. The implication (6.42)=⇒(6.41) follows from Theorem 6.7. Indeed, given a ball B(x, r),
we have, by (6.35), for any precompact open set Ω ⊂ B(x, r),

λ1 (Ω) ≥ aµ(Ω)−2/n, (6.44)

where n = 2/ν and

a =
b

r2
V (x, r)2/n. (6.45)

Hence, Theorem 6.7 implies, for any r > 0,

p(t, x, x) ≤ Ca−n/2

min(t, r2)n/2
.

Taking r =
√
t and substituting a from (6.45) we obtain (6.41).

Another proof of (6.42)=⇒(6.41) follows by Theorem 5.8. Indeed, given (6.44), Lemma 6.9
implies that, for any positive solution u of the heat equation in the cylinder (t− r2, t]×B(x, r)
(assuming τ := r2 ≤ t),

u(t, x) ≤ Ca−n/2

r2+n

t∫
t−r2

∫
B(x,r)

u(s, y)dµ(y)ds.

Substituting a from (6.45), we obtain the mean-value property (MV) (see Definition 5.7). Hence,
Theorem 5.8 can be applied and yields (6.41).

The implication (6.42)=⇒(6.43) is proved by the argument of Carron [20] - see [69, p.442].
The second part of Theorem 6.13 – the implication (6.41)+(6.43)=⇒(6.42), is proved similarly
to Theorem 6.5 - see [69, p.443].

The above proof together with Theorems 5.8 and 5.12 gives the following

Corollary 6.14 The following implications hold

Relative Faber-Krahn inequality (6.42)
�

Mean-value property (MV) and volume doubling (6.43).
�

Gaussian upper bound (5.19) and volume doubling (6.43)
�

On-diagonal upper bound (6.41) and volume doubling (6.43)
⇓

On-diagonal lower bound (5.40)
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Another (direct) proof of the second equivalence was obtained by Li and Wang [97].

7 Isoperimetric inequalities

7.1 Isoperimetric inequalities and λ1(Ω)

Isoperimetric inequality relates the boundary area of regions to their volume. We say that
manifold M admits the isoperimetric function I if, for any precompact open set Ω ⊂ M with
smooth boundary,

σ (∂Ω) ≥ I (|Ω|) , (7.1)

where
|Ω| := µ (Ω) .

For example, Rn admits the isoperimetric function I(v) = cnv
n−1

n . Indeed, let Ω∗ ⊂ Rn be
a ball of the same volume as Ω and let r be its radius. Then, by the classical isoperimetric
inequality,

σ (∂Ω) ≥ σ (∂Ω∗) = ωnr
n−1 = cn

(ωn
n
rn
)n−1

n

= c |Ω∗|n−1
n = cn |Ω|n−1

n .

Other examples of isoperimetric functions will be shown below.
It turns out that the isoperimetric inequality (7.1) implies a Faber-Krahn inequality (6.19).

The next statement is a version of Cheeger’s inequality [26].

Proposition 7.1 Let I(v) be a non-negative continuous function on R+ such that I(v)/v is
non-increasing. Assume that M admits the isoperimetric function I. Then M admits the
Faber-Krahn function

Λ (v) :=
1
4

(
I (v)
v

)2

. (7.2)

For example, if I(v) = cv
n−1

n then (7.2) yields Λ(v) = c2

4 v
−2/n.

Proof. Given a non-negative function f ∈ C∞
0 (Ω), we denote

Ωs = {x : f(x) > s} .

By Sard’s theorem, the boundary ∂Ωs is smooth, for almost all s, so that we can apply the
isoperimetric inequality (7.1) for Ωs and obtain

σ(∂Ωs) ≥ I(|Ωs|) (7.3)

for almost all s. Next, we use the co-area formula∫
M

|∇f | dµ =
∫ ∞

0

σ (∂Ωs) ds , (7.4)

which implies with (7.3) and the non-increasing of I(v)/v,∫
M

|∇f | dµ ≥
∫ ∞

0

I(|Ωs|)ds

=
∫ ∞

0

I(|Ωs|)
|Ωs| |Ωs| ds

≥ I(|Ω|)
|Ω|

∫ ∞

0

|Ωs| ds

=
I(|Ω|)
|Ω|

∫
M

f dµ. (7.5)
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By the Cauchy-Schwarz inequality, we have∫
M

∣∣∇f2
∣∣ dµ = 2

∫
M

f |∇f | ≤ 2
[∫

M

f 2 dµ

∫
M

|∇f |2 dµ
]1/2

. (7.6)

Applying (7.5) to f2 instead of f and by (7.6), we obtain

I(|Ω|)
|Ω|

∫
M

f 2 dµ ≤
∫
M

∣∣∇f2
∣∣ dµ ≤ 2

[∫
M

f 2 dµ

∫
M

|∇f |2 dµ
]1/2

whence (
I(|Ω|)
|Ω|

)2 ∫
M

f 2 dµ ≤ 4
∫
M

|∇f |2 dµ

and

λ1 (Ω) ≥ 1
4

(
I(|Ω|)
|Ω|

)2

,

which was to be proved.
Combining Proposition 7.1 with Theorem 6.2 and Corollary 5.5, we obtain

Corollary 7.2 Assume that manifold M admits a non-negative continuous isoperimetric func-
tion I(v) such that I(v)/v is non-increasing. Let us define the function f(t) by

t = 4
∫ f(t)

0

vdv

I2(v)
, (7.7)

assuming the convergence of the integral in (7.7) at 0. Then, for all x ∈M, t > 0 and ε > 0,

p(t, x, x) ≤ 2ε−1

f((1 − ε) t)
. (7.8)

Furthermore, if the function f satisfies in addition the regularity condition (5.11) then, for all
x, y ∈M , t > 0, D > 2 and some ε > 0,

p(t, x, y) ≤ C

f(εt)
exp

(
−d

2(x, y)
2Dt

)
. (7.9)

In the next sections, we will show examples of manifolds satisfying certain isoperimetric and
Faber-Krahn inequalities where the heat kernel estimates given by Theorems 6.2, 6.7, 6.13 and
Corollaries 6.11, 7.2 can be applied.

