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1 Introduction: the notion of ODEs and examples

A differential equation (Dif ferentialgleichung) is an equation for an unknown function
that contains not only the function but also its derivatives (Ableitung). In general, the
unknown function may depend on several variables and the equation may include various
partial derivatives. However, in this course we consider only the differential equations
for a function of a single real variable. Such equations are called ordinary differential
equations® — shortly ODE (die gewohnliche Dif ferentialgleichungen).

A most general ODE has the form

F(z,y,y, ...,y(”)) =0, (1.1)

where F'is a given function of n + 2 variables and y = y (x) is an unknown function of a
real variable x. The maximal order n of the derivative y™ in (1.1) is called the order of
the ODE.

The ODEs arise in many areas of Mathematics, as well as in Sciences and Engineering.
In most applications, one needs to find explicitly or numerically a solution y (x) of (1.1)
satisfying some additional conditions. There are only a few types of the ODEs when one
can find all the solutions.

In Introduction we will be concerned with various examples and specific classes of
ODE:s of the first and second order, postponing the general theory to the next Chapters.

Consider the differential equation of the first order

v =[(zy), (1.2)

where y = y (x) is the unknown real-valued function of a real argument x, and f (z,y) is
a given function of two real variables.

Consider a couple (z,y) as a point in R? and assume that function f is defined on a
set D C R?, which is called the domain (Definitionsbereich) of the function f and of
the equation (1.2). Then the expression f (z,y) makes sense whenever (z,y) € D.

Definition. A real valued function y(x) defined on an interval> I C R, is called a
(particular) solution of (1.2) if y (z) is differentiable at any x € I, the point (z,y (z))
belongs to D for any = € I and the identity ¥ (x) = f (z,y (x)) holds for all z € I.

The family of all particular solutions of (1.2) is called the general solution. The graph
of a particular solution is called an integral curve of the equation. Obviously, any integral
curve is contained in the domain D.

Usually a given ODE cannot be solved explicitly. We will consider some classes of
f (z,y) when one find the general solution to (1.2) in terms of indefinite integration.

!The theory of partial differential equations, that is, the equations containing partial derivatives, is a
topic of another lecture course.
2Here and below by an interval we mean any set of the form

(a,b) = {zeR:a<z<b}
[a,b] = {zreR:a<z<b}
[a,b) = {reR:a<z<b}
(a,b) = {zeR:a<z <0},

where a, b are real or 00 and a < b.



Example. Assume that the function f does not depend on y so that (1.2) becomes
y' = f(z). Hence, y must be a primitive function® of f. Assuming that f is a continuous
(stetig) function on an interval I, we obtain the general solution on I by means of the
indefinite integration:

y= [ @ =F@)+cC
where F'(x) is a primitive of f () on I and C' is an arbitrary constant.

Example. Consider the ODE

v =y.
Let us first find all positive solutions, that is, assume that y () > 0. Dividing the ODE
by y and noticing that

/

- = (ln y)/ ’

we obtain the equivalent equation
(Iny) = 1.

Solving this as in the previous example, we obtain
lny:/dmzx—{—C’,

whence
y =e’e” = Che”,

where C; = e“. Since C' € R is arbitrary, C; = e“

positive solution y has the form

is any positive number. Hence, any

y=Cie®, Cp>0.

If y (x) < 0 for all z, then use

/
= =(In(~y))
Yy
and obtain in the same way

Y= _Clex7

where ('} > 0. Combine these two cases together, we obtain that any solution y (z) that
remains positive or negative, has the form

y(x) = Ce”,

where C' > 0 or C' < 0. Clearly, C' = 0 suits as well since y = 0 is a solution. The next
plot contains the integrals curves of such solutions:

3By definition, a primitive function of f is any function whose derivative is equal to f.
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Let us show that the family of solutions y = Ce®, C' € R, is the general solution.
Indeed, if y (x) is a solution that takes positive value somewhere then it is positive in
some open interval, say I. By the above argument, y(z) = Ce” in I, where C' > 0.
Since e” # 0, this solution does not vanish also at the endpoints of I. This implies that
the solution must be positive on the whole interval where it is defined. It follows that
y (x) = Ce” in the domain of y (x). The same applies if y (x) < 0 for some z.

Hence, the general solution of the ODE ¢’ = y is y (z) = Ce® where C € R. The
constant C' is referred to as a parameter. It is clear that the particular solutions are
distinguished by the values of the parameter.

1.1 Separable ODE
Consider a separable ODE, that is, an ODE of the form

y=rf(x)g(y). (1.3)

Any separable equation can be solved by means of the following theorem.

Theorem 1.1 (The method of separation of variables) Let f (z) and g (y) be continuous
functions on open intervals I and J, respectively, and assume that g(y) # 0 on J. Let
F (x) be a primitive function of f (x) on I and G (y) be a primitive function of le) on J.
Then a function y defined on some subinterval of I, solves the differential equation (1.3)
if and only if it satisfies the identity

Gy (x) = F(z)+C, (1.4)
for all x in the domain of y, where C' is a real constant.

For example, consider again the ODE 3/ = y in the domain x € R, y > 0. Then
f(x)=1and ¢g(y) =y # 0 so that Theorem 1.1 applies. We have

F(a:):/f(x)dx:/dx:x

ot



and

_ [y Ay
G(y>_/g(y)_ y_ly

where we do not write the constant of integration because we need only one primitive
function. The equation (1.4) becomes

Iny=x+0C,

whence we obtain y = Ce” as in the previous example. Note that Theorem 1.1 does not
cover the case when ¢ (y) may vanish, which must be analyzed separately when needed.
Proof. Let y () solve (1.3). Since g (y) # 0, we can divide (1.3) by g (y), which yields

2 — (). (1.5)

Observe that by the hypothesis f (z) = F'(z) and @ = G’ (y), which implies by the
chain rule

Yy v r_ Y
o) ¢ WY =G @)
Hence, the equation (1.3) is equivalent to
G(y(z)) =F'(z), (1.6)

which implies (1.4).

Conversely, if function y satisfies (1.4) and is known to be differentiable in its domain
then differentiating (1.4) in x, we obtain (1.6); arguing backwards, we arrive at (1.3).
The only question that remains to be answered is why y (z) is differentiable. Since the
function ¢ (y) does not vanish, it is either positive or negative in the whole domain.

Then the function G (y), whose derivative is le), is either strictly increasing or strictly

decreasing in the whole domain. In the both cases, the inverse function G™! is defined
and is differentiable. It follows from (1.4) that

y(x)=G 1 (F(z)+C). (1.7)

Since both F' and G=! are differentiable, we conclude by the chain rule that y is also
differentiable, which finishes the proof. m

Corollary. Under the conditions of Theorem 1.1, for all xq € I and yo € J there exists
a unique value of the constant C' such that the solution y (x) defined by (1.7) satisfies the
condition y (xo) = yo.

The condition y (x¢) = yo is called the initial condition (Anfangsbedingung).

Proof. Setting in (1.4) z = z and y = o, we obtain G (yy) = F' (x0)+C, which allows
to uniquely determine the value of C, that is, C' = G (yo) — F' (x). Conversely, assume
that C' is given by this formula and prove that it determines by (1.7) a solution y (x). If
the right hand side of (1.7) is defined on an interval containing xg, then by Theorem 1.1 it
defines a solution y (z), and this solution satisfies y (x¢) = yo by the choice of C'. We only
have to make sure that the domain of the right hand side of (1.7) contains an interval
around o (a priori it may happen so that the the composite function G™* (F (z) + C)
has empty domain). For z = zg the right hand side of (1.7) is

G~ (F (20) + C) = G (G (y0)) = o

6



so that the function y (z) is defined at x = xy. Since both functions G~ and F' + C are
continuous and defined on open intervals, their composition is defined on an open set.
Since this set contains g, it contains also an interval around zy. Hence, the function y is
defined on an interval around xg, which finishes the proof. m

One can rephrase the statement of Corollary as follows: for all zqg € I and yo € J
there exists a unique solution y (x) of (1.3) that satisfies in addition the initial condition
y (xg) = yo; that is, for every point (xg,y0) € I x J there is exactly one integral curve
of the ODE that goes through this point. However, the meaning of the uniqueness claim
in this form is a bit ambiguous because out of any solution y (x), one can make another
solution just by slightly reducing the domain, and if the reduced domain still contains x,
then the initial condition will be satisfied also by the new solution. The precise uniqueness
claim means that any two solutions satisfying the same initial condition, coincide on the
intersection of their domains; also, such solutions correspond to the same value of the
parameter C.

In applications of Theorem 1.1, it is necessary to find the functions F' and G. Techni-
cally it is convenient to combine the evaluation of ' and G with other computations as
follows. The first step is always dividing (1.3) by ¢ to obtain (1.5). Then integrate the

both sides in x to obtain '
y'dx /
= z)dx. 1.8
/! = 1@ (1.8)

Then we need to evaluate the integral in the right hand side. If F' (x) is a primitive of f
then we write

/f(m)d:v:F(x)—{—C’.

In the left hand side of (1.8), we have y'dxz = dy. Hence, we can change variables in the
integral replacing function y (x) by an independent variable y. We obtain

ydr dy
5= s =cw+e

Combining the above lines, we obtain the identity (1.4).

If in the equation ' = f (z) g (y) the function g (y) vanishes at a sequence of points, say
Y1, Y2, ..., enumerated in the increasing order, then we have a family of constant solutions
y () = yg. The method of separation of variables provides solutions in any domain
Yk < Y < Yrr1. The integral curves in the domains y, < y < yr+1 can in general touch
the constant solutions, as will be shown in the next example.

v =yl

which is defined for all y € R. Since the right hand side vanish for y = 0, the constant
function y = 0 is a solution. In the domains y > 0 and y < 0, the equation can be solved
using separation of variables. For example, in the domain y > 0, we obtain

'%:/dx

2y=z+0C

Example. Consider the equation

whence



and

1
y:Z(m—l—C)Q, x> —-C
(the restriction z > —C' comes from the previous line). Similarly, in the domain y < 0,
we obtain i ,
dy /
—— = [ dx
v~y
whence
—2—y=z+C
and

y:—i(x+0)2, r < —C.

We obtain the following integrals curves:

y AT

We see that the integral curves in the domain y > 0 touch the curve y = 0 and so do the
integral curves in the domain y < 0. This allows us to construct more solution as follows:
take a solution y; () < 0 that vanishes at © = a and a solution ys (z) > 0 that vanishes
at x = b where a < b are arbitrary reals. Then define a new solution:

y1<$), r<a
y(x)=1< 0, a<x<b,
y2<I)7 x> b.

Note that such solutions are not obtained automatically by the method of separation of
variables. Tt follows that through any point (g, 10) € R? there are infinitely many integral
curves of the given equation.

1.2 Linear ODE of 1st order

Consider the ODE of the form
Y +a(x)y=>(r) (1.9)

where a and b are given functions of x, defined on a certain interval I. This equation is
called linear because it depends linearly on y and 3/.
A linear ODE can be solved as follows.



Theorem 1.2 (The method of variation of parameter) Let functions a (x) and b(x) be
continuous in an interval I. Then the general solution of the linear ODE (1.9) has the
form

y (z) = e 4@ /b (z) 2@ dz, (1.10)
where A (x) is a primitive of a (x) on I.

Note that the function y (x) given by (1.10) is defined on the full interval 1.
Proof. Let us make the change of the unknown function u (z) = y (z) eA®, that is,

y () = u(zx) e 4@, (1.11)
Substituting this to the equation (1.9) we obtain

(ue‘A)/ +aue ™ = b,

A

we ™ —ue A + aque ™ = b.

Since A’ = a, we see that the two terms in the left hand side cancel out, and we end up
with a very simple equation for u (x):

/fA:b

u = /beAda:.

Substituting into (1.11), we finish the proof. m
One may wonder how one can guess to make the change (1.11). Here is the motivation.
Consider first the case when b (x) = 0. In this case, the equation (1.9) becomes

whence v/ = be? and

v +a(x)y=0

and it is called homogeneous. Clearly, the homogeneous linear equation is separable. In
the domains y > 0 and y < 0 we have

and

dy_ /a(x)dx: —A(z)+C.
Y .
Then In |y| = —A (z) + C and

y(x) = Ce

where C' can be any real (including C' = 0 that corresponds to the solution y = 0).

For a general equation (1.9) take the above solution to the homogeneous equation and
replace a constant C' by a function C' (z) (or which was denoted by u () in the proof),
which will result in the above change. Since we have replaced a constant parameter by
a function, this method is called the method of variation of parameter. It applies to the
linear equations of higher order as well.



Example. Consider the equation

2

1
y+-—y=¢€" (1.12)
T
in the domain z > 0. Then

A(:L‘):/a(x)dx:/d?lenx

(we do not add a constant C' since A (x) is one of the primitives of a (z)),

1 2 ]_ 2 1 2
—Z [ e N xd2__<$ )
y(x) x/ xdx 236/6 =5\ +C),

where C' is an arbitrary constant.
Alternatively, one can solve first the homogeneous equation

, 1
y+-y=0,
using the separable of variables:
y 1
y o
(Iny) = —(lnz)
Iny = —lnx+0C)

C

y = —.
x

Next, replace the constant C' by a function C (z) and substitute into (1.12):

() I

Hence,

y=< =i<e”2+00>,

where () is an arbitrary constant.

Corollary. Under the conditions of Theorem 1.2, for any xo € I and any yo € R there
is exists exactly one solution y () defined on I and such that y (x¢) = yo.

That is, though any point (xg,y9) € I x R there goes exactly one integral curve of the
equation.

10



Proof. Let B (r) be a primitive of be=* so that the general solution can be written

in the form
y=e " (B(x)+C)

with an arbitrary constant C'. Obviously, any such solution is defined on I. The condition
y (z9) = yo allows to uniquely determine C' from the equation:

C = yoe ™) — B (xo)

whence the claim follows. =

1.3 Quasi-linear ODEs and differential forms

Let F'(z,y) be a real valued function defined in an open set Q@ C R2. Recall that F is
differentiable at a point (z,y) € Q if there exist real numbers a, b such that

F(z+dz,y+dy) — F(z,y) = adx + bdy + o (|dz| + |dy|),

as |dx| + |dy| — 0. Here dx and dy the increments of x and y, respectively, which are
considered as new independent variables (the differentials). The linear function adx + bdy
of the variables dz, dy is called the differential of F' at (z,y) and is denoted by dF’, that
is,

dF = adx + bdy. (1.13)

In general, a and b are functions of (x,y).
Recall also the following relations between the notion of a differential and partial
derivatives:

1. If F is differentiable at some point (z,y) and its differential is given by (1.13) then

the partial derivatives F, = ‘3—5 and F, = g—g exist at this point and

F,=a, F,=b.

2. If F'is continuously differentiable in €2, that is, the partial derivatives F, and F,
exist in €2 and are continuous functions then F' is differentiable at any point in €.

Definition. Given two functions a (z,y) and b (x,y) in €, consider the expression
a(z,y)de +b(z,y)dy,

which is called a differential form. The differential form is called ezact in € if there is a
differentiable function F' in €2 such that

dF = adx + bdy, (1.14)

and ineract otherwise. If the form is exact then the function F' from (1.14) is called the
integral of the form.

Observe that not every differential form is exact as one can see from the following
statement.

11



Lemma 1.3 If functions a,b are continuously differentiable in €2 then the necessary con-
dition for the form adx + bdy to be exact is the identity

ay = by.

Proof. Indeed, if there is F' is an integral of the form adx + bdy then F, = a and
F, = b, whence it follows that the derivatives F, and F), are continuously differentiable.
By a well-know fact from Analysis, this implies that F;, = F,whence a, = b,. m

Example. The form ydz — xdy is inexact because a, = 1 while b, = —1.

The form ydx + xdy is exact because it has an integral F' (z,y) = zy.

The form 2xydz + (2% + 3?) dy is exact because it has an integral F (z,y) = 2%y + %
(it will be explained later how one can obtain an integral).

If the differential form adz + bdy is exact then this allows to solve easily the following
differential equation:
a(z,y)+b(z,y)y =0. (1.15)

This ODE is called quasi-linear because it is linear with respect to 3’ but not neces-

sarily linear with respect to y. Using ¢y = Z—z, one can write (1.15) in the form

a(z,y)de+b(z,y)dy =0,

which explains why the equation (1.15) is related to the differential form adz + bdy. We
say that the equation (1.15) is exact if the form adxz + bdy is exact.

Theorem 1.4 Let Q be an open subset of R%, a, b be continuous functions on ), such that
the form adx + bdy is exact. Let F' be an integral of this form. Consider a differentiable
function y (z) defined on an interval I C R such that the graph of y is contained in Q.
Then y solves the equation (1.15) if and only if

F(z,y(z)) = const on I.

Proof. The hypothesis that the graph of y(x) is contained in €2 implies that the
composite function F'(z,y (z)) is defined on I. By the chain rule, we have

d

%F (zyy(x)=F,+Fy =a+by.

Hence, the equation a + by’ = 0 is equivalent to -LF (z,y(z)) = 0, and the latter is
equivalent to F'(z,y (x)) = const. m

Example. The equation y + zy’ = 0 is exact and is equivalent to zy = C' because
ydzx+zdy = d(zy). The same can be obtained using the method of separation of variables.
The equation 2zy + (22 + y*)y' = 0 is exact and is equivalent to

3
ny—l—%:C.

Below are some integral curves of this equation:

12



How to decide whether a given differential form is exact or not? A partial answer is
given by the following theorem.

We say that a set 2 C R? is a rectangle (box) if it has the form I x J where I and J
are intervals in R.

Theorem 1.5 (The Poincaré lemma) Let © be an open rectangle in R?. Let a,b be
continuously differentiable functions on Q such that a, = b,. Then the differential form
adx + bdy s exact in €.

Proof of Theorem 1.5. Assume first that the integral F' exists and F (zg,40) = 0
for some point (xg,70) € 2 (the latter can always be achieved by adding a constant
to F). For any point (x,y) € 2, also the point (z,yy) € 2; moreover, the intervals
[(z0,%0) , (z,90)] and [(z,90), (z,y)] are contained in £ because € is a rectangle. Since
F, = a and F, = b, we obtain by the fundamental theorem of calculus that

T

F(z,y) = F (z,y0) — F (x0,%) = / F, (s,y0)ds = /ma(s,yo) ds

Zo o

and y y
Fla,y) — F(z,30) :/ F, (o, t) dt = / b(a,t) dt,
Yo Yo
whence N .
F (z,y) :/a(s,yo)der/b(I,t) dt. (1.16)
Zo Yo

Now use the formula (1.16) to define function F'(x,y). Let us show that F' is indeed the
integral of the form adx + bdy. Since a and b are continuous, it suffices to verify that

F,=a and F, =0.

13



It is easy to see from (1.16) that

Next, we have

a xr
F, = %/xo a(s,yo) ds+—/ (x,t)d

= a(x,yg)—i-/ (%b(x t)dt. (1.17)

Y Yo

The fact that the integral and the derlvatlve — can be interchanged will be justified below
(see Lemma 1.6). Using the hypothesis b, = ay, we obtain from (1.17)

y
F, = a(x,yg)—i-/ a, (z,t)dt

a (2 90) + (a (@, y) — a (2,30))
= a(z,y),

which finishes the proof. m
Now we prove the lemma, which is needed to justify (1.17).

Lemma 1.6 Let g (x,t) be a continuous function on I x J where I and J are bounded
closed intervals in R. Consider the function

B
fa@=[ g

where [, B] = J, which is defined for all x € 1. If the partial derivative g, exists and is
continuous on I x J then f is continuously differentiable on I and, for any x € I,

B
f@= / g (2, 1) dt.

In other words, the operations of differentiation in x and integration in ¢, when applied
to g (x,t), are interchangeable.
Proof of Lemma 1.6. We need to show that, for all = € I,

MH/B%(L&CZMM’%%

Tr — T

which amounts to

/Bg(x’,t)—g(:t,t)d

r —x

B
tﬁ/ gz (z,t)dt as ' — .

Note that by the definition of a partial derivative, for any ¢ € [, 3],

g(@'t) —g(z,t)
r —x

— g. (x,t) as 2’ — . (1.18)

14



Consider all parts of (1.18) as functions of ¢, with fixed  and with 2’ as a parameter.
Then we have a convergence of a sequence of functions, and we would like to deduce
that their integrals converge as well. By a result from Analysis II, this is the case, if the
convergence is uniform (gleichmdassig) in the whole interval [a, 8], that is, if

1) — t
sup g, ), g(z,1)
te[o,B] r—x

— ¢s (z,t)| = 0 asz’ — (1.19)

By the mean value theorem, for any t € [«, 5], there is £ € [z, 2] such that

g(x/7t) _g(xat)
T —x

= Uz (f,t) :

Hence, the difference quotient in (1.19) can be replaced by g, (£,t). To proceed further,
recall that a continuous function on a compact set is uniformly continuous. In particular,
the function g, (x,t) is uniformly continuous on [ x J, that is, for any € > 0 there is § > 0
such that

r,ellr—¢ <dand t,s€ J |t —s| <0 = |g.(x,t) —g. (&, 5)] <e. (1.20)
If |x — 2’| < § then also |x — £] < § and, by (1.20) with s =t
192 (€,1) — g (x,8)] < e forallt e J
In other words, | — 2’| < § implies that

') — t
up |21 9 (1)
ted -

— 0z (l‘,t) S g,

whence (1.19) follows. m
Consider some examples to Theorem 1.5.

Example. Consider again the differential form 2zydx + (22 + y?) dy in Q = R?. Since
ay = (2zy), = 2r = (* + y2)x =b,,

we conclude by Theorem 1.5 that the given form is exact. The integral F' can be found
by (1.16) taking xo = yo = 0:
3

x Y
F(%Z/)Z/O 2$0d8—|—/0 (x2+t2)dt:x2y—|—%,

as it was observed above.
Example. Consider the differential form

—ydx + xdy

1.21
ZC2 + y2 ( )

in Q =R?\ {0}. This form satisfies the condition a, = b, because

B < y )_ (> +y?) —2¢* y?—a?
Ay = — = —
Yy

x? + y? (22 —i—y2)2 - (22 —I—y2)2
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and

B ( x > @+t 22 P —a?
P+ ), (@4’ (@242

By Theorem 1.5 we conclude that the given form is exact in any rectangular domain in

(). However, let us show that the form is inexact in 2.

Consider the function 6 (x,y) which is the polar angle that is defined in the domain
Q' =R*\ {(z,0): 2 <0}

by the conditions
x
sinf = y, cos =—, € (—mm),
r r

where r = /22 + y2. Let us show that in

_ —ydr +xdy

do
x2 + 12

(1.22)

In the half-plane { > 0} we have tan6 = £ and 0 € (—7/2,7/2) whence

f = arctan Q‘
T

Then (1.22) follows by differentiation of the arctan:

B 1 xdy —ydr  —ydr + xdy
L+ (y/x)” a? vty

In the half-plane {y > 0} we have cotf = ¢ and ¢ € (0,7) whence

6 = arccot z
Yy

and (1.22) follows again. Finally, in the half-plane {y < 0} we have cotf = = and 0 €

(—m,0) whence
f = — arccot <—£) ,
Yy

and (1.22) follows again. Since €' is the union of the three half-planes {x > 0}, {y > 0},
{y < 0}, we conclude that (1.22) holds in Q" and, hence, the form (1.21) is exact in €2'.
Why the form (1.21) is inexact in Q7 Assume from the contrary that the form (1.21)

is exact in () and that F is its integral in €2, that is,
JF — —ydzx + zdy
22 + y?

Then dF = df in € whence it follows that d (F — 6) = 0 and, hence® F' = 6 + const in
Q. It follows from this identity that function # can be extended from ' to a continuous

4We use the following fact from Analysis II: if the differential of a function is identical zero in a
connected open set U C R™ then the function is constant in this set. Recall that the set U is called
connected if any two points from U can be connected by a polygonal line that is contained in U.

The set € is obviously connected.
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function on €2, which however is not true, because the limits of § when approaching the
point (—1,0) (or any other point (z,0) with x < 0) from above and below are different.

The moral of this example is that the statement of Theorem 1.5 is not true for an
arbitrary open set ). It is possible to show that the statement of Theorem 1.5 is true
if and only if the set 2 is simply connected, that is, if any closed curve in €2 can be
continuously deformed to a point while staying in 2. Obviously, the rectangles are simply
connected (as well as '), while the set 2 = R?\ {0} is not simply connected.

1.4 Integrating factor

Consider again the quasilinear equation
a(z,y)+b(z,y)y =0 (1.23)
and assume that it is inezxact.
Write this equation in the form
adx + bdy = 0.
After multiplying by a non-zero function M (z,y), we obtain an equivalent equation
Madz + Mbdy = 0,
which may become exact, provided function M is suitably chosen.

Definition. A function M (z,y) is called the integrating factor for the differential equa-
tion (1.23) in 2 if M is a non-zero function in  such that the form Madz + Mbdy is
exact in €.

If one has found an integrating factor then multiplying (1.23) by M the problem
amounts to the case of Theorem 1.4.

Example. Consider the ODE
Y

42y + 2’
in the domain {z > 0,y > 0} and write it in the form

y =

ydz — (42°y + z) dy = 0.
Clearly, this equation is not exact. However, dividing it by 22, we obtain the equation
1
%M—Gyp>@zm
x x
which is already exact in any rectangular domain because
Y ) 1 1
=) ===—(4y+—| .
<£L‘2 y @2 < v+ x)x

Taking in (1.16) o = yo = 1, we obtain the integral of the form as follows:

‘1 ! 1 2 Y
F(x,y) = —ds — At +— ) dt =3 —2y° — =.
1S 1 x x

By Theorem 1.4, the general solution is given by the identity
Yy_¢o

2y + =
x

17



1.5 Second order ODE

A general second order ODE;, resolved with respect to y” has the form

y' = f(z,y.9),

where f is a given function of three variables and y = y () is an unknown function. We
consider here some problems that amount to a second order ODE.

1.5.1 Newtons’ second law

Consider movement of a point particle along a straight line and let its coordinate at
time t be z (t). The velocity (Geschwindigkeit) of the particle is v (t) = 2/ (t) and the
acceleration (Beschleunigung) is a (t) = x” (t). The Newton’s second law says that at
any time

mz" = F, (1.24)

where m is the mass of the particle and F' is the force (Kraft) acting on the particle. In
general, F' is a function of ¢, z, 2’ so that (1.24) can be regarded as a second order ODE
for z (t).

The force F' is called conservative if F' depends only on the position x. For example,
conservative are gravitation force, spring force, electrostatic force, while friction and the
air resistance are non-conservative as they depend in the velocity v. Assuming F' = F'(z),
denote by U (z) a primitive function of —F (x). The function U is called the potential of
the force F'. Multiplying the equation (1.24) by 2’ and integrating in ¢, we obtain

m/x”x’dt: /F(x)x’dt,

m d "2 o
5/£(x) dt_/F(x)dx,
muv?

and )
T+ U @) =C

mv2

The sum 2>~ + U (z) is called the total energy of the particle (which is the sum of the
kinetic energy and the potential energy). Hence, we have obtained the law of conservation
of energy: the total energy of the particle in a conservative field remains constant.

1.5.2 Electrical circuit

Consider an RLC-circuit that is, an electrical circuit (Schaltung) where a resistor, an
inductor and a capacitor are connected in a series:
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v(t) * EL

O=——

Denote by R the resistance (Widerstand) of the resistor, by L the inductance (Induktivitait)
of the inductor, and by C the capacitance (Kapazitit) of the capacitor. Let the circuit
contain a power source with the voltage V (t) (Spannung) where ¢ is time. Denote by
I (t) the current (Strom) in the circuit at time ¢. Using the laws of electromagnetism, we
obtain that the potential difference vy on the resistor R is equal to

VR = RI
(Ohm’s law), and the potential difference vy, on the inductor is equal to
dl
= [ —
T
(Faraday’s law). The potential difference ve on the capacitor is equal to
=2
C C?

where ) is the charge (Ladungsmenge) of the capacitor; also we have @' = I. By
Kirchhoft’s law, we have
UR—l—UL—i-’Uc:V(t)

whence
RI—l—LI’—l—%:V(t).
Differentiating in ¢, we obtain
LI"+ RI' + é =V, (1.25)

which is a second order ODE with respect to I (t). We will come back to this equation
after having developed the theory of linear ODEs.

