Finite propagation speed for Leibenson's equation on Riemannian manifolds

Alexander Grigor'yan Philipp Sürig

January 2023

Abstract

We consider on arbitrary Riemannian manifolds the Leibenson equation $$
\partial_{t} u=\Delta_{p} u^{q} .
$$

This equation is also known as doubly nonlinear evolution equation. It comes from hydrodynamics where it describes filtration of a turbulent compressible liquid in porous medium. We prove that that, under optimal restrictions on p and q, weak subsolutions to this equation have finite propagation speed.

Contents

1 Introduction 2
2 Weak subsolutions 5
2.1 Definition and basic properties 5
2.2 Caccioppoli type inequality 8
3 Sobolev and Moser inequalities 13
4 Estimates of subsolutions 14
4.1 Comparison in two cylinders 14
4.2 Mean value inequality 16
5 Finite propagation speed 18
5.1 Propagation speed inside a ball 18
5.2 Propagation speed of support 20
5.3 Curvature and propagation rate 23
2020 Mathematics Subject Classification. 35K55, 58J35, 35B05.
Key words and phrases. Leibenson equation, doubly nonlinear parabolic equation, Riemannian manifold, finite propagation speed.
The both authors were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 317210226 - SFB 1283.

1 Introduction

We are concerned here with a non-linear evolution equation

$$
\begin{equation*}
\partial_{t} u=\Delta_{p} u^{q} \tag{1.1}
\end{equation*}
$$

where $p>1, q>0, u=u(x, t)$ is an unknown non-negative function and Δ_{p} is the p-Laplacian

$$
\Delta_{p} v=\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)
$$

Equation (1.1) was introduced by L. S. Leibenson [31, 32] in order to describe filtration of turbulent compressible fluid through a porous medium. The physical meaning of u is the volumetric moisture content, i.e. the (infinitesimal) fraction of volume of the medium taken by the liquid. Parameter p characterizes the turbulence of a flow while $q-1$ is the index of polytropy of the liquid, which determines the relation $P V^{q-1}=$ const between volume V and pressure P. The equation (1.1) is frequently referred to as a doubly non-linear parabolic equation.

The physically interesting values of the parameters p and q are as follows: $\frac{3}{2} \leq p \leq 2$ and $q \geq 1$. The case $p=2$ corresponds to laminar flow ($=$ absence of turbulence). In this case (1.1) becomes a porous medium equation $\partial_{t} u=\Delta u^{q}$, if $q>1$, and the classical heat equation $\partial_{t} u=\Delta u$ if $q=1$.

However, from the mathematical point of view, the entire range $p>1, q>0$ is interesting. For this range, G. I. Barenblatt [6] constructed spherically symmetric self-similar solutions of (1.1) in \mathbb{R}^{n}, that are nowadays called Barenblatt solutions.

Assume first that $q(p-1)>1$. Then the Barenblatt solution is given by

$$
\begin{equation*}
u(x, t)=\frac{1}{t^{n / \beta}}\left(C-\varkappa\left(\frac{|x|}{t^{1 / \beta}}\right)\right)_{+}^{\gamma} \tag{1.2}
\end{equation*}
$$

where $C>0$ is any constant, and

$$
\begin{equation*}
\beta=p+n[q(p-1)-1], \quad \gamma=\frac{p-1}{q(p-1)-1}, \quad \varkappa=\frac{q(p-1)-1}{p q} \beta^{-\frac{1}{p-1}} \tag{1.3}
\end{equation*}
$$

The parameter β determines the space/time scaling and is analogous to the notion of a walk dimension, known for diffusions on fractals.

Clearly, for the Barenblatt solution (1.2), we have

$$
u(x, t)=0 \quad \text { whenever } \quad|x|>c t^{1 / \beta}
$$

where c is a large enough constant; thus, $u(\cdot, t)$ has a bounded support for any $t>0$. One says in this case that u has a finite propagation speed.
Assume now that $q(p-1)<1$. In this case $\gamma, \varkappa<0$, and the Barenblatt solution is given by a similar formula

$$
u(x, t)=\frac{1}{t^{n / \beta}}\left(C+|\varkappa|\left(\frac{|x|}{t^{1 / \beta}}\right)^{\frac{p}{p-1}}\right)^{\gamma}
$$

In the borderline case $q(p-1)=1$, the Barenblatt solution is given by

$$
u(x, t)=\frac{1}{t^{n / p}} \exp \left(-\zeta\left(\frac{|x|}{t^{1 / p}}\right)^{\frac{p}{p-1}}\right)
$$

where $\zeta=(p-1)^{2} p^{-\frac{p}{p-1}}$. Hence, if $q(p-1) \leq 1$, then $u(x, t)>0$ for all $x \in \mathbb{R}^{n}$ and $t>0$, that is, u has an infinite propagation speed.

In the present paper, we prove the finite propagation speed for solutions of the Leibenson equation (1.1) on arbitrary Riemannian manifolds, under the optimal assumption

$$
\begin{equation*}
q(p-1)>1 \tag{1.4}
\end{equation*}
$$

We understand solutions in a certain weak sense (see Section 2 for the definition). It is worth mentioning that existence results for weak solutions of (1.1) were obtained in various settings in the euclidean case in $[4,5,8,9,30,34,37,41]$ and on Cartan-Hadamard manifolds for the porous medium equation $(p=2)$ in [23].
The main result of the present paper (cf. Theorem 5.1) is as follows.
Theorem 1.1. Let M be a geodesically complete Riemannian manifold. Assume that (1.4) is satisfied and let u be a bounded non-negative solution to (1.1) in $M \times \mathbb{R}_{+}$with an initial function $u_{0}=u(\cdot, 0)$. If u_{0} vanishes in a geodesic ball B_{0} of radius R then

$$
u=0 \quad \text { in } \frac{1}{2} B_{0} \times\left[0, t_{0}\right]
$$

where

$$
t_{0}=\eta R^{p}\left\|u_{0}\right\|_{L^{\infty}(M)}^{-[q(p-1)-1]}
$$

and $\eta>0$ depends on the intrinsic geometry of B_{0}.

Hence, the solution u has a finite propagation speed inside B_{0}, and the speed of propagation is determined by the geometry of B_{0} via the constant η. As a consequence, we obtain the following result (cf. Corollary 5.2).

Corollary 1.2. Assume that $K=\operatorname{supp} u_{0}$ is compact. Then there exists an increasing continuous function $r:(0, T) \rightarrow \mathbb{R}_{+}$for some $T \in(0, \infty]$ such that

$$
\begin{equation*}
\operatorname{supp} u(\cdot, t) \subset K_{r(t)} \quad \text { for all } t \in(0, T) \tag{1.5}
\end{equation*}
$$

where $K_{r}=\{x \in M: d(x, K) \leq r\}$ denotes the closed r-neighborhood of K.