7.2 Isoperimetric inequalities and the distance function

Here we mention a certain method of proving isoperimetric inequalities, which was introduced
by Michael and Simon [104]. Suppose that we have a distance function r(x, ξ) on M . This may
be the Riemannian distance or a general distance function satisfying the usual axioms of the
metric space, in particular, the triangle inequality. We will denote r(x, ξ) by rξ(x) to emphasize
that it will be regarded as a function of x with a fixed (but arbitrary) ξ. It turns out that an
isoperimetric inequality on M can be proved if one knows certain bounds for |∇rξ| and ∆rξ.

Theorem 7.3 (Michael–Simon [104], Chung–Grigor’yan–Yau [33]) Let M be a geodesically
complete Riemannian manifold of dimension n > 1. Suppose that rξ(x) is a distance function
on M such that, for all ξ, x ∈M ,

|∇rξ(x)| ≤ 1 (7.10)

and
∆r2ξ (x) ≥ 2n (7.11)

(assuming that r2ξ ∈ C2(M)). Then M admits the isoperimetric function I(v) = cv
n−1

n where
c = cn > 0.
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Let us explain why (7.10) and (7.11) should be related to isoperimetric inequalities. Indeed,
integrating (7.10) over a precompact region Ω ⊂M with smooth boundary and using the Green
formula (2.4), we obtain

2n |Ω| =
∫

Ω

∆(r2ξ )dµ = 2
∫
∂Ω

rξ
∂rξ
∂ν

dσ , (7.12)

where ν is the outward normal vector field on ∂Ω. With the obvious inequality ∂rξ

∂ν ≤ |∇rξ| ≤ 1,
(7.12) implies

n |Ω| ≤
(

sup
Ω
rξ

)
σ(∂Ω). (7.13)

This is already a weak form of isoperimetric inequality. A certain argument allows to extend
(7.13) as to show the isoperimetric inequality

σ (∂Ω) ≥ c |Ω|n−1
n .

See [104] or [33] for further details.

7.3 Minimal submanifolds

Let M be an n-dimensional submanifold of RN with the Riemannian metric inherited from RN .
SubmanifoldM is called minimal if its normal mean curvature vectorH(x) = (H1(x), H2(x), ..., HN (x))
vanishes for all x ∈M (see [113]). It turns out that already the minimality of M implies certain
isoperimetric property.

Theorem 7.4 (Bombieri – de Giorgi – Miranda [16]) Any n-dimensional minimal submanifold
M admits the isoperimetric function I(v) = cv

n−1
n , c > 0.

Proof. Consider the coordinate functions Xi in RN as functions on M . Then ∆Xi = Hi(x)
where ∆ is the Laplacian on M (see [113, Theorem 2.4]). Let us denote by rξ(x) the (extrinsic)
Euclidean distance in RN between the points x, ξ ∈M . Shifting the coordinates X1, X2, ..., XN

in RN to have the origin ξ, we have

∆r2ξ =
N∑
i=1

∆(X2
i ) = 2

N∑
i=1

XiHi + 2
N∑
i=1

|∇Xi|2 .

The term
∑
XiHi identically vanishes if M is minimal. The sum

∑N
i=1 |∇Xi|2 is equal to n

for any n-dimensional submanifold, which can be verified by a direct computation. Hence, we
conclude

∆r2ξ = 2n. (7.14)

On the other hand, it is obvious that |∇rξ| ≤ 1 because the extrinsic distance is majorized by
the intrinsic Riemannian distance on M . Hence, we can apply Theorem 7.3 and conclude the
proof.

Theorem 7.4 and Corollary 7.2 imply the following uniform upper bound for the heat kernel
on M

p(t, x, y) ≤ C

tn/2
exp

(
−d

2(x, y)
2Dt

)
. (7.15)

7.4 Cartan-Hadamard manifolds

A manifold M is called a Cartan-Hadamard manifold if M is geodesically complete simply con-
nected non-compact Riemannian manifold with non-positive sectional curvature. For example,
Rn and Hn are Cartan-Hadamard manifolds.
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Theorem 7.5 (Hoffman – Spruck [84]) Any Cartan-Hadamard manifold M of the dimension
n admits the isoperimetric function I(v) = cv

n−1
n , c > 0.

This theorem can also be derived from Theorem 7.3. Indeed, denote by rξ(x) the geodesic
distance between the point x and ξ on M . If M = Rn then ∆r2ξ = 2n. For general Cartan-
Hadamard manifold, the comparison theorem for the Laplacian implies ∆r2ξ ≥ 2n (see [122]),
whereas |∇rξ| ≤ 1 holds on any manifold.