2 Existence and uniqueness theorems

2.1 1st order ODE

We change notation, denoting the independent variable by ¢ and the unknown function
by z (t). Hence, we write an ODE in the form

:B,:f(t7x)7
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where f is a real value function on an open set Q C R? and a pair (¢, ) is considered as
a point in R2.

Let us associate with the given ODE the initial value problem (An fangswertproblem)
- shortly, IVP, which is the problem of finding a solution that satisfies in addition the initial
condition x (ty) = xy where (tg, xp) is a given point in 2. We write IVP in a compact

form as follows: '~ )
= f(t,x),
A solution to IVP is a differentiable function z (t) : I — R where [ is an open interval
containing ¢y, such that (¢,z (t)) € 2 for all ¢ € I, which satisfies the ODE in [ and the
initial condition. Geometrically, the graph of function z (¢) is contained in Q and goes
through the point (o, xo).
In order to state the main result, we need the following definitions.

Definition. We say that a function f : 2 — R is Lipschitz in x if there is a constant L
such that

|f (¢, z) = f(ty)] < Liz —y|

for all ¢, z,y such that (t,x) € Q and (¢,y) € Q. The constant L is called the Lipschitz
constant of f in (2.

We say that a function f : Q — R is locally Lipschitz in x if, for any point (¢, zg) €
there exist positive constants ¢, such that the rectangle

R:[to—(s,to—i—(ﬂX[l’o—E,l’o—{—é“] (22)

is contained in €2 and the function f is Lipschitz in R; that is, there is a constant L such
that for all t € [ty — 0,0 + 0] and x,y € [zg — &, 20 + €],

[f (t2) = f(ty)l < Llw—yl.

Note that in the latter case the constant L may be different for different rectangles.

Lemma 2.1 (a) If the partial derivative f, exists and is bounded in a rectangle R C R?
then f is Lipschitz in x in R.

(b) If the partial derivative f, exists and is continuous in an open set 0 C R? then f
18 locally Lipschitz in x in €.

Proof. (a) If (t,z) and (¢, y) belong to R then the whole interval between these points
is also in R, and we have by the mean value theorem

f(t’x) - f(t>y) = Jfo (t,f) (I - y)>
for some £ € [x,y]. By hypothesis, f, is bounded in R, that is,

L :=sup |f;| < o0, (2.3)
R

whence we obtain

[f(t,z) = f(ty)] < Liz—yl.
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Hence, f is Lipschitz in R with the Lipschitz constant (2.3).

(b) Fix a point (to,z9) € 2 and choose positive ¢,d so small that the rectangle R
defined by (2.2) is contained in  (which is possible because 2 is an open set). Since
R is a bounded closed set, the continuous function f, is bounded on R. By part (a) we
conclude that f is Lipschitz in R, which means that f is locally Lipschitz in 2. =

Example. The function f (¢,x) = |z| is Lipschitz in z in R? because

2] =Tyl < & =yl

by the triangle inequality for |z|. Clearly, f is not differentiable in x at x = 0. Hence, the
continuous differentiability of f is sufficient for f to be Lipschitz in x but not necessary.

The next theorem is one of the main results of this course.

Theorem 2.2 (The Picard - Lindelsf theorem) Let Q be an open set in R? and f (t,x)
be a continuous function in ) that is locally Lipschitz in x.

(Ezistence) Then, for any point (ty, xg) € §2, the initial value problem IVP (2.1) has a solution.

(Uniqueness) If x1 (t) and x4 (t) are two solutions of the same IVP then x; (t) = x5 (t) in their
common domain.

Remark. By Lemma 2.1, the hypothesis of Theorem 2.2 that f is locally Lipschitz in
x could be replaced by a simpler hypotheses that f, is continuous. However, as we have
seen above, there are examples of functions that are Lipschitz but not differentiable, and
Theorem 2.2 applies for such functions.

If we completely drop the Lipschitz condition and assume only that f is continuous
in (¢,x) then the existence of a solution is still the case (Peano’s theorem) while the
uniqueness fails in general as will be seen in the next example.

Example. Consider the equation 2’ = \/|z| which was already solved before by separa-
tion of variables. The function z () = 0 is a solution, and the following two functions

1
z(t) = ~t?, t>0,
4
1
v(t) = —=t3t<0
4
are also solutions (this can also be trivially verified by substituting them into the ODE).
Gluing together these two functions and extending the resulting function to ¢ = 0 by

setting x (0) = 0, we obtain a new solution defined for all real ¢ (see the diagram below).
Hence, there are at least two solutions that satisfy the initial condition x (0) = 0.
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The uniqueness breaks down because the function \/|x| is not Lipschitz near 0.
Proof of existence in Theorem 2.2. We start with the following observation.

Claim. Let x (t) be a function defined on an open interval I C R. A function x (t) solves
IVP if and only if x (t) is continuous, (t,z (t)) € Q for allt € I, ty € I, and

x(t) =xo + / f(s,x(s))ds. (2.4)

Indeed, if = solves IVP then (2.4) follows from 2’ = f (¢, 2 (t)) just by integration:

/t:x’ (s)ds = /totf(s,:c(s))ds

whence .
x(t)—xo= [ f(s,x(s))ds.

Conversely, if  is a continuous function that satisfies (2.4) then the right hand side of
(2.4) is differentiable in ¢ whence it follows that x (¢) is differentiable. It is trivial that
x (ty) = xo, and after differentiation (2.4) we obtain the ODE 2’ = f (¢, z).

This claim reduces the problem of solving IVP to the integral equation (2.4). Fix a
point (to, zg) € Q and let €, be the parameter from the the local Lipschitz condition at
this point; that is, there is a constant L such that

[f () = f ()l < Liw—y|
for all t € [to — d,t0 + ¢] and z,y € [xg — &, 20 + €]. Set
J=[rg—e,x0+¢] and [ =[tg—rty+7],

were 0 < r < ¢ is a new parameter, whose value will be specified later on. By construction,
I xJcCq.
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Denote by X be the family of all continuous functions z (t) : I — J, that is,
X ={x:1— J | zis continuous}
(see the diagram below).

XA

Jz[Xo'S,Xo+8]

Xo

N

I1=[to-r,to+r]
to-0 to to+d t

v

Consider the integral operator A defined on functions x € X by

Az (t) = zo + /t f(s,z(s))ds,

which is obviously motivated by (2.4). To be more precise, we would like to ensure that
x € X implies Az € X. Note that, for any z € X, the point (s,z (s)) belongs to £ so
that the above integral makes sense and the function Ax is defined on . This function
is obviously continuous. We are left to verify that the image of Az is contained in J.
Indeed, the latter condition means that

|Az (t) — xo| <eforallt e . (2.5)

We have, for any ¢ € I,

t
| Az (t) — x| = / f(s,z(s))ds| < sup |f(s,z)||t —to] < Mr,
Jto selxed
where
M= sup |f(s,z)| < 0.

sE [t()f(s,t(ri»(ﬂ
x€[ro—e,x0+€]

Hence, if 7 is so small that Mr < e then (2.5) is satisfied and, hence, Ax € X.
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To summarize the above argument, we have defined a function family X and a mapping
A: X — X. By the above Claim, a function z € X will solve the IVP if function x is a
fixed point of the mapping A, that is, if v = Ax.

The existence of a fixed point will be obtained using the Banach fixed point theorem:
If (X, d) is a complete metric space (Vollstandiger metrische Raum) and A : X — X is
a contraction mapping (K ontraktionsabbildung), that is,

d(Az, Ay) < qd (z,y)

for some ¢ € (0,1) and all z,y € X, then A has a fixed point. By the proof of this
theorem, one starts with any element zo € X, constructs a sequence of iteration {z,} -,
using the rule z,41 = Az,, n = 0,1, ..., and shows that the sequence {z,} -, converges
in X to a fixed point.

In order to be able to apply this theorem, we must introduce a distance function d
(Abstand) on X so that (X, d) is a complete metric space and A is a contraction mapping
with respect to this distance.

Let d be the sup-distance, that is, for any two functions =,y € X, set

d(z,y) =sup |z (t) —y ()]
tel
Using the fact that the convergence in (X, d) is the uniform convergence of functions and
the uniform limits of continuous functions is continuous, one can show that the metric
space (X, d) is complete (see Exercise 16).
How to ensure that the mapping A : X — X is a contraction? For any two functions
xz,y € X and any t € I, we have z (t),y (t) € J whence by the Lipschitz condition

Az (t) — Ay (1) = / f (5,2 (s)) ds — / f (5.9 (s)) ds

t
< ‘f(S,.I‘(S))—f(S,y(S)NdS
Jto
t
< | Ll - y)lds
J it
S 0
< Lrd(z,y).
Therefore,
sup [Ax (t) — Ay (¢)| < sup |z (s) —y (s)| L[t — o]
tel sel
whence

d(Az, Ay) < Lrd (z,y) .

Hence, choosing r < 1/L, we obtain that A is a contraction, which finishes the proof of
the existence. m

Remark. Let us summarize the proof of the existence of solutions as follows. Let ¢,6, L
be the parameters from the the local Lipschitz condition at the point (¢, zo), that is,

|f(t2) = f(t,y)| < Liz -y
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for all t € [to — 0,to + 0] and .,y € [vg — €, 20 + €]. Let
M =sup{|f (t,z)|:t € [to—0,to + ], © € [xg — &, 70 +¢]}.

Then the IVP has a solution on an interval [ty — r, o + 7] provided r is a positive number
that satisfies the following conditions:
1

5
<9 < — —. 2.
r < ,T_M,T<L (2.6)

For some applications, it is important that r can be determined as a function of €, 9, M, L.

Example. The method of the proof of the existence in Theorem 2.2 suggests the following
procedure of computation of the solution of IVP. We start with any function zy € X (using
the same notation as in the proof) and construct the sequence {x,}. ., of functions in
X using the rule x,; = Ax,. The sequence {z,} is called the Picard iterations, and it
converges uniformly to the solution x ().

Let us illustrate this method on the following example:

The operator A is given by

whence, setting xg (t) = 1, we obtain

t
xl(t):1~|—/ zods =1+,
Jo

t t2
xg(t)zl—}—/ rids =1+1+ =
Jo

2
t t2 t3
1'3(t):1+'/0 l‘zdt:1+t+5+§
and by induction
t2 t3 n
:rn(t):1+t+§+§+...+g.

Clearly, x, — €' as n — oo, and the function z (t) = e’ indeed solves the above IVP.

For the proof of the uniqueness, we need the following two lemmas.

Lemma 2.3 (The Gronwall inequality) Let z (t) be a non-negative continuous function
on [to, t1] where ty < t1. Assume that there are constants C,L > 0 such that

z(t)gC—kL/ttz(s)ds (2.7)

for allt € [ty,t1]. Then
z(t) < Cexp (L (t — o)) (2.8)

for all t € [to,t].
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Proof. We can assume that C' is strictly positive. Indeed, if (2.7) holds with C' =0
then it holds with any C' > 0. Therefore, (2.8) holds with any C' > 0, whence it follows
that it holds with C' = 0. Hence, assume in the sequel that C' > 0. This implies that the
right hand side of (2.7) is positive. Set

F(t):C’+L/tz(s)ds

Jto

and observe that F' is differentiable and F” = Lz. It follows from (2.7) that z < F’ whence
F'=Lz<LF.

This is a differential inequality for F' that can be solved similarly to the separable ODE.
Since F' > 0, dividing by F' we obtain

whence by integration

for all t € [to, t1]. It follows that
F(t) < F(ty) exp (L (t — 1)) = Cexp (L (t ).
Using again (2.7), that is, z < F, we obtain (2.8). =

Lemma 2.4 If S is a subset of an interval U C R that is both open (of fen) and closed
(abgeschlossen) in U then either S is empty or S = U.

Any set U that satisfies the conclusion of Lemma 2.4 is called connected (zusammenhingend).
Hence, Lemma 2.4 says that any interval is a connected set.

Proof. Set S¢ = U\ S so that S¢ is closed in U. Assume that both S and S¢ are non-
empty and choose some points ag € S, by € S¢. Set ¢ = @ so that ¢ € U and, hence,
¢ belongs to S or S¢. Out of the intervals [ag, c], [c, bp] choose the one whose endpoints
belong to different sets S, S¢and rename it by [aq, b1], say a; € S and by € S¢. Considering
the point ¢ = ‘”—;bl, we repeat the same argument and construct an interval [az, by] being
one of two halfs of [a1,b] such that ay; € S and by € S¢. Contintue further, we obtain
a nested sequence {[ay, bg|}o, of intervals such that ay € S, by € S¢ and |b, — ax| — 0.
By the principle of nested intervals (Intervallschachtelungsprinzip), there is a common
point x € [ag,by] for all k. Note that x € U. Since a;, — z, we must have x € S, and
since b, — x, we must have x € S¢, because both sets S and S¢ are closed in U. This
contradiction finishes the proof. m

Proof of the uniqueness in Theorem 2.2. Assume that z; (t) and x5 (t) are two
solutions of the same IVP both defined on an open interval U C R and prove that they
coincide on U.

We first prove that the two solution coincide in some interval around t¢y. Let ¢ and
0 be the parameters from the Lipschitz condition at the point (¢y,zo) as above. Choose
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0 < r < 0 so small that the both functions z; (t) and x5 (t) restricted to I = [ty — 7, to + 7]
take values in J = [xg — &,2¢ + €] (which is possible because both x; (t) and z, (f) are
continuous functions). As in the proof of the existence, the both solutions satisfies the
integral identity

x(t):xo—i-/t f(s,z(s))ds

for all t € I. Hence, for the difference z (t) := |z1 (t) — x5 (t)], we have

2 =le () =z = [ 1f(s,21(5) = f (5,22())] ds,

assuming for certainty that ¢y <t < to+r. Since the both points (s, z; (s)) and (s, 22 (s))
in the given range of s are contained in I x J, we obtain by the Lipschitz condition

| (s,21(5)) = [ (5,22 ()] < Ly (s) — 2 (s)]
whence .
z (t) §L/ z(s)ds.
Jtg
Appling the Gronwall inequality with C' = 0 we obtain z(t) < 0. Since z > 0, we
conclude that z (t) = 0 for all ¢ € [to, to + r|. In the same way, one gets that z (t) = 0 for

t € [to — r,to], which proves that the solutions z; (t) and x5 (t) coincide on the interval 1.
Now we prove that they coincide on the full interval U. Consider the set

S={teU:z(t)=z2(t)}

and let us show that the set S is both closed and open in I. The closedness is obvious: if
x1 (tg) = xa (1) for a sequence {t;} and t, — t € U as k — oo then passing to the limit
and using the continuity of the solutions, we obtain x; (t) = x5 (t), that is, t € S.

Let us prove that the set S is open. Fix some ¢; € S. Since x4 (t1) = 2 (t1), the both
functions z; (t) and x5 (t) solve the same IVP with the initial condition at ¢;. By the
above argument, x; (t) = x2 (t) in some interval I = [t; — 7, t; + r] with » > 0. Hence,
I C S, which implies that S is open.

Since the set S is non-empty (it contains ¢y) and is both open and closed in U, we
conclude by Lemma 2.4 that S = U, which finishes the proof of uniqueness. =

2.2 Dependence on the initial value

Consider the IVP ' )
z =f(t,x
(vt 29
where the initial value is denoted by s instead of xy to emphasize that we allow now s to
vary. Hence, the solution is can be considered as a function of two variables: = = x (¢, s).
Our aim is to investigate the dependence on s.

As before, assume that f is continuous in an open set 2 C R? and is locally Lipschitz
in this set in x. Fix a point (g, z9) € Q and let £,0, L be the parameters from the local
Lipschitz condition at this point, that is, the rectangle

R=1[to—d,to+ ] x [xg — &,20 + €]
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is contained in € and, for all (¢, ), (t,y) € R,

[f(tz) = f(ty)] < Liz—y|.

Let M be the supremum of |f (¢,x)| in R. By the proof of Theorem 2.2, the solution z (¢)
with the initial condition x (ty) = x¢ is defined in the interval [ty — r,ty + r] where r is
any positive number that satisfies (2.6), and z (t) takes values in [zg — €,z + €| for all
t € [to — r,to + r]. Let us choose r as follows

. e 1
r = min <5’M’ﬁ> . (2.10)

For what follows, it is only important that r can be determined as a function of €, 9, L, M.
Now consider the IVP with the condition x (¢y) = s where s is close enough to x¢, say

s € ro—¢e/2,x0+¢/2)]. (2.11)

Then the rectangle
R =[to—0,tg+ ] x [s —¢/2,s+¢/2]

is contained in R. Therefore, the Lipschitz condition holds in R’ also with constant L and
supp |f| < M. Hence, the solution x (¢, s) with the initial condition x () = s is defined
in [t — 7 (s),to + 7 (s)] and takes values in [s — €/2,s 4+ /2] C [xg — €, ¢ + €] provided

e 1
< mi _ .
r(s) < min <(5, 2M’2L) (2.12)

(in comparison with (2.10), here ¢ is replaced by €/2 in accordance with the definition of
R'). Clearly, if r satisfies (2.10) then the value

r(s)zg

satisfies (2.12). Let us state the result of this argument as follows.

Claim. Fiz a point (tg,x0) € Q and choose €,§ > 0 from the local Lipschitz condition at
(to, o). Let L be the Lipschitz constant in R = [ty — d,to + 8] X [xg — e, 20 + €], M =

sup | f|, and define r = r (g,d, L, M) by (2.10). Then, for any s € [xg —€/2,x0 + £/2], the
R

solution x (t, s) of (2.9) is defined in [to — r/2,to + 1 /2] and takes values in [xo — €, xo + €].

In particular, we can compare solutions with different initial value s since they have
the common domain [ty — 7/2,ty + r/2] (see the diagram below).
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X0+8/2

N ] A

-

v
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Theorem 2.5 (Continuous dependence on the initial value) Let Q@ be an open set in
R? and f (t,x) be a continuous function in  that is locally Lipschitz in x. Let (to, )
be a point in 0 and let e,7 be as above. Then, for all s',s" € [xg —¢e/2,x¢ +£/2] and
t€to—r/2,to+71/2],

|z (t,s') —x(t,s")] <2|s—5"|. (2.13)

Consequently, the function x (t,s) is continuous in (t,s).

Proof. Consider again the integral equations

x(t,s) =5+ tf(T,l‘(T, s"))dr

Jio

and

)=t [ atntyi

It follows that, for all ¢ € [to, o + 7/2],
¢
|z (t,s") —x(t,s") < |& =" +/ |f (1,2 (1,8") = f(r,2(7,8"))|dr
to

't
< |8’—8"\+/ Lz (r,8) —x(r,s")|dr,
to

where we have used the Lipschitz condition because by the above Claim (7, (7,s)) €
[to — d,t0 + 0] X [x0g —€,x0+¢] for all s € [xg —€/2,20 + /2] .
Setting z (t) = |z (¢,s") — = (t,s”)| we obtain

t
z(t) < | —§" +L/ z (1) dr,

Jto
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which implies by the Lemma 2.3
2(t) < |8 — §"|exp (L (t —tg)) .
Since t — to < 7/2 and by (2.10) L < 5~ we see that L (t —t;) < § and
exp (L (t — o)) < e'/* < 2,

which proves (2.13) for ¢t > ty. Similarly one obtains the same for ¢ < .
Let us prove that x (¢, s) is continuous in (¢, s). Fix a point (¢, s) € €2 and prove that
x (t, s) is continuous at this point, that is,

z (tn, sn) — x (t,s)
if (t,,, 8n) — (t,s) as n — oo. Then by (2.13)

| (tn, sn) — 2 (¢, 5)] |z (tn, $n) — @ (tn, S)| + |z (tn, s) — (¢, 5)]

<
< 2sy — sl + |z (tn, s) —z (¢, )],
and this goes to 0 as n — oo by the continuity of z (¢, s) in ¢ for a fixed s. m

Remark. The same argument shows that if a function x (¢, s) is continuous in ¢ for any
fixed s and uniformly continuous in s, then z (¢, s) is jointly continuous in (¢, s) .

2.3 Higher order ODE and reduction to the first order system

A general ODE of the order n resolved with respect to the highest derivative can be
written in the form
y = F (t, Y, ..., y("_l)) , (2.14)

where t is an independent variable and y (¢) is an unknown function. It is sometimes more
convenient to replace this equation by a system of ODEs of the 1% order.

Let x (t) be a vector function of a real variable ¢, which takes values in R”. Denote by
xy the components of z. Then the derivative 2’ () is defined component-wise by

= (2, 2%, ..., 1))
Consider now a vector ODE of the first order
¥ = f(t,x) (2.15)

where f is a given function of n+1 variables, which takes values in R", that is, f : Q@ — R"
where ) is an open subset of R"™ (so that the couple (¢,z) is considered as a point in
Q). Denoting by fi, the components of f, we can rewrite the vector equation (2.15) as a
system of n scalar equations

x& - fl (twrla ..-,an)
z = fi (6,21, . 2) (2.16)
zh = fo(t,x1, .y Ty)
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A system of ODEs of the form (2.15) is called the normal system.
Let us show how the equation (2.14) can be reduced to the normal system (2.16).
Indeed, with any function y (¢) let us associate the vector-function

z=(y,9,...y" V),
which takes values in R™. That is, we have
€Ty =Y, T2 = y/> vy Ip =Y

Obviously,
Z'/ = (y/; y//v A y(n)) )

and using (2.14) we obtain a system of equations

Ty = To
xh = T3
(2.17)
=T,
= F(t,xq,..2p)
Obviously, we can rewrite this system as a vector equation (2.15) where
f(t,z) = (3,23, ..., Tp, F (L, 21, ..., 7)) - (2.18)

Conversely, the system (2.17) implies
R <t,x1, T, . x&”_1)>

so that we obtain equation (2.14) with respect to y = 1. Hence, the equation (2.14) is
equivalent to the vector equation (2.15) with function f defined by (2.18).

Example. For example, consider the second order equation

y'=F(ty.y).
Setting = = (y,y’) we obtain
x/ — (y/7 y//)
whence
T = 9
xh = F (t,x1,x2)

Hence, we obtain the normal system (2.15) with

f(t,z) = (xg, F (t,21,22)) .

What initial value problem is associated with the vector equation (2.15) and the scalar
higher order equation (2.14)? Motivated by the study of the 1st order ODE, one can
presume that it makes sense to consider the following IVP for the vector 1st order ODE

{x’zf(t,x)

xXr (to) = 29
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where 2y € R" is a given initial value of x (t). For the equation (2.14), this means that the
initial conditions should prescribe the value of the vector x = (y, T y(”_l)) at some 2,
which amounts to n scalar conditions

y (to) = yo
Y (t) = w1

y(n_l) (to) = Yn—1

where 1o, ..., y,_1 are given values. Hence, the initial value problem IVP for the scalar
equation of the order n can be stated as follows:

Yy =F(t,y,y,...y" )
y (to) = yo
Y (to) = w1

y(”_l) (tO) = Yn—1-
2.4 Norms in R"
Recall that a norm in R” is a function N : R” — R with the following properties:

1. N(z) >0 for all z € R" and N (z) = 0 if and only if z = 0.
2. N(cx)=|c|N (x) for all x € R" and ¢ € R.
3. N(z+y) <N (z)+ N (y) for all z,y € R".

For example, the function |z| is a norm in R. Usually one uses the notation ||z|| for a
norm instead of N ().

Example. For any p > 1, the p-norm in R" is defined by

n 1/p
|z, = <Z|ﬂ?k”> :
k=1

n
fally =S fau
k=1

" 1/2
el = (z) |
k=1

o0 = v [z

In particular, for p = 1 we have

and for p =2

For p = oo set

It is known that the p-norm for any p € [1, o¢] is indeed a norm.

It follows from the definition of a norm that in R any norm has the form ||z|| = ¢ ||
where c is a positive constant. In R™, n > 2, there is a great variety of non-proportional
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norms. However, it is known that all possible norms in R" are equivalent in the following
sense: if Ny (z) and N, (x) are two norms in R™ then there are positive constants C” and
C" such that

1" Ny (l’)

For example, it follows from the definitions of ||z||, and ||z|| that

< ' for all x # 0. (2.19)

| < lals
B

< n.

For most applications, the relation (2.19) means that the choice of a specific norm is not
important.

The notion of a norm is used in order to define the Lipschitz condition for functions
in R"™. Let us fix some norm ||z|| in R”. For any x € R" and r > 0, and define a closed
ball B (x,r) by

B(z,r)={yeR": |z —y| <r}.
For example, in R with ||z|| = || we have B (x,r) = [z — r, z + r]. Similarly, one defines
an open ball
B(z,r)={yeR": ||z —y| <r}.
Below are sketches of the ball B (0,1) in R? for different norms:
the 1-norm:

X_2

the 2-norm (a round ball):

the 4-norm:
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X1

the co-norm (a box):

2.5 Existence and uniqueness for a system of ODEs

Let  be an open subset of R"™! and f = f (¢, ) be a mapping from 2 to R". Fix a norm
||| in R™.

Definition. Function f (¢, z) is called Lipschitz in x in € if there is a constant L such
that for all (¢,2), (t,y) € Q

1f & z) = FE )l < Lz -yl (2.20)

In the view of the equivalence of any two norms in R", the property to be Lipschitz
does not depend on the choice of the norm (but the value of the Lipschitz constant L
does).

A subset K of R"*! will be called a cylinder if it has the form K = I x B where [ is
an interval in R and B is a ball (open or closed) in R". The cylinder is closed if both I
and B are closed, and open if both I and B are open.

Definition. Function f (¢,z) is called locally Lipschitz in xz in Q if for any (o, x¢) € Q2
there exist constants €, > 0 such that the cylinder

K = [ty — 6,to + 9] x B (z0,¢)

is contained in €2 and f is Lipschitz in z in K.
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Lemma 2.6 (a) If all components fi, of [ are differentiable functions in a cylinder K
and all the partial derivatives gi L agre bounded in K then the function f (t,x) is Lipschitz
mx in K.

(b) If all partial derivatives f L exists and are continuous in S then f(t,x) is locally
Lj

Lipschitz in x in Q.

Proof. Let us use the following mean value property of functions in R": if ¢ is a
differentiable real valued function in a ball B C R™ then, for all x,y € B there is £ € [z, ]
such that

g —g@) =3 579 (©) (y — ;) (2.21)

(note that the interval [z, y| is contained in the ball B so that 667”2 (¢) makes sense). Indeed,
consider the function

h(t)=g(x+t(y—x)) wheret e [0,1].

The function A (t) is differentiable on [0, 1] and, by the mean value theorem in R, there is
€ (0,1) such that

9(y) —g(x) =h(1) = h(0) =h (7).
Noticing that by the chain rule

Z(%J w7 (y = o)) (g — )

and setting £ = x + 7 (y — x), we obtain (2.21).

(a) Let K = I x B where [ is an interval in R and B is a ball in R™. If (¢, x), (t,y) € K
thent € [ and z,y € B. Applying the above mean value property for the k-th component
fr of f, we obtain that

0
feltea) = fe(t) = 2 .6) (- ). (2.22)
j=1
where ¢ is a point in the interval [x,y] C B. Set
C= maxsup O
ox;

and note that by the hypothesis C' < oo. Hence, by (2.22)

e (t.2) = fie(tby)l CY ey —ysl = Cllz =yl

J=1

Taking max in k, we obtain

1 (&) = (8 9) [lso < Cllz =yl

Switching in the both sides to the given norm ||-|| and using the equivalence of all norms,
we obtain that f is Lipschitz in x in K.
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(b) Given a point (to, xg) € €2, choose positive € and § so that the cylinder
K = [to - (S,to +6] X E(l’o,&“)

is contained in (), which is possible by the openness of ). Since the components f;
are continuously differentiable, they are differentiable. Since K is a closed bounded set
and the partial derivatives L are continuous, they are bounded on K. By part (a) we

conclude that f is Llpschltz in  in K, which finishes the proof. m

Definition. Given a function f : Q — R, where ) is an open set in R"*!, consider the

IVP / (t.2)
=f(tx),
{ o) = o (2.23)
where (o, o) is a given point in Q. A function z (t) : I — R" is called a solution (2.23)
if the domain [ is an open interval in R containing ¢y, x (¢) is differentiable in ¢ in I,
(t,x (t)) € Q for all t € I, and x (t) satisfies the ODE 2’ = f (t,z) in I and the initial
condition x (tg) = .