The function $r(t)$ is called the propagation rate of u. Hence, u has a finite propagation speed up to a certain time T.
Let us emphasize that these results are valid for an arbitrary geodesically complete Riemannian manifold, and the property of finite propagation speed depends on the local structure of the manifold. In particular, this is reflected in the fact that the value of T in (1.5) may be finite. It is an open question whether one can take $T=\infty$ on any geodesically complete manifolds.

In order to obtain a more detailed quantitative information about the propagation rate $r(t)$, one has to impose some restrictions on the global geometry of M, which may also help to ensure that $T=\infty$. For example, we prove the following result (cf. Corollary 5.3).

Corollary 1.3. Let M be geodesically complete and non-compact. Assume that, for some $x_{0} \in K$ and all large enough r,

$$
\operatorname{Ricci}_{B\left(x_{0}, r\right)} \geq-\frac{c}{r^{2}}
$$

where $c>0$. Let u be a bounded non-negative solution in $M \times \mathbb{R}_{+}$with the initial condition $u(\cdot, 0)=u_{0} ;$ set $K=\operatorname{supp} u_{0}$. Then, for all $t>0$,

$$
\operatorname{supp} u(\cdot, t) \subset K_{C t^{1 / p}}
$$

where the constant C depends on $\left\|u_{0}\right\|_{L^{\infty}}, p, q, n, c$.

Let us emphasize that in this case the solution has a finite propagation speed for all $t>0$, that is, $T=\infty$.

Let us recall some previous results about finite propagation speed of solutions of (1.1). Consider first the special case $q=1$ when (1.1) becomes the parabolic p-Laplace equation

$$
\begin{equation*}
\partial_{t} u=\Delta_{p} u \tag{1.6}
\end{equation*}
$$

In this case the condition (1.4) amounts to $p>2$. The aforementioned results of Theorem 5.1 and Corollaries $5.2,5.3$ were proved for the equation (1.6) by S. Dekkers [14]. In fact, the finite propagation speed was deduced in [14] from a certain non-linear version of the mean value inequality for solutions. We have borrowed this approach from [14], although the proof of the crucial mean value inequality in our case is carried out in an entirely different way.

Related results from the theory of the p-Laplace equation can be found, for instance, in [15, 17, 27, 28].

Consider now another special case $p=2$ when (1.1) becomes the porous medium equation

$$
\begin{equation*}
\partial_{t} u=\Delta u^{q} \tag{1.7}
\end{equation*}
$$

The condition (1.4) amounts in this case to $q>1$. A finite propagation speed for solutions of (1.7) in hyperbolic spaces was proved by Vazquez [43], in Cartan-Hadamard manifolds by Grillo and Muratori [22] and in manifolds with Ricci curvature bounded from below by De Ponti, Muratori and Orrieri [13].

Some related qualitative properties of solutions of (1.7) were proved in [11] in the setting of compact Riemannian manifolds, in $[3,7,11]$ for solutions in \mathbb{R}^{n}, and in $[19,42]$ for solutions in bounded domains in \mathbb{R}^{n} with Dirichlet boundary condition.

In the general case, when $p>1$ and $q>0$ satisfy (1.4), a finite propagation speed for solutions of (1.1) was proved by Andreucci and Tedeev [2], under the hypothesis that the underlying manifold M satisfies a certain isoperimetric inequality; for example, the latter is the case when M is a Cartan-Hadamard manifold. However, the hypothesis about isoperimetric inequality fails on general manifolds of non-negative Ricci curvature that are covered by our Corollary 5.3.

See also $[35,38,40]$ for other results about the asymptotic behaviour of solutions of (1.1).
The structure of the paper is as follows. In Section 2, we define the notion of a weak solution of the Leibenson equation (1.1) and introduce the time mollification, which is then used to prove a Caccioppoli type inequality for weak subsolutions (Lemma 2.6). This inequality is one of the ingredients of the proof of the central technical result of this paper - the mean value inequality for subsolution that is proved in Section 4 (Lemma 4.3). Another ingredient for the proof of the mean value inequality is introduced in Section 3 (Lemma 3.1)

Using Lemma 4.3, we prove in Section 5 our aforementioned results about finite propagation speed.

Let us make some comments on the mean value inequality of the key Lemma 4.3. It says the following. Let $q(p-1) \geq 1$ and let u be a non-negative bounded subsolution of (1.1) in a cylinder

$$
Q=B \times[0, t]
$$

where B is a precompact geodesic ball in M. Assume that $u(\cdot, 0)=0$ in B. Then, for the cylinder

$$
Q^{\prime}=\frac{1}{2} B \times[0, t]
$$

and for any large enough constant $\sigma>0$, we have

$$
\|u\|_{L^{\infty}\left(Q^{\prime}\right)} \leq\left(\frac{C S_{B}}{R^{p(1+\nu)}}\right)^{\frac{1}{\sigma \nu}}\|u\|_{L^{\infty}(Q)}^{\frac{q(p-1)-1}{\sigma}}\|u\|_{L^{\sigma}(Q)}
$$

where $C=C(p, q, \nu, \sigma)$. Here S_{B} and ν are positive constants that depend on the intrinsic geometry of the ball B, namely, on the Sobolev inequality in B (see Section 3).
Although the proof of Lemma 4.3 follows the classical Moser iteration argument [36], it has certain peculiarities due to the non-linearity of the equation, which is worth mentioning here. We consider a shrinking sequence of cylinders $\left\{Q_{k}\right\}_{k=0}^{\infty}$ interpolating between $Q_{0}=Q$ and $Q_{\infty}=Q^{\prime}$, and first prove that

$$
\begin{equation*}
\int_{Q_{k+1}} u^{\sigma(1+\nu)} \leq C(\cdots)\left(\int_{Q_{k}} u^{\sigma}\right)^{1+\nu} \tag{1.8}
\end{equation*}
$$

for some $\sigma>1$ and $\nu>0$, where ν come from the Sobolev inequality in B and "..." stands for some terms that are unimportant for the present discussion (see Corollary 4.2 for details).

In the classical Moser argument, one proves (1.8) first for $\sigma=2$ and then applies this inequality also to $u^{\sigma / 2}$ with any $\sigma>2$ because $u^{\sigma / 2}$ is also a subsolution. This allows to set in (1.8) $\sigma=2(1+\nu)^{k}$, reiterate (1.8) and to reach in the limit $\|u\|_{L^{\infty}\left(Q^{\prime}\right)}$ as $k \rightarrow \infty$. However, in our case this trick does not work as the powers of a subsolution are not necessarily subsolutions. Hence, we need to prove (1.8) directly for any σ and to compute carefully the constant $C=C(\sigma)$ in (1.8). It turns out that $C \simeq \sigma^{(2-p) \nu}$ and, surprisingly enough, this power growth of C with σ still allows to complete the iteration argument and to obtain (1.8).