Hence, the heat kernel estimate (7.15) is valid on Cartan-Hadamard manifolds, too. On the
other hand, by Proposition 7.1, Cartan-Hadamard manifolds satisfy the hypotheses of Corollary
6.11. Therefore, (6.40) holds, that is,

p(t, x, y) ≤ C

min
(
1, tn/2

) exp
(
−λ1(M)t− d2(x, y)

2Dt

)
, (7.16)

which can be better than (7.15) if λ1(M) > 0.
McKean’s theorem [103] says that if the sectional curvature of the Cartan-Hadamard man-

ifold is bounded from above by −K2 then

λ1 (M) ≥ (n− 1)2

4
K2 . (7.17)

Indeed, consider again the Riemannian distance function rξ(x) . As Yau [139] showed, on such
manifolds

∆rξ ≥ (n− 1)K, (7.18)

away from ξ. Given a precompact open set Ω ⊂ M with smooth boundary, we choose ξ /∈ Ω
and integrate (7.18) over Ω. By the Green formula 2.4, we obtain∫

∂Ω

∂rξ
∂ν

dσ ≥ (n− 1)K |Ω| .

Since ∂rξ

∂ν ≤ |∇rξ| ≤ 1, we arrive to the isoperimetric inequality

σ (∂Ω) ≥ (n− 1)K |Ω| ,

whence (7.17) follows by Proposition 7.1.
Hence, (7.16) implies, for all x, y ∈M , t > 0 and D > 2,

p(t, x, y) ≤ C

min(1, tn/2)
exp

(
− (n− 1)2

4
K2t− d2(x, y)

2Dt

)
. (7.19)

Let us compare (7.19) with the sharp uniform estimate of the heat kernel on the hyperbolic
space Hn

K of the constant negative curvature −K2 obtained by Davies and Mandouvalos [50]:

p(t, x, y) � (1 + d+ t)
n−3

2 (1 + d)
tn/2

exp
(
− (n− 1)2

4
K2t− d2

4t
− n− 1

2
Kd

)
, (7.20)

where d = d(x, y) (see [43] and [77] for the exact formula for the heat kernel on hyperbolic
spaces; the estimate (7.20) admits a far reaching generalization for symmetric spaces - see [3]).

If t→ ∞ then (7.20) yields

p(t, x, x) � t−3/2 exp
(
− (n− 1)2

4
K2t

)
,

which is better than (7.19) by the factor t−3/2. The geometric nature of this factor is still
unclear.
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Another difference between (7.19) and (7.20) is the constant D > 2 in the Gaussian term. It
is possible to put D = 2 in (7.19) at expense of the polynomial correction term, as in Theorem
5.9 – see [68, p.254] or [69, Theorem 5.2].

Yet another difference between (7.19) and (7.20) is the third term n−1
2 Kd in the exponential.

It does not play a significant role for the heat kernel in the hyperbolic space because it is
dominated by the sum of two other terms in the exponential (7.20). However, it is possible to
introduce a similar term for general Cartan-Hadamard manifolds, and it may be leading if the
curvature goes to −∞ fast enough as x→ ∞.

Fix a point o ∈M and denote3

L(r) := λ1(M \B(o, r)). (7.21)

Clearly, L(r) is increasing in r and L(0) = λ1(M). If the sectional curvature outside the ball
B(o, r) is bounded above by −K2(r) (whereK(r) is positive and increasing) then a modification
of (7.17) says that

L(r) ≥ (n− 1)2

4
K(r)2. (7.22)

Theorem 7.6 ([69, Theorem 5.3]) Let M be a Cartan-Hadamard manifold of the dimension
n and o ∈M. Then, for all t > 0, x ∈M \B(o,

√
t), c ∈ (0, 1) and some ε = ε(c) > 0,

p(t, o, x) ≤ C

tn/2
exp

(
−cλ1(M)t− c

d2

4t
− εd

√
L(cd)

)
, (7.23)

where d = dist(o, x) and C = C(c, n).

Proof of Theorem 7.6 is similar to that of Theorem 6.7 but uses a more general mean-value
type inequality than Lemma 6.9 – see [69] for details. It is not clear whether one can put c = 1
here.

As a consequence we see that if the sectional curvature outside the ball B(o, r) is bounded
above by −K2(r) then (7.23) and (7.22) yield

p(t, o, x) ≤ C

tn/2
exp

(
−cλ1(M)t− c

d2

4t
− εK(cd)d

)
. (7.24)

In particular, if K(r) � r then the term K(cd)d is leading as d→ ∞.
It is possible to prove the following matching lower bound. Assume that the sectional

curvature inside the ball B(o, r) is bounded below by −K2(r). Then we claim that, for all
t > 0, x ∈M and ε > 0,

p(t, o, x) ≥ c

tn/2
exp

(
− (λ1(M) + ε) t− C

d2

4t
− CK(d+ C)d

)
, (7.25)

where c = c(o, ε) > 0 (cf. (7.28) below).
Comparison of (7.24) and (7.25) shows that there is a big gap in the values of the constants

in the upper and lower bounds. The problem of obtaining optimal heat kernel estimates when
the curvature grows to −∞ faster than quadratically in r, is not well understood.