The graph of function z (), that is, the set of points (¢, (t)), is hence a curve in
) that goes through the point (tp,zo). It is also called the integral curve of the ODE

= f(t ).
Theorem 2.7 (Picard - Lindelsf Theorem) Consider the equation

= f(tx)

where f : Q — R" is a mapping from an open set Q C R"! to R™. Assume that f is
continuous on Q and locally Lipschitz in x. Then, for any point (to,xo) € 2, the initial
value problem IVP (2.23) has a solution.

Furthermore, if x (t) and y (t) are two solutions to the same IVP then x (t) =y (t) in
their common domain.

Proof. The proof is very similar to the case n = 1 considered in Theorem 2.2. We
start with the following claim.

Claim. A function x (t) solves IVP if and only if x (t) is a continuous function on an
open interval I such that ty € I, (t,x(t)) € Q2 for allt € I, and

£) = 20 + /t £ (5,2 (s)) ds. (2.24)

Here the integral of the vector valued function is understood component-wise. If x
solves IVP then (2.24) follows from z}, = f (¢, (t)) just by integration:

t/t:xk (s)ds = /t: fo (5,2 (s)) ds

5 () = (o) = [ fils.(9)ds

whence
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and (2.24) follows. Conversely, if x is a continuous function that satisfies (2.24) then

o, = (o), + /t fr (s, (s)) ds.

The right hand side here is differentiable in ¢ whence it follows that xy, () is differentiable.
It is trivial that zy (t9) = (2¢),, and after differentiation we obtain x) = f (¢,2) and,
hence, 2’ = f (¢, x).

Fix a point (tg,z9) € Q and let £,0 be the parameter from the the local Lipschitz
condition at this point, that is, there is a constant L such that

1f (& 2) = f (&)l < Lz =yl

for all t € [ty — 0,to + 0] and x,y € B (x9,¢). Choose some r € (0, 6] to be specified later
on, and set .
[:[tO—T,t0+T] andJ:B(xo,e).

Denote by X the family of all continuous functions z (t) : I — J, that is,
X ={z:1— J:xis continuous} .

Consider the integral operator A defined on functions x (¢) by

Az (t) = xo + /t f(s,z(s))ds.

We would like to ensure that x € X implies Az € X. Note that, for any x € X, the
point (s, z (s)) belongs to € so that the above integral makes sense and the function Az is
defined on . This function is obviously continuous. We are left to verify that the image
of Az is contained in J. Indeed, the latter condition means that

|Az (t) — x| < eforallt e I. (2.25)
We have, for any t € I,
t
s -zl = | [ 7esoas
t
tO
< Ilf (s, (s))|lds (see Exercise 15)
Jto
< sup |[f (s, @)|[[t —to] < M,
sel,xeJ
where
M= sup |[[f(s,z)| <oc.
86[t0_—5,t0+5}
zE€B(x0,€).

Hence, if r is so small that Mr < e then (2.5) is satisfied and, hence, Ax € X.
Define a distance function on the function family X as follows: for all z,y € X,

d(x,y) =sup |z () —y ()]

tel
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Then (X, d) is a complete metric space (see Exercise 16).

We are left to ensure that the mapping A : X — X is a contraction. For any two
functions x,y € X and any t € I, ¢t > ty, we have x (t),y (t) € J whence by the Lipschitz
condition

[Az (t) — Ay ()] =

f<sa: ds—/fsy )) ds

IN

/ 1 (5.2 (5)) — f (s, ()] ds

IN

/L||x<s> y(s)lds

Jto

< L(t—ty) sup [z (s) =y (s)]]

< Lrd(z,y).
The same inequality holds for ¢t < ¢y3. Taking sup in ¢ € I, we obtain
d(Ax, Ay) < Lrd (x,y) .

Hence, choosing r < 1/L, we obtain that A is a contraction. By the Banach fixed point
theorem, we conclude that the equation Az = x has a solution z € X, which hence solves
the IVP.

Assume that x (t) and y (¢) are two solutions of the same IVP both defined on an
open interval U C R and prove that they coincide on U. We first prove that the two
solution coincide in some interval around t,. Let € and d be the parameters from the
Lipschitz condition at the point (tg, o) as above. Choose 0 < r < ¢ so small that the
both functions  (¢) and y (t) restricted to I = [t — 7, to + 7] take values in J = B (¢, ¢)
(which is possible because both x (t) and y (t) are continuous functions). As in the proof
of the existence, the both solutions satisfies the integral identity

0 :x0+/t) F (5,2 (s)) ds

for all ¢ € I. Hence, for the difference z (t) := || (t) — y (¢)||, we have

2(t) =z () —y (@O < /tt 1S (5,2 (s)) = f (5,5 (s))l ds,

assuming for certainty that to < ¢ < ¢y, + r. Since the both points (s,z (s)) and (s,y (s))
in the given range of s are contained in I x J, we obtain by the Lipschitz condition

1S (s;2(s)) = f (s;y ()| < Llw(s) =y (s)]]
whence .
z (t) §L/ z (s) ds.
Jto
Appling the Gronwall inequality with C' = 0 we obtain z(t) < 0. Since z > 0, we

conclude that z (t) = 0 for all ¢ € [to, to + r|. In the same way, one gets that z (t) = 0 for
t € [to — r,to], which proves that the solutions x (t) and y (¢) coincide on the interval I.
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Now we prove that they coincide on the full interval U. Consider the set

S={teU:z(t)=y(t)}

and let us show that the set .S is both closed and open in I. The closedness is obvious:
if () = y (tx) for a sequence {tx} and t;, — t € U as k — oo then passing to the limit
and using the continuity of the solutions, we obtain x (t) = y (¢), that is, t € S.

Let us prove that the set S is open. Fix some t; € S. Since z (t1) = y (1) =: x1,
the both functions z (t) and y (t) solve the same IVP with the initial data (¢1,z1). By
the above argument, x (t) = y (¢) in some interval I = [t; —r,t; + r] with » > 0. Hence,
I C S, which implies that S is open.

Since the set S is non-empty (it contains ¢y) and is both open and closed in U, we
conclude by Lemma 2.4 that S = U, which finishes the proof of uniqueness. =

Remark. Let us summarize the proof of the existence part of Theorem 2.7 as follows.
For any point (tg,z9) € 2, we first choose positive constants ¢,0, L from the Lipschitz
condition, that is, the cylinder

G = {to — (S,to +5] X F(l‘o,é‘)
is contained in € and, for any two points (¢,2) and (¢, y) from G with the same ¢,

1f (& 2) = F (&)l < Lz =yl

Let
M= sgpllf(t,x)H

and choose any positive r to satisfy

€ 1
< < = —. 2.2
T_5,T_M,T<L (2.26)

Then there exists a solution x (¢) to the IVP, which is defined on the interval [ty — 7, to + 7]
and takes values in B (7o, ¢).

The fact that the domain of the solution admits the explicit estimates (2.26) can be
used as follows.

Corollary. Under the conditions of Theorem 2.7 for any point (tg, o) € Q there are
positive constants € and r such that, for any ty € [to — /2,10 +7/2] and x1 € B (x9,£/2),

the IVP '~ )
r=f(tzx
T 2.27
{ T (tl) =T, ( )
has a solution z (t) which is defined for all t € [to —1/2,t0 +17/2] and takes values in
B (l’o, 5).
Proof. Let €,0,L, M be as in the proof of Theorem 2.7. Assuming that ¢; €
[to — 0/2,t0 + /2] and z1 € B (xp,€/2), we obtain that the cylinder

Gl = [tl —5/2,t1+5/2] XE(I‘;{,E/Q}
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is contained in G. Hence, the values of L and M for the cylinder G; can be taken the same
as those for G. Therefore, the IVP (2.27) has solution z (¢) in the interval [t; —r, ¢, + 7],
and x (t) takes values in B (x1,¢/2) C B (z,¢) provided

3 1

2M, T<z.

. (0 ¢ 1
r=min (=, ——, — | .
2°2M° 2L
If ty € [to—1/2,to +17/2] then [ty —r/2,ty +1/2] C [t; —r,t1 + 7] so that the solution

x (t) of (2.27) is defined on [ty — r/2,to + /2] and takes value in B (z,¢), which was to
be proved. m

r<4§/2, r<

For example, take

2.6 Maximal solutions

Consider again the ODE
= f(t,x)

where f : Q — R" is a mapping from an open set Q C R*™! to R”, which is continuous
on (2 and locally Lipschitz in z.

Although the uniqueness part of Theorem 2.7 says that any two solutions are the same
in their common interval, still there are many different solutions to the same IVP because
strictly speaking, the functions that are defined on different domains are different, despite
they coincide in the intersection of the domains. The purpose of what follows is to define
the maximal possible domain where the solution to the IVP exists.

We say that a solution y (¢) of the ODE is an eztension of a solution z (¢) if the domain
of y (t) contains the domain of z (¢) and the solutions coincide in the common domain.

Definition. A solution z (t) of the ODE is called mazimal if it is defined on an open
interval and cannot be extended to any larger open interval.

Theorem 2.8 Assume that the conditions of Theorem 2.7 are satisfied. Then the follow-
mg s true.

(a) Any IVP has is a unique mazximal solution.

(b) If x (t) and y (t) are two mazimal solutions to the same ODE and x (t) =y (t) for
some value of t, then x and y are identically equal, including the identity of their domains.

(¢) If z (t) is a maximal solution with the domain (a,b) then x (t) leaves any compact
set K CQast—aandast —b.

Here the phrase “x (t) leaves any compact set K as t — b” means the follows: there is
T € (a,b) such that for any t € (T,b), the point (¢, z (t)) does not belong to K. Similarly,
the phrase “z (t) leaves any compact set K as t — a” means that there is T € (a, b) such
that for any t € (a,T'), the point (¢, 2 (t)) does not belong to K.

Example. 1. Consider the ODE 2/ = 2?2 in the domain 0 = R2. This is separable
equation and can be solved as follows. Obviously, z = 0 is a constant solution. In the

domains where x # 0 we have
/ x'dt / i

2
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whence

[ fasic
T T

and z (t) = —5 (where we have replaced C' by —C'). Hence, the family of all solutions

consists of a straight line z (t) = 0 and hyperbolas x () = 5z with the maximal domains
(C,+00) and (—o0, C) (see the diagram below).

y 50T

25|

-25]

-50°

Each of these solutions leaves any compact set K, but in different ways: the solutions
z(t) = 0 leaves K as t — +oo because K is bounded, while z (t) = & leaves K as
t — C because z (t) — +00.

2. Consider the ODE #/ = 2 in the domain Q = R x (0,400) (that is, ¢ € R and
x > 0). By the separation of variables, we obtain

22
?:/xdx:/xa:’dt:/dt:t+0

() =20-0), t>C.

whence

See the diagram below:
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Obviously, the maximal domain of the solution is (C,+o0c). The solution leaves any
compact K C Q as t — C because (t,z (t)) tends to the point (C,0) at the boundary of
Q.

The proof of Theorem 2.8 will be preceded by a lemma.

Lemma 2.9 Let {z,(t)},c4 be a family of solutions to the same IVP where A is any
index set, and let the domain of x, be an open interval I,. Set I = I, and define a
function x (t) on I as follows:

acA

z(t) =4 (t) ift € 1,. (2.28)
Then I is an open interval and x (t) is a solution to the same IVP on I.

The function x (¢) defined by (2.28) is referred to as the union of the family {z, (¢)}.

Proof. First of all, let us verify that the identity (2.28) defines x (¢) correctly, that
is, the right hand side does not depend on the choice of . Indeed, if also ¢t € I then ¢
belongs to the intersection I, NIz and by the uniqueness theorem, z, (t) = x5 (). Hence,
the value of x (¢) is independent of the choice of the index «. Note that the graph of z (¢)
is the union of the graphs of all functions z, (t).

Set a = inf I, b = sup I and show that I = (a,b). Let us first verify that (a,b) C I,
that is, any ¢ € (a, b) belongs also to I. Assume for certainty that ¢ > to. Since b = sup I,
there is t; € I such that t < t; < b. There exists an index « such that ¢t; € I ,. Since
also ty € I,, the entire interval [ty,;] is contained in [,. Since ¢ € [to,t1], we conclude
that ¢t € I, and, hence, t € I.

It follows that [ is an interval with the endpoints a and b. Since [ is the union of open
intervals, I is an open subset of R, whence it follows that I is an open interval, that is,
I =(a,b).

Finally, let us verify why x (¢) solves the given IVP. We have x (ty) = zo because
tg € I, for any o and

T (to) = Tq (to) = Xy

so that x (t) satisfies the initial condition. Why =z (t) satisfies the ODE at any ¢ € I?7 Any
given t € I belongs to some [,. Since z, solves the ODE in [, and = = z, on [,, we
conclude that x satisfies the ODE at ¢, which finishes the proof. m
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Proof of Theorem 2.8. (a) Consider the IVP

{ o' = f(t,z), (2.29)

T (to) = T

and let S be the set of all possible solutions to this IVP defined on open intervals. Let
x (t) be the union of all solutions from S. By Lemma 2.9, the function z () is also a
solution to the IVP and, hence, z (t) € S. Moreover, x (t) is a maximal solution because
the domain of x (¢) contains the domains of all other solutions from S and, hence, z (¢)
cannot be extended to a larger open interval. This proves the existence of a maximal
solution.

Let y (t) be another maximal solution to the IVP and let z(¢) be the union of the
solutions z (t) and y (t). By Lemma 2.9, z (¢) solves the IVP and extends both x (¢) and
y (t), which implies by the maximality of = and y that z is identical to both z and y.
Hence, = and y are identical (including the identity of the domains), which proves the
uniqueness of a maximal solution.

(b) Let x(t) and y (t) be two maximal solutions that coincide at some ¢, say t = t;.
Set 1 = x (t1) = y (t1). Then both x and y are solutions to the same IVP with the initial
point (¢1, 1) and, hence, they coincide by part (a).

(c) Let = (t) be a maximal solution defined on (a,b) where a < b, and assume that
x (t) does not leave a compact K C €2 as t — a. Then there is a sequence t;, — a such
that (ty,z) € K where x = x (tx). By a property of compact sets, any sequence in K
has a convergent subsequence whose limit is in K. Hence, passing to a subsequence, we
can assume that the sequence {(tx, z4)},., converges to a point (tg,z¢) € K as k — oc.
Clearly, we have to = a, which in particular implies that a is finite.

By Corollary to Theorem 2.7, for the point (to, zo), there exist r,e > 0 such that the
IVP with the initial point inside the cylinder

G = [to—r/Z,t0+7’/2] X§<$0,€/2)

has a solution defined for all ¢ € [ty — r/2,t9 +r/2]. In particular, if £ is large enough
then (tx,zx) € G, which implies that the solution y () to the following IVP

{y’:f(t,y),

y (te) = o,

is defined for all t € [ty — r/2,to + /2] (see the diagram below).
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X A

x(t)

_ T X
B(x06/2) o X

v~ (for X0

v

[to-r/2,to+1/2] t

Since x (t) also solves this IVP, the union z (¢) of = (¢) and y () solves the same IVP.
Note that x (¢) is defined only for ¢t > ¢, while z (¢) is defined also for t € [ty — 7/2, ]
Hence, the solution z (¢) can be extended to a larger interval, which contradicts the
maximality of z (¢). m

Remark. By definition, a maximal solution x (¢) is defined on an open interval, say
(a,b), and it cannot be extended to a larger open interval. One may wonder if z (¢) can
be extended at least to the endpoints ¢ = a or t = b. It turns out that this is never the
case (unless the domain Q2 of the function f (¢, z) can be enlarged). Indeed, if x () can
be defined as a solution to the ODE also for ¢ = a then (a,z (a)) € Q and, hence, there is
ball B in R™*! centered at the point (a,x (a)) such that B C €. By shrinking the radius
of B, we can assume that the corresponding closed ball B is also contained in €. Since
x(t) — z (a) as t — a, we obtain that (¢, (t)) € B for all ¢ close enough to a. Therefore,
the solution x () does not leave the compact set B C 2 as t — a, which contradicts part
(¢) of Theorem 2.8.

2.7 Continuity of solutions with respect to f (¢, )

Consider the IVP '~ )
=7
’ 2.30
{ T (to) =29 ( )
In Section 2.2, we have investigated in the one dimensional case the dependence of the
solution z (¢) upon the initial value z5. A more general question, which will be treated
here, is how the solution z (t) depends on the right hand side f (¢, z). The dependence on
the initial condition can be reduced to the dependence of the right hand side as follows.
Consider the function y (t) = z (t) — o, which obviously solves the IVP

[faf
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Hence, if we know that the solution y (¢) of (2.31) depends continuously on the right hand
side, then it will follow that y (¢) is continuous in zy, which implies that also the solution
x (t) of (2.30) is continuous in x.

Let © be an open set in R"* and f, ¢ be two functions from €2 to R”. Assume in
what follows that both f, g are continuous and locally Lipschitz in z in 2, and consider

two initial value problems

T (to) = X
and / t.)
y =gy
2.33
{ y (to) = o (2:33)
where (to, zo) is a fixed point in €.
Assume that the function f as fixed and x () is a fixed solution of (2.32). The function
g will be treated as variable.. Our purpose is to show that if g is chosen close enough
to f then the solution y (¢) of (2.33) is close enough to z (t). Apart from the theoretical
interest, this question has significant practical consequences. For example, if one knows
the function f (¢, x) only approximately (which is always the case in applications in Sci-
ences and Engineering) then solving (2.32) approximately means solving another problem
(2.33) where g is an approximation to f. Hence, it is important to know that the solution
y (t) of (2.33) is actually an approximation of x (t).

Theorem 2.10 Let x (t) be a solution to the IVP (2.32) defined on an interval (a,b).
Then, for all real o, B such that a < a < tg < < b and for any ¢ > 0, there ism > 0
such that, for any function g : Q@ — R" such that

sup If =gl <mn, (2.34)

there is a solution y (t) of the IVP (2.33) defined in |o, (], and this solution satisfies the
inequality
sup |l (8) — y (1) < c.

[o,8]
Proof. For any € > 0, consider the set

K.={(t,z) eR" :a<t<B, lv—z()| <e} (2.35)

which can be regarded as the e-neighborhood in R"** of the graph of the function ¢ — z (¢)
where t € [a, 5]. In particular, Ky is the graph of the function x () on [a, ] (see the
diagram below).
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The set K is compact because it is the image of the compact interval [« 5] under the
continuous mapping ¢t — (¢, z (t)). Hence, K is bounded and closed, which implies that
also K. for any € > 0 is also bounded and closed. Thus, K. is a compact subset of R"*!
for any € > 0.

Claim 1. There is € > 0 such that K. C Q) and f is Lipschitz in x in K..

Indeed, by the local Lipschitz condition, for any point (t.,x.) € © (in particular, for

any (t.,z.) € Ky), there are constants €, > 0 such that the cylinder

G=[t,—5,t.+ 0] x B(x,¢)
is contained in € and f is Lipschitz in G (see the diagram below).

XA

v

\J_,—\v//

Varying the point (t.,z.) in Ky, we obtain a cover of K, by the family of the open
cylinders H = (t, — 6,t. +9) x B (24,¢/2) where €, depend on (t.,z.). Since Ky is
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compact, there is a finite subcover, that is, a finite number of points {(¢;,z;)};~, on Ky
and the corresponding numbers ¢;, d; > 0, such that the cylinders

cover all K. Set B
Gy = [t; — i, t; + 6;) X B (z4,€)

and let L; be the Lipschitz constant of f in G;, which exists by the choice of €;, ;. Set

1
e =— min ¢ and L = max L, (2.36)

2 1<i<m 1<i<m

and prove that K. C ) and that function f is Lipschitz in K. with the constant L. For
any point (¢,x) € K., we have by the definition of K. that ¢ € [a, f], (t,2 (t)) € Ky and

[z =z @) <e.
The point (¢, x (t)) belongs to one of the cylinders H; so that
te(t;—0iti+0;) and |z (t) — a4 <ei/2

(see the diagram below).

B(xi&i) y

(tX)

(tx(®)

(tixi)

B(xi—zi/2)

-5 ti+6;

By the triangle inequality, we have
lo = ail| < lz—z (@) + llz(t) -zl <e+ei/2<e,

where we have used that by (2.36) € < ¢;/2. Therefore, € B (z;,¢;) whence it follows
that (t,z) € G; and, hence, (t,z) € ). Hence, we have shown that any point from K.
belongs to €2, which proves that K. C Q.
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If (t,z),(t,,y) € K. then by the above argument the both points x,y belong to the
same ball B (z;, ;) that is determined by the condition (¢, z (t)) € H;. Then (¢,x), (t,,y) €
G; and, since f is Lipschitz in GG; with the constant L;, we obtain

1f (&) = F (&)l < Lille —yll < Lz =yl

where we have used the definition (2.36) of L. This shows that f is Lipschitz in = in K.
and finishes the proof of Claim 1.

Observe that if the statement of Claim 1 holds for some value of £ then it holds for
all smaller values of ¢ as well, with the same L. Hence, we can assume that the value of
¢ from Theorem 2.10 is small enough so that it satisfies Claim 1.

Let now y (¢) be the maximal solution to the IVP (2.33), and let (a’,¥’) be its domain.
By Theorem 2.8, the graph of y (¢) leaves K. when ¢ — o’ and when t — /. Let (¢, 3')
be the maximal interval such that the graph of y (¢) on this interval is contained in K;
that is,

o =inf {t € (o, B) N (', V) : (5,9 (s)) € K. for all s € [t, 1]} (2.37)

and /3’ is defined similarly with inf replaced by sup (see the diagrams below for the cases

o/ > o and o/ = «, respectively).
XA X A

x(t

~__(ty®) y(®
——" o) T \/’ ,
//

¥

o ot st BBt o=al’ to BB

In particular, (o, 3') is contained in (a’, V') N (c, 3), function y () is defined on (o, 3')
and
(t,y (t)) € K. for all t € (¢/, ') . (2.38)

Claim 2. We have [/, 5] C (a',0); in particular, y (t) is defined on the closed interval
[, B']. Moreover, the following is true: either o/ = « or

o >a and |z(t)—y@)||=¢ fort=<. (2.39)
Similarly, either 8’ = 3 or
B<p and |z(t)—y@)|=c fort=p"
By Theorem 2.8, y (t) leaves K. as t — a’. Hence, for all values of ¢ close enough to

a’ we have (t,y(t)) ¢ K.. For any such t we have by (2.37) ¢t < o whence ¢’ <t < « and
a’ < . Similarly, one shows that & > (', whence the inclusion [o/, 5] C [, '] follows.
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To prove the second part, assume that o/ # « that is, o/ > «, and prove that
|z (t) —y(t)]] =efort = .

The condition o > «a together with o/ > a’ implies that o/ belongs to the open interval
(o, B) N (a',b'). Tt follows that, for 7 > 0 small enough,

(o =7, +71) C(a, B) N (', V). (2.40)

For any t € (/, ), we have

lz () =y @) <e.
By the continuity, this inequality extends also to ¢ = o/. We need to prove that, for
t = o/, equality is attained here. Indeed, if

|z (t) —y (t)|| <efort=da

then, by the continuity of z (¢) and y(¢), that the same inequality holds for all ¢ €
(o/ — 7,0’ +7) provided 7 > 0 is small enough. Choosing 7 to satisfy also (2.40), we
obtain that (¢,y(t)) € K. for all t € (&/ — 7, /], which contradicts the definition of o’

Claim 3. For any given «, 3,¢ as above, there exists n > 0 such that if

sup If =gl <, (2.41)

then [, 8] = [«, B].

In fact, Claim 3 will finish the proof of Theorem 2.10. Indeed, Claims 2 and 3 im-
ply that y () is defined on [a, 3]; by the definition of o/ and 3’ (see (2.38)), we obtain
(t,y (t)) € K. for all t € («,3), and by continuity, the same holds for ¢ € [a, §]. By the
definition (2.35) of K., this means

|y (t) —x(t)|| <eforalltelapf],

which was the claim of Theorem 2.10.
To prove Claim 3, for any t € [o/, 3] write the integral identities

a:(t):x(ﬁ—tt f(s,x(s))ds

and .

y(t) =0+ / g (s,y(s))ds.

Jio

Assuming for simplicity that ¢t > ¢y, and using the triangle inequality, we obtain

't

lz(®) =y @ < tHf(s,fC(S))—g(s,y(S))lldS

< W sz() = flsyls)llds+ t 1/ (5,5 (s)) — g (s, (s))l ds.
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Since the points (s, x (s)) and (s,y (s)) are in K., we obtain by the Lipschitz condition in
K. (Claim 1) that

[l () —y (B < L/t [z (s) =y (s)ll ds +sup [ f — g (B — ). (2.42)

£S

Hence, by the Gronwall lemma applied to the function z (t) = ||z (t) — y (¢)]|,

lz(t) =y @I < (8- a)expL(t—to)supllf — gl

£S8

< (B—a)expL (8 —a)sup|f—gl. (2.43)

ES

In the same way, (2.43) holds for ¢ <, so that it is true for all ¢ € [/, 3'].
Now choose 7 in (2.41) as follows

9

T2
Then it follows from (2.43) that
lz (@) —y @) <e/2<eforalteld,f]. (2.44)

By Claim 2, we conclude that o/ = o and 3’ = 3, which finishes the proof. m
Using the proof of Theorem 2.10, we can refine the statement of Theorem 2.10 as
follows.

Corollary Under the hypotheses of Theorem 2.10, let x (t) be a solution to the IVP (2.32)
defined on an interval (a,b), and let o, 3 be such that a < a <ty < 3 < b. Lete >0
be sufficiently small so that f (t,x) is Lipschitz in x in K. with the Lipschitz constant L.

If supg_ || f — gl| is sufficiently small, then the IVP (2.33) has a solution y (t) defined on
[, 5], and the following estimate holds

sup |z (1) =y (D < (5 — a) P sup |f — g1l (2.45)

Proof. By Claim 2 of the above proof, the maximal solution y (t) of (2.33) is de-
fined on [o/, 8']. Also, the difference ||z (t) — y (¢)|| satisfies (2.43) for all ¢ € [/, 5']. If
supg. ||f — gl| is small enough then by Claim 3 [«/, 8] = [, 5]. It follows that y (t) is
defined on [« §] and satisfies (2.45). =

2.8 Continuity of solutions with respect to a parameter

Consider the IVP with a parameter s € R™

{ v =f(t.z,s) (2.46)

T (to) = 29

where f :  — R™ and (2 is an open subset of R*™™*1. Here the triple (¢, z, s) is identified
as a point in R"*™*! as follows:

(t,x,s) = (t, 21, .., Tny, S1y vy S -
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How do we understand (2.46)? For any s € R™, consider the open set
Q, = {(t,z) e R"": (t,z,5) € Q}.
Denote by S the set of those s, for which €5 contains (%o, x¢), that is,

S={seR"™: (ty,z0) € Qs} = {s € R™: (ty,x0,5) € O}

Rn+1

®(to,Xo)

Then the IVP (2.46) can be considered in the domain 2 for any s € S. We always
assume that the set S is non-empty. Assume also in the sequel that f (¢, x, s) is a contin-
uous function in (¢, z,s) € € and is locally Lipschitz in z for any s € S. For any s € S,
denote by x (¢, s) the maximal solution of (2.46) and let I be its domain (that is, I is an
open interval on the axis ¢). Hence, z (¢, s) as a function of (¢, s) is defined in the set

U={(t,s) eR™":seStel}.