Note also that similar mean value inequalities for subsolutions of the p-Laplacian (that is, in the case $q=1$) were proved in $[16,18]$ in \mathbb{R}^{n} and in $[14]$ on manifolds. However, those proofs were carried out in an entirely different way by using instead of the powers of u the functions $(u-a)_{+}$that are subsolutions of the p-Laplacian for any $a>0$. However, that approach does not work for the general equation (1.1) because $(u-a)_{+}$is not a subsolution in this case.
For mean value inequalities in various settings see also [1, 21, 24].

2 Weak subsolutions

2.1 Definition and basic properties

We consider in what follows the following evolution equation on a Riemannian manifold M :

$$
\begin{equation*}
\partial_{t} u=\Delta_{p} u^{q} \tag{2.1}
\end{equation*}
$$

By a subsolution of (2.1) we mean a non-negative function u satisfying

$$
\begin{equation*}
\partial_{t} u \leq \Delta_{p} u^{q} \tag{2.2}
\end{equation*}
$$

in a certain weak sense as explained below.
We assume throughout that

$$
p>1 \text { and } \quad q>0
$$

Set

$$
\delta=(p-1) q-1
$$

Later we will assume that $\delta>0$.
Let μ denote the Riemannian measure on M. For simplicity of notation, we frequently omit in integrations the notation of measure. All integration in M is done with respect to $d \mu$, and in $M \times \mathbb{R}$ - with respect to $d \mu d t$, unless otherwise specified.

Definition 2.1. Let Ω be an open subset of M and $0<T \leq \infty$ and set $\Omega_{T}=\Omega \times[0, T)$. Then we call a non-negative function $u=u(x, t)$ a weak subsolution of (2.1) in Ω_{T}, if

$$
\begin{equation*}
u \in \mathcal{S}_{p, q}\left(\Omega_{T}\right)=C\left([0, T) ; L^{2}(\Omega)\right) \cap\left\{u^{q} \in L_{l o c}^{p}\left([0, T) ; W^{1, p}(\Omega)\right)\right\} \tag{2.3}
\end{equation*}
$$

and (2.2) holds weakly in Ω_{T}, which means that for all $0 \leq t_{1}<t_{2}<T$, and all non-negative functions

$$
\begin{equation*}
\psi \in \mathcal{T}_{p, q}\left(\Omega_{T}\right)=W_{l o c}^{1,2}\left([0, T) ; L^{2}(\Omega)\right) \cap L_{l o c}^{p}\left([0, T) ; W_{0}^{1, p}(\Omega)\right) \tag{2.4}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left[\int_{\Omega} u \psi\right]_{t_{1}}^{t_{2}}+\int_{t_{1}}^{t_{2}} \int_{\Omega}-u \partial_{t} \psi+\left|\nabla u^{q}\right|^{p-2}\left\langle\nabla u^{q}, \nabla \psi\right\rangle \leq 0 \tag{2.5}
\end{equation*}
$$

Weak supersolutions and weak solutions of (2.1) are defined analogously. Note that the notion of weak solutions is standard (see [17, 26]).

If $u \in \mathcal{S}_{p, q}\left(\Omega_{T}\right)$, we define

$$
\nabla u:= \begin{cases}q^{-1} u^{1-q} \nabla\left(u^{q}\right), & u>0 \\ 0, & u=0\end{cases}
$$

Remark 2.2. It follows from (2.3) and (2.4) that the integrals in (2.5) are finite. Indeed, we have by Hölder's inequality

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} \int_{\Omega}\left|\nabla u^{q}\right|^{p-2}\left|\left\langle\nabla u^{q}, \nabla \psi\right\rangle\right| & \leq \int_{t_{1}}^{t_{2}} \int_{\Omega}\left|\nabla u^{q}\right|^{p-1}|\nabla \psi| \\
& \leq\left(\int_{t_{1}}^{t_{2}} \int_{\Omega}\left(\left|\nabla u^{q}\right|\right)^{p}\right)^{\frac{p-1}{p}}\left(\int_{t_{1}}^{t_{2}} \int_{\Omega}|\nabla \psi|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Definition 2.3. Let $u=u(x, t)$ be a measurable function in Ω_{T} and $u(\cdot, 0)=u_{0}$. Then we define, for $h \in(0, T)$,

$$
u^{h}(\cdot, t)=\frac{1}{h} \int_{0}^{t} e^{(s-t) / h} u(\cdot, s) d s
$$

and

$$
u_{h}(\cdot, t)=e^{-t / h} u_{0}+\frac{1}{h} \int_{0}^{t} e^{(s-t) / h} u(\cdot, s) d s
$$

The properties of u^{h} and u_{h} in the following Lemma are proved in Lemma 2.2 in [29] and in Lemma B. 1 and Lemma B. 2 in [10].

Lemma 2.4. Let $p \geq 1$ and suppose that $u \in L^{p}\left(\Omega_{T}\right)$. Then

$$
\left\|u^{h}\right\|_{L^{p}\left(\Omega_{T}\right)} \leq\|u\|_{L^{p}\left(\Omega_{T}\right)}
$$

and

$$
\left\|u_{h}\right\|_{L^{p}\left(\Omega_{T}\right)} \leq\|u\|_{L^{p}\left(\Omega_{T}\right)}+h^{1 / p}\left\|u_{0}\right\|_{L^{p}(\Omega)}
$$

Moreover, $u^{h} \rightarrow u$ and $u_{h} \rightarrow u$ in $L^{p}\left(\Omega_{T}\right)$ as $h \rightarrow 0$ and

$$
\begin{equation*}
\partial_{t} u_{h}=\frac{1}{h}\left(u-u_{h}\right) \in L^{p}\left(\Omega_{T}\right) \tag{2.6}
\end{equation*}
$$

Lemma 2.5. Let Ω be a precompact open subset of M and $u=u(x, t)$ be a bounded weak subsolution of (2.1) in Ω_{T}. Then

$$
\begin{equation*}
\int_{0}^{\tau} \int_{\Omega}\left(\partial_{t} u_{h}\right) \psi+\left\langle\left[\left|\nabla u^{q}\right|^{p-2} \nabla u^{q}\right]^{h}, \nabla \psi\right\rangle \leq 0 \tag{2.7}
\end{equation*}
$$

for all $\tau \in(0, T)$ and $\psi \in L^{p}\left([0, \tau] ; W_{0}^{1, p}(\Omega)\right) \cap L^{2}\left(\Omega_{\tau}\right)$.