Another interesting consequence of (7.23) is related to the essential spectrum of the operator
∆M . Denote by λess(M) the bottom of the essential spectrum of −∆M in L2(M,µ). It is known
and is due to Donnelly [58] that, on any complete manifold,

λess(M) = lim
r→∞L(r) , (7.26)

where L(r) is defined by (7.21). It is possible to derive from (7.23) and (7.26) that

lim sup
d→∞

1
d

sup
t>0

log p(t, o, x) ≤ −C
(√

λ1(M) +
√
λess(M)

)
, (7.27)

3The notation λ1(Ω) (where Ω is not necessarily compact) is defined by (6.12). This is the bottom of the
spectrum of the operator −∆Ω in L2(Ω, µ).

44



where d = d(x, o) (see [69, Corollary 5.1]) and C > 0 is an absolute constant. It would be
interesting to understand to what extent this inequality is sharp, in particular, what is a sharp
value of C. For the hyperbolic space, equality is attained in (7.27) with C = 1.

7.5 Manifolds of bounded geometry

We say that a manifold M has bounded geometry if its Ricci curvature is uniformly bounded
below and if its injectivity radius is bounded away from 0. The hypothesis of bounded geometry
implies that, for some r0 > 0, all balls B(x, r0), x ∈ M , are uniformly quasi-isometric to the
Euclidean ball BE(r0) ⊂ Rn, where n = dimM . The term “quasi-isometric” means that there
is a diffeomorphism between B(x, r0) and BE(r0) which changes the distances at most by a
constant factor, and the word “uniform” refers to the fact that this constant factor is the same
for all x ∈M .

In other words, the manifold M looks like being patched from slightly distorted copies of
the ball BE(r0). Clearly, a manifold of bounded geometry is geodesically complete.

n

M

B(x, r0)

BE(r0)

Figure 13 Manifold of bounded geometry is “patched” from slightly distorted Euclidean
balls

The hypotheses of Corollary 6.11 are satisfied on the manifold M of bounded geometry.
Hence, the upper bound (6.40) (the same as (7.16)) holds on M . Using Proposition 5.14 and
the standard chain argument with the local Harnack inequality, it is possible to prove the
following lower bound

p(t, x, y) ≥ cx,ε exp
(
−(λ1(M) + ε)t− C

d2(x, y)
t

)
, (7.28)

for any ε > 0 and all t > 0, x, y ∈ M . Hence, if λ1(M) > 0 then (6.40) provides a correct rate
of decay of p(t, x, y) as t→ ∞ and as y → ∞.

It turns out that even in the case λ1(M) = 0, there is a priori rate of decay of the heat
kernel as t→ ∞. This is based on the following isoperimetric property of manifolds of bounded
geometry.

Theorem 7.7 Any n-dimensional manifold of bounded geometry admits the following isoperi-
metric function, for some c > 0,

I(v) = cmin
(
v

n−1
n , 1

)
. (7.29)

The meaning of (7.29) is the following. For small v, the function I(v) is nearly the Euclidean
one which corresponds to the fact that the small scale geometry of M is uniformly quasi-
isometric to that of Rn. For large v, (7.29) gives I(v) = c, which is attained on the cylinder
M = Rn−1 × S1 (see Fig. 14). Roughly speaking, (7.29) says that a manifold of bounded
geometry expands at ∞ at least as fast as a cylinder.
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Ω

Figure 14 The surface area of ∂Ω does not increase when the set Ω ⊂ Rn−1 × S1 is
stretching.

Proof. We need to show that, for any precompact open set Ω with smooth boundary,

σ (∂Ω) ≥ I(|Ω|).

CASE 1. Assume that, for any x ∈ M , the set Ω covers less than a half of the volume of
the ball B(x, r0/3). Then, for any point x ∈ Ω, there exists a positive number r(x) ≤ r0/3 such
that

1
4
≤ σ(∂Ω ∩B(x, r(x)))

V (x, r(x))
≤ 1

2
. (7.30)

All balls B(x, r(x)), x ∈ Ω, cover Ω. Choose a finite number of them also covering Ω. Then, by
using the Banach argument, choose out of them a finite family of disjoint balls B(xi, ri) (where
ri = r(xi)) so that the concentric balls B(xi, 3ri) cover Ω.

B(xi, ri)

Figure 15 Set Ω (shaded) takes in each ball B(xi, ri) nearly one half of its volume, whereas
the balls B(xi, 3ri) cover all of Ω.

In particular, we have ∑
i

V (xi, 3ri) ≥ |Ω| . (7.31)

On the other hand, we use the following isoperimetric property of partitions of balls.

Proposition 7.8 For any smooth hypersurface Γ in B(x, r) (where r ≤ r0) dividing B(x, r)
into two open subsets each having volume at least v,

σ(Γ) ≥ cv
n−1

n . (7.32)

If B(x, r) is a Euclidean ball then (7.32) is a classical inequality, the best constant c in
which was found by Maz’ya - see [102]. If B(x, r) is a ball on manifold of bounded geometry
and r ≤ r0 then (7.32) follows from its Euclidean version and from the fact that the measures
of all dimensions in B(x, r0) differ from their Euclidean counterparts at most by a constant
factor.

Applying (7.32) to Γ = ∂Ω ∩B(xi, ri) and using (7.30), we obtain

σ (∂Ω ∩B(xi, ri)) ≥ cV (xi, ri)
n−1

n .