Theorem 2.11 Under the above assumptions, the set U is an open subset of R and
the function x (t,s) : U — R™ is continuous in (t, s).

Proof. Fix some sy € S and consider solution z (t) = x (¢, so) defined for ¢ € Ij,.
Choose some interval [a, 5] C I, such that ty € [, 8]. We will prove that there is € > 0
such that

[, 8] % B (s,¢) C U, (2.47)

which will imply that U is open. Here B (sg,¢) is a closed ball in R™ with respect to
oo-norm (we can assume that all the norms in various spaces R* are the co-norms).
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~

o to B

\I/
So

\ A

As in the proof of Theorem 2.10, consider a set
K.={(t,z) eR" :a<t<B, lv—z()| <e}
and its extension in R**™*! defined by
K. = K. x B(sp,¢) = {(t,z,s) eR™ ia<t<B[lz—z@)|<e s — sl <e}
(see the diagram below).

SA

B(soc) {

K, =K, xB(So,€)

If ¢ is small enough then K. _is contained in Q (cf. the proof of Theorem 2.10 and
Exercise 26). Hence, for any s € B(s, ), the function f (¢, x,s) is defined for all (¢, z) €
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K.. Since the function f is continuous on €2, it is uniformly continuous on the compact
set K., whence it follows that

sup ||f (t,z,50) — f (t,x,9)|| = 0as s — sg.
(t,x)EK.

Using Corollary to Theorem 2.10 with® f (¢, x) = f (¢, 7, s0) and g (t,z) = f (t, 2, s) where
s € B (sg,¢), we obtain that if

sup || f (¢, 2, 5) = f (£, 2,50
(t,x)eK,

is small enough then then the solution y (t) = x (¢, s) is defined on [a, §]. In particular,
this implies (2.47) for small enough €. Furthermore, by Corollary to Theorem 2.10 we
also obtain that

sup [z (¢, s) =z (£, s0)| < C sup ||f (¢, 2, 50) = f (&, 2,9)]],
te[avﬂ] (t,l‘)ng

where the constant C' depending only on «,3,¢ and the Lipschitz constant L of the
function f (¢,z, sg) in K.. Letting s — sg, we obtain that

sup ||z (t,s) —x (t,s0)|| — 0as s — s,
tela,f]

so that z (¢, s) is continuous in s at sy uniformly in ¢ € [, 5]. Since z (¢, s) is continuous
in t for any fixed s, we conclude that z is continuous in (¢,s) (see Exercise 28), which
finishes the proof. m

2.9 Global existence

Theorem 2.12 Let I be an open interval in R and let f(t,z) : I x R" — R" be a
continuous function that is locally Lipschitz in x and satisfies the inequality

1F (& o)l < a )]l +b(t), (2.48)

forallt € I and x € R™, where a (t) and b(t) are some continuous non-negative functions
of t. Then, for all ty € I and xq € R™, the initial value problem

{ v =ftz) (2.49)

T (to) = T
has a (unique) solution x (t) on I.

In other words, under the specified conditions, the maximal solution of (2.49) is defined
on [.

Proof. Let z (t) be the maximal solution to the problem (2.49), and let J = («, 3)
be the open interval where z (¢) is defined. We will show that J = I. Assume from the
contrary that this is not the case. Then one of the points «, 3 is contained in I, say 3 € I.

®Since the common domain of the functions f (¢, z, s) and f (t,z,so) is (t,s) € Q, N2, Theorem 2.10
should be applied with this domain.
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Let us investigate the behavior of ||z (¢) || as t — 8. By Theorem 2.8, (¢, x (t)) leaves any
compact K C ) := 1 x R". Consider a compact set

K =[3—¢p]xB(0,r)

where € > 0 is so small that [5 — ¢, 8] C I. Clearly, K C Q. If t is close enough to 5 then
t € [B—¢,B]. Since (¢, (t)) must be outside K, we conclude that x ¢ B (0,r), that is,
|z (t)]| > r. Since r is arbitrary, we have proved that ||z ()| — oo as t — /.

On the other hand, let us show that the solution z (¢) must remain bounded as t — f.
From the integral equation

w(t)y=zo+ | [f(s,z(s))ds,

Jto

we obtain, for any t € [to, (),

A

lz @] < Hwo||+/t 1f (s, (s))]l ds

IN

o]l + / (a(s) [lz ()]l + b(s)) ds

Jto

IN

t
O+A/ Iz (s)]] ds,
to

where 5
A=supa(s) and C = |z + / b(s)ds.
[toﬂl Jto

Since [to, ] C I and functions a (s) and b (s) are continuous in [to, 4], the values of A and
C are finite. The Gronwall lemma yields

[l (#)|] < Cexp (At —to)) < Cexp (A(S —to)).

Since the right hand side here does not depend on ¢, we conclude that the function ||z (¢)||
remains bounded as ¢t — [, which finishes the proof. m

Example. We have considered above the ODE 2’ = 22 defined in R x R and have

seen that the solution z () = 4 cannot be defined on full R. The same occurs for the

equation z’ = x* for @ > 1. The reason is that the function f (¢, ) = x* does not admit
the estimate (2.48) for large , due to @ > 1. This example also shows that the condition
(2.48) is rather sharp.

A particularly important application of Theorem 2.12 is the case of the linear equation
¥=A{t)x+ B(t),

where x € R", t € I (where [ is an open interval in R), B: [ — R", A: I — R"*". Here
R™ ™ is the space of all n x n matrices (that can be identified with ]R”Z). In other words,
for each t € I, A(t) is an n x n matrix, and A (¢) x is the product of the matrix A (¢) and
the column vector z. In the coordinate form, one has a system of linear equations

ZL‘;C = ZAM (t) T + Bk (t) s
1=1
forany k=1,....n.
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Theorem 2.13 In the above notation, let A(t) and B (t) be continuous int € I. Then,
for any ty € I and xo € R", the IVP

{ ¥ =A(t)z+ B(1)

s (tg) = X
has a (unique) solution x (t) defined on I.

Proof. It suffices to check that the function f (t,2) = A (t) x + B (t) satisfies the con-
ditions of Theorem 2.12. This function is obviously continuous in (¢, z) and continuously
differentiable in x, which implies by Lemma 2.6 that f (¢, x) is locally Lipschitz in x.

We are left to verify (2.48). By the triangle inequality, we have

£ @) ]| < [JA@) ]+ [IB ()] (2.50)
Let all the norms be the co-norm. Then

b(t) := [|B (1)l = max |By (¢)]

is a continuous function of ¢. Next,

|4 (1) ], = max| (A (£) 2),| = max

Z Akl (t) x]
=1

< <mg><; [ A (ﬂ\) max |z = a(t) |z,

where

= A
a(t) mgX;| w (1)
is a continuous function. Hence, we obtain from (2.50)

1f @& o)l < a(t) |zl +b(),
which finishes the proof. m

2.10 Differentiability of solutions in parameter

Consider again the initial value problem with parameter

{ o = f(t,x,s), (2.51)

T (to) = Xy,

where f : 2 — R" is a continuous function defined on an open set 2 C R"*"*! and where
(t,x,s) = (t,x1, ..., Tn, S1, .-, Sm) - Let us use the following notation for Jacobian matrices
of f with respect to x and s. Set

_ 4 _9f _(0fi

where ¢ = 1,...,n is the row index and k = 1,...,n is the column index, so that f, is an

n X n matrix. Similarly, set
_of _ 4. (0
= -ar- (),
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where ¢ = 1,...,n is the row index and [ = 1, ..., m is the column index, so that f, is an
n X m matrix.

If f, is continuous in €2 then by Lemma 2.6 f is locally Lipschitz in = so that all the
previous results apply.

Let x(t,s) be the maximal solution to (2.51). Recall that, by Theorem 2.11, the
domain U of z (t, s) is an open subset of R™™ and z : U — R" is continuous.

Theorem 2.14 Assume that function f(t,z,s) is continuous and f, and fs exist and
are also continuous in Q). Then x (t,s) is continuously differentiable in (t,s) € U and the
Jacobian matrix y = Osx solves the initial value problem

Y =f:(txts),s)y+ fo(t,x(t,s),s),
{ Y (to) — 0. (2.52)

Here 0,z = (da—“;f) is an n X m matrix where £k = 1, .., nistherow indexand [ =1, ..., m

is the column index. Hence, y = Osx can be considered as a vector in R"*™ depending on
t and s. The both terms in the right hand side of (2.52) are also n x m matrices so that
(2.52) makes sense. Indeed, f, is an n x m matrix, and f,y is the product of the n x n
and n X m matrices, which is again an n x m matrix.

The ODE in (2.52) is called the wvariational equation for (2.51) along the solution
x (t,s) (or the equation in variations).

Note that the variational equation is linear. Indeed, for any fixed s, its right hand side
can be written in the form

y=A)y+B(1),

where A (t) = f. (t,xz(t,s),s) and B(t) = fs(t,xz(t,s),s). Since f is continuous and
x (t,s) is continuous by Theorem 2.11, the functions A (t) and B () are continuous in t.
If the domain in ¢ of the solution z (¢, s) is I then the domain of the variational equation
is I, x R™™. By Theorem 2.13, the solution y (¢) of (2.52) exists in the full interval I;.
Hence, Theorem 2.14 can be stated as follows: if z (¢, s) is the solution of (2.51) on I
and y (t) is the solution of (2.52) on I, then we have the identity vy (t) = Osx (t, s) for all
t € I,. This provides a method of evaluating Jsx (¢, s) for a fixed s without finding z (¢, s)
for all s.

Example. Consider the IVP with parameter

{Too

in the domain (0, +00) x R xR (that is, ¢ > 0 and z, s are arbitrary real). Let us evaluate
z (t,s) and O,z for s = 0. Obviously, the function f (¢, z, s) = x®+2s/t is continuously dif-
ferentiable in (z, s) whence it follows that the solution x (¢, s) is continuously differentiable
in (t,s).

For s = 0 we have the IVP

T = $2
z(l)=-1
whence we obtain z (t,0) = —1. Noticing that f, = 22 and f, = 2/t we obtain the
variational equation along this solution
, 2 2
v = (foltms)ly o) v+ (Ftso)lg) = —Fu+ T
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This is a linear equation of the form y' = a (t) y + b (¢) which is solved by the formula
y =AW /eA(t)b (t) dt,
where A (t) is a primitive of a (t) = —2/t, that is A (t) = —2Int. Hence,
y(t)=t7? / t%dt =t (P+0)=1+Ct2

The initial condition y (1) = 0 is satisfied for C' = —1 so that y (t) = 1—¢~2. By Theorem
2.14, we conclude that 9,z (t,0) =1 —t72.
Expanding z (¢, s) as a function of s by the Taylor formula of the order 1, we obtain

z(t,s) =z (t,0) + sz (t,0) s+ o(s) as s — 0,
that is,

1 1
x(t,s):—¥+<1—t—2>s+o(s) as s — 0.

In particular, we obtain for small s an approximation

1 1
x(t,s)%—;%— (1_t_2> s.

Later we will be able to obtain more terms in the Taylor formula and, hence, to get a
better approximation for x (¢, s).

Remark. It is easy to deduce the variational equation (2.52) provided we know that the
function x (¢, s) is sufficiently many times differentiable. Assume that the mixed partial
derivatives 0;0;x and 0,0sx exist and are the equal (for example, this is the case when
z (t,s) € C?(U)). Then differentiating (2.51) in s and using the chain rule, we obtain

0105 = 05 (Opx) = 05 [f (£, (L,5) , 8)] = fa (8,2 (L, 8)  8) Osw + [ (2 (L, 5) ),

which implies (2.52) after substitution d;x = y. Although this argument is not a proof
of Theorem 2.14, it allows to memorize the variational equation. The main technical
difficulty in the proof of Theorem 2.14 is verifying the differentiability of = in s.

How can one evaluate the higher derivatives of z (¢, s) in s? Let us show how to find
the ODE for the second derivative z = J,,x assuming for simplicity that n = m = 1, that
is, both = and s are one-dimensional. For the derivative y = 0, we have the IVP (2.52),
which we write in the form

{ v =9(ty.s) (2.53)

y(to) =0
where
gty s) = fo(tx(t,s),s)y+ fs(t,x(t,s),s). (2.54)
For what follows we use the notation F (a,b,c,...) € C* (a,b,c,...) if all the partial deriva-
tives of the order up to k of the function F' with respect to the specified variables a, b, c...
exist and are continuous functions, in the domain of F. For example, the condition in

Theorem 2.14 that f, and f, are continuous, can be shortly written as f € C! (z,s), and
the claim of Theorem 2.14 is that z (¢,s) € C* (¢, s) .

57



Assume now that f € C?(z,s). Then by (2.54) we obtain that ¢ is continuous and
g € C*(y, s), whence by Theorem 2.14 y € C* (s). In particular, the function z = d,y =
Oss is defined. Applying the variational equation to the problem (2.53), we obtain the
equation for z

4 :gy(tay(t78)7S)Z+gs(tay(t78)73)'
Since g, = f, (t,z, ),
9s (1Y, 8) = [z (,2,8) (Os2) Y + fus (L2, 8) y + fou (8,2, 8) Osw + fos (L2, 8)

and J,x = y, we conclude that

2= [ (t,2,8) 2+ fow (6,2,8) Y2 + 2 s (t, 2, 8) y + fos (£, 7, 5)
{ Sl (2.55)

Note that here x must be substituted by z (¢, s) and y — by y (¢, s).

The equation (2.55) is called the variational equation of the second order, or the second
variational equation. It is a linear ODE and it has the same coefficient f, (¢,z (t,s),s)
in front of the unknown function as the first variational equation. Similarly one finds the
variational equations of the higher orders.

Example. This is a continuation of the previous example of the IVP with parameter

Lot

where we have computed that

v (t) = 2 (£,0) = —% and g (t) == O (£,0) = 1 — ti?

Let us now evaluate z = Oss2 (t,0). Since
fx:2:ra fa:x:27 fxs:0> fss:Oa

we obtain the second variational equation

Z/ - <fl"l‘:—%78:0> z 4+ <f$$|x:—%,s:0> y2
2
= —J2+2(1- t2)%.

Solving this equation similarly to the first variational equation with the same a (t) = —2

t
and with b (¢) = 2 (1 — t~2)°, we obtain
2(t) = e / e AOp (t) dt = t72 / 2% (1 —t72)% dt

2 2 2 2 4 C
=t -S4+ C )=t — = — =+ —.
(3 P > 3 TE TR
The initial condition z (1) = 0 yields C' = 4 whence

2 2 4+16
3 Bt 3t



Expanding z (t,s) at s = 0 by the Taylor formula of the second order, we obtain as
s —0

x(t,s) = ac(t)—ky(t)s—l—lz(t)sQ—Fo(s?)

2
1 _ 1 2 8 1
— _¥+(1—t2)s+(§t—¥+§—t—3>82+0(82)-

For comparison, the plots below show for s = 0.1 the solution z (¢, s) (yellow) found by nu-
merical methods (MAPLE), the first order approximation u (t) = —1+(1 — t72) s (green)
and the second order approximation v (t) = —3+(1 — %) s+ (3t — 2 + &5 — &) s? (red).

32 3

t
1 2 3 4 5 6

| | | | |
0 T T T T 1

-0.05T
01T
-0.15T
02T
-0.25T
03T
-0.35T
04T
-0457T
05T
-0.55T
-06T
-0.65T
x -077

Let us discuss an alternative method of obtaining the equations for the derivatives of
x(t,s) in s. As above, let z (1), y (t), z (t) be respectively x (¢,0), dsz (t,0) and Oy (t,0)
so that by the Taylor formula

1
z(t,s)=x(t)+y(t)s+ 7% (t)s*+0(s%). (2.56)
Let us write a similar expansion for ' = 0;x, assuming that the derivatives 0, and 0O
commute on z. We have

0,x' = 0,0,x =/

and in the same way
047’ = 05y = 0,0,y = 7.

Hence,
1
' (t,s) =2 (t)+ v (t) s+ 52’ (t)s* +o0(s?).
Substituting this into the equation
v = 2%+ 2s/t
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we obtain

o (t)+y (1) s+ %z' (t)s*+o(s) = <x ) +y(t)s+ %z (t)s*+o (52)> + 2s/t

whence

1
' (t)+y (t)s+ QZ/ OsP=22O) +20 )y (t)s+ (y()* + 2 ()2 (1)) s* + 25/t + 0 (s%) .
Equating the terms with the same powers of s (which can be done by the uniqueness of
the Taylor expansion), we obtain the equations

o (t) = 2% (1)

y (1) = 2z(t)y(t)+2s/t
) = 2x(t)z(t) +20°(t).
From the initial condition x (1, s) = —1 we obtain

_1:x(1)+sy(1)+%2(1)+0<52)’

whence z (t) = —1, y (1) = 2z (1) = 0. Solving successively the above equations with these
initial conditions, we obtain the same result as above.

Before we prove Theorem 2.14, let us prove some auxiliary statements from Analysis.

Definition. A set K C R" is called convex if for any two points z,y € K, also the full
interval [x,y] is contained in K, that is, the point (1 — )z + Ay belong to K for any
A€ 0,1].

Example. Let us show that any ball B (z,r) in R with respect to any norm is convex.
Indeed, it suffices to treat the case z = 0. If x,y € B(0,r) then ||z|| < r and |Jy|| < r
whence for any A € [0, 1]

(X =Nz + Ayl < (L= A) [Jzll + Mlyl] <.
It follows that (1 — A\)x + Ay € B (0,r), which was to be proved.

Lemma 2.15 (The Hadamard lemma) Let f (t,z) be a continuous mapping from € to
R! where ) is an open subset of R*! such that, for any t € R, the set

G ={reR": (t,z) € Q}

is convex (see the diagram below). Assume that f, (t,x) exists and is also continuous in
Q. Consider the domain

Q = {(t,z,y) eER™ LR, z,y e}
= {(t,z,y) e R*™: (t,x) and (t,y) € Q}.

Then there exists a continuous mapping ¢ (t,z,y) : Q' — R>™ such that the following
1dentity holds:
flty) = fta)=p(t ey (y—2)
for all (t,z,y) € Q (here v (t,x,y) (y — x) is the product of the | x n matriz and the
column-vector).
Furthermore, we have for all (t,z) € Q the identity

e(t,z,x) = f (t,2). (2.57)
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Remark. The variable ¢ can be multi-dimensional, and the proof goes through without
changes.
Since f (¢, x) is continuously differentiable at x, we have

fty) —ftz)=Ffitx)(y—z)+o(ly—=zl) asy — =

The point of the above Lemma is that the term o(||x — y||) can be eliminated if one
replaces f, (t,z) by a continuous function ¢ (¢, z,y).

Example. Consider some simple examples of functions f (x) with n = [ = 1 and without
dependence on t. Say, if f (z) = 2? then we have

f—fx)=Ww+2)(y—1)

so that ¢ (x,y) = y + x. In particular, ¢ (x,z) = 2z = f'(x). A similar formula holds for
f (z) = 2* with any k € N:

fl)—f@)= (42" y+ L+ ) (y—a).

For any continuously differentiable function f (z), one can define ¢ (z,y) as follows:

M)y g

y—

!
1 (z), Yy =1

It is obviously continuous in (z,y) for z # y, and it is continuous at (z,x) because if
(g, yr) — (x,x) as k — oo then

f () = f (1)

Yk — Tk

w(fv,y)z{

:f/ (fk)
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where £, € (2, yx), which implies that £, — x and hence, f' (£,) — f' (z), where we have
used the continuity of the derivative f’(x).

Clearly, this argument does not work in the case n > 1 since one cannot divide by
y — x. In the general case, we use a different approach.

Proof of Lemma 2.15. It suffices to prove this lemma for each component f;
separately. Hence, we can assume that [ = 1 so that ¢ is a row (¢4, ..., ,,). Hence, we
need to prove the existence of n real valued continuous functions ¢y, ..., ¢,, of (¢, x, y) such
that the following identity holds:

f(ty)—f(t ) :Z%(m,y) (yi — m3) .

Fix a point (¢, z,y) € {2 and consider a function
FQA)=f(tz+A(y—2)

on the interval A € [0,1]. Since z,y € §; and Q; is convex, the point x + A (y — z)
belongs to ;. Therefore, (t,2 + A (y — z)) € 2 and the function F'(\) is indeed defined
for all A € [0,1]. Clearly, F'(0) = f(t,z), F (1) = f(t,y). By the chain rule, F'()) is
continuously differentiable and

F/) =Y fo (o + My =) (5 = ).

By the fundamental theorem of calculus, we obtain
1
_ / F (V) d\
Jo

= 3 [ttt A =) - )

= Z‘pi (ta x>y) (yl - xl)

where .
ciltrn) = [ Lo+ A—a)an (2.58)

We are left to verify that ¢, is continuous. Observe first that the domain €' of ¢, is an
open subset of R?"™1. Indeed, if (¢, z,y) € ' then (¢,z) and (¢,y) € Q which implies by
the openness of € that there is € > 0 such that the balls B ((t,z),¢) and B ((t,y),¢) in
R"*! are contained in 2. Assuming the norm in all spaces in question is the co-norm, we
obtain that B ((t,z,y),e) C €. The continuity of ¢, follows from the following general
statement.

Lemma 2.16 Let f (A, u) be a continuous real-valued function on [a,b] x U where U is
an open subset of R*¥, X € [a, 8] and u € U. Then the function

ww:/fmmw

18 continuous in u € U.
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Proof of Lemma 2.16. Let {u;},-, be a sequence in U that converges to some
u € U. Then all u;, with large enough index k are contained in a closed ball B (u,¢) C U.
Since f (A, u) is continuous in [a, b] x U, it is uniformly continuous on any compact set in
this domain, in particular, in [a, b] x B (u, <) . Hence, the convergence

f\ug) — f(A\u) ask — oo

is uniform in A € [0, 1]. Since the operations of integration and the uniform convergence
are interchangeable, we conclude that ¢ (ux) — ¢ (u), which proves the continuity of .
The proof of Lemma 2.15 is finished as follows. Consider f,, (t,z+ A(y —z)) as a
function of (A, ¢,x,y) € [0,1] x €. This function is continuous in (A, ¢, z, y), which implies
by Lemma 2.16 that also ¢, (t,z,y) is continuous in (¢, z,y).
Finally, if =y then f,, (t,x + A (y — x)) = fu, (¢, ) which implies by (2.58) that

i (t,.CE,JE) = Ja: (t,$)

and, hence, ¢ (t,x,x) = f, (t,x), that is, (2.57). =

Now we are in position to prove Theorem 2.14.

Proof of Theorem 2.14. In the main part of the proof, we show that the partial
derivative O;,x exists. Since this can be done separately for any component s;, in this part
we can and will assume that s is one-dimensional (that is, m = 1).

Fix some (i, s,) € U and prove that sz exists at this point. Since the differentiability
is a local property, we can restrict the domain of the variables (¢, s) as follows. Choose
[, 5] to be any interval in I, containing both ¢y and t.. By Theorem 2.11, for any ¢ > 0
there is § > 0 such that the rectangle (a, 3) x (s. — 0, s, + 9) is contained in U and, for
all s € (s, — 9,8, +0),

sup ||z (t,5) —x (f,5.)| <e.
te(a,B)

SA

S48

S5 {

v
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Besides, by the openness of €2, ¢ and § can be chosen so small that the following
condition is satisfied:

Q= {t,z,5) eR™ M ia<t< b, lv—az(ts)|<e |s—s|<d}CQ

(cf. the proof of Theorem 2.11). In particular, for all t € (o, B) and s € (s, — 0, 84 + ),
the solution z (¢, s) is defined and (¢, x (¢, s),s) € Q.

SA

S.+34.

v

x(ts)
X(t,s)

In what follows, we restrict the domain of the variables (¢, z,s) to Q). Note that this
domain is convex with respect to the variable (z, s), for any fixed ¢. Indeed, for a fixed ¢,
x varies in the ball B (x (¢, s.),¢) and s varies in the interval (s, — 0, s, + ), which are
both convex sets.

Applying the Hadamard lemma to the function f (¢, x, s) in this domain and using the
fact that f is continuously differentiable with respect to (z, s), we obtain the identity

f(t,y,s)—f(t,x,a) :gp(t,x,a,y,s)(y—x)+¢(t,x,a,y,s)(s—0),

where ¢ and 1 are continuous functions on the appropriate domains. In particular,
substituting o = s,, * = z (¢, s,) and y = x (¢, s), we obtain

ftx(tys),s)— f(t,x(t,s:),8) = @, x(t,s:),8,x(t,s),s)(x(t,s) —x(t,s))
+1 (L, x (t,84) , Se, (t,8),8) (8 — S4)
= a(t,s)(z(t,s) —x(t,s:)) +b(t,s)(s— s4),

where the functions
a(t,s) =t x(t,se),s2(t,s),s) and b(t,s) =1 (t,x(t,s.),5,x(t,s),s) (2.59)

are continuous in (t,s) € (o, ) X (8. — 9,8, +0) (the dependence on s, is suppressed
because s, is fixed).
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Set for any s € (s, — 0,5, +9) \ {s:}

x(t,s) —x(t,s)

2 (t,s) = p—

and observe that

r x’(t,s)—x’(t,s*)_f(t,x(t,s),s)—f(t,x(t,s*),s*)
° T S — S, - S — S,

= a(t,s)z+b(t,s).

Note also that z(ty,s) = 0 because both z (¢,s) and x (,s,) satisfy the same initial
condition. Hence, function z (¢, s) solves for any fixed s € (s, — 9, s, +0) \ {s«} the IVP

{ Z=a(t,s)z+0b(ts)

z (to, s) _ 2) (2.60)

Since this ODE is linear and the functions a and b are continuous in (¢,s) € («,3) x
(84 — 0,84 + 0), we conclude by Theorem 2.13 that the solution to this IVP exists for all
s € (sx—0,8.+0) and ¢t € (o, f) and, by Theorem 2.11, the solution is continuous in
(t,s) € (o, B) X (s« — 9, 8« + §). Hence, we can define z (¢, s) also at s = s, as the solution
of the IVP (2.60). In particular, using the continuity of z (¢, s) in s, we obtain

lim z (¢, s) = z (¢, s.)

S—8x

that is,

Oy (t,8,) = lim z(t,5) —z(t,5) = lim 2 (¢,8) = 2 (£, s4) -

S—Sx S — 5* S5—Sx

Hence, the derivative y (t) = Osx (¢, s.) exists and is equal to z (¢, s.), that is, y () satisfies

the IVP
v =a(t,s.)y+0b(t s,
y (to) = 0.

Note that by (2.59) and Lemma 2.15

a(t,ss) =@ (t,x(t,84), ST (t,84),8) = fu(t,x(t,84),S)

and
b(t,ss) =0 (t,x(t,84), S, x(t,8:),5) = fs (t,x (£, 54) , 54)

Hence, we obtain that y () satisfies the variational equation (2.52).

To finish the proof, we have to verify that x (¢, s) is continuously differentiable in (¢, s).
Here we come back to the general case s € R™. The derivative Osx = y satisfies the IVP
(2.52) and, hence, is continuous in (t,s) by Theorem 2.11. Finally, for the derivative 0,x
we have the identity

Owx = f(t,x(t,s),s), (2.61)

which implies that d,z is also continuous in (¢, s). Hence, x is continuously differentiable
in (t,s). m

Remark. It follows from (2.61) that 0,z is differentiable in s and, by the chain rule,
Os (Opx) = 0 [f (t,x (t,5),8)] = fu (t,x(t,8),5) Os + fs (£, (L,8),5). (2.62)
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On the other hand, it follows from (2.52) that
Oy (0sx) = Oy = fo (£, (L, 8),8) Os + fs (t,x(t,8),5s), (2.63)

whence we conclude that

0,0, = 0,0,z (2.64)

Hence, the derivatives 0, and 0, commute® on x. As we have seen above, if one knew the
identity (2.64) a priori then the derivation of the variational equation (2.52) would have
been easy. However, in the present proof the identity (2.64) comes after the variational
equation.