Proof. Let us first proof (2.7) in the case when ψ is a non-negative smooth function vanishing on the boundary $\partial \Omega \times[0, \tau]$. Fix some $s \in(0, \tau)$. By (2.5) with $t_{1}=0, t_{2}=\tau-s$ and $\psi=\psi(x, t+s)$, we have

$$
\left[\int_{\Omega} u(x, t) \psi(x, t+s) d \mu\right]_{0}^{\tau-s}+\int_{0}^{\tau-s} \int_{\Omega}-u \psi_{t}+\left|\nabla u^{q}\right|^{p-2}\left\langle\nabla u^{q}, \nabla \psi\right\rangle d \mu d t \leq 0
$$

Multiplying both sides by $h^{-1} e^{-s / h}$ and integrating over $[0, \tau]$ with respect to s, we get

$$
\begin{aligned}
& \frac{1}{h} \int_{0}^{\tau} \int_{\Omega} e^{-s / h} u(x, \tau-s) \psi(x, \tau) d \mu d s-\frac{1}{h} \int_{0}^{\tau} \int_{\Omega} e^{-s / h} u_{0}(x) \psi(x, s) d \mu d s \\
& +\frac{1}{h} \int_{0}^{\tau} \int_{s}^{\tau} \int_{\Omega} e^{-s / h}\left(-u(x, t-s) \psi_{t}+\left|\nabla u(x, t-s)^{q}\right|^{p-2}\left\langle\nabla u(x, t-s)^{q}, \nabla \psi\right\rangle\right) d \mu d t d s \leq 0
\end{aligned}
$$

Noticing that

$$
\frac{1}{h} \int_{0}^{\tau} e^{-s / h} u(\cdot, \tau-s) d s=u^{h}(\cdot, \tau)
$$

and

$$
\frac{1}{h} \int_{0}^{\tau} \int_{s}^{\tau} e^{-s / h} u(\cdot, t-s) d t d s=\int_{0}^{\tau} u^{h}(\cdot, t) d t
$$

we deduce

$$
\begin{aligned}
& \int_{\Omega} u_{h}(x, \tau) \psi(x, \tau) d \mu-\int_{\Omega} e^{-\tau / h} u_{0}(x) \psi(x, \tau) d \mu-\int_{\Omega} u_{0}(x)\left(\frac{1}{h} \int_{0}^{\tau} e^{-s / h} \psi(x, s) d s\right) d \mu \\
& +\int_{0}^{\tau} \int_{\Omega} e^{-t / h} u_{0} \partial_{t} \psi d \mu d t-\int_{0}^{\tau} \int_{\Omega} u_{h} \partial_{t} \psi d \mu d t+\int_{0}^{\tau} \int_{\Omega}\left\langle\left[\left|\nabla u^{q}\right|^{p-2} \nabla u^{q}\right]^{h}, \nabla \psi\right\rangle d \mu d t \leq 0
\end{aligned}
$$

By partial integration and using $u_{h}(\cdot, 0)=u_{0}$, we have

$$
\int_{\Omega} u_{h}(x, \tau) \psi(x, \tau) d \mu-\int_{0}^{\tau} \int_{\Omega} u_{h} \partial_{t} \psi d \mu d t=\int_{\Omega} u_{0}(x) \psi(x, 0) d \mu+\int_{0}^{\tau} \int_{\Omega}\left(\partial_{t} u_{h}\right) \psi d \mu d t
$$

and

$$
\begin{aligned}
& \int_{0}^{\tau} \int_{\Omega} e^{-t / h} u_{0} \partial_{t} \psi d \mu d t=\left[\int_{\Omega} e^{-t / h} u_{0}(x) \psi(x, t) d \mu\right]_{0}^{\tau}+\frac{1}{h} \int_{0}^{\tau} \int_{\Omega} e^{-t / h} u_{0}(x) \psi(x, t) d \mu d t \\
& =\int_{\Omega} e^{-\tau / h} u_{0}(x) \psi(x, \tau) d \mu-\int_{\Omega} u_{0}(x) \psi(x, 0) d \mu+\int_{\Omega} u_{0}(x)\left(\frac{1}{h} \int_{0}^{\tau} e^{-t / h} \psi(x, t) d t\right) d \mu
\end{aligned}
$$

which implies (2.7).
Let us now prove (2.7) when ψ is in the class as in the statement. By Lemma 4.3 in [33], there exists a sequence $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ of smooth functions such that $\psi_{j} \rightarrow \psi$ in $L^{p}\left([0, \tau] ; W_{0}^{1, p}(\Omega)\right)$ as $j \rightarrow \infty$. This implies that, by Lemma 2.4 and Hölder's inequality,

$$
\int_{0}^{\tau} \int_{\Omega}\left\langle\left[\left|\nabla u^{q}\right|^{p-2} \nabla u^{q}\right]^{h}, \nabla \psi_{j}\right\rangle \rightarrow \int_{0}^{\tau} \int_{\Omega}\left\langle\left[\left|\nabla u^{q}\right|^{p-2} \nabla u^{q}\right]^{h}, \nabla \psi\right\rangle \quad \text { as } j \rightarrow \infty .
$$

Therefore, it remains to show that

$$
\begin{equation*}
\int_{0}^{\tau} \int_{\Omega}\left(\partial_{t} u_{h}\right) \psi_{j} \rightarrow \int_{0}^{\tau} \int_{\Omega}\left(\partial_{t} u_{h}\right) \psi \quad \text { as } j \rightarrow \infty . \tag{2.8}
\end{equation*}
$$

If $p>2$, we have $\psi_{j} \rightarrow \psi$ in $L^{\frac{p}{p-1}}\left(\Omega_{\tau}\right)$ since Ω is precompact and $\partial_{t} u_{h} \in L^{p}\left(\Omega_{\tau}\right)$ by (2.6), which implies (2.8) in this case. On the other hand, when $1<p \leq 2$, we have by the same argument $\partial_{t} u_{h} \in L^{\frac{p}{p-1}}\left(\Omega_{\tau}\right)$ and thus, (2.8) follows. This completes the proof of (2.7).

2.2 Caccioppoli type inequality

Let Ω be a precompact open subset of M and $0<T \leq \infty$.
Lemma 2.6. Let $v=v(x, t)$ be a bounded non-negative subsolution to (2.1) in a cylinder Ω_{T}. Let $\eta(x, t)$ be a locally Lipschitz non-negative bounded function in Ω_{T} such that $\eta(\cdot, t)$ has compact support in Ω for all $t \in[0, T)$. Fix some real λ such that

$$
\begin{equation*}
\lambda \geq \max (2,1+q) \tag{2.9}
\end{equation*}
$$

and set

$$
\begin{equation*}
\sigma=\lambda+\delta \quad \text { and } \quad \alpha=\frac{\sigma}{p} . \tag{2.10}
\end{equation*}
$$

Choose $0 \leq t_{1}<t_{2}<T$ and set $Q=\Omega \times\left[t_{1}, t_{2}\right]$. Then

$$
\begin{equation*}
\left[\int_{\Omega} v^{\lambda} \eta^{p}\right]_{t_{1}}^{t_{2}}+c_{1} \int_{Q}\left|\nabla\left(v^{\alpha} \eta\right)\right|^{p} \leq \int_{Q}\left[p v^{\lambda} \eta^{p-1} \partial_{t} \eta+c_{2} v^{\sigma}|\nabla \eta|^{p}\right], \tag{2.11}
\end{equation*}
$$

where c_{1}, c_{2} are positive constants depending on p, q, λ.