Adding up these inequalities over all i and applying the elementary inequality

∑
i

aνi ≥
(∑

i

ai

)ν

, (7.33)
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which is valid for ai ≥ 0 and 0 ≤ ν ≤ 1, we obtain

σ(∂Ω) ≥ c

(∑
i

V (xi, ri)

)n−1
n

. (7.34)

Finally, we use V (x, 3r) ≤ CV (x, r), which is true for all r ≤ r0/3. Therefore, (7.31) and
(7.34) imply

σ(∂Ω) ≥ c |Ω|n−1
n . (7.35)

which was to be proved.
CASE 2. Assume that, for some x ∈ M , the set Ω covers at least a half of the volume of

the ball B(x, r0/3). By moving the point x away, we may assume that

|Ω ∩B(x, r0/3)| =
1
2
V (x, r0/3). (7.36)

ΩB(x,r0/3)

Figure 16 Set Ω covers exactly one half of the volume of the ball B(x, r0/3).

By Proposition 7.8 and (7.36), we have

σ (∂Ω) ≥ σ (∂Ω ∩B(x, r0/3)) ≥ cV (x, r0/3)
n−1

n ≥ const, (7.37)

which together with (7.35) finishes the proof.
Theorem 7.7 and Corollary 7.2 imply

Theorem 7.9 On any manifold of bounded geometry,

p(t, x, x) ≤ Cmax
(
t−n/2, t−1/2

)
,

for all x ∈M and t > 0. In particular, for all x ∈M and t > 1,

p(t, x, x) ≤ Ct−1/2. (7.38)

The exponent 1
2 in (7.38) is sharp as is shown by (2.24) for the manifold M = S1 × Rn−1.

The estimate (7.38) was proved by different methods by Varopoulos [132], Chavel and Feldman
[25], Coulhon and Saloff-Coste [39], [34], Grigor’yan [70].

Sharper estimates of the heat kernel can be obtained assuming a modified isoperimetric
inequality on M . Let us say that M admits a modified isoperimetric function I(v) if σ (∂Ω) ≥
I(|Ω|), for all precompact regions Ω ⊂M with smooth boundary such that Ω contains a ball of
the radius r0. The purpose of this notion introduced by Chavel and Feldman [25] is to separate
the large scale isoperimetric properties of the manifold from its local properties. For example,
the Riemannian product M = K × Rm where K is a compact manifold of the dimension
n − m, admits the modified isoperimetric function I(v) = cv

m−1
m (see [64]). As follows from

Theorem 7.7, every manifold of bounded geometry admits the modified isoperimetric function
I(v) = const.

Theorem 7.10 (Chavel – Feldman [25]) If M is a manifold of bounded geometry admitting
the modified isoperimetric function I(v) = cv

m−1
m then, for all x ∈M and t > 1,

p(t, x, x) ≤ Ct−m/2 .
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Proof. It suffices to verify that M admits the following (not modified!) isoperimetric function

v �→ c′
{

v
n−1

n , v ≤ 1,
v

m−1
m , v ≥ 1.

The proof of that follows the same line of reasoning as the proof of Theorem 7.7, with the
following modification. No change is required for Case 1. In Case 2, take again the point x for
which (7.36) is satisfied and consider the region Ω0 = Ω ∪B(x, r0). Since Ω0 contains a ball of
radius r0, the modified isoperimetric inequality gives

σ(∂Ω0) ≥ c |Ω0|
m−1

m ≥ c |Ω|m−1
m .

B(x,r0) 0= B(x,r0)

B(x,r0)

B(x,r0/3)

Figure 17 Sets Ω and Ω0

To finish the proof, it suffices to show

σ(∂Ω0) ≤ Cσ(∂Ω). (7.39)

The idea is that by adding the ball to Ω, we do not increase considerably the surface area of ∂Ω
because the part of ∂Ω covered by the ball is comparable to the boundary of the ball. Formally,
we write

σ(∂Ω0) ≤ σ(∂Ω) + σ(∂B(x, r0))
≤ σ(∂Ω) + Crn−1

0 . (7.40)

On the other hand, as follows from (7.37),

σ(∂Ω ∩B(x, r0)) ≥ crn−1
0 .

We see that the first term dominates in (7.40) whence (7.39) follows.
See [70] for extension of Theorem 7.10 to a more general setup of manifolds of weak bounded

geometry.
The following theorem improves (7.38) assuming the volume growth instead of an isoperi-

metric inequality.

Theorem 7.11 (Coulhon – Saloff-Coste [38]) Assume that M has bounded geometry and that

V (x, r) � rN , ∀x ∈M, r > 1. (7.41)

Then, for all x ∈M and t > 1,
p(t, x, x) ≤ Ct−

N
N+1 . (7.42)

Note that 1
2 ≤ N

N+1 < 1 so that (7.42) is better than (7.38) whenever N > 1. The proof
of Theorem 7.11 in [38, Theorem 8] contains implicitly the fact that the manifold in question
admits the Faber-Krahn function

Λ(v) = c

{
v−2/n, v ≤ 1,
v−

N+1
N , v ≥ 1.
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Given that much, Theorem 7.11 can be derived from Theorem 6.2. See [35] for further results
in this direction.

Let us recall for comparison that Theorem 5.11 yields, under the hypotheses of Theorem
7.11, the following lower bound, for all x ∈M and t large enough,

p(t, x, x) ≥ c

(t log t)N/2
.