Theorem 2.17 Under the conditions of Theorem 2.14, assume that, for some k € N,
[ (t,x,s) € C*(x,s). Then the mazimal solution x (t,s) belongs to C* (s). Moreover, for
any multiindex o of the order || < k and of the dimension m (the same as that of s),
we have

0,05 = 050,x. (2.65)
Here o = (v, ..., i) where «; are non-negative integers, || = a; + ... + «,, and

o]
oy 0

S 0808

3 Linear equations and systems
A linear (system of) ODE of the first order is a (vector) ODE of the form
' =A(t)r+ B(t)

where A (t) : I — R™™ B: I — R" and I being an open interval in R. If A (¢) and B ()

are continuous in ¢ then, for any tg € I and zy € R”, the IVP
¥ =A{t)x+ B(t)

3.1

{ T (t()) = 29 ( )

has a unique solution defined on the full interval I (cf. Theorem 2.13). In the sequel,

we always assume that A (t) and B (t) are continuous on I and consider only solutions
defined on the entire interval /.

3.1 Space of solutions of homogeneous systems

The linear ODE is called homogeneous if B (t) = 0, and inhomogeneous otherwise. In this

Section, we consider a homogeneous equation, that is, the equation 2’ = A (t) x. Denote
by A the set of all solutions of this ODE.

6The equality of the mixed derivatives can be concluded by a theorem from Analysis II if one knows
that both 0;0;x and 0,05z are continuous. Their continuity follows from the identities (2.62) and (2.63),
which prove at the same time also their equality.
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Theorem 3.1 A is a linear space and dim A = n. Consequently, if x1, ..., x,, are n linearly
independent solutions to ' = A (t) x then the general solution has the form

z(t) =Cixy (t) + ... + Cpxy, (1), (3.2)
where C1, ..., C, are arbitrary constants.

Proof. The set of all functions I — R" is a linear space with respect to the operations
addition and multiplication by a constant. Zero element is the function which is constant
0 on I. We need to prove that the set of solutions A is a linear subspace of the space
of all functions. It suffices to show that A is closed under operations of addition and
multiplication by constant.

If z and y € A then also z + y € A because

(x+y) =a"4+9y =Av+ Axr = A(z +y)

and similarly Ax € A for any A € R. Hence, A is a linear space.

Fix ty € I and consider the mapping ® : A — R"™ given by ® () = x(ty). This
mapping is obviously linear. It is surjective since for any v € R™ there is a solution x ()
with the initial condition x (ty) = v. Also, this mapping is injective because x (t5) = 0
implies x (t) = 0 by the uniqueness of the solution. Hence, ® is a linear isomorphism
between A and R"™, whence it follows that dim A = dim R™ = n.

Consequently, if x1, ..., x,, are linearly independent functions from A then they form a
basis in A. It follows that any element of A is a linear combination of x1, ..., x,, that is,
any solution to 2’ = A (t) « has the form (3.2). =

Consider now a scalar linear homogeneous ODE of the order n, that is, the ODE

2™ fa () 2"V + . 4a,(t) =0, (3.3)

where all functions ay, (t) are defined on an open interval I C R and are continuous on .
As we know, such an ODE can be reduced to the vector ODE of the 1st order as follows.
Consider the vector function

x(t) = (z(t),2 t),..,a" (1)) (3.4)

so that
X1 =2, Xo=2a, ., Xp_q =22, x, =Y,
Then (3.3) is equivalent to the system
X] = X
Xy = X3
X;m—l Xn
X;L = —1X, — 2Xp—1 — ... — QpXy
that is,
xX'=A(t)x (3.5)



where

0 1 0 0
0 0 1 0
A=
0 0 0 1
—ap —Qp_1 —Qp_9 ... —a

Since A (t) is continuous in ¢ on I, we can assume that any solution x (t) of (3.5) is defined
on the entire interval I and, hence, the same is true for any solution z (¢) of (3.3).
Denote now by A the set of all solutions of (3.3) defined on I.

Corollary. A is a linear space and dim A = n.Consequently, if x1,...,x, are n linearly
independent solutions to ™ + ay (t) 2"V + ... + a, (t)z = 0 then the general solution
has the form

z(t) = Cixy () + ... + Crx,, (1),

where C1, ..., C, are arbitrary constants.

Proof. The fact that A is a linear space is obvious (cf. the proof of Theorem 3.1).
The relation (3.4) defines a linear mapping from A to A. This mapping is obviously
injective (if x(¢) = 0 then z(t) = 0) and surjective, because any solution x of (3.3)
gives back a solution z (t) of (3.5). Hence, A and A are linearly isomorphic, whence
dimA=dimA=n. =

3.2 Linear homogeneous ODEs with constant coefficients
Consider the methods of finding n independent solutions to the ODE
2™ 4+ a2V + 4 a,r =0, (3.6)

where a4, ..., a, are real constants.

It will be convenient to obtain the complex valued general solution x (¢) and then to
extract the real valued general solution. The idea is very simple. Let us look for a solution
in the form z () = e™ where \ is a complex number to be determined. Substituting this
function into (3.6) and noticing that z(®) = A\*e | we obtain the equation for \ (after
cancellation by e*):

N+ N +a,=0.

This equation is called the characteristic equation of (3.6) and the polynomial P (\) =
N4 a A" 4+ a, is called the characteristic polynomial of (3.6). Hence, if A is the
root of the characteristic polynomial then the function e* solves (3.6). We try to obtain
in this way n independent solutions.

Theorem 3.2 If the characteristic polynomial P (\) of (3.6) has n distinct complex roots
i, ..oy An, then the following n functions eM?t, ..., et are linearly independent solutions of

(3.6). Consequently, the general complex solution of (3.6) is given by
z(t) = Cre™t + ... 4 Cpett,

where C; are arbitrary complex numbers. _
If A\ = a+1ip is a non-real root of P (\) then A = o — i3 is also a root, and the func-

tions e, eM in the above sequence can be replaced by the real-valued functions e® cos [3t,

e sin 3t.
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Proof. Let us prove this by induction in n that the functions e*?, ..., e*! are linearly

independent provided A1, ..., \,, are distinct complex numbers. If n = 1 then the claim is
trivial, just because the exponential function is not identical zero. Inductive step from
n — 1 to n: Assume that, for some complex constants C,...,C,, and all ¢t € R,

CreM 4 . 4 Cpett =0, (3.7)

and prove that ¢y = ... = C,, = 0. Dividing (3.7) by e*' and setting y1; = \; — A, we
obtain
Cre"t + .+ Gyttt + O, = 0.

Differentiating in ¢, we obtain
Cru et + ...+ Cp1pt,, 1t = 0.

By the inductive hypothesis, we conclude that Cu; = 0 when by u; # 0 we conclude
C; =0, for all j =1,...,n — 1. Substituting into (3.7), we obtain also C,, = 0.

Since the complex conjugations commutes with addition and multiplication of num-
bers, the identity P (A\) = 0 implies P (X) = 0 (since a;, are real, we have @), = a;). Next,
we have

eM = e (cos ft +isinBt) and N = (cos Bt — sin ft) (3.8)
so that e* and e are linear combinations of e® cos 8t and e sin 3t. The converse is true
also, because

1 o 1 o
e cos Bt = 5 <e’\t + e’\t> and e sin ft = % (e’\t — e’\t> : (3.9)

Hence, replacing in the sequence e, ..., e*! the functions eM and e* by e cos St and

e sin 3t preserves the linear independence of the sequence. m

Example. Consider the ODE
2" — 32 4+ 22 =0.

The characteristic polynomial is P (\) = A\?> — 3\ + 2, which has the roots A\; = 2 and
Ao = 1. Hence, the linearly independent solutions are e?* and e?, and the general solution
is 01€2t + Cget.

Example. Consider the ODE 2" +z = 0. The characteristic polynomial is P (\) = \*+1,
which has the complex roots \; = 7 and Ay = —2. Hence, we obtain the complex solutions
et and e~. Out of them, we can get also real linearly independent solutions. Indeed,
just replace these two functions by their two linear combinations (which corresponds to
a change of the basis in the space of solutions)

eit 4 e—it it _ it

=cost and —— =sint.
2 21

Hence, we conclude that cost and sint are linearly independent solutions and the general
solution is C cost + Cysint.

Example. Consider the ODE 2" — 2 = 0. The characteristic polynomial is P (\) =
AP —1=(A—1)(A*+ A +1) that has the roots A\; = 1 and A\p3 = —2 + z@ Hence, we
obtain the three linearly independent real solutions

V3

t —1y _is .
2" cos —t, e 2" sin —1,
2 2

e, e
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and the real general solution is

3 3
Ciet + o3t (C’g cos gt + (5 sin %t) )

What to do when P () has fewer than n distinct roots? Recall the fundamental the-
orem of algebra (which is normally proved in a course of Complex Analysis): any poly-
nomial P () of degree n with complex coefficients has exactly n complex roots counted
with multiplicity. What is it the multiplicity of a root? If Aq is a root of P (\) then its
multiplicity is the maximal natural number m such that P ()) is divisible by (A — \g)",
that is, the following identity holds

PA)=(A=2)"Q(0),

where @) ()\) is another polynomial of A. Note that P (\) is always divisible by A — A\g so
that m > 1. The fundamental theorem of algebra can be stated as follows: if Aq,..., A,
are all distinct roots of P () and the multiplicity of \; is m; then

mi+..+m,=n

and, hence,

PA)=A=X)" . .(A=X\)"".
In order to obtain n independent solutions to the ODE (3.6), each root \; should give
rise to m; independent solutions.

Theorem 3.3 Let A1, ..., A\, be all the distinct complex roots of the characteristic polyno-
mial P (\) with the multiplicities my, ..., m,., respectively. Then the following n functions
are linearly independent solutions of (3.6):

{the¥t) j=1,.,r, k=0,..,m; — L (3.10)

Consequently, the general solution of (3.6) is

Id m]—l

p(t)=> ) Cythed', (3.11)

j=1 k=0

where Cy; are arbitrary complex constants.

If A = a+1if is a non-real root of P of multiplicity m, then X =a—if is also a root
of the same multiplicity m, and the functions tFe*, teM in the sequence (3.10) can be
replaced by the real-valued functions t*e™ cos Bt, t*e* sin Bt, for any k =0, ...,m — 1.

Remark. Setting

m;—1
Pi(t)=")  Cut",
k=1
we obtain from (3.11)
z(t) =Y Pj(t)eV. (3.12)
j=1



Hence, any solution to (3.6) has the form (3.12) where P; is an arbitrary polynomial of ¢
of the degree at most m; — 1.

Example. Consider the ODE z” — 22" + x = 0 which has the characteristic polynomial
PN =M-2\+1=(\—-1)>.

Obviously, A = 1 is the root of multiplicity 2. Hence, by Theorem 3.3, the functions e
and te' are linearly independent solutions, and the general solution is

T (t) = (01 + Cgt) €t.

Example. Consider the ODE v + 2V — 22" — 22" + 2/ + x = 0. The characteristic
polynomial is

PO =N+ -2 22 A +1=A-1"(\+1)>,

Hence, the roots are Ay = 1 with m; = 2 and Ay = —1 with my = 3. We conclude that
the following 5 function are linearly independent solutions:

e, tel, e, te t2e "
The general solution is

z(t) = (Cy + Cat) €' + (Cs + Cyt + Cst?) ™.

Example. Consider the ODE 2V + 22" + 2’ = 0. Its characteristic polynomial is
PO) =X +28 +A=A(A2+1)" = XA +0)> (A —i)?,

and it has the roots A\ = 0, \y =7 and A3 = —17, where Ay and A3 has multiplicity 2. The
following 5 function are linearly independent solutions:

1, e te', e te (3.13)
The general complex solution is then
Ci+ (Cy + Cst) €' + (Cy + Cst) e ™.

Replacing in the sequence (3.13) €, e~ by cost,sint and te”, te™" by tcost,tsint, we
obtain the linearly independent real solutions

1, cost, tcost, sint, tsint,
and the general real solution

Cy + (Cy + Cst) cost + (Cy + Cst) sint.
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We make some preparation for the proof of Theorem 3.3. Given a polynomial P (\) =
apN" +a A" ... +ag with complex coefficients, associate with it the differential operator

pP(LY) - LA R n_1+ -
at = Q di aq dt Qo

n n—1

= agﬁ + CLlW + ...+ ap,

where we use the convention that the “product” of differential operators is the composi-

tion. That is, the operator P (%) acts on a smooth enough function f (¢) by the rule

d
P <%> f=aof™ +a f® Y+ .. +aof

(here the constant term ag is understood as a multiplication operator).
For example, the ODE

2™ 4+ a1z Y 4 auz =0 (3.14)

d

where P (\) = A" +a; A" + ... + a, is the characteristic polynomial of (3.14).

can be written shortly in the form

Example. Let us prove the following identity:

P <%) M =P (\)eM (3.15)

It suffices to verify it for P (\) = A* and then use the linearity of this identity. For such
P ()\) = M\, we have

d\ n_ d' kAt At
P prl il =\Ne'=P(\)eY,

which was to be proved.

Lemma 3.4 If f(t),g(t) are n times differentiable functions on an open interval then,
for any polynomial P of the order at most n, the following identity holds:

P(4) 0 =3 1P (4 (3.16)

=0
Example. Let P(\) = A> + A+ 1. Then P’ (\) =2\ + 1, P” =2, and (3.16) becomes
d d 1 d
" !/ — P - /P/ _ - //P// _
(fo)" +(fay+fg = f (dt>g+f (dt>g+2f <dt>g
= [ +9d+9)+ 124 +9)+ 1"
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It is an easy exercise to see directly that this identity is correct.

Proof. It suffices to prove the identity (3.16) in the case when P (\) = \*, k < n,
because then for a general polynomial (3.16) will follow by taking linear combination of
those for A*. If P (\) = \* then, for j < k

PO =k(k—1)..(k—j+ 1)\

and PU) = 0 for j > k. Hence,

d AN

PY) <%> =0, j>k,

and (3.16) becomes

k - k
k (K k:— +1) ) by R\ ) (e
(g) — Z IHY g0 - 3 <j> FO0) g, (3.17)
Jj=

J=0

The latter identity is known from Analysis and is called the Leibniz formula™ m

Lemma 3.5 A complex number X\ is a root of a polynomial P with the multiplicity m if
and only if
P® (X)) =0 for allk=0,....,m — 1 and P™ (\) # 0. (3.18)

Proof. If P has a root A with multiplicity m then we have the identity for all z € C

Pz)=(E-N"Q ()

where @ is a polynomial such that @ (\) # 0. For any natural k, we have by the Leibniz

formula i
k .
P(k Z <]> )(J) Q(k 7) (2).

7=0
If £ < m then also 7 < m and

((z = AN™Y = const (z — \)™ 7,

which vanishes at z = A\. Hence, for k < m, we have P*) (\) = 0. For k = m we have

again that all the derivatives ((z — )\)m)(j ) vanish at z = A provided j < k, while for j = k
we obtain

((z=0™MY = (e =A™ =ml 0.
Hence,
P (A) = ((z=N)™)"™ Q) #0.
If k = 1 then (3.17) amounts to the familiar product rule
(f9)' = f'g+fg'.

For arbitrary k € N, (3.17) is proved by induction in k.
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Conversely, if (3.18) holds then by the Taylor formula for a polynomial at A, we have

/ (n)
P(z) = P()\)+P1—(!)\)(Z—A)+...+PT!()\)(Z—)\)"
_ L (Z!W PRV (Z!W (2 = A"
= (z=-N"Q(»)
where
(m) (m+1) (n)
Q=" P(m - f;) ot T

Obviously, @ (\) = PR # 0, which implies that A is a root of multiplicity m. m

m/!

Lemma 3.6 If Ay, ..., \, are distinct complex numbers and if, for some polynomials P; (t),
Z Pj(t)eM =0 forallt €R, (3.19)
j=1

then P; (t) =0 for all j.

Proof. Induction in r. If r = 1 then there is nothing to prove. Let us prove the
inductive step from 7 — 1 to r. Dividing (3.19) by e*?! and setting pj = Aj — A, we obtain
the identity

Tzi P;(t)et' + P.(t) = 0. (3.20)

Choose some integer k > deg P,, where deg P as the maximal power of ¢ that enters P
with non-zero coefficient. Differentiating the above identity & times, we obtain

r—1
> Qit)ert =0,
j=1

where we have used the fact that (P,)* = 0 and

(P (0 es)® = Q; ()

for some polynomial ); (this for example follows from the Leibniz formula). By the
inductive hypothesis, we conclude that all (); = 0, which implies that

(Pyer)™ =0,
Hence, the function Pjes" must be equal to a polynomial of the degree at most k, which
is only possible if P; = 0. Substituting into (3.20), we obtain that also P, =0. m
Proof of Theorem 3.3. Let P (\) be the characteristic polynomial of (3.14). We

first prove that if ) is a root of multiplicity m then the function t*e* solves (3.14) for any
k=0,...,m—1. By Lemma 3.4, we have

d —~ 1 ) p) (9
P <%> (tkekt) _ ]Z_(;ﬁ (tk) pU) <%> Ry
"1

_ Z_ ( k:)(j) P (\) M,

=
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If j > k then the (t’“)(j) =0. If j < k then j < m and, hence, PY) (\) = 0 by hypothesis.
Hence, all the terms in the above sum vanish, whence

p <%> (t"eM) =0,

that is, the function z (t) = t*e* solves (3.14).
If A1, ..., A, are all distinct complex roots of P (\) and m; is the multiplicity of A; then
it follows that each function in the following sequence

{theM'} j=1,.,r, k=0,...,m; —1, (3.21)

is a solution of (3.14). Let us show that these functions are linearly independent. Clearly,
each linear combination of functions (3.21) has the form

r m]—l

DN Cuttet =Y Pi(t) e (3.22)
j=1 k=0 j=1
where P; (t) = >, ! Cjxt" are polynomials. If the linear combination is identical zero

then by Lemma 3.6 P; = 0, which implies that all C};, are 0. Hence, the functions (3.21)
are linearly independent, and by Theorem 3.1 the general solution of (3.14) has the form
(3.22).

Let us show that if A = o + i is a complex (non-real) root of multiplicity m then
A = a— i3 is also a root of the same multiplicity m. Indeed, by Lemma 3.5, \ satisfies the
relations (3.18). Applying the complex conjugation and using the fact that the coefficients
of P are real, we obtain that the same relations hold for A instead of A, which implies
that \ is also a root of multiplicity m. _

The last claim that every couple t*e*, t*er in (3.21) can be replaced by real-valued
functions t*e® cos ft, t*e sin ft, follows from the observation that the functions t*e®* cos j3t,
tFe?t sin 5t are linear combinations of t*e?, t*eM, and vice versa, which one sees from the
identities 1 1

e cos Bt = = (e)‘t + e)‘t> . esinft = — <e)‘t — e’\t> ,
2 21
eM = e (cos Bt + isin fit), eM = e (cos ft — isin fit),

multiplied by ¢* (compare the proof of Theorem 3.2). m

3.3 Space of solutions of inhomogeneous systems
Consider now an inhomogeneous linear ODE
o =At)z+ B(t), (3.23)

where A (t) : I — R™™ and B (t) : I — R" are continuous mappings on an open interval
I CR

Theorem 3.7 If xq (t) is a particular solution of (3.23) and x1 (t), ..., x, (1) is a sequence
of n linearly independent solutions of the homogeneous ODE ' = Ax then the general
solution of (3.23) is given by

z(t) =z (t) + Cray () + ... + Crxy, (1) . (3.24)
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Proof. If z (¢) is also a solution of (3.23) then the function y (t) = x (t) — ¢ (t) solves
y' = Ay, whence by Theorem 3.1

y=Cixy (t) + ... + Cpxy, (1), (3.25)

and x (t) satisfies (3.24). Conversely, for all C, ...C,,, the function (3.25) solves y = Ay,
whence it follows that the function z (t) = o (t) + y (¢) solves (3.23). m
Consider now a scalar ODE

2™ fa, () 2"V + L 4a, ()= f(t) (3.26)

where all functions ag, ..., a,, f are continuous on an interval I.

Corollary If x (t) is a particular solution of (3.26) and xy (t), ..., z, (t) is a sequence of
n linearly independent solutions of the homogeneous ODE

2™ fa () 2"V + . 4a,(t) =0,
then the general solution of (3.26) is given by

z(t) =9 (t) + Cray (t) + ... + Crxy, (1) .

The proof is trivial and is omitted.

3.4 Linear inhomogeneous ODEs with constant coefficients
Here we consider the ODE
2™ a2V 4+ ar = f (1), (3.27)

where the function f () is a quasi-polynomial, that is, f has the form
fE) = Rj(t)en'
J

where R; (t) are polynomials, y1; are complex numbers, and the sum is finite. It is obvious
that the sum and the product of two quasi-polynomials is again a quasi-polynomial.
In particular, the following functions are quasi-polynomials

the cos Bt and  t*e® sin Bt
(where k is a non-negative integer and «, § € R) because

iBt 4 ,—ift it _ —ipt
cos ft = P te and sin gt = M
2 2
As we know, the general solution of the inhomogeneous equation (3.27) is obtained as
a sum of the general solution of the homogeneous equation and a particular solution of
(3.27). Hence, we focus on finding a particular solution of (3.27).
As before, denote by P () the characteristic polynomial of (3.27), that is

PA)=X"+a "+ .. +a,.
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Then the equation (3.27) can be written shortly in the form P (4)z = f, which will be
used below. We start with the following observation.
Claim. If f = ¢1 fi+...4+cpfr and xq (t) , ...,z (t) are solutions to the equation P (%) xj =
fj, then © = c1x1 + ... + cpxy, solves the equation P (%) x=f.

Proof. This is trivial because

d d p

n

Hence, we can assume that the function f in (3.27) is of the form f(t) = R(¢t) e
where R (t) is a polynomial.

To illustrate the method, which will be used in this Section, consider first the following
example.

Example. Consider the ODE
d

p(4)om 28

where 1 is not a root of the characteristic polynomial P (\) (non-resonant case). We
claim that (3.28) has a particular solution in the form z (t) = ae where a is a complex
constant to be chosen. Indeed, we have by (3.15)

p<%>@%)ngowa

whence J
P <E) (ae“t) = el
provided
1

Consider some concrete examples of ODE. Let us find a particular solution to the

ODE
2+ 22+ x =€l

Note that P (A\) = A> 4+ 2\ + 1 and g = 1 is not a root of P. Look for a solution in the
form x (t) = ae’. Substituting into the equation, we obtain

ae' + 2aet + ael = et

whence we obtain the equation for a:

da=1,a=-.
a , Q 1

Alternatively, we can obtain a from (3.29), that is,

111
TP 1+241 4

et.

=

Hence, the answer is z (t) =
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Consider another equation:
'+ 22 + x = sint (3.30)
Note that sint is the imaginary part of €. So, we first solve
2" 422 o=

and then take the imaginary part of the solution. Looking for a solution in the form
z (t) = ae™, we obtain

1 1 1 ?
a = —= = — = ——
P(p) #2+2i4+1 2 2
Hence, the solution is
T = ieit— i(cost+isint)— 1sint icost
22 2 2
Therefore, its imaginary part = () = —% cost solves the equation (3.30).

Consider yet another ODE
2" + 22 +x = e ' cost. (3.31)
Here e~ cost is a real part of e/* where 1 = —1 + 7. Hence, first solve
"+ 22 +x = e

Setting x (t) = ae', we obtain

1 1
TP Clrifr2(-11i+1 =t

Hence, the complex solution is z (t) = —e(7!7)! = —e~tcost — ie ' sint, and the solution
to (3.31) is x (t) = —e ' cost.
Finally, let us combine the above examples into one:

2" + 22" + 1 = 2¢" —sint + e ' cost. (3.32)

A particular solution is obtained by combining the above particular solutions:

z(t) = 2 Get) — <—%cost> + (—e " cost)

= Ze'+ 1Cost — e teost
2 2 '

Since the general solution to the homogeneous ODE z” 4+ 22" + 2 =0 is
X (t) = (Cl + Ogt) €_t,

we obtain the general solution to (3.32)
e 1y 1 —t
z(t)=(C1+Cat)e +§e +§cost—e cost.
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Consider one more equation
2"+ 20 +r =€

This time ¢ = —1 is a root of P (\) = A? + 2\ + 1 and the above method does not work.
Indeed, if we look for a solution in the form x = ae™" then after substitution we get 0 in
the left hand side because e~ solves the homogeneous equation.

The case when p is a root of P () is referred to as a resonance. This case as well as
the case of the general quasi-polynomial in the right hand side is treated in the following
theorem.

Theorem 3.8 Let R (t) be a non-zero polynomial of degree k > 0 and p be a complex
number. Let m be the multiplicity of i if v is a root of P and m = 0 if p is not a root of

P. Then the equation
d

P <%> r=R(t)e"

z(t) =1"Q (1) e,
where @ (t) is a polynomial of degree k (which is to be found).

has a solution of the form

Example. Come back to the equation
2 420 =€t

Here . = —1 is a root of multiplicity m = 2 and R (¢t) = 1 is a polynomial of degree 0.
Hence, the solution should be sought in the form

x(t) = at’e™’

where a is a constant that replaces () (indeed, () must have degree 0 and, hence, is a
constant). Substituting this into the equation, we obtain

a ((t2e_t)” +2 (tge_t), + t26_t> =e! (3.33)
Expanding the expression in the brackets, we obtain the identity
(t2e’t)” +2 (t2e*t), +tPet =2e7,
so that (3.33) becomes 2a =1 and a = % Hence, a particular solution is

1
z(t) = §t26’t.

Consider one more example.

2+ 2 +x=te?
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with the same p = —1 and R (t) = t. Since deg R = 1, the polynomial () must have
degree 1, that is, @ (t) = at + b. The coefficients a and b can be determined as follows.
Substituting

z(t) = (at +b)tPe™ = (at® + bt*) e

into the equation, we obtain

2"+ 2+ = ((at3 - bt2) e_t)” +2 ((at3 + bt2) e_t), + (at3 + bt2) et
= (2b+6at)e "

Hence, comparing with the equation, we obtain
20+ 6at =t
so that b =0 and a = é. The final answer is

t3
z(t) = ge_t.

Proof of Theorem 3.8. Let us prove that the equation

P <%> r=R(t)e"

has a solution in the form
x(t) =t"Q (t) e
where m is the multiplicity of p and deg ) = k = deg R. Using Lemma 3.4, we have

P(5)e = #(5) Q) = 5 "0 PV (5)
= TS mQE) D PO () e (3.34)

Jj=0

By Lemma 3.4, the summation here runs from j = 0 to j = n but we can allow any
j > 0 because for j > n the derivative PY) is identical zero anyway. Furthermore, since
P () = 0 for all j <m — 1, we can restrict the summation to j > m. Set

y (1) = ("Q ()™ (335)

and observe that y (t) is a polynomial of degree k, provided so is @ (t). Conversely, for
any polynomial y (¢) of degree k, there is a polynomial @ (t) of degree k such that (3.35)
holds. Indeed, integrating (3.35) m times without adding constants and then dividing by
t™, we obtain @) (t) as a polynomial of degree k.

It follows from (3.34) that y must satisfy the ODE

P ()

P () P (p) .
(m )] Y +...=R(1),

Y )

— Y+ ..+
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which we rewrite in the form

boy + by + ... + by + .. = R(t) (3.36)

P((;:;z)(,“ ) (in fact, the index i in the left hand side of (3.36) can be restricted

to i < k since y® = 0 for i > k). Note that

where b; =

P ()

by = £0. (3.37)

m)!

Hence, the problem amounts to the following: given a polynomial
R (t) = ’I“th + Tltk_l + ...+

of degree k, prove that there exists a polynomial y (¢) of degree k that satisfies (3.36). Let
us prove the existence of y by induction in k.

The inductive basis. If £ = 0, then R (t) = ry and y (t) = a, so that (3.36) becomes
aby = ro whence a = ry/by (where we use that by # 0).