In particular, if η does not depend on t, then

$$
\begin{equation*}
\left[\int_{\Omega} v^{\lambda} \eta^{p}\right]_{t_{1}}^{t_{2}}+c_{1} \int_{Q}\left|\nabla\left(v^{\alpha} \eta\right)\right|^{p} \leq c_{2} \int_{Q} v^{\sigma}|\nabla \eta|^{p} . \tag{2.12}
\end{equation*}
$$

Proof. Consider the function $\Phi_{\alpha}(u)=u^{\frac{\alpha}{q}}$. It follows from $\lambda \geq 1+q$, that $\frac{\alpha}{q} \geq 1$, whence Φ_{α} is a Lipschitz function on $\left[0, \sup v^{q}\right]$ and we obtain that $v^{\alpha}(\cdot, t)=\Phi_{\alpha}\left(v^{q}\right)(\cdot, t) \in W^{1, p}(\Omega)$
for all $t \in[0, T)$. Also, note that $\sigma \geq 1+q+(p-1) q-1=p q$, so that all integrals in (2.11) are well-defined. Since v is a weak subsolution of (2.1), we obtain by (2.7),

$$
\begin{equation*}
\int_{0}^{\tau} \int_{\Omega}\left(\partial_{t} v_{h}\right) \psi+\left\langle\left[\left|\nabla v^{q}\right|^{p-2} \nabla v^{q}\right]^{h}, \nabla \psi\right\rangle \leq 0, \tag{2.13}
\end{equation*}
$$

for all $h \in(0, T), \tau \in(0, T)$ and $\psi \in L^{p}\left([0, \tau) ; W_{0}^{1, p}(\Omega)\right) \cap L^{2}\left(\Omega_{\tau}\right)$.
Claim:

$$
\begin{equation*}
\left.\left[\int_{\Omega} v^{\lambda} \eta^{p}\right]_{t_{1}}^{t_{2}} \leq \int_{Q}-\left.\lambda\langle | \nabla v^{q}\right|^{p-2} \nabla v^{q}, \nabla\left(v^{\lambda-1} \eta^{p}\right)\right\rangle+p v^{\lambda} \eta^{p-1} \partial_{t} \eta . \tag{2.14}
\end{equation*}
$$

Let us consider, for $\nu<\frac{1}{4}\left(t_{2}-t_{1}\right)$, the function

$$
\theta_{\nu}(t)= \begin{cases}0, & t<t_{1}, \\ \frac{1}{\nu}\left(t-t_{1}\right), & t_{1} \leq t<t_{1}+\nu, \\ 1, & t_{1}+\nu \leq t<t_{2}-\nu, \\ \frac{1}{\nu}\left(t_{2}-t\right), & t_{2}-\nu \leq t<t_{2}, \\ 0, & t \geq t_{2}\end{cases}
$$

(cf. [33]). We want to show that, for all $t \in[0, \tau]$,

$$
\begin{equation*}
v^{\lambda-1}(\cdot, t) \eta^{p}(\cdot, t) \theta_{\nu}(t) \in W_{0}^{1, p}(\Omega) \tag{2.15}
\end{equation*}
$$

which will make this function admissible as a test function in (2.13). Using the function $\Phi_{\lambda-1}(u)=u^{\frac{\lambda-1}{q}}, \lambda \geq 1+q$ and the same argumentation as above, we obtain that $v^{\lambda-1} \in$ $W^{1, p}(\Omega)$ and

$$
\nabla\left(v^{\lambda-1}\right)=\Phi_{\lambda-1}^{\prime}\left(v^{q}\right) \nabla\left(v^{q}\right)=(\lambda-1) q^{-1} v^{\lambda-(q+1)} \nabla\left(v^{q}\right)=(\lambda-1) v^{\lambda-2} \nabla v .
$$

Hence, using this test function in (2.13),

$$
\int_{Q} \partial_{t} v_{h} v^{\lambda-1} \eta^{p} \theta_{\nu}+\left\langle\left[\left|\nabla v^{q}\right|^{p-2} \nabla v^{q}\right]^{h}, \nabla\left(v^{\lambda-1} \eta^{p}\right)\right\rangle \theta_{\nu} \leq 0 .
$$

Let us write

$$
\int_{Q} \partial_{t} v_{h} v^{\lambda-1} \eta^{p} \theta_{\nu}=\int_{Q} \partial_{t} v_{h} v_{h}^{\lambda-1} \eta^{p} \theta_{\nu}+\int_{Q} \partial_{t} v_{h}\left(v^{\lambda-1}-v_{h}^{\lambda-1}\right) \eta^{p} \theta_{\nu}
$$

By (2.6), we see that

$$
\int_{Q} \partial_{t} v_{h}\left(v^{\lambda-1}-v_{h}^{\lambda-1}\right) \eta^{p} \theta_{\nu}=\frac{1}{h} \int_{Q}\left(v-v_{h}\right)\left(v^{\lambda-1}-v_{h}^{\lambda-1}\right) \eta^{p} \theta_{\nu} \geq 0
$$

whence we obtain

$$
\begin{equation*}
\int_{Q} \partial_{t} v_{h} v_{h}^{\lambda-1} \eta^{p} \theta_{\nu}+\left\langle\left[\left|\nabla v^{q}\right|^{p-2} \nabla v^{q}\right]^{h}, \nabla\left(v^{\lambda-1} \eta^{p}\right)\right\rangle \theta_{\nu} \leq 0 \tag{2.16}
\end{equation*}
$$