It seems that the entire range between these two extreme behaviors of the heat kernel given by
t−

N
N+1 and (t log t)−N/2, is actually possible.
Any manifold M of bounded geometry has at most exponential volume growth, that is, for

all x ∈M and r > 1,
V (x, r) ≤ C exp (Cr) .

This follows from the fact that M can be covered by a countable family of balls of radius r0/2,
which has a uniformly finite multiplicity (see, for example, [87]). By Theorem 5.13, one obtains
the heat kernel lower estimate, for all x ∈M and t ≥ t0,

p(t, x, x) ≥ c exp (−Kt) ,

for some c > 0 and K > 0. By the chain argument involving the local Harnack inequality, this
estimate can be extended to

p(t, x, y) ≥ c exp
(
−Kt− C

d2(x, y)
t

)
, (7.43)

for all x, y ∈ M and t ≥ t0. The difference between (7.28) and (7.43) is that the former is not
uniform with respect to x. On the other hand, (7.28) provides the sharp rate e−λ1(M)t of the
heat kernel decay as t→ ∞ whereas the constant K is (7.43) may be much larger than λ1(M)
- see [126].

7.6 Covering manifolds

Let Γ be a discrete group of isometries of the manifold M . We say that the manifold M is a
regular cover of the manifold K with the deck transformation group Γ if K is isometric to the
quotient M�Γ. Intuitively, one can imagine M as a manifold glued from many copies of K
moving from one to another by using the group action of Γ.

K

M

M/

= 2

Figure 18 Manifold M covers K by the group Γ = Z2
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If M is a regular cover of a compact manifold K then M has bounded geometry so that
the results of the previous section apply. However, much more can be said about the heat
kernel given the volume growth of M . The following isoperimetric inequality of Coulhon and
Saloff-Coste plays the crucial role.

Theorem 7.12 (Coulhon – Saloff-Coste [38, Theorem 4]) Let a non-compact manifold M be
a regular cover of a compact manifold K. Let V(r) be a positive increasing function on R+

possessing certain regularity and such that, for some (fixed) o ∈M and all r > 0,

V (o, r) ≥ V(r). (7.44)

Then, for some (large) constant C > 0, the manifold M admits the isoperimetric function

I(v) :=
v

CV−1(Cv)
, (7.45)

where V−1 is the inverse function.

Next theorem provides the heat kernel upper bound on covering manifolds.

Theorem 7.13 Referring to Theorem 7.12, we have, for all x ∈M , t > 0 and some ε > 0,

p(t, x, x) ≤ C

V(ρ(εt))
, (7.46)

where ρ is defined by

t =
∫ ρ(t)

0

r2
d

dr
logV(r) dr. (7.47)

Proof. Let us apply Corollary 7.2 with the isoperimetric function (7.45). Then the upper
bound (7.8) holds with the function f defined by (7.7). Substituting (7.45) into (7.7), we
obtain

t = 4C2

∫ f(t)

0

[V−1(Cv)
]2
dv

v

= 4C2

∫ Cf(t)

0

[V−1(v)
]2
dv

v

= 4C2

∫ V−1(Cf(t))

0

r2dV(r)
V(r)

.

Setting c = 1/(4C2) and using the definition (7.47) of ρ, we obtain

V−1 (Cf(t)) = ρ (ct)

and
f(t) = C−1V(ρ(ct)).

Hence, (7.46) follows from (7.8).
For example, if V (o, r) ≥ crN then take V(r) = crN and, by (7.47), ρ(t) � √

t. Hence,
(7.46) implies p(t, x, x) ≤ Ct−N/2.

If V (o, r) ≥ exp (rα) =: V(r) (for large r) then we obtain ρ(t) � t
1

2+α and

p(t, x, x) ≤ C exp
(−ct α

2+α
)
, (7.48)

for large t. In the particular case α = 1, we have

p(t, x, x) ≤ C exp
(
−ct1/3

)
. (7.49)

It turns out that the exponent 1/3 here is sharp. Indeed, Alexopoulos [1] showed that a similar
on-diagonal lower bound holds provided the deck transformation group Γ is polycyclic and
V (o, r) � exp (r). See [115] for further results of this type.
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7.7 Spherically symmetric manifolds

Let us fix the origin o ∈ Rn, some positive smooth function ψ on R+ such that

ψ(0) = 0 and ψ′(0) = 1, (7.50)

and define a spherically symmetric (or model) Riemannian manifold Mψ as follows

1. as a set of points, Mψ is Rn;

2. in the polar coordinates (r, θ) at o (where r ∈ R+ and θ ∈ Sn−1) the Riemannian metric
on Mψ\{o} is defined as

ds2 = dr2 + ψ2(r)dθ2 , (7.51)

where dθ denotes the standard Riemannian metric on Sn−1;

3. the Riemannian metric at o is a smooth extension of (7.51) possibility of that is ensured
by (7.50).

For instance, if ψ(r) ≡ r then (7.51) coincides with the Euclidean metric of Rn and Mψ is
isometric to Rn. If ψ(r) = sinh r then Mψ is isometric to Hn.

o

x=(r, )r

S(r)

Figure 19 Model manifold as a surface of revolution

Clearly, the surface area S(r) of the geodesic sphere ∂B(o, r) on Mψ is computed as

S(r) = ωnψ
n−1(r),

and the volume V (r) of the ball B(o, r) is given by

V (r) =
∫ r

0

S(ξ)dξ = ωn

∫ r

0

ψn−1(ξ)dξ.