The inductive step from the values smaller than k to k. Represent y in the from

y=at® + 2 (1), (3.38)

where z is a polynomial of degree < k. Substituting (3.38) into (3.36), we obtain the
equation for z

boz + b2 + ...+ b2 + .. =R (t) — (abotk + aby (tk)/ + ... + aby (tk)(k)> = R(t).

Choosing a from the equation aby = ry we obtain that the term t* in the right hand side
of (3.38) cancels out, whence it follows that R (¢) is a polynomial of degree < k. By the
inductive hypothesis, the equation

has a solution z (¢) which is a polynomial of degree < k. Hence, the function y = at* + 2
solves (3.36) and is a polynomial of degree k. =

Remark. If & = 0, that is, R (t) = 1 is a constant then (3.36) yields

_To _ mlro
Y% P ()

The equation (3.35) becomes

m (m) _ ”1!7‘0
t t = =
whence after m integrations we find
7o
Q) =—=——.
0= o
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Therefore, the ODE P ( ) x = roei has a particular solution

4
dt

(1) = S tme (3.39)

Example. Consider again the ODE z” + 22/ + 2 = ¢!, Then p = —1 has multiplicity
m =2, and R (t) = 1. Hence, by the above Remark, we find a particular solution

1 1
t) = tret = —t?e .
x(t) P70 e St e

3.5 Second order ODE with periodic right hand side
Consider a second order ODE
a4+ pr' 4 qr = f(t), (3.40)

which occurs in various physical phenomena. For example, (3.40) describes the movement,
of a point body of mass m along the axis x, where the term px’ comes from the friction
forces, gz - from the elastic forces, and f () is an external time-dependant force. Another
physical situation that is described by (3.40), is an electrical circuit:

v(t) * EL

O=——

As before, let R the resistance, L be the inductance, and C be the capacitance of the
circuit. Let V' (¢) be the voltage of the power source in the circuit and z (¢) be the current
in the circuit at time t. Then we have seen that the equation for x (¢) is

Lﬂ+m%%:V.

If L > 0 then dividing by L we obtain an ODE of the form (3.40).
As an example of application of the above methods of solving such ODEs, we investi-
gate here the case when function f (¢) is periodic. More precisely, consider the ODE

2" + px’ + gx = Asinwt, (3.41)
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where A,w are given positive reals. The function Asinwt is a model for a more general
periodic force, which makes good physical sense in all the above examples. For example,
in the case of electrical circuit the external force has the form A sinwt if the power source
is an electrical socket with the alternating current (AC). The number w is called the
frequency of the external force (note that the period = %’T) or the external frequency, and
the number A is called the amplitude (the maximum value) of the external force.
Assume in the sequel that p > 0 and ¢ > 0, which is physically most interesting case.
To find a particular solution of (3.41), let us consider the ODE with complex right hand
side:
2" + pr' + qr = Ae™". (3.42)

Consider first the non-resonant case when 7w is not a root of the characteristic polynomial
P ()\) = A? + pA + ¢. Searching the solution in the from ce™* | we obtain

c= A A =:a+1b
- P(iw) —w?4piwtq

and the particular solution of (3.42) is
(a+1ib) ™" = (acoswt — bsinwt) + i (asinwt + beoswt) .
Taking its imaginary part, we obtain a particular solution to (3.41)
z (t) = asinwt + becoswt = Bsin (wt + ¢) (3.43)

where

B=V@FR=|c = A (3.44)
Vg — w2 w22

and ¢ € [0,2m) is determined from the identities

CoS a Si b
==, SMpy=—=.
B B

The number B is the amplitude of the solution and ¢ is the phase.
To obtain the general solution to (3.41), we need to add to (3.43) the general solution
to the homogeneous equation
" 4+ px’ + qx = 0.

Let A\; and \g are the roots of P (), that is,
P2

P
Ao = —=*+1/— —q.
1,2 5 4 q

Consider the following possibilities for the roots.
A1 and Ay are real. Since p > 0 and g > 0, we see that both A\; and )\, are strictly
negative. The general solution of the homogeneous equation has the from

Cle’\lt + CzeAZt if )\1 7é )\2,
(Cl + Cgt) e)‘lt if )\1 = )\2.
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In the both cases, it decays exponentially in ¢ as ¢ — +o00. Hence, the general solution of
(3.41) has the form

x (t) = Bsin (wt + ¢) + exponentially decaying terms.

As we see, when t — oo the leading term of x (t) is the above particular solution
Bssin (wt + ¢). For the electrical circuit this means that the current quickly stabilizes
and becomes also periodic with the same frequency w as the external force.

A1 and Ay are complex.
Let A\; 2 = o = i3 where

2
a=-p/2<0 and 6:'\/q—pz>0

The general solution to the homogeneous equation is
e (C cos Bt + Cysin Bt) = Ce™ sin (Bt + 1) .

The number £ is called the natural frequency of the physical system in question (pendu-
lum, electrical circuit, spring) for the obvious reason - in absence of the external force,
the system oscillate with the natural frequency S.

Hence, the general solution to (3.41) is
z (t) = Bsin (wt + ¢) + Ce* sin (Bt + 1) .

If @ < 0 then the leading term is again Bsin (wt + ¢). Here is a particular example of
such a function: sint + 2e~*/4sin 7t

g

1.57]

INAWAWA
L IVRVAY

M1 and )\, are purely imaginary, that is, a = 0. In this case, p = 0, ¢ = /3, and the
equation has the form

2" + %z = Asinwt.

The assumption that iw is not a root implies w # 3. The general solution is
x (t) = Bsin (wt + ¢) + C'sin (St + 1),
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which is the sum of two sin waves with different frequencies - the natural frequency and
the external frequency. Here is a particular example of such a function: sint + 2 sin nt:

y
25T

UL
VIRV

-1.257

257

Strictly speaking, in practice such electrical circuits do not occur since the resistance is
always positive.

Let us come back to the formula (3.44) for the amplitude B and, as an example of
its application, consider the following question: for what value of the external frequency
w the amplitude B is maximal? Assuming that A does not depend on w and using the
identity

A2
wh+ (p* = 2q)w? + ¢*
we see that the maximum B occurs when the denominators takes the minimum value. If
p? > 2q then the minimum value occurs at w = 0, which is not very interesting physically.
Assume that p? < 2¢ (in particular, this implies that p? < 4¢, and, hence, A\; and ), are
complex). Then the maximum of B occurs when

B? =

2 Llin oy _ P
W= 2(p 2q)—q 5

oo = TP

is called the resonant frequency of the physical system in question. If the external force
has the resonant frequency then the system exhibits the highest response to this force.
This phenomenon is called a resonance.

Note for comparison that the natural frequency is equal to 5 = /¢ — p?/4, which is
in general different from wy. In terms of wy and 3, we can write

The value

o A2 - A2
w20k @2 (w2 — w2 42 — W
0 (W2 —wd) + ¢% — wp

A2

(w? = wf) + 2B

where we have used that
2\ 2 4
p b
QQ—WéZQZ—GI—?) :CZPQ—ZZPQﬁQ-
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A

In particular, the maximum amplitude that occurs when w = wq is Bpax = o5

In conclusion, consider the case, when iw is a root of P (), that is
(iw)® + piw +q = 0,

which implies p = 0 and ¢ = w?. In this case « = 0 and w = wy = B = V4, and the
equation has the form
"+ w?r = Asinwt.
Considering the ODE ‘
x”—{—le' — Aezwt,

and searching a particular solution in the form x (t) = cte™*, we obtain by (3.39)

Cc = = —.

P (iw) 2w

Hence, the complex particular solution is
At

At A
= —3— coswt + — sinwt
22w 2w 2w

z'wt

z(t) =

and its imaginary part is

t
x(t) = —5, cos wt.
w

Hence, the general solution is

x(t) = —% coswt 4+ C'sin (wt + 1) .

Here is an example of such a function: —tcost + 2sint

y
27T

NTAA A
IAVAVES

20T

o

Hence, we have a complete resonance: the external frequency w is simultaneously equal
to the natural frequency and the resonant frequency. In the case of a complete resonance,
the amplitude increases in time unbounded. Since unbounded oscillations are physically
impossible, either the system breaks down over time or the mathematical model becomes
unsuitable for describing the physical system.
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3.6 The method of variation of parameters
3.6.1 A system of the 1st order

We present here the method of variation of parameters in order to solve a general linear
system

o =A(t)z+ B(t)

where as before A (t) : I — R and B (t) : [ — R" are continuous. Let z; (1) ,...,x, (t)
be n linearly independent solutions of the homogeneous system x’ = A (t) x, defined on
I. We start with the following observation.

Lemma 3.9 If the solutions xy (t),...,z, (t) of the system &' = A (t) x are linearly inde-
pendent then, for any ty € I, the vectors xy (o), ..., Tn (to) are linearly independent.

Proof. Indeed, assume that for some constant C1,....,C,
Cll'l (to) + ...+ Cnl'n (to) =0.

Consider the function z (t) = Cyzy (t) + ... + Crxy, () . Then x (¢) solves the IVP

whence by the uniqueness theorem z () = 0. Since the solutions z1, ..., x,, are independent,
it follows that C; = ... = C,, = 0, whence the independence of vectors x; (to) , ..., z, (fo)
follows. m

Example. Consider two vector functions

cost sint
() = <sint> and (1) = (cos t>’

which are obviously linearly independent. However, for t = 7/4, we have

o (1) = ( gﬁ > — 25 (1)

so that the vectors xy (7/4) and z (7/4) are linearly dependent. Hence, x1 (t) and x5 (t)
cannot be solutions of the same system x’ = Ax.
For comparison, the functions

cost —sint
() = <sint> and (1) = ( cost >

are solutions of the same system
7 = 0 —1 x
- \1 0 ’

and, hence, the vectors x; (t) and x5 (t) are linearly independent for any ¢. This follows

also from
cost —sint

det (x; | x2) = det < :

sin cost

>:1¢0
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Given n linearly independent solutions to 2’ = A (t) x, form a n x n matrix
X () =@ (t) [22(0) [...] 2 (1))

where the k-th column is the column-vector xy (), £ = 1,...,n. The matrix X is called
the fundamental matrixz of the system ' = Ax.

It follows from Lemma 3.9 that the column of X (¢) are linearly independent for any
t € I, which in particular means that the inverse matrix X ! (¢) is also defined for all
t € I. This allows us to solve the inhomogeneous system as follows.

Theorem 3.10 The general solution to the system
¥=A{t)z+ B(t), (3.45)

18 given by
2(t) = X (1) / X1 () B () dt, (3.46)

where X is the fundamental matriz of the system x’ = Awx.

Note that X !B is a time dependent n-dimensional vector, which can be integrated
in ¢ componentwise.
Proof. Observe first that the matrix X satisfies the following ODE

X' = AX.

Indeed, this identity holds for any column x;, of X, whence it follows for the whole matrix.
Differentiating (3.46) in ¢ and using the product rule, we obtain

Y= X () / X0 B(t)dt+ X (1) (X (t) B(1))
_ AX/XlB(t) dt + B (1)
— Ar+B(1).

Hence, z (t) solves (3.45). Let us show that (3.46) gives all the solutions. Note that the
integral in (3.46) is indefinite so that it can be presented in the form

/X1@B®ﬁ2V®+Q

where V (t) is a vector function and C' = (C4,...,C),) is an arbitrary constant vector.
Hence, (3.46) gives

z(t) = XOVE+X(E)C

where x (t) = X (t) V () is a solution of (3.45). By Theorem 3.7 we conclude that z (t)
is indeed the general solution. m
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Second proof. Let us show a different way of derivation of (3.46) that is convenient
in practical applications and also explains the term “variation of parameters”. Let us
look for a solution to (3.45) in the form

w(t)=Cy()ay () + ...+ Cp () 20 (1) (3.47)

where C1,C5,..,C,, are now unknown real-valued functions to be determined. Since
x1(t), ..., z, (t) are for any ¢ linearly independent vectors, any R"-valued function x ()
can be represented in the form (3.47). The identity (3.47) can be considered as a lin-
ear system of algebraic equations with respect to the unknowns Cfi, ..., C,. Solving it by
Cramer’s rule, we obtain (1, ..., C}, in terms of rational functions of 1, ..., x,,, x. Since the
latter functions are all differentiable in ¢, we obtain that also (4, ..., C,, are differentiable
in ¢.
Differentiating the identity (3.47) in time and using z), = Axy, we obtain

¥ = Cixy+ Coxly + ... + Cha,
+Chay + Chxg + ... + Cl iy
= C1Az, + CyAxy + ...+ C, Ax,,
+Cix1 + Coxa + ... + Ch iy
= Ax+ Clzy + Chxy + ... + Cx.

Hence, the equation x’ = Az + B becomes
Cix1+ Chag + ...+ Cl,, = B. (3.48)

If C (t) denotes the column-vector with components C (t), ..., C, (¢) then (3.48) can be
written in the form

XC'=B
whence

/ 1B

/ XH(t) B (t) dt,
and

2(t) = XC = X (#) / X1 (1) B (¢) dt.
|
The term “variation of parameters” comes from the identity (3.47). Indeed, if C1, ...., C,,

are constant parameters then this identity determines the general solution of the homoge-
neous ODE z/ = Azx. By allowing (4, ..., C, to be variable, we obtain the general solution
tox’ = Ax + B.

Example. Consider the system

or, in the vector form,



It is easy to see that this system has two independent solutions

cost —sint
71 () = < sint ) and 7 () = < cost ) )

Hence, the corresponding fundamental matrix is

cost —sint
sint cost

X:<
and
-l cost sint
~ \ —sint cost

Consider now the ODE
¥=A{t)z+ B(t)

by ()
ba (t)

B cost —sint "( cost sint by (t) di
v sint  cost —sint cost b (t)

B cost —sint " by (t)cost+ by (t)sint di

N sint  cost —by (t)sint + by (t) cost '

1

cost —tsint g — tcost + Cy
. —sint — tcost -\ —tsint+Cy )’

S cost —sint tcost + C4
o sint cost —tsint + Cy
Cicost — Cysint +¢
Cysint + Cycost

t cost —sint
- <O>+Cl<sint>+02< cost )

3.6.2 A scalar ODE of n-th order

where B (t) = < > By (3.46), we obtain the general solution

Consider a particular example B (t) = < y ) Then the integral is

whence

Consider now a scalar ODE of order n
2™ ay ()" o ta, ()= [ (1),

where ay (t) and f (t) are continuous functions on some interval . Recall that it can be
reduced to the vector ODE
x' =A(t)x+ B(t)
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where

!
xwy=| *0
:L,(nfl) (t)
and
0 1 0 0 0
0 0 1 .. 0 0
A= and B =
0 0 0 o1
—ap —Ap—1 —Ap—92 ... —a1 f

If 4, ..., z, are n linearly independent solutions to the homogeneous ODE
2™+ a2V 4+ 4a, )z =0

then denoting by x1, ..., x,, the corresponding vector solution, we obtain the fundamental
matrix

X ) T

x/ ;C/ l‘,

X =[x ..[x) = N oo
;ggn_l) xén_l) :r%”_l)

We need to multiply X! by B. Denote by v, the element of X! at position i, k
where ¢ is the row index and £ is the column index. Denote also by ¥, the k-th column

Yik
of X7! thatis, y, = | ... |. Then
Ynk
Yyir - Yin 0 Yinf
X'B=\| .. .. .. .| = = fyn,

and the general vector solution is

x:X(t)/f(t)yn(t)dt.

We need the function x (¢) which is the first component of x. Therefore, we need only to
take the first row of X to multiply by the column vector [ f () y, (t) dt, whence

20 =Y 50 [ 1Oy Ot

Hence, we have proved the following.

Corollary. Let xy,...,x, be n linearly independent solution to
2™ 4y () 2"V + L 4a, )z =0

and X be the corresponding fundamental matrixz. Then, for any continuous function f (t),
the general solution to the ODE

2™ 4ay () 2"V + L ta, )z = f (1)
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15 given by .
2(0) =Y 0) [ £ O )t (3.49

where y;). are the entries of the matriz X .
Example. Consider the ODE

2’ 4+ x =sint

The independent solutions are  (t) = cost and x5 (t) = sint, so that
¥ cos t sint
—sint cost

1 [ cost —sint
X _<sint Cost>

The inverse is

Hence, the solution is
2(@) = w(0) [ FOuaOdt () [ 1O d
= cost/sint(—sint) dt—l—sint/sintcostdt
. 9 L. :
= —cost [ sin“tdt + 3 sint [ sin2tdt
1 1 . 1.
= —cost §t—zsm2t—|—C’1 +Zsmt(—c082t+02)
1 1 . . .
= —§tcost + 2 (sin2tcost — sintcos 2t) + C3cost 4+ Cysint

1
= —§tcost + C3cost + Cssint.

Of course, the same result can be obtained by Theorem 3.8.
Consider one more example, when the right hand side is not a quasi-polynomial:

2"+ x = tant. (3.50)

Then as above we obtain®

r = cost/tant(—sint)dt+sint/tantcostdt

1 1 —sint . . .
= cost|—In{———) +sint | —sintcost + C;cost + Cysint
2 1+sint

1 1 —sint
= §cost1n<TZEt)+Clcost—|—C'gsint.

8The intergal [ tanx sin tdt is taken as follows:

.2 2
3 t 1 —cos“t dt
/tanmsin tdt = / e dt = / o8 dt = / —sint.
cost cost cost
/’ dt / dsint / dsint 1 | 1 —sint
= e = —1n .
J cost ) cos?t ) 1—sin?t 2 14sint
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Let us show how one can use the method of variation of parameters directly, without
using the formula (3.49). Consider the ODE

2 +x=f(t). (3.51)
The general solution to the homogeneous ODE 2" + z = 0 is
x (t) = Cycos +Csysint, (3.52)

where ('} and Cy are constant parameters. let us look for the solution of (3.50) in the
form
x(t) = Cy (t)cost 4+ Cy (t)sint, (3.53)

which is obtained from (3.52) by replacing the constants by functions (hence, the name
of the method “variation of parameters”). To obtain the equations for the unknown
functions C} (t), Cy (1), differentiate (3.53):
2 (t) = —Cy(t)sint+ Cy(t)cost (3.54)
+C1 (t) cost + C4 (t) sin t.

The first equation for C, Cy comes from the requirement that the second line here (that
is, the sum of the terms with C| and C%) must vanish, that is,

C]cost + Cysint = 0. (3.55)

The motivation for this choice is as follows. Switching to the normal system, one must
have the identity
x(t)=Cy(t)x1 (1) + Caxa (1),

which componentwise is
x(t) = Cy(t)cost+ Cy(t)sint
' (t) = O (t)(cost) + Cy(t) (sint).
Differentiating the first line and subtracting the second line, we obtain (3.55).
It follows from (3.54) and (3.55) that
2 = —Cjcost— Cysint
—C}sint + Cj cost,
whence
2" +x=—Cysint + C)cost

(note that the terms with C; and Cy cancel out and that this will always be the case
provided all computations are done correctly). Hence, the second equation for C and C},
is

—Cysint + Cycost = f (),

Solving the system of linear algebraic equations

Cicost+ Chysint =0
—Cysint + Chcost = f(t)
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we obtain

C1 = —f(t)sint, Cy = [ (t)cost
whence , ,
Cy = —/ f(t)sintdt, Cy= / f (t) costdt

and

x(t) = —cost/f(t)sintdt-I—Sint/f(t) cos tdt.

3.7 Wronskian and the Liouville formula

Let I be an open interval in R.

Definition. Given a sequence of n vector functions x1,...,x, : I — R", define their
Wronskian W (t) as a real valued function on I by

W (t) = det (1 () | 22 (t) [ 2n (1)),

where the matrix on the right hand side is formed by the column-vectors x4, ..., z,,. Hence,
W (t) is the determinant of the n x n matrix.

Definition. Let x4, ..., x, are n real-valued functions on I, which are n — 1 times differ-
entiable on I.. Then their Wronskian is defined by

T i) Tn

" x e

W (t) = det ! 2 "
xYL_l) a:én_l) R )

Lemma 3.11 (a) Let xy,...,z, be a sequence of R™-valued functions that solve a linear
system x' = A(t)x, and let W (t) be their Wronskian. Then either W (t) = 0 for all
t € I and the functions xy, ..., z,, are linearly dependent or W (t) # 0 for allt € I and the
functions x4, ..., x, are linearly independent.

(b) Let xy, ..., x, be a sequence of real-valued functions that solve a linear system ODE

2™ 4ay () 2™+ 4a, () =0,

and let W (t) be their Wronskian. Then either W (t) = 0 for all t € I and the functions
X1, ..., Ty are linearly dependent or W (t) # 0 for allt € I and the functions x1, ..., x, are
linearly independent.

Proof. (a) Indeed, if the functions z, ..., x,, are linearly independent then, by Lemma
3.9, the vectors x; (), ..., z, (t) are linearly independent for any value of ¢, which im-
plies W (t) # 0. If the functions z,...,x, are linearly dependent then also the vectors

x1(t),...,z, (t) are linearly dependent for any ¢, whence W (t) = 0.
(b) Define the vector function
Tk
X = .f?c
x}(j{;l)



so that xy, ..., X is the sequence of vector functions that solve a vector ODE x' = A (t) x.
The Wronskian of x4, ..., x,, is obviously the same as the Wronskian of z1, ..., z,,, and the
sequence Xi, ..., X, is linearly independent if and only so is z1,...,z,. Hence, the rest
follows from part (a). =

Theorem 3.12 (The Liouville formula) Let {z;}._, be a sequence of n solutions of the
ODE x' = A(t) x, where A : I — R™™ is continuous. Then the Wronskian W (t) of this
sequence satisfies the identity

W (t) = W (to) exp < /t frace A (7) d7> | (3.56)

to

forallt,ty € I.

Recall that the trace (Spur) trace A of the matrix A is the sum of all the diagonal
entries of the matrix.

Proof. Let the entries of the matrix (z1| x2|...|x,) be x;; where ¢ is the row index and
J is the column index; in particular, the components of the vector z; are x1;, xa;, ..., Tp;.
Denote by r; the i-th row of this matrix, that is, r; = (1, %2, ..., i, ); then

(&1
T

W = det

Tn

We use the following formula for differentiation of the determinant, which follows from
the full expansion of the determinant and the product rule:

] 1 r
/
W' t)=det | "> | +det| " | +..+det| " |. (3.57)
Tn Tn rh

Indeed, if fi(t),..., fn (t) are real-valued differentiable functions then the product rule
implies by induction

Hence, when differentiating the full expansion of the determinant, each term of the de-
terminant gives rise to n terms where one of the multiples is replaced by its derivative.
Combining properly all such terms, we obtain that the derivative of the determinant is
the sum of n determinants where one of the rows is replaced by its derivative, that is,
(3.57).

The fact that each vector x; satisfies the equation z; = Ax; can be written in the
coordinate form as follows

k=1
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For any fixed 4, the sequence {z; };.L:l is nothing other than the components of the row
r;. Since the coefficients A;;, do not depend on j, (3.58) implies the same identity for the

TroOws:
n
! § :
r, = Aik:rk-
k=1

That is, the derivative 7} of the i-th row is a linear combination of all rows ;. For example,
’I“ll = Allrl + A12’I“2 + ...+ Alnrn
which implies that

] 1 T T
det | " | =Apdet| ™ | +Apdet| "2 | £+ A, det]| "2

All the determinants except for the 1st one vanish since they have equal rows. Hence,

] 1
) )

det = An det = AHW (t) .
Tn Tn

Evaluating similarly the other terms in (3.57), we obtain
W' (t) = (A1 + Agg + ... + App) W (t) = (trace A) W (¢).

By Lemma 3.11, W () is either identical 0 or never zero. In the first case there is nothing
to prove. In the second case, we can solve the above ODE using the method of separation
of variables. Indeed, dividing it W (¢) and integrating in ¢, we obtain

W (t) :
W (o) = /to trace A (1) dr

In

(note that W (t) and W (#) have the same sign so that the argument of In is positive),
whence (3.56) follows. m

Corollary. Consider a scalar ODE
(") +ay (t) 21 +..+a, (t) z=0,

where ay, (t) are continuous functions on an interval I C R. If x1(t),...,z, (t) are n
solutions to this equation then their Wronskian W (t) satisfies the identity

W) = W (t) exp (- /t: a1 (7) d7> | (3.59)

Proof. The scalar ODE is equivalent to the normal system x’ = Ax where

0 1 0 .. 0 .
0 0 1 .. 0 .
A= and x =
0 0 0 1 L)
—ap —Ap—1 —Ap—2 ... —a1



Since the Wronskian of the normal system coincides with W (), (3.59) follows from (3.56)
because trace A = —a;. =
In the case of the ODE of the 2nd order

" 4 ay (t) 2" +az (t)z =0

the Liouville formula can help in finding the general solution if a particular solution is
known. Indeed, if xq (t) is a particular non-zero solution and z () is any other solution
then we have by (3.59)

ro T\ _'
det < o ) = Cexp < /al (t) dt) ,
zor’ — xxy = Cexp <—/ ay (t) dt> :

/ / /
zor' — xI) < x >
- 2  —\

<£>’ _ Cexp (— [ (t)dt) (3.60)

that is

Using the identity

we obtain the ODE

To x3 ’

and by integrating it we obtain xio and, hence, x (cf. Exercise 35).
Example. Consider the ODE

x"—2(1+tan2t)x:0.

One solution can be guessed z, () = tant using the fact that

—tant = =tan’t + 1

dt cos? t

and
2

d
ﬁtant: 2tant (tan2t+ 1).

( x >/ C
=

dt
= C'tant = (Ctant (=t —cott+ C1).
v an /tath ( 1)

whence?

Renaming the constants, we obtain the answer

x(t)=Cy (ttant + 1) + Cy tant.

9To evaluate the integral dt_ — [ cot? tdt use the identit
g y

tan? ¢
(cott) = —cot’t —1
that yields .
/ cot? tdt = —t — cott + C.
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3.8 Linear homogeneous systems with constant coefficients

Here we will be concerned with finding the general solution to linear systems of the form
' = Az where A € C™™ is a constant n x n matrix with complex entries and z (t) is a
function from R to C". As we know, it suffices to find n linearly independent solutions
and then take their linear combination. We start with a simple observation. Let us try
to find a solution in the form x = e*v where v is a non-zero vector in C" that does not
depend on t. Then the equation ' = Ax becomes

ey = eMAv

that is, Av = Av. Recall that any non-zero vector v that satisfies the identity Av = \v
for some constant A is called an eigenvector of A, and A is called the eigenvalue. Hence,
the function x (t) = e*v is a non-trivial solution to 2’ = Az provided v is an eigenvector
of A and A is the corresponding eigenvalue.

The fact that A is an eigenvalue means that the matrix A — \id is not invertible, that
is,

det (A — \id) = 0. (3.61)

This equation is called the characteristic equation of the matrix A and can be used to
determine the eigenvalues. Then the eigenvector is determined from the equation

(A—Xid)v = 0. (3.62)

Note that the eigenvector is not unique; for example, if v is an eigenvector then cv is also
an eigenvector for any constant c.

The function
P ()\) :=det (A — \id)

is clearly a polynomial of \ of order n. It is called the characteristic polynomial of the
matrix A. Hence, the eigenvalues of A are the root of the characteristic polynomial P ().

Lemma 3.13 If a n x n matriz A has n linearly independent eigenvectors v, ..., v, with
the (complex) eigenvalues A1, ..., A, then the general complex solution of the ODE ' = Ax
15 given by

z(t) = Creuy, (3.63)
k=1

where C1, ..., Cy are arbitrary complex constants.. B
If A is a real matriz and X is a non-real eigenvalue of A with an eigenvector v then A
is an eigenvalue with eigenvector U, and the terms eMv, eMv in (3.63) can be replaced by

the couple Re (e*v), Im (e Mv).

. 1s a solution. Since vectors
n . .
vk} ., are linearly independent,

Proof. As we have seen already, each function e
{vr},_, are linearly independent, the functions {e*!
whence the first claim follows from Theorem 3.1.