By using

$$
\lambda \int_{Q} \partial_{t} v_{h} v_{h}^{\lambda-1} \eta^{p} \theta_{\nu}=\int_{Q} \partial_{t} v_{h}^{\lambda} \eta^{p} \theta_{\nu}=\left[\int_{\Omega} v_{h}^{\lambda} \eta^{p} \theta_{\nu}\right]_{t_{1}}^{t_{2}}-p \int_{Q} v_{h}^{\lambda} \eta^{p-1} \partial_{t} \eta \theta_{\nu}-\int_{Q} v_{h}^{\lambda} \eta^{p} \partial_{t} \theta_{\nu},
$$

we get, since $\theta_{\nu}\left(t_{1}\right)=\theta_{\nu}\left(t_{2}\right)=0$,

$$
\begin{equation*}
-\int_{Q} v_{h}^{\lambda} \eta^{p} \partial_{t} \theta_{\nu} \leq \int_{Q}-\lambda\left\langle\left[\left|\nabla v^{q}\right|^{p-2} \nabla v^{q}\right]^{h}, \nabla\left(v^{\lambda-1} \eta^{p}\right)\right\rangle \theta_{\nu}+p v_{h}^{\lambda} \eta^{p-1} \partial_{t} \eta \theta_{\nu} \tag{2.17}
\end{equation*}
$$

We now want to let $h \rightarrow 0$ in (2.17) and apply Lemma 2.4 and then let $\nu \rightarrow 0$ to obtain (2.14). Note that $\left|\nabla v^{q}\right|^{p-1} \in L^{\frac{p}{p-1}}(Q)$, so that by Lemma 2.4, for $h \rightarrow 0$,

$$
\left[\left|\nabla v^{q}\right|^{p-2} \nabla v^{q}\right]^{h} \rightarrow\left|\nabla v^{q}\right|^{p-2} \nabla v^{q} \quad \text { in } L^{\frac{p}{p-1}}(Q)
$$

Together with $\left|\nabla\left(v^{\lambda-1} \eta^{p}\right)\right| \theta_{\nu} \in L^{p}(Q)$, we obtain

$$
\left.\lim _{h \rightarrow 0} \int_{Q}-\lambda\left\langle\left[\left|\nabla v^{q}\right|^{p-2} \nabla v^{q}\right]^{h}, \nabla\left(v^{\lambda-1} \eta^{p}\right)\right\rangle \theta_{\nu}=\int_{Q}-\left.\lambda\langle | \nabla v^{q}\right|^{p-2} \nabla v^{q}, \nabla\left(v^{\lambda-1} \eta^{p}\right)\right\rangle \theta_{\nu}
$$

For the convergence of the remaining terms in (2.17), we will use the boundedness of v. Note that by assumption $v \in L^{2}(Q)$ whence Lemma 2.4 implies that $v_{h} \rightarrow v$ in $L^{2}(Q)$. Since the function $u \mapsto u^{\lambda}$ is Lipschitz on any bounded subset of $[0, \infty)$, we get $v_{h}^{\lambda} \rightarrow v^{\lambda}$ in $L^{2}(Q)$ and thus,

$$
\lim _{h \rightarrow 0} \int_{Q} p v_{h}^{\lambda} \eta^{p-1} \partial_{t} \eta \theta_{\nu}=\int_{Q} p v^{\lambda} \eta^{p-1} \partial_{t} \eta \theta_{\nu}
$$

The convergence

$$
\lim _{h \rightarrow 0} \int_{Q} v_{h}^{\lambda} \eta^{p} \partial_{t} \theta_{\nu}=\int_{Q} v^{\lambda} \eta^{p} \partial_{t} \theta_{\nu}
$$

follows by the same arguments. Hence,

$$
-\int_{Q} v^{\lambda} \eta^{p} \partial_{t} \theta_{\nu} \leq \int_{Q}-\lambda\left\langle\left[\left|\nabla v^{q}\right|^{p-2} \nabla v^{q}\right], \nabla\left(v^{\lambda-1} \eta^{p}\right)\right\rangle \theta_{\nu}+p v^{\lambda} \eta^{p-1} \partial_{t} \eta \theta_{\nu}
$$

Sending now $\nu \rightarrow 0$, we deduce (2.14).
We have

$$
\begin{equation*}
\nabla\left(v^{\lambda-1} \eta^{p}\right)=(\lambda-1) \eta^{p} v^{\lambda-2} \nabla v+p \eta^{p-1} v^{\lambda-1} \nabla \eta \tag{2.18}
\end{equation*}
$$

Therefore, by (2.14) and (2.18), we obtain

$$
\begin{align*}
{\left[\int_{\Omega} v^{\lambda} \eta^{p}\right]_{t_{1}}^{t_{2}} } & \leq \int_{Q}-\lambda(\lambda-1) v^{\lambda-2+(q-1)(p-1)} \eta^{p}|\nabla v|^{p}+\lambda p v^{\lambda-1+(q-1)(p-1)}|\nabla v|^{p-1}|\nabla \eta| \eta^{p-1} \\
& +\int_{Q} p v^{\lambda} \eta^{p-1} \partial_{t} \eta \\
& =\int_{Q}-\lambda(\lambda-1) v^{p(\alpha-1)} \eta^{p}|\nabla v|^{p}+\lambda p v^{p(\alpha-1)+1}|\nabla v|^{p-1}|\nabla \eta| \eta^{p-1}+p v^{\lambda} \eta^{p-1} \partial_{t} \eta \tag{2.19}
\end{align*}
$$

Then by Young's inequality we have, for all $\varepsilon>0$,

$$
\begin{align*}
v^{p(\alpha-1)+1}|\nabla v|^{p-1}|\nabla \eta| \eta^{p-1} & =\left(v^{p(\alpha-1) \frac{p-1}{p}}|\nabla v|^{p-1} \eta^{p-1}\right)\left(v^{\alpha}|\nabla \eta|\right) \\
& \leq \varepsilon^{p^{\prime}} v^{p(\alpha-1)}|\nabla v|^{p} \eta^{p}+\frac{1}{\varepsilon^{p}} v^{\alpha p}|\nabla \eta|^{p} \tag{2.20}
\end{align*}
$$

where $p^{\prime}=\frac{p}{p-1}$. Combining this with (2.19), we deduce

$$
\left[\int_{\Omega} v^{\lambda} \eta^{p}\right]_{t_{1}}^{t_{2}} \leq \int_{Q}-\lambda\left(\lambda-1-p \varepsilon^{p^{\prime}}\right) v^{p(\alpha-1)}|\nabla v|^{p} \eta^{p}+\frac{\lambda p}{\varepsilon^{p}} v^{\alpha p}|\nabla \eta|^{p}+p v^{\lambda} \eta^{p-1} \partial_{t} \eta
$$

Also,

$$
\left|\nabla\left(v^{\alpha} \eta\right)\right|^{p}=\left|\alpha v^{\alpha-1} \eta \nabla v+v^{\alpha} \nabla \eta\right|^{p} \leq 2^{p-1} \alpha^{p}|\nabla v|^{p} v^{p(\alpha-1)} \eta^{p}+2^{p-1} v^{\alpha p}|\nabla \eta|^{p},
$$

which implies that

$$
|\nabla v|^{p} v^{p(\alpha-1)} \eta^{p} \geq 2^{1-p} \alpha^{-p}\left|\nabla\left(v^{\alpha} \eta\right)\right|^{p}-\alpha^{-p} v^{\alpha p}|\nabla \eta|^{p} .
$$