The Laplace operator on Mψ can be written as follows (see [63], [122, p.97])

∆ =
∂2

∂2r
+
S′

S

∂

∂r
+

1
ψ2 ∆θ , (7.52)

where ∆θ denotes the Laplace operator on the sphere Sn−1.
We would like to estimate the heat kernel p(t, x, x) on Mψ by using Corollary 7.2. Isoperi-

metric function I(v) seems to be unknown for general ψ. However, if we restrict our talk to
estimating p(t, o, o) then there is a simple way out. Careful analysis of the proof of Corollary
7.2 shows that we need to know the isoperimetric inequality

σ (∂Ω) ≥ I (|Ω|) (7.53)

only for those sets Ω which are level sets of the function p(t, o, ·), that is, for the two-parameter
family of regions

Ωs,t = {x ∈M : p(t, o, x) > s}
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(see [36, Proposition 8.1]).
Given the rotation symmetry of Mψ with respect to the point o, it is easy to prove that

all Ωs,t are ball centered at o. Hence, we need to find the function I such that (7.53) holds
for all balls Ω = B(o, r). Since there is only one ball B(o, r) with a prescribed volume, the
isoperimetric function I can be defined by

I(v) = S(r) if V (r) = v.

In order to apply Corollary 7.2, I(v)/v should be non-increasing which amounts to the
non-increasing of S(r)/V (r). The equation (7.7) for f(t) becomes

t = 4
∫ V −1(f(t))

0

V (r)dr
S(r)

.

Hence, we arrive to the following conclusion.

Theorem 7.14 ([36, Theorem 8.3]) Suppose that, for a model manifold Mψ, the function
S(r)/V (r) is non-increasing. Let us define the function ρ(t) by

t = 4
∫ ρ(t)

0

dr
d
dr logV (r)

. (7.54)

Then, for all t > 0 and ε ∈ (0, 1),

p(t, o, o) ≤ Cε
V (ρ(εt))

. (7.55)

For example, if V (r) = CrN then (7.54) gives ρ(t) � √
t and (7.55) implies

p(t, o, o) ≤ C′

V (
√
t)

=
C′′

tN/2
.

Note that, by Theorem 5.12, we have in this case the matching lower bound for p(t, o, o). More
generally, if V (r) is doubling (see (5.38)) then one obtains from Theorems 7.14 and 5.12

p(t, o, o) � 1
V (

√
t)

(see [36, Corollary 8.5]).
If V (r) = exp (rα), 0 < α ≤ 1, then we obtain ρ(t) � t

1
2−α and

p(t, o, o) ≤ C exp
(−ct α

2−α

)
. (7.56)

Theorem 5.13 yields for this volume growth the matching lower bound - cf. (5.42).
It is interesting that, for covering manifold M with the same volume growth function, the

upper bound (7.48) is weaker than (7.56). In some sense, model manifolds possess the smallest
heat kernel per volume growth function. This happens because all directions from o to the
infinity are equivalent, which maximizes the capability of the Brownian motion to escape to
the infinity and, thereby, minimizes the heat kernel p(t, o, o). On covering manifolds, there
may exists two non-equivalent ways of escaping (this is the case, for example, if the desk
transformation group Γ is polycyclic) one of them being “narrow” in some sense and providing
for a higher probability of return.

7.8 Manifolds of non-negative Ricci curvature

The main result of this section is the following isoperimetric inequality on non-negatively curved
manifolds.
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Theorem 7.15 Let M be a geodesically complete non-compact Riemannian manifold of non-
negative Ricci curvature. Then, for any ball B(z,R) ⊂ M and any open set Ω ⊂ B(z,R) with
smooth boundary,

σ (∂Ω)
|Ω| ≥ c

R

(
V (z,R)

|Ω|
)1/n

(7.57)

where n = dimM and c = c(n) > 0.

By Proposition 7.1, the isoperimetric inequality (7.57) implies the relative Faber-Krahn
inequality (6.42) (the latter was proved for manifolds of non-negative Ricci curvature in [67]).
Hence, Theorems 6.13 and 5.9 imply the following upper bound of the heat kernel on M

p(t, x, y) ≤ C√
V (x,

√
t)V (y,

√
t)

exp
(
−d

2(x, y)
2Dt

)
, (7.58)

where D > 2. This estimate was first obtained by Li and Yau [98]. They also proved the
matching lower bound

p(t, x, y) ≥ c√
V (x,

√
t)V (y,

√
t)

exp
(
−d

2(x, y)
2Dt

)
, (7.59)

for D < 2. Some improvements of these estimates can be found in [93]. See [134], [46] for heat
kernel estimates on manifolds with RicM ≥ −K, and [81] for similar heat kernel estimates in
unbounded regions in Rn with the Neumann boundary condition.

We precede the proof of (7.57) by two properties of non-negatively curved manifolds.

Lemma 7.16 Let M be a geodesically complete non-compact manifold of non-negative Ricci
curvature. Then, for all balls intersecting B(x, r) and B(y, r′) with r ≤ r′,

c

(
r′

r

)ε
≤ V (y, r′)
V (x, r)

≤ C

(
r′

r

)n
, (7.60)

where ε, c, C are positive and depend on n.