If Av = Av then applying the complex conjugation and using the fact the entries of
A are real, we obtain AT = AU so that A is an eigenvalue with eigenvector @. Since the
functions ev and e*v are solutions, their linear combinations

eMu + Mo . eMy—et

t_

v
ReeMy = and ImeMy = 57
7
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A

are also solutions. Since e*v and eMv can also be expressed via these solutions:

My = ReeMv+ilmeMo

)\tv,

M7 = ReeMv—ilme
replacing in (3.63) the terms e, e* by the couple Re (e*v), Im (e*v) does not change
the set of functions, which finishes the proof. m

It is known from Linear Algebra that if A has n distinct eigenvalues then their eigen-
vectors are automatically linearly independent, and Lemma 3.13 applies. Or if A is a
symmetric matrix then there is a basis of eigenvectors, and Lemma 3.13 applies.

=y
y =z

The vector form of this system is x = Ax where A = <

Example. Consider the system

01

10 ) The characteristic

polynomial is

B -2 1 2
P()\)—det< 1 _)\>—)\—1,
the characteristic equation is A> — 1 = 0, whence the eigenvalues are \; = 1, Ay = —1.

For A = \; = 1 we obtain the equation (3.62) for v = (5):

()G

which gives only one independent equation a — b = 0. Choosing a = 1, we obtain b = 1

whence
(1
v = 1 .
Similarly, for A = Ay = —1 we have the equation for v = (Z)
11 a
(1) (5) -
which amounts to a + b = 0. Hence, the eigenvector for Ay = —1 is

B 1
Vg = 1 .
Since the vectors v; and vy are independent, we obtain the general solution in the form
1 _ 1 Ciet + Cye™?
_ t t _ 1 2
X(t)—01€<1>+02€ <—1>_<C’16t—C’26t>’

that is, z (t) = Cie! + Coe " and y () = Cret — Cae™.

Example. Consider the system



0

The matrix of the system is A = < 1

—1 . A
0 ), and the the characteristic polynomial is

_ -A =1\ |9
P()\)—det<1 _)\)—)\ + 1

Hence, the characteristic equation is A24+1=0whence \; =iand \y = —i. For A\ = \; =i

we obtain the equation for the eigenvector v = (Z)

-1 —1 a
(o))
which amounts to the single equation ia+b = 0. Choosing a = 7, we obtain b = 1, whence
[
V1 = 1

and the corresponding solution of the ODE is

< (t)—e” t\ [ —sint+icost
A 1 )\ cost+isint |’
Since this solution is complex, we obtain the general solution using the second claim of
Lemma 3.13:

. _ —sint cost \ [ —Cysint+ Cycost
X(t)_clReX1+CQImX1_Cl< cost )+C2< sint ) _< Cicost + Cysint )

Example. Consider a normal system

=y

y' =0.
This system is trivially solved to obtain y = C; and x = Cit + C3. However, if we
try to solve it using the above method, we fail. Indeed, the matrix of the system is

A= < 8 (1) > , the characteristic polynomial is

B A1)
P(A)-det( ) _)\>—>\,

and the characteristic equation P (A) = 0 yields only one eigenvalue A = 0. The eigenvec-

tor v = (Z) satisfies the equation
01 a
(30)(3)-n

. . . . 1
whence b = 0. That is, the only eigenvector (up to a constant multiple) is v = < 0 ) ,

and the only solution we obtain in this way is x (t) = (1) . The problem lies in the

properties of this matrix — it does not have a basis of eigenvectors, which is needed for
this method.

In order to handle such cases, we use a different approach.
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3.8.1 Functions of operators and matrices

Recall that an scalar ODE 2’ = Az has a solution z (t) = Ce?t. Now if Aisan xn
matrix, we may be able to use this formula if we define what is e4. It suffices to define
what is e for any matrix A. It is convenient to do this for linear operators acting in C".

Recall that a linear operator in C" is a mapping A : C* — C" such that, for all
z,y € C"and \ € C,

Alz+y) = Ar+ Ay
A(Ax) = M.

Any n x n matrix defines a linear operator in C" using multiplication of column-vectors
by this matrix. Moreover, any linear operator can be represented in this form so that
there is an one-to-one correspondence'” between linear operators and matrices.
Denote the family of all linear operators in C" by £ (C"). For any two operators A, B,
define their sum A + B by
(A+ B)x = Az + Bz

and the product by a scalar A € C by
(M) () = Mz,

for all z € C". With these operation, £ (C") is a linear space over C. Since any operator
can be identified with a n x n matrix, the dimension of the linear space £ (C") is n?.
Apart from the linear structure, the product AB of operators is defined in £ (C") as

composition that is,
(AB)z = A(Bx).

Fix a norm || - || in C", for example, the oco-norm
Jolle = max [

where x4, ..., x,, are the components of the vector x. Define the associated operator norm
in £ (C") by

Ax
14 = sup 1Al
zeC\{0} qu

(3.64)

Claim. The operator norm is a norm in L (C").
Proof. Let us first show that ||A|| is finite. Represent A is a matrix (Ay;) in the
standard basis. Since all norms in any finitely dimensional linear space are equivalent, we

can assume in the sequel that ||z|| = ||#||c. Then
[zl = max|(Az),| = max ZAijj
J
< ) | —
< max ZAk] mjax\xﬂ Cllz|| 0o,
J

where C' < co. Therefore, || Al < C < oc.

10This correspondence depends on the choice of a basis in C™.
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2. Clearly, ||A|| > 0. Let us show that ||A|| > 0 if A # 0. Indeed, if A # 0 then there
is © € C" such that Az # 0 and ||Az|| > 0, whence

[Az]

IAll = S—= > 0.
]

3. Let us prove the triangle inequality: ||A + B|| < ||A|| + ||B||. Indeed, by definition
(3.64)

[(A+B)af _ 1Azl + [ Bz]

|A+ B|| = sup <
z || z |||
- < | Ax|] | Bx||
< up ——— +sup
» |zl z =
= Al + [|B]].

4. Let us prove the scaling property: [[AA| = |A| ||A]| for any A € C. Indeed, by (3.64)

A A
Al — sup O _ A A

e 2l ]

= [ALIA]]

[ ]
In addition to the general properties of a norm, the operator norm satisfies the in-
equality
[AB[| < Al B[ - (3.65)

Indeed, it follows from (3.64) that ||Az|| < ||A||||x| whence
I(AB) z|| = [[A(Bx)|| < [|A[[ | Bz|| < [[All |B] [|]]

which yields (3.65).

Hence, £ (C") is a normed linear space. Since this space is finite dimensional, it is
complete as a normed space. As in any complete normed linear space, one can define in
L (C™) the notion of the limit of a sequence of operators. Namely, we say that a sequence
{Ax} of operators converges to an operator A if

|Ax — Al| = 0 as k — co.

Representing an operator A as a matrix (Aij)zjzl, one can consider the oco-norm on
operators defined by
[Allo = max |Ayl.
1<4,5<n

Clearly, the convergence in the oo-norm is equivalent to the convergence of each component
A;; separately. Since all norms in £ (C") are equivalent, we see that convergence of a
sequence of operators in any norm is equivalent to the convergence of the individual
components of the operators.

Given a series Y .-, Ay of operators, the sum of the series is defined as the limit of

the sequence of partial sums Y~ | Ay as N — oo. That is, S = S50 Ay if

N
IS =) Al =0 as N — oc.

k=1
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Claim. Assume that

> [ Akl < oo (3.66)
k=1

Then the series y .-, Ay converges.

Proof. Indeed, since all norms in £ (C™) are equivalent, we can assume that the norm
in (3.66) is the co-norm. Denoting by (Ag),; the ij-components of the matrix A, we obtain
that then the condition (3.66) is equivalent to

3 Jan

k=1

(3.67)

for any indices 1 < 7,7 < n. Then (3.67) implies that the numerical series

Z (Ak)ij

converges, which implies that the operator series )", ;| A also converges. ®

If the condition (3.66) is satisfied then the series Y p, Ay is called absolutely convergent.
Hence, the above Claim means that absolute convergence of an operator series implies
the usual convergence.

Definition. If A € £ (C") then define e € £ (C") by means of the identity
A? AF =\ AF
—idtA+ = (3.68)

2! k! k!’
k=0

where id is the identity operator.

Of course, in order to justify this definition, we need to verify the convergence of the
series (3.68).

Lemma 3.14 The exponential series (3.68) converges for any A € L(C").

Proof. It suffices to show that the series converges absolutely, that is,

o0

k=0

It follows from (3.65) that HA’“H < ||A|l* whence

Z AL _ o1 < o

e}

k=

and the claim follows. m

Theorem 3.15 For any A € L (C") the function F (t) = e satisfies the ODE F' = AF'.
Consequently, the general solution of the ODE x' = Ax is given by x = e**v where v € C"
1s an arbitrary vector.
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Here x = x(t) is as usually a C"-valued function on R, while F'(¢) is an £ (C")-
valued function on R. Since £ (C") is linearly isomorphic to C", we can also say that
F (t) is a C"-valued function on R, which allows to understand the ODE F’ = AF in
the same sense as general vectors ODE. The novelty here is that we regard A € £ (C")
as an operator in £ (C") (that is, an element of £ (£ (C™))) by means of the operator
multiplication.

Proof. We have by definition

A Otk Ak

k=0

Consider the series of the derivatives:

0 d tkAk OO tk—lAk o0 tk—lAk—l
cy =34 <_) T AL o A Y )
| —1)! — 1)
— dt \ k! — (k—1)! pt (k—1)!
It is easy to see (in the same way as Lemma 3.14) that this series converges locally
uniformly in ¢, which implies that F' is differentiable in ¢t and F’ = G. It follows that
F'= AF.

For function z (t) = e*4

v, we have
— (etA),U = (AetA) v=Ax

so that z () solves the ODE 2’ = Ax for any v.
If z (t) is any solution to 2’ = Az then set v = x (0) and observe that the function

Ay satisfies the same ODE and the initial condition

et
etAv\tzo =idv = v.

Hence, both z (t) and e*v solve the same initial value problem, whence the identity
7 (t) = e follows by the uniqueness theorem. m

A A

Remark. If vy, ..., v, are linearly independent vectors in C" then the solutions e'vy, ...., ev,
are also linearly independent and, hence, can be used to form the fundamental matrix.
In particular, choosing vy, ..., v, to be the canonical basis in C", we obtain that e*4vj, is
the k-th column of the matrix e?4. Hence, the matrix e*/ is itself a fundamental matrix
of the system 2’ = Ax.

Example. Let A be the diagonal matrix

A = diag (A1, .o, An) -

Then
AF = diag (A], ..., AY)
and
et = diag (e’\lt, e eA”t) .
Let

(),
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Then A% = 0 and all higher power of A are also 0 and we obtain

A B 1 ¢
e —1d—|—tA—<O 1>.

Hence, the general solution to ' = Ax is

fr(t):e%:<(1) §><g2)2<012202t>’

where C', Cy are the components of v.

Definition. Operators A, B € £ (C") are said to commute if AB = BA.

In general, the operators do not have to commute. If A and B commute then various
nice formulas take places, for example,

(A4 B)* = A% + 2AB + B~ (3.69)
Indeed, in general we have
(A+B)?=(A+B)(A+B) = A*+ AB + BA+ B?,
which yields (3.69) if AB = BA.

Lemma 3.16 If A and B commute then

Proof. Let us prove a sequence of claims.

Claim 1. If A, B,C commute pairwise then so do AC' and B.
Indeed,

(AC)B = A(CB) = A(BC) = (AB) C = (BA)C = B (AC).

Claim 2. If A and B commute then so do e and B.
Indeed, it follows from Claim 1 that A¥ and B commute for any natural k&, whence

e'B = ZH B=2B ZH = Be™.
k=0 k=0
Claim 3. If A(t) and B (t) are differentiable functions from R to L (C") then

(AB)B@t) = A {)B(t)+At)B (). (3.70)

Warning: watch the correct order of the multiples.
Indeed, we have for any component

!/
(AB);]‘ = <Z AikBkj) = ZAfszkj+ZAikBllcj = (A,B)ij+(AB,>ij = (A,B + AB/)ij )
k k k
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whence (3.70) follows.
Now we can finish the proof of the lemma. Consider the function F' : R — £ (C")
defined by
F (t) = e!e!B,

Differentiating it using Theorem 3.15, Claims 2 and 3, we obtain
F'(t) = (etA)’etB_l_etA (etB)’ = AetAetB 4 etABetB — AetAetB 4 BetAetB — (A+ B)F(t).

On the other hand, by Theorem 3.15, the function G (t) = 4*+5) gatisfies the same
equation

G'=(A+B)G.

Since G (0) = F (0) = id, we obtain that the vector functions F (t) and G (t) solve the
same IVP, whence by the uniqueness theorem they are identically equal. In particular,
F (1) = G (1), which means e‘ef = e85, m

Alternative proof. Let us briefly discuss a direct algebraic proof of e
One first proves the binomial formula

(A+B)" = zn: <Z> Akt

k=0

A+B _ (A.B.

using the fact that A and B commute (this can be done by induction in the same way as
for numbers). Then we have

Z(A+B)" K& AFprk
€A+B:; ol :;gwn—m!

and, using the Cauchy product formula,

Of course, one need to justify the Cauchy product formula for absolutely convergent series
of operators. m

3.8.2 Jordan cells

Here we show how to compute e provided A is a Jordan cell.

Definition. An n x n matrix J is called a Jordan cell if it has the form

A1 o --- 0
0 X :
A= 0|, (3.71)
: A1
0 0 A

where A is any complex number.
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Here all the entries on the main diagonal are A and all the entries just above the main
diagonal are 1 (and all other values are 0). Let us use Lemma 3.16 in order to evaluate
et where A is a Jordan cell. Clearly, we have A = \id +N where

0 1 o --- 0

N: E . . 0 . (3-72)
: 1
O -+ cor i 0

A matrix (3.72) is called a nilpotent Jordan cell. Since the matrices Aid and N commute
(because id commutes with anything), Lemma 3.16 yields

etA — et)\ldetN — et)\etN. (373)

Hence, we need to evaluate eV, and for that we first evaluate the powers N2, N3, etc.
Observe that the components of matrix N are as follows

(1, it =it
Nij = { 0, otherwise

where 7 is the row index and j is the column index. It follows that

N N~ oy L =i+
(N )ij - ;N"ka] a { 0, otherwise

that is,
0 0 1 0
2_ : . . ‘- .~
N*=1 : o
: .0
0 -+« v v 0

Here the entries with value 1 are located on the diagonal that is two positions above the
main diagonal. Similarly, we obtain

0 1 0

k
N = 1
0 v o e 0

where the entries with value 1 are located on the diagonal that is & positions above the
main diagonal, provided k < n, and N¥ = 0 if k > n.

Any matrix A with the property that A* = 0 for some natural k is called nilpotent.
Hence, N is a nilpotent matrix, which explains the term “a nilpotent Jordan cell”. It
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follows that

2 n—1
L % 5 ]
tN t 2 ! 1 0
. . . t
. . . ﬂ
0 -+« -~ 0 1
Combining with (3.73), we obtain the following statement.
Lemma 3.17 If A is a Jordan cell (3.71) then, for anyt € R,
et % et t2_2' et (f::ll)! et
0 €t>\ %etk
M= 3.75
€ = : t2_2'et>\ . (3.75)
: ' . Leth
o --.. .. 0 et

By Lemma 3.15, the general solution of the system 2’ = Ax is z (t) = ¢ v where v is
an arbitrary vector from C". Setting v = (C}, ..., C},), we obtain that the general solution
is

z(t) = Cixy + ... + Crxy,

where x1, ..., 7, are the columns of the matrix e’ (which form a sequence of n linearly
independent solutions). Using (3.75), we obtain

z1(t) =M (1,0, ...,0)

3.8.3 Jordan normal form

Definition. If A is a m x m matrix and B is a [ x [ matrix then their tensor product is
an n X n matrix C' where n = m + [ and

- ()

That is, matrix C' consists of two blocks A and B located on the main diagonal, and all
other terms are 0.

Notation for the tensor product: C = A® B.
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Lemma 3.18 The following identity is true:
eA%8 — A @ B, (3.76)

In extended notation, (3.76) means that

. A0
© = 0P |]’

Proof. Observe first that if A;, Ay are m x m matrices and By, By are [ x [ matrices
then

(A1 ® By) (Ay ® By) = (A142) ® (B1Bs) . (3.77)

Indeed, in the extended form this identity means

Al 0 AQ 0 A1A2 0
0 | B, 0B, 0 | BB,

which follows easily from the rule of multiplication of matrices. Hence, the tensor product
commutes with the matrix multiplication. It is also obvious that the tensor product
commutes with addition of matrices and taking limits. Therefore, we obtain

seB "= (A®B)F A®B =B\ 4

k=0 ) k=0

]
Definition. A tensor product of a finite number of Jordan cells is called a Jordan normal
form.
That is, if a Jordan normal form is a matrix as follows:
Ji
Jo 0
SR LR @ = ,
0 Jr-1
I,

where J; are Jordan cells.

Lemmas 3.17 and 3.18 allow to evaluate e if A is a Jordan normal form.

Example. Solve the system =’ = Az where

A:

o O O
OO =
SN OO
N = OO

Clearly, the matrix A is the tensor product of two Jordan cells:

11 2 1
J1:<0 1> and J2:<O 2).
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By Lemma 3.17, we obtain

t t 2t 2t
et = < % t:t > and el’? = ( 60 teth >
whence by Lemma 3.18,
e tet 0 0
ia_| 0 e 0 0
Tl 0 0 e te

0 0 0 ¢*

The columns of this matrix form 4 linearly independent solutions

T = (tooo)

Ty = (te e, 0 0)
T3 = (0 0, th )
Ty = (O 0, tth 1t)

and the general solution is

X (t) = Cll'l + 021'2 + 031'3 + 041'4
(Cre' + Cote', Cae', Cze* + Cute™, C’4e2t) .

3.8.4 Transformation of an operator to a Jordan normal form

Given a basis b = {by,by,...,b,} in C" and a vector x € C", denote by z° the column
vector that represents x in this basis. That is, if 2% is the i-th component of x° then

T = x?bl + xgbg + ...+ :L‘an = fobl
i=1

Similarly, if A is a linear operator in C" then denote by A the matrix that represents A
in the basis b. It is determined by the identity

(Az)* = A%a®,

which should be true for all x € C", where in the right hand side we have the product of

the n x n matrix A® and the column-vector x°.

Clearly, (b;)" = (0, ...1,...0) where 1 is at position i, which implies that (Ab;)" = A (b;)"
is the i-th column of A’. In other words, we have the identity

A= ((Ab)" | (Abo)" | -+ | (Aba)"),
that can be stated as the following rule:

the i-th column of A is the column vector Ab; written in the basis by, ..., b,.
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Example. Consider the operator A in C? that is given in the canonical basis e = {e1, es}

by the matrix
e (01
A _<1 0).

Consider another basis b = {by, b2} defined by

m:q—@:(jj wd@:q+@:<1>
(1) ()-(3)
wr-(3H)(1)-(1)

It follows that Ab; = —b; and Aby, = by whence
-1 0
b _
o ( Lo ) .

The following theorem is proved in Linear Algebra courses.

Theorem. For any operator A € L (C") there is a basis b in C* such that the matriz A®
1s a Jordan normal form.

Let J be a Jordan cell of A® with A on the diagonal and suppose that the rows (and
columns) of J in A® are indexed by j,j+1,...,7 +p— 1 so that J is a p x p matrix. Then
the sequence of vectors bj, ..., bj;,—1 is referred to as the Jordan chain of the given Jordan
cell. In particular, the basis b is the disjoint union of the Jordan chains.

Then

and

Since
j j+p—1
l l
0 1 0 —j
A Aid = 0
0O --- 0 0 — jip—1

and the k-th column of A” — \id is the vector (A — \id) b, written in the basis b, we
conclude that

(A—=Xid)b; =0

(A - )\ ld) bj+1 = bj

(A= Aid)bj12 = bjsa
(A= Aid) bjp-1 = bjipo.
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In particular, b; is an eigenvector of A with the eigenvalue A. The vectors b;1, ..., bj1p—1
are called the generalized eigenvectors of A (more precisely, b1 is the 1st generalized
eigenvector, ;o is the second generalized eigenvector, etc.). Hence, any Jordan chain
contains exactly one eigenvector and the rest vectors are the generalized eigenvectors.

Theorem 3.19 Consider the system ©' = Ax with a constant linear operator A and let
A® be the Jordan normal form of A. Then each Jordan cell J of A® of dimension p with
A on the diagonal gives rise to p linearly independent solutions as follows:

zy (t) = Moy

t
Ty (t) = eM <—vl + v2>

1!
t? t
I3 (t) = 6>\t <§U1 + FUQ + U3>

AR t
.Tp(t) =€ mvl—i—...—}—ﬂvp,l—l—vp N

where {vy,...,v,} is the Jordan chain of J. The set of all n solutions obtained across all
Jordan cells is linearly independent.

Proof. In the basis b, we have by Lemmas 3.17 and 3.18

At th L tPTL e
€ Tk p—D1°¢
+Ab B 0 et)\
€ - )
. t tA
. ﬁe
0 0 et

where the block in the middle is ¢/. By Lemma 3.15, the columns of this matrix give
n linearly independent solutions to the ODE 2/ = Az. Out of these solutions, select p
solutions that correspond to p columns of the cell e*/, that is,

8
—
—~
~
~—
I
—~

CeM0,...,0 ..0)

—_—
p
ra () = (o 564,0%0,...,0 )
»
p—1
I'p (t> = ( (;Iil)leAt7 ) %eAta et)\ )7
»
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where all the vectors are written in the basis b, the horizontal braces mark the columns of
the cell J, and all the terms outside the horizontal braces are zeros. Representing these
vectors in the coordinateless form via the Jordan chain vy, ...,v,, we obtain the solutions
as in the statement of Theorem 3.19. m

Let A be an eigenvalue of an operator A. Denote by m the algebraic multiplicity of
A, that is, its multiplicity as a root of characteristic polynomial'’ P ()\) = det (A — \id).
Denote by g the geometric multiplicity of A\, that is the dimension of the eigenspace of A:

g = dimker (A — \id).

In other words, g is the maximal number of linearly independent eigenvectors of A. The
numbers m and ¢ can be characterized in terms of the Jordan normal form A® of A as
follows: m is the total number of occurrences of \ on the diagonal'? of A®, whereas g is
equal to the number of the Jordan cells with A on the diagonal'®. It follows that ¢ < m
and the equality occurs if and only if all the Jordan cells with the eigenvalue \ have
dimension 1.

Despite this relation to the Jordan normal form, m and g can be determined without
a priori finding the Jordan normal form, as it is clear from the definitions of m and g.

Theorem 3.19’ Let A € C be an eigenvalue of an operator A with the algebraic multiplicity
m and the geometric multiplicity g. Then \ gives rise to m linearly independent solutions
of the system x' = Ax that can be found in the form

z(t) = e (w4 ust + ... +ugt* ) (3.78)

where s = m — g+ 1 and u; are vectors that can be determined by substituting the above
function to the equation x' = Ax.

The set of all n solutions obtained in this way using all the eigenvalues of A is linearly
independent.

Remark. For practical use, one should substitute (3.78) into the system 2’ = Az con-
sidering w;; as unknowns (where u;; is the i-th component of the vector u;) and solve the
resulting linear algebraic system with respect to w;;. The result will contain m arbitrary
constants, and the solution in the form (3.78) will appear as a linear combination of m
independent solutions.

Proof. Let py, .., p, be the dimensions of all the Jordan cells with the eigenvalue A (as
we know, the number of such cells is g). Then A occurs p; + ... + p, times on the diagonal
of the Jordan normal form, which implies

g
ij =m.
j=1

HTo compute P (\), one needs to write the operator A in some basis b as a matrix A, and then
evaluate det (4, — Aid). The characteristic polynomial does not depend on the choice of basis b. Indeed,
if ' is another basis then the relation between the matrices A, and Ay is given by A, = CAyC~!
where C' is the matrix of transformation of basis. It follows that A4, — Aid = C (A — Aid) C~! whence
det (Ap — \id) = det C'det (Ap — Aid) det O~ = det (Ap — Nid).

12Tf X\ occurs k times on the diagonal of A, then )\ is a root of multiplicity k& of the characteristic
polynomial of A; that coincides with that of A. Hence, k = m.

3Note that each Jordan cell correponds to exactly one eigenvector.
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Hence, the total number of linearly independent solutions that are given by Theorem 3.19
for the eigenvalue \ is equal to m. Let us show that each of the solutions of Theorem 3.19
has the form (3.78). Indeed, each solution of Theorem 3.19 is already in the form

M times a polynomial of ¢ of degree < pj — 1.

To ensure that these solutions can be represented in the form (3.78), we only need to
verify that p; —1 < s — 1. Indeed, we have

zg: —1) <Zp]>—g—m g=s—1,

Jj=1

whence the inequality p; —1 < s — 1 follows. m

In particular, if m = g, that is, s = 1, then m independent solutions can be found in
the form z (t) = eMv, where v is one of m independent eigenvectors of A. This case has
been already discussed above. Consider some examples, where g < m.

, (21

1
—A

Example. Solve the system

The characteristic polynomial is

P(A):olet(A—Aid):det<2__1A A >=)\2—6>\+9:(A—3)2,

and the only eigenvalue is A\; = 3 with the algebraic multiplicity m; = 2. The equation

for an eigenvector v is
(A= XAid)v =0

-1 1 a
() (5)-
which is equivalent to —a + b = 0. Setting a = 1 and b = 1, we obtain the unique (up to

a constant multiple) eigenvector
- 1

Hence, the geometric multiplicity is g1 = 1. Hence, there is only one Jordan cell with
the eigenvalue A{, which allows to immediately determine the Jordan normal form of the

given matrix:
3 1
0 3 )"

By Theorem 3.19, we obtain the solutions

that is, for v = (a, b),

v (t) = e

1o (t) = € (tvy +wy)
where v5 is the 1st generalized eigenvector that can be determined from the equation

(A — )\ld) Vg = V1.
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Setting vy = (a, b), we obtain the equation

() (5)-(1)

which is equivalent to —a + b = 1. Hence, setting a = 0 and b = 1, we obtain

e (7).
xg(t):e?’t(tj_l).

C1 + Cst
Ci+Cy(t+1) )

whence

Finally, the general solution is

T (t) = 011'1 + CQ.TQ = €3t (

Example. Solve the system

2 1 1
Y= -20 -1 |z
2 1 2
The characteristic polynomial is
2—-X 1 1
P()\) = det(A— \id) = det -2 X -1

2 1 2-2)
= XN AN B F2=(2-N) (A —1)°.

The roots are \; = 2 with m; = 1 and Ay = 1 with ms = 2. The eigenvectors v for \; are
determined from the equation

(A— )\11d)’U = 0,
whence, for v = (a, b, ¢)
0 1 1 a
-2 -2 -1 b | =0,
2 1 0 c
that is,
b+c=0
—2a—2b—c=0
2a +b=0.
The second equation is a linear combination of the first and the last ones. Setting a =1
we find b = —2 and ¢ = 2 so that the unique (up to a constant multiple) eigenvector is
1
v=1| =2 |,
2



which gives the first solution

1
v (t)=e*| -2
2
The eigenvectors for Ay = 1 satisfy the equation
(A—Xid)v =0,
whence, for v = (a, b, ¢),
1 1 1 a
2 -1 -1 b | =0,
2 1 1 c
whence
a+b+c=0
—2a—b—c=0
20+ b+c=0.
Solving the system, we obtain a unique (up to a constant multiple) solution a = 0, b = 1,
¢ = —1. Hence, we obtain only one eigenvector
0
V1 = 1
-1

Therefore, go = 1, that is, there is only one Jordan cell with the eigenvalue A\, which
implies that the Jordan normal form of the given matrix is as follows:

0 0
11
01

S O N

By Theorem 3.19, the cell with A\s = 1 gives rise to two more solutions

0

and
w3 (t) = €' (tvy +v2),

where v5 is the first generalized eigenvector to be determined from the equation
(A - )\2 1d) Vg = V1.