Therefore,

$$
\begin{aligned}
{\left[\int_{\Omega} v^{\lambda} \eta^{p}\right]_{t_{1}}^{t_{2}} \leq } & \int_{Q}-\lambda\left(\lambda-1-p \varepsilon^{p^{\prime}}\right) 2^{1-p} \alpha^{-p}\left|\nabla\left(v^{\alpha} \eta\right)\right|^{p} \\
& +\int_{Q} \lambda\left(\left(\lambda-1-p \varepsilon^{p^{\prime}}\right) \alpha^{-p}+\frac{p}{\varepsilon^{p}}\right) v^{\alpha p}|\nabla \eta|^{p}+p v^{\lambda} \eta^{p-1} \partial_{t} \eta \\
= & -c_{1} \int_{Q}\left|\nabla\left(v^{\alpha} \eta\right)\right|^{p}+c_{2} \int_{Q} v^{\alpha p}|\nabla \eta|^{p}+\int_{Q} p v^{\lambda} \eta^{p-1} \partial_{t} \eta,
\end{aligned}
$$

where

$$
c_{1}=\lambda\left(\lambda-1-p \varepsilon^{p^{\prime}}\right) 2^{1-p} \alpha^{-p}
$$

and

$$
c_{2}=\lambda\left(\left(\lambda-1-p \varepsilon^{p^{\prime}}\right) \alpha^{-p}+\frac{p}{\varepsilon^{p}}\right) .
$$

Hence, choosing ε small enough so that $c_{1}>0$, that is

$$
p \varepsilon^{p^{\prime}}<\lambda-1,
$$

we obtain (2.11). Finally, let us specify c_{1} and c_{2}. Let us choose ε so that

$$
p \varepsilon^{p^{\prime}}=\frac{1}{2}(\lambda-1),
$$

that is

$$
\begin{equation*}
c_{1}=\lambda(\lambda-1) 2^{-p} \alpha^{-p} . \tag{2.21}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
c_{2} & =\frac{1}{2} \lambda(\lambda-1) \alpha^{-p}+\lambda \frac{p}{\varepsilon^{p}} \\
& =\frac{1}{2} \lambda(\lambda-1) \alpha^{-p}+\lambda \frac{p}{\left(\frac{1}{2}(\lambda-1) / p\right)^{p / p^{\prime}}} \\
& =\frac{1}{2} \lambda(\lambda-1) \alpha^{-p}+\lambda \frac{2^{p / p^{\prime}} p^{1+p / p^{\prime}}}{(\lambda-1)^{p / p^{\prime}}} .
\end{aligned}
$$

Since

$$
\frac{p}{p^{\prime}}+1=\frac{p}{p /(p-1)}+1=p
$$

we have

$$
\begin{equation*}
c_{2}=\frac{1}{2} \lambda(\lambda-1) \alpha^{-p}+\frac{\lambda 2^{p-1} p^{p}}{(\lambda-1)^{p-1}} . \tag{2.22}
\end{equation*}
$$

which finishes the proof.

Remark 2.7. For the future we need the ratio $\frac{c_{2}}{c_{1}}$. It follows from (2.21) and (2.22) that

$$
\begin{aligned}
\frac{c_{2}}{c_{1}} & =2^{p-1}+\lambda \frac{2^{p-1} p^{p}}{(\lambda-1)^{p-1} \lambda(\lambda-1) 2^{-p} \alpha^{-p}} \\
& =2^{p-1}+\frac{2^{2 p-1} \sigma^{p}}{(\lambda-1)^{p}}
\end{aligned}
$$

where we have used that $\alpha p=\sigma$. Since $\sigma=\lambda+\delta$, we obtain

$$
\frac{c_{2}}{c_{1}}=2^{p-1}+\frac{2^{2 p-1}(\lambda+\delta)^{p}}{(\lambda-1)^{p}}
$$

It follows that, for all $\lambda \geq 2$,

$$
\frac{c_{2}}{c_{1}} \leq C_{p, \delta}
$$

where $C_{p, \delta}$ depend only on p and δ and does not depend on λ.
Remark 2.8. Let us obtain an upper bound of c_{2}. Using

$$
\alpha=\frac{\sigma}{p}=\frac{\lambda+\delta}{p}
$$

we obtain

$$
c_{2}=\frac{1}{2} \frac{\lambda(\lambda-1)}{(\lambda+\delta)^{p}} p^{p}+\frac{\lambda 2^{p-1} p^{p}}{(\lambda-1)^{p-1}}
$$

As $\lambda \geq 2$ and $\lambda+\delta \geq p>1$, it follows that

$$
\begin{equation*}
c_{2} \leq C_{p, \delta} \lambda^{2-p} \tag{2.23}
\end{equation*}
$$

Of course, if $p \geq 2$ then c_{2} is uniformly bounded by a constant $C_{p, \delta}$ independently of λ, but if $p<2$ then c_{2} may grow with λ as in (2.23).

Lemma 2.9. Let $v=v(x, t)$ be a bounded non-negative subsolution to (2.1) in M_{T}, and assume that M is geodesically complete. Then, for any $\lambda \geq \max (2,1+q)$, including $\lambda=\infty$, the function

$$
t \mapsto\|v(\cdot, t)\|_{L^{\lambda}(M)}
$$

is monotone decreasing.

Proof. Let $\eta(x, t)=\eta(x)$ be a bump function of some open geodesic ball B^{\prime} (see Section 3) so that η has compact support in a larger ball B. Observe that the balls are precompact by the completeness of M. By Lemma 2.6 we obtain from (2.12), for any $0 \leq t_{1}<t_{2}<T$,

$$
\left[\int_{B} v^{\lambda} \eta^{p}\right]_{t_{1}}^{t_{2}} \leq c_{2} \int_{B \times\left[t_{1}, t_{2}\right]} v^{\sigma}|\nabla \eta|^{p}
$$

for some positive constant c_{2}. Therefore, sending $B \rightarrow M$, we conclude as then $\eta \rightarrow 1$ and $|\nabla \eta| \rightarrow 0$,

$$
\left[\int_{M} v^{\lambda}\right]_{t_{1}}^{t_{2}} \leq 0
$$

which proves the claim for finite λ. The case $\lambda=\infty$ then follows by sending $\lambda \rightarrow \infty$.