Proof. We use Gromov’s volume comparison theorem which says that if RicM ≥ 0 then, for
all x ∈M and r′ ≥ r > 0,

V (x, r′)
V (x, r)

≤
(
r′

r

)n
(7.61)

(see [27], [23], [22]).
Denote δ = d(x, y). Then δ ≤ r′ + r ≤ 2r′, and the right hand inequality in (7.60) follows

by (7.61)
V (y, r′)
V (x, r)

≤ V (x, r′ + δ)
V (x, r)

≤
(
r′ + δ

r

)n
≤

(
3r′

r

)n
= 3n

(
r′

r

)n
.

To prove the left hand inequality in (7.60), let us first verify it in the particular case r′ = 3r and
y = x. Find a point ξ such that d(x, ξ) = 2r (here we use the completeness and non-compactness
of M). Then B(ξ, r) is contained in B(x, 3r) but does not intersect B(x, r). Hence, we obtain

V (x, 3r) ≥ V (x, r) + V (ξ, r) ≥ V (x, r)(1 + C−1).

x ξ
3r

2r
r

Figure 20 Ball B(ξ, r) is contained in B(x, 3r) but does not intersect B(x, r)
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In general, let us find an integer k such that

3k ≤ r′

r
< 3k+1.

Then
V (y, r′) ≥ C−1V (x, r′) ≥ C−1V (x, 3kr) ≥ C−1(1 + C−1)kV (x, r)

and
V (y, r′)
V (x, r)

≥ C−1
(
1 + C−1

)k ≥ c

(
r′

r

)log3(1+C−1)
,

which was to be proved.

Lemma 7.17 (Buser [18]) Let M be a geodesically complete manifold of non-negative Ricci
curvature. Then, for any ball B(x, r) and for any smooth hypersurface Γ in B(x, r) dividing
B(x, r) into two sets both having volume at least v,

σ (Γ) ≥ c
v

r
, (7.62)

where c = c(n) > 0.

Observe that inequality (7.62) follows from (7.32) if M = Rn. We refer the reader to [18,
Lemma 5.1] or [67, Theorem 2.1] for the proof in general case.
Proof of Theorem 7.15. The proof is similar to Theorem 7.7. For any point x ∈ Ω, let us
find a positive r(x) so that Ω covers exactly one half of the volume of B(x, r(x)). To that end,
consider the function

h(r) :=
|Ω ∩B(x, r)|
V (x, r)

.

For r small enough, we have h(r) = 1. If r > R then, by Lemma 7.16,

h(r) ≤ |Ω|
V (x, r)

≤ V (z,R)
V (x, r)

≤ c−1

(
R

r

)ε
.

In particular, if the ratio r/R is large enough then h(r) < 1/2. Hence, for some r ≤ C′R, we
have h(r) = 1/2.

The family of balls B(x, r(x)), x ∈ Ω, covers Ω. By using the Banach ball covering argument,
we can select at most countable subset B(xi, ri) (where ri = r(xi)) so that the balls B(xi, ri)
are disjoint whereas the union of B(xi, 5ri) covers Ω. The latter implies∑

i

V (xi, ri) ≥ 5−n
∑
i

V (xi, 5ri) ≥ 5−n |Ω| . (7.63)

On the other hand, Lemma 7.17 and the fact that

|Ω ∩B(xi, ri)| =
1
2
V (xi, ri),

imply
σ (∂Ω ∩B(xi, ri)) ≥ c

2ri
V (xi, ri). (7.64)

Ω

B(xi, ri)

= B(xi,ri)

Figure 21 Estimating the area of Γ via the volumes of the sets Ω∩B(xi, ri) and B(xi, ri) \Ω
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Since
V (z,R)
V (x, ri)

≤ V (x,R + ri)
V (x, ri)

≤ V (x,R(1 + C′))
V (x, ri)

≤ C′′
(
R

ri

)n
,

we have
1
ri

≥ c′

R

(
V (z,R)
V (x, ri)

)1/n

.

By substituting into (7.64), we obtain

σ (∂Ω ∩B(xi, ri)) ≥ c′

R
V (z,R)1/nV (xi, ri)1−1/n.

Finally, summing up over all i and applying (7.33) and (7.63), we conclude

σ (∂Ω) ≥ c′′

R
V (z,R)1/n |Ω|1−1/n

,

which is equivalent to (7.57).
By Corollary 6.14, the upper bound (7.58) is equivalent to the relative Faber-Krahn in-

equality, under the standing assumption of the doubling volume property. It turns out that
the conjunction of both upper and lower bounds (7.58) and (7.59) is equivalent to the Poincaré
inequality ∫

B(x,2r)

|∇f |2 dµ ≥ c

r2
inf
ξ∈R

∫
B(x,r)

(f − ξ)2 dµ , (7.65)

which is meant to hold for all x ∈ M , r > 0 and f ∈ C1(B(x, 2r)) (see [67], [68], [120], [121]).
One can regard (7.65) as the L2-version of the isoperimetric inequality (7.62). Indeed, the later
is equivalent to the functional inequality∫

B(x,2r)

|∇f |dµ ≥ c

r2
inf
ξ∈R

∫
B(x,r)

|f − ξ| dµ. (7.66)

Theorem 7.15 can be stated as the implication (7.66)⇒(7.57). Similarly, one can prove that
(7.65) implies the relative Faber-Krahn inequality (6.42) - see [67, Theorem 1.4] and [120,
Theorem 2.1].
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