Setting vy = (a, b, ¢) we obtain

1 1 1 a 0
—2 —1 -1 b = 1 |,
2 1 1 c ~1
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that is

a+b+c=0
—2a—b—c=1
2a+b+c=—-1.
This system has a solution a = —1, b = 0 and ¢ = 1. Hence,
-1
Vo = 0 s
1

and the third solution is

-1
z3(t) = €' (tvy + vg) = € t
1-1
Finally, the general solution is
C’lezt — Cget
x(t) = Cray + Coxg + Gy = | —2C1e* + (Cy + Cst) €'

2016% + (Cg — Cg — Cgt) et

4 Qualitative analysis of ODEs

4.1 Autonomous systems

Consider a vector ODE
v = f () (4.1

where the right hand side does not depend on t. Such equations are called autonomous.
Here f is defined on an open set 2 C R™ (or Q2 C C") and takes values in R™ (resp., C"),
so that the domain of the ODE is R x €.

Definition. The set € is called the phase space of the ODE and any path x : I — €,
where x (t) is a solution of the ODE on an interval I, is called a phase trajectory. A plot
of all phase trajectories is called a phase diagram or a phase portrait.

Recall that the graph of a solution (or the integral curve) is the set of points (¢, z (t))
in R x €). Hence, a phase trajectory can be regarded as the projection of an integral curve
onto ).

Assume in the sequel that f is continuously differentiable in 2. For any y € €2, denote
by z (t,y) the maximal solution to the IVP

{Folt

Recall that, by Theorem 2.14, the domain of function z (¢,%) is an open subset of R"!
and x (t,y) is continuously differentiable in this domain.
The fact that f does not depend on ¢, implies the following two consequences.
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1. If z () is a solution of (4.1) then also x (t — a) is a solution of (4.1), for any a € R.
In particular, the function x (¢ — to, y) solves the following IVP

{x’:f o)

2. If f(x¢) = 0 for some xy € € then the constant function x (¢) = z, is a solution of
' = f(z). Conversely, if = (t) = xq is a constant solution then f (zo) = 0.

Definition. If f (zy) = 0 at some point xy €  then z, is called a stationary point** of
the ODE 2’ = f ().

It follows from the above observation that if xq is a stationary point if and only if
x (t, ) = xo.
Definition. A stationary point x is called Lyapunov stable for the system 2’ = f (x) (or
the system is called stable at xg) if, for any ¢ > 0, there exists § > 0 with the following
property: for all y € Q such that ||y — xo|| < ¢, the solution x (¢, y) is defined for all ¢ > 0

and

sup ||z (t,y) — x| <e. (4.2)
te(0,400)

In other words, the Lyapunov stability means that if x (0) is close enough to xy then
the solution z (t) is defined for all t > 0 and

z(0) € B(x9,0) = x(t) € B(xg,¢) forall t > 0.

If we replace in (4.2) the interval (0, +00) by any bounded interval [a, b] containing 0 then
by the continuity of z (¢,y),

sup ||z (t,y) — zol| = sup [|x (t,y) — x (¢, 20)[| — 0 as y — .
t€(a,b] t€la,b]

Hence, the main issue for the stability is the behavior of solutions as ¢t — +o0.

Definition. A stationary point z is called asymptotically stable for the system 2’ = f (x)
(or the system is called asymptotically stable at zy), if it is Lyapunov stable and, in
addition,

|z (t,y) — zo|| — 0 as t — 400,

provided ||y — zg|| is small enough.

Observe, the stability and asymptotic stability do not depend on the choice of the
norm in R” because all norms in R"™ are equivalent.

!4n the literature one can find the following synonyms for the term “stationary point”: rest point,
singular point, equilibrium point, fixed point.
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4.2 Stability for a linear system

Consider a linear system ' = Az in R™ where A is a constant operator. Clearly, x = 0 is
a stationary point.

Theorem 4.1 If for all complex eigenvalues \ of A, we have Re A < 0 then 0 is asymp-
totically stable for the system x' = Ax. If, for some eigenvalue A of A, Re X > 0 then 0
15 unstable.

Proof. By Theorem 3.19', the general complex solution of ' = Az has the form
z(t)=> Cre™ Pyp(t), (4.3)
k=1

where Cj, are arbitrary complex constants, Ag, ..., A, are all the eigenvalues of A listed with
the algebraic multiplicity, and Py (t) are some vector valued polynomials of ¢. The latter
means that Py (t) = w1 + ust + ... + ust*~! for some s € N and for some vectors uy, ..., us.
Note that this solution is obtained by taking a linear combination of n independent
solutions e*! P, (t). Since

we see that the coefficients C}, are the components of z (0) in the basis { P (0)},_;.
It follows from (4.3) that

lz @ < Y |G| I (@)
k=1

< (Re At P ()]
< mgX\Ck\e ’;H k()]

Set
o= m]?XRe)\k < 0.

Observe that the polynomials admits the estimates of the type
1P ()l < € (1+Y)
for all £ > 0 and for some large enough constants C' and N. Hence, it follows that
lz (®)]] < Ce* (1 +¢Y) [l (0)]] (4.4)

Clearly, by adjusting the constant C', we can replace ||z (0)||, by ||z (0)||.
Since the function (1+¢V)e* is bounded on (0,+00), we obtain that there is a
constant K such that, for all ¢ > 0,

lz ()] < K ||z (0)]],
whence it follows that the stationary point 0 is Lyapunov stable. Moreover, since

(1—l—tN)e°‘t—>0 as t — +o0,
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we conclude from (4.4) that ||z (¢)| — 0 as t — oo, that is, the stationary point 0 is
asymptotically stable.

Let now Re A > 0 for some eigenvalue . To prove that 0 is unstable is suffices to show
that there exists an unbounded real solution x (t), that is, a solution for which ||z (¢)||
is not bounded on (0, +00) as a function of ¢. Indeed, if such a solution exists then the
function ez (t) is also an unbounded solution for any ¢ > 0, while its initial value ex (0)
can be made arbitrarily small by choosing ¢ appropriately.

To construct an unbounded solution, consider an eigenvector v of the eigenvalue A. It
gives rise to the solution

z (t) = eMv

for which
Iz (8)]| = || lvll = e B o]

Hence, ||z (t)|| is unbounded. If z () is a real solution then this finishes the proof. In
general, if x () is a complex solution then then either Rex (t) or Imz () is unbounded
(in fact, both are), whence the instability of 0 follows. m

This theorem does not answer the question what happens when Re A = 0. We will
investigate this for the case n = 2 where we also give a more detailed description of the
phase diagrams.

Consider now a linear system 2’ = Ax in R? where A is a constant operator in R?. Let
b = {b;, by} be the Jordan basis of A so that A’ has the Jordan normal form. Consider
first the case when the Jordan normal form of A has two Jordan cells, that is,

b [ M 0
e[ 0)

Then b; and by are the eigenvectors of the eigenvalues A\; and Ay, respectively, and the
general solution is

z () = CreMby 4 Cye?'hy.

In other words, in the basis b,
z (1) = (CreMt, Cre™)
and z (0) = (C1,Cy). It follows that
|z (t)]|, = max (‘C’le)‘lt| , }C’geAQt’) = max (\C’l| efetit (&Y eRe)‘Qt) < ||z (0) || oo™
where

a = max (Re Ay, Re \y) .

If @ <0 then
2 (£) loo < [z (0) ]

which implies the Lyapunov stability. As we know from Theorem 4.1, if a > 0 then the
stationary point 0 is unstable. Hence, in this particular situation, the Lyapunov stability
is equivalent to o < 0.

Let us construct the phase diagrams of the system ' = Ax under the above assump-
tions.

Case A1, \y are real.
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Let 24 (t) and 25 (t) be the components of the solution z (¢) in the basis {b1, b2} . Then
1 = CheMt and 1y = Che?t.
Assuming that Ai, Ay # 0, we obtain the relation between x; and x5 as follows:
xy = Cla]7,

where v = A\2/A;. Hence, the phase diagram consists of all curves of this type as well as
of the half-axis 1 > 0,27 < 0,29 > 0,25 < 0.

If v > 0 (that is, A\; and Ay are of the same sign) then the phase diagram (or the
stationary point) is called a node. One distinguishes a stable node when A, As < 0 and
unstable node when A, Ao > 0. Here is a node with v > 1:

17

and here is a node with v = 1:

-1

If one or both of A1, Ay is 0 then we have a degenerate phase diagram (horizontal or vertical
straight lines or just dots).
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If v < 0 (that is, A; and A, are of different signs) then the phase diagram is called a
saddle:

Of course, the saddle is always unstable.
Case A\ and Ay are complex, say A\; = a — i and Ay = a + 13 with g # 0.
Then we rewrite the general solution in the real form

i (t) = Cl Re e(aiiﬁ)tbl + Cg Im G(aiiﬂ)tbl.

Note that by is an eigenvector of A\; and, hence, must have a non-trivial imaginary part
in any real basis. We claim that in some real basis b; has the form (1,7). Indeed, if
b1 = (p,q) in the canonical basis e, e then by rotating the basis we can assume p, ¢ # 0.
Since b; is an eigenvector, it is defined up to a constant multiple, so that we can take
p = 1. Then, setting ¢ = ¢; + 1q> we obtain

by =e1+ (1 +iq2) e2 = (€1 + qrea) + igees = €] + i€l

where €] = e; + q1e2 and €, = g€ is a new basis (the latter follows from the fact that ¢
is imaginary and, hence, g2 # 0). Hence, in the basis ¢’ = {e], €5} we have b; = (1,1).
It follows that in the basis €’

e(a+,6’i)tb1 N (cos Bt + isin (t) ( 1 ) = <

e cos t — ie* sin Bt
e® sin 5t + ie® cos [t

and
B e cos Bt —esin 5t \ e cos (Bt + )
z(t)=C4 < e sin 3t ) + O < et cos Bt ) =C < e sin (Bt +1) )’
where C' = /C? + C2 and

cosy = %, siny = %

If (r,0) are the polar coordinates on the plane in the basis €/, then the polar coordinates
for the solution z (t) are

r(t) = Ce™ and 0(t) = Bt + .
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If a # 0 then these equations define a logarithmic spiral, and the phase diagram is called
a focus or a spiral:

075 T

A\

0.5 05 0J25 015 0.75 1

-0.25T

The focus is stable is & < 0 and unstable if o > 0.

If o = 0 (that is, the both eigenvalues \; and Ay are purely imaginary), then r (t) = C,
that is, we get a family of concentric circles around 0, and this phase diagram is called a
center:

In this case, the stationary point is stable but not asymptotically stable.
Consider now the case when the Jordan normal form of A has only one Jordan cell,

that is,
Al
b _
A —(O )\>'

In this case, A must be real because if A is an imaginary root of a characteristic polynomial
then A must also be a root, which is not possible since A\ does not occur on the diagonal
of A’. Then the general solution is

z (t) = CleAtbl + CQ@M (blt + bg) = (Cl + C2t) 6>\tbl + C2e>\tb2
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whence z (0) = C1b; + Csbe. That is, in the basis b, we can write x (0) = (C4, Cy) and
z(t) = (M (C1 + Cat) , M Cy) (4.5)
whence
2 ()], = e [Ch + Cat| + e |G

If A < 0 then we obtain again the asymptotic stability (which follows also from Theorem
4.1), while in the case A > 0 the stationary point 0 is unstable. Indeed, taking C; = 0
and Cy = 1, we obtain a particular solution with the norm

e (8) [ = ™ (£ + 1),

which is unbounded.
If A # 0 then it follows from (4.5) that the components xi,z, of = are related as
follows:

T Cl 1 i)

—=— 4t and t=—In=

i) CQ + an A . CQ
whence |

for some constant C. Here is the phase diagram in this case:

-1

This phase diagram is also called a node. It is stable if A < 0 and unstable if A > 0. If
A = 0 then we obtain a degenerate phase diagram - parallel straight lines.

Hence, the main types of the phases diagrams are the node (A, A2 are real, non-
zero and of the same sign), the saddle (A, A2 are real, non-zero and of opposite signs),
focus/spiral (A1, Ay are imaginary and Re A # 0) and center (A, A2 are purely imaginary).
Otherwise, the phase diagram consists of parallel straight lines or just dots, and is referred
to as degenerate.

To summarize the stability investigation, let us emphasize that in the case Re A = 0
both stability and instability can happen, depending on the structure of the Jordan normal
form.
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4.3 Lyapunov’s theorem

Consider again an autonomous ODE 2’ = f(x) where f : Q@ — R”" is continuously
differentiable and () is an open set in R™. Let xy be a stationary point of the system
' = f(x), that is, f (x¢) = 0. We investigate the stability of the stationary point z.

Theorem 4.2 (Lyapunov’s theorem) Assume that f € C*(Q) and set A = f'(xo) (that
is, A is the Jacobian matriz of f at x¢). If Re X < 0 for all eigenvalues \ of A then the
stationary point xq is asymptotically stable for the system x' = f (x).

Remark. This theorem has the second part that says the following: if ReA > 0 for
some eigenvalue A of A then z; is unstable for 2’ = f (x). However, the proof of that is
somewhat lengthy and will not be presented here.

Example. Consider the system

¥ =4+ dy — 2e*tY
y =sin3z +1In(1 —4y).

It is easy to see that the right hand side vanishes at (0,0) so that (0,0) is a stationary

point. Setting
VA + 4y — 2e"Y
flzy) = < ! > ,

sin3z + In (1 — 4y)

amf 1 8 f 1 -2 —1
A= f"(0,0)= Y = :
roo=(o% o 3 -4
Another way to obtain this matrix is to expand each component of f (z,y) by the Taylor
formula:

we obtain

filzy) = 2¢/1+y—2e" = <1—|—%+0(m)>—2(1+(a:+y)—|—0(]a:|+|y\))
= 2z —y+o(z[+][y])
and
fo(z,y) = sindz+In(l—4y) =3z +o0(z) — 4y + o (y)
= 3z —4dy+o(|lz|+]y]).

rea= (3 ) (5)+oal+ b,

whence we obtain the same matrix A.
The characteristic polynomial of A is

Hence,

—2-A -1\ .
det( 3 _4_)\>—)\ +6A 4 11,

and the eigenvalues are
Ao = —3+iV2.
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Hence, Re A < 0 for all A\, whence we conclude that 0 is asymptotically stable.

The main tool for the proof of theorem 4.2 is the following lemma, that is of its own
interest. Recall that for any vector v € R" and a differentiable function F' in a domain in
R, the directional derivative 0,F can be determined by

O F () U—Zﬁxk

Lemma 4.3 (Lyapunov’s lemma) Consider the system x' = f () where f € C* (Q) and
let zo be a stationary point of it. Let V (x) be a C scalar function in an open set U such
that xq € U C ) and the following conditions hold:

1. V(z) >0 for any x € U\ {x0} and V (xy) = 0.

2. Forallz € U,
Gf(x)V (JE) § 0. (4.6)

Then the stationary point xq s stable.
Furthermore, if all x € U
)V () < =W (), (4.7)

where W (x) is a continuous function on U such that W (z) > 0 for x € U \ {zo}, then
the stationary point xq 1s asymptotically stable.

Function V' with the properties 1-2 is called the Lyapunov function. Note that the
vector field f () in the expression 0V (x) depends on . By definition, we have

Z 8xk

In this context, 0;V is also called the orbital derivative of V with respect to the ODE
¢ = f(z).

Before the proof, let us show examples of the Lyapunov functions.

Example. Consider the system 2’ = Az where A € £(R"™). In order to investigate the
stability of the stationary point 0, consider the function

V() = [lall; = chk

which is positive in R™ \ {0} and vanishes at 0. Setting f (x) = Az, we obtain for the
components
iL‘) = ZAijL'j.
j=1

Slnce = 2xy, it follows that

8fV Z fk =2 Z Aijjl’k

7,k=1
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The matrix (Ay;) is called a non-positive definite if

Z Aijjxk; < 0 for all x € R™.

7,k=1

Hence, in the case when A is non-positive definite, we have 0;V < 0 so that V is a
Lyapunov function. It follows that in this case 0 is Lyapunov stable. Matrix A is called
negative definite if

Z Apjzjxy, <0 for all z € R"\ {0}.
j k=1
Then setting W (z) = —> 7, _, Apj7;75, we obtain 0;V = —W so that by the second
part of Lemma 4.3, 0 is asymptotically stable.
For example, if A = diag (Aq, ..., \,) then A is negative definite if all Ay < 0, and A is
non-positive definite if all A\, < 0.

Example. Consider the second order scalar ODE z” + ka2’ = F (z) which describes
the movement of a body under the external potential force F'(z) and friction with the
coefficient k. This can be written as a system

=y
Yy =—ky+ F(x).

Note that the phase space is R? (assuming that F' is defined on R) and a point (z,y) in
the phase space is a couple position-velocity.

Assume F'(0) = 0 so that (0,0) is a stationary point. We would like to answer the
question if (0,0) is stable or not. The Lyapunov function can be constructed in this case
as the full energy )

Viey) =5 +U ().

where

U(x):—(/F(ac)dx

is the potential energy and % is the kinetic energy. More precisely, assume that k£ > 0
and
F(x)<0 for x>0, F(x)>0forz<0,

and set -
U(x):—/ F (s)ds,
0

so that U (0) = 0 and U (x) > 0 for # # 0. Then the function V (x,y) is positive away
from (0,0) and vanishes at (0,0).
Setting

let us compute the orbital derivative d¢V:

oV oV
oV = Yoot (—ky + F (x)) En

= yU'(2) + (=ky + F () y
= —yF(z) —ky* + F (2)y = —ky* < 0.
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Hence, V' is indeed the Lyapunov function, and by Lemma 4.3 the stationary point (0, 0)
is Lyapunov stable.

Physically this has a simple meaning. The fact that F' (z) < 0 for z > 0 and F' (z) > 0
for x < 0 means that the force always acts in the direction of the origin thus trying to
return the displaced body to the stationary point, which causes the stability.

Proof of Lemma 4.3. By shrinking U, we can assume that U is bounded and that
V' is defined on U. Set

B, = B(xg,7) ={z € R" : ||z — x0|| <}

and observe that, by the openness of U, B, C U provided € > 0 is small enough. For any
such ¢, set
m(e) = inf V(x).
€U\ Be
Since V is continuous and U \ B. is a compact set (bounded and closed), by the minimal
value theorem, the infimum of V' is taken at some point. Since V is positive away from
0, we obtain m () > 0. It follows from the definition of m (&) that

V(r)>m(e) forall 2z €U\ B.. (4.8)
Since V' (z9) = 0, for any given £ > 0 there is § > 0 so small that
V(x) <mi(e) forall x € By.
Fix y € Bs and let x (t) be the maximal solution in R x U of the IVP

{x’zf(fﬁ),

z(0) =y.

We will show that x (t) € B. for all ¢ > 0, which means that the system is Lyapunov
stable at xg.
For any solution z (t) in U, we have by the chain rule

9V (@ (1) = V! ()2’ (1) = V' (@) ] (&) = Oy V () <01 (19)
Therefore, the function V' is decreasing along any solution x (¢) as long as x (¢) remains
inside U.

If the initial point y is in By then V (y) < m (¢) and, hence, V (z (t)) < m(¢) fort > 0
as long as x (t) is defined in U. It follows from (4.8) that x (¢) € B.. We are left to verify
that x (t) is defined'® for all ¢ > 0. Indeed, assume that z (t) is defined only for t < T
where T is finite. By Theorem 2.8, if ¢ — T'—, then the graph of the solution x (¢) must
leave any compact subset of R x U, whereas the graph is contained in the set [0, T] x B..
This contradiction shows that T" = +o0o, which finishes the proof of the first part.

For the second part, we obtain by (4.7) and (4.9)

d

5V @) = -W(z().

15Since z (t) has been defined as the maximal solution in the domain R x U, the solution x () is always
contained in U as long as it is defined.

128



It suffices to show that
Vi(xz(t) —0ast— oo

since this will imply that x () — 0 (recall that 0 is the only point where V' vanishes).
Since V' (x (1)) is decreasing in ¢, the limit

L= lim V(z(t))

t——+00

exists. Assume from the contrary that L > 0. Then, for all ¢ > 0, V (x (¢)) > L. By the
continuity of V', there is » > 0 such that

V(y) < Lforally € B,.
Hence, z (t) ¢ B, for all ¢ > 0. Set

m= inf W (y) > 0.
yGU\Br

It follows that W (x (¢)) > m for all ¢ > 0 whence

SV @ (0) < =W (@ (1)) < —m

for all ¢ > 0. However, this implies upon integration in ¢ that
Vi(z(t) <V (2(0) —mt,

whence it follows that V' (x (¢)) < 0 for large enough ¢. This contradiction finishes the
proof. m

Proof of Theorem 4.2. Without loss of generality, set 79 = 0. Using that f € C?,
we obtain by the Taylor formula, for any component f; of f,

n 1 n
fi (@) = fi (0) + ;aifk (0) i + 5 ; i fr (0) 2z 4o (|[2]?) as @ — 0.
Noticing that 0; fy (0) = Ay; write
f(x) = Az + h(z)
where h (z) is defined by
1 n
hi () = 5 ”2::1 053 fr (0) iy + o () -

Setting B = max; j, |0;; fx (0)|, we obtain

I @)l = g o)) < B 3 [ty + 0 (1) = Bl +o (lel).
1,)=

Hence, for any choice of the norms, there is a constant C' such that

b ()] < C ) (4.10)
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provided ||z is small enough.
Assuming that Re A < 0 for all eigenvalues of A, consider the following function

Viz) = /OO HeSAxH;ds (4.11)
0

and prove that V' (z) is the Lyapunov function.
Let us first verify that V' (z) is finite, that is, the integral in (4.11) converges. Indeed,
in the proof of Theorem 4.1 we have established the inequality

|ez|| < Ce* (1Y +1) ||z, (4.12)
where C, N are some positive numbers (depending on A) and
a = max Re A,

where max is taken over all eigenvalues \ of A. Since by hypothesis o < 0, (4.12) implies
that HeSAxH decays exponentially as s — +o00, whence the convergence of the integral in
(4.11) follows.

Next, let us show that V () is of the class C! (in fact, C*°). For that, represent x in
the canonical basis vy, ..., v, as x = > x;v; and notice that

Therefore,

HesAtz = ¢ 1‘ e’ 1'— <Zl‘z e’ 'U,L> <Zl'j e’ UJ)
= inacj es vi-eSA'Uj).
4.J

Integrating in s, we obtain

ZL‘) = Z bijl’il'j

where b;; = [;° (e*4v; - e*4v;) ds are constants, which clearly implies that V (z) is infi-
nitely many times differentiable in z.

Remark. Usually we work with any norm in R". In the definition (4.11) of V (z), we
have specifically chosen the 2-norm to ensure the smoothness of V' (z).

Function V' (z) is obviously non-negative and V' (z) = 0 if and only if x = 0. In order
to complete the proof of the fact that V' (x) is the Lyapunov function, we need to estimate
OtV (x). Let us first evaluate 94,V (x) for any = € U. Since the function y (t) = 'z
solves the ODE 3/ = Ay, we have by (4.9)

DV (5 (1)) = 2V (5 (1).

Setting ¢t = 0 and noticing that y (0) = z, we obtain

2y (ez)| . (4.13)

OazV (x) = o
t=0
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On the other hand,

] . 00 , 5 0o 7_
v (ca) =/0 HeA(etAx)H;ds:/O e +t)AxH2ds:/t || dr

where we have made the change 7 = s +t. Therefore, differentiating this identity in ¢, we

obtain p
w AN || tA ]2
=V () = — el

Setting ¢ = 0 and combining with (4.13), we obtain

d
OaaV (2) = ZV (et2)| ==z,
t=0

Now we can estimate O,V () as follows:

8f(x)V (:E) = 0,V (ZL‘) + 8h(x)V (:E)
= —|lzl3+ V' (@) h ()
< =zl + 1V @)y 12 @),

where we have used the Cauchy-Schwarz inequality u - v < ||ull, [|v]|, for all u,v € R™.
Next, let us use the estimate (4.10) in the form

Ih @)l < Cllll3,

which is true provided ||z||, is small enough. Observe also that the function V' (z) has
minimum at 0, which implies that V' (0) = 0. Hence, if ||z||, is small enough then

! |
V' (@)l < 507

Combining together the above three lines, we obtain that, in a small neighborhood U of
0,

1 1
2 2 2
Op)V (@) < = lzlly + 5 ll2llz = =5 ll=];-

Setting W (z) = ||z|3, we conclude by Lemma 4.3, that the ODE 2’ = f (z) is asymp-
totically stable at 0. =

Now consider some examples of investigation of stationary points of an autonomous
system =’ = f (z).

The first step is to find the stationary points, that is, to solve the equation f (z) = 0.
In general, it may have many roots. Then each root requires a separate investigation.

Let x denote as before one of the stationary points of the system. The second step is
to compute the matrix A = f" (zo). Of course, the matrix A can be found as the Jacobian
matrix componentwise by Ay; = 0, fi (v0). However, in practice is it frequently more
convenient to do as follows. Setting X = x — xy, we obtain that the system 2’ = f(x)
transforms to

X'=f(z)=f (20 +X) = f(x0) + f (w0) X + o (| X))

as X — 0, that is, to
X' =AX +o(]|X]).
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Hence, the linear term AX appears in the right hand side if we throw away the terms of
the order o (||.X||). The equation X’ = AX is called the linearized system for 2’ = f(x)
at Zo.

The third step is the investigation of the stability of the linearized system, which
amounts to evaluating the eigenvalues of A and, possibly, the Jordan normal form.

The fours step is the conclusion of the stability of the non-linear system 2’ = f (x) using
Lyapunov’s theorem or Lyapunov lemma. If Re A < 0 for all eigenvalues A of A then both
linearized and non-linear system are asymptotically stable at x, and if Re A > 0 for some
eigenvalue A then both are unstable. The other cases require additional investigation.

Example. Consider the system

I __
{ T =Yty (4.14)
y = —x—xy.
For the stationary points we have the equation
y+ay=0
r+azy=0

whence we obtain two roots: (z,y) = (0,0) and (z,y) = (-1, —1).
Consider first the stationary point (—1,—1). Setting X =z + 1 and Y =y + 1, we
obtain the system

{ X =Y -1DX=-X+XY=-X+o(|(X,V)])

Y= —(X-DY =Y - XY =Y $o(| (X)) (419)

whose linearization is
X' =-X
Y' =Y.

~1 0
=5 1),

and the eigenvalues are —1 and +1 so that the type of the stationary point is a saddle. The
linearized and non-linear system are unstable at (—1, —1) because one of the eigenvalues
is positive.

Consider now the stationary point (0,0). Near this point, the system can be written

in the form
{ g =y+o(|(z,y)l)
Yy =—z+o(||(zy))

v =y,
y = —u.

0 1
=(50)

and the eigenvalues are +i. Since they are purely imaginary, the type of the stationary
point (0,0) is a center. Hence, the linearized system is stable at (0,0) but not asymptot-
ically stable.

Hence, the matrix is

so that the linearized system is

Hence, the matrix is
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For the non-linear system (4.14), no conclusion can be drawn just from the eigenvalues.
In this case, one can use the following Lyapunov function:

V(z,y)=z—In(z+1)+y—In(y+1),

which is defined for + > —1 and y > —1. Indeed, the function x — In (2 + 1) take the
minimum 0 at = 0 and is positive for  # 0. It follows that V (z,y) takes the minimal
value 0 at (0,0) and is positive away from (0,0). The orbital derivative of V' is

oV = (y+uzy) 0,V — (z+2y) 0,V
= (y+xy)<1—%ﬂ>—(w+xy)<1—ﬁ>

= xy—axy=0.

Hence, V' is the Lyapunov function, which implies that (0,0) is stable for the non-linear
system.

Since 0¢V = 0, it follows from (4.9) that V' remains constant along the trajectories
of the system. Using that one can easily show that (0,0) is not asymptotically stable
and the type of the stationary point (0,0) for the non-linear system is also a center. The
phase trajectories of this system around (0, 0) are shown on the diagram.
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