3 Sobolev and Moser inequalities

Let M be a connected Riemannian manifold of dimension n. Let d be the geodesic distance on M. For any $x \in M$ and $r>0$, denote by $B(x, r)$ the geodesic ball of radius r centered at x, that is,

$$
B(x, r)=\{y \in M: d(x, y)<r\} .
$$

Let B be a precompact ball in M. The Sobolev inequality in B of order $p \geq 1$ says the following \mid : for any non-negative function $w \in W_{0}^{1, p}(B)$,

$$
\begin{equation*}
\left(\int_{B} w^{p \kappa}\right)^{1 / \kappa} \leq S_{B} \int_{B}|\nabla w|^{p} \tag{3.1}
\end{equation*}
$$

where $\kappa>1$ is some constant and S_{B} is called the Sobolev constant in B. The value of κ is independent of B and can be chosen as follows:

$$
\kappa= \begin{cases}\frac{n}{n-p}, & \text { if } n>p \tag{3.2}\\ \text { any number }>1, & \text { if } n \leq p\end{cases}
$$

We always assume that S_{B} is chosen to be minimal possible. In this case the function $B \mapsto S_{B}$ is clearly monotone increasing with respect to inclusion of balls.
Dividing (3.1) by $\mu(B)^{1 / \kappa}$, we obtain

$$
\begin{equation*}
\left(f_{B} w^{p \kappa}\right)^{1 / \kappa} \leq \mu(B)^{1 / \kappa^{\prime}} S_{B} f_{B}|\nabla w|^{p} \tag{3.3}
\end{equation*}
$$

where $\kappa^{\prime}=\frac{\kappa}{\kappa-1}$ is the Hölder conjugate of κ and f denotes the normalized integral. It follows from (3.2) that

$$
\kappa^{\prime}= \begin{cases}\frac{n}{p}, & \text { if } n>p \tag{3.4}\\ \text { any number }>1, & \text { if } n \leq p\end{cases}
$$

Denoting by $r(B)$ the radius of B, let us define a new quantity

$$
\begin{equation*}
\iota(B):=\frac{1}{\mu(B)}\left(\frac{r(B)^{p}}{S_{B}}\right)^{\kappa^{\prime}} \tag{3.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
S_{B}=\frac{r(B)^{p}}{(\iota(B) \mu(B))^{1 / \kappa^{\prime}}} \tag{3.6}
\end{equation*}
$$

and

$$
\left(\mu(B)^{1 / \kappa^{\prime}} S_{B}\right)^{1 / p}=\frac{r(B)}{\iota(B)^{\frac{1}{p \kappa^{\prime}}}}
$$

Hence, (3.3) can be rewritten in the form

$$
\begin{equation*}
\left(f_{B}|\nabla w|^{p}\right)^{1 / p} \geq \frac{\iota(B)^{\frac{1}{p \kappa^{\prime}}}}{r(B)}\left(f_{B} w^{p \kappa}\right)^{1 / p \kappa} \tag{3.7}
\end{equation*}
$$

It is clear from (3.7) that the value of κ can be always reduced (by modifying the value of $\iota(B))$. It is only important that $\kappa>1$. In fact, the exact value of κ does not affect the results, although various constants do depend on κ.

The constant $\iota(B)$ is called the normalized Sobolev constant in B. It is known that if M is complete and $\operatorname{Ricci}_{B} \geq-(n-1) k$ for some $k \geq 0$ then

$$
\begin{equation*}
\iota(B) \geq c e^{-C_{n} \sqrt{k} r(B)} \tag{3.8}
\end{equation*}
$$

for positive constants c, C_{n} (see [12], [20], [39]).
Let B be a precompact ball in M and $Q=B \times[0, T]$. Assume that the Sobolev inequality (3.7) holds in B with exponent $\kappa>1$, and let κ^{\prime} be its Hölder conjugate. Set

$$
\nu=\frac{1}{\kappa^{\prime}}=\frac{\kappa-1}{\kappa} .
$$

Lemma 3.1. Let $w \in L^{p}\left([0, T] ; W_{0}^{1, p}(B)\right)$ be a non-negative function. Then,

$$
\begin{equation*}
\int_{Q} w^{p(1+\nu)} \leq S_{B}\left(\int_{Q}|\nabla w|^{p}\right) \sup _{t}\left(\int_{B} w^{p}\right)^{\nu} \tag{3.9}
\end{equation*}
$$

Proof. By the Hölder inequality, we have, for any $t \in[0, T]$

$$
\begin{aligned}
\int_{B} w^{p(1+\nu)} & =\int_{B} w^{p} w^{p \nu} \leq\left(\int_{B} w^{p \kappa}\right)^{1 / \kappa}\left(\int_{B} w^{p \nu \kappa^{\prime}}\right)^{1 / \kappa^{\prime}} \\
& =\left(\int_{B} w^{p \kappa}\right)^{1 / \kappa}\left(\int_{B} w^{p}\right)^{\nu} \\
& \leq\left(\int_{B} w^{p \kappa}\right)^{1 / \kappa} \sup _{t \in[0, T]}\left(\int_{B} w^{p}\right)^{\nu}
\end{aligned}
$$

where we have used that $\nu \kappa^{\prime}=1$.
By the Sobolev inequality (3.1) we have

$$
\left(\int_{B} w^{p \kappa}\right)^{1 / \kappa} \leq S_{B} \int_{B}|\nabla w|^{p}
$$

It follows that

$$
\int_{B} w^{p(1+\nu)} \leq S_{B}\left(\int_{B}|\nabla w|^{p}\right) \sup _{t}\left(\int_{B} w^{p}\right)^{\nu}
$$

Integrating this inequality in $t \in[0, T]$ gives (3.9).

4 Estimates of subsolutions

4.1 Comparison in two cylinders

Here we assume that

$$
p>1 \quad \text { and } \quad \delta:=q(p-1)-1 \geq 0
$$

Lemma 4.1. Consider two balls $B=B(x, r)$ and $B^{\prime}=B\left(x, r^{\prime}\right)$ with $0<r^{\prime}<r$, and two cylinders

$$
Q=B \times[0, T], \quad Q^{\prime}=B^{\prime} \times[0, T]
$$

Assume that B is precompact. Let λ be any real such that

$$
\begin{equation*}
\lambda \geq \max (2,1+q) \tag{4.1}
\end{equation*}
$$

Set

$$
\sigma=\lambda+\delta
$$

Let v be a non-negative bounded subsolution of (2.1) in $B \times\left[0, T^{\prime}\right)$ for some $T^{\prime}>T$, such that

$$
v(\cdot, 0)=0
$$

Then

$$
\begin{equation*}
\int_{Q^{\prime}} v^{\sigma(1+\nu)} \leq \frac{C S_{B} \sigma^{(2-p) \nu}}{\left(r-r^{\prime}\right)^{p(1+\nu)}}\left(\int_{Q} v^{\sigma}\right)\left(\int_{Q} v^{\sigma+\delta}\right)^{\nu} \tag{4.2}
\end{equation*}
$$

where the constant C depends on p, δ and ν, but it is independent of σ.

Proof. As in Lemma 2.6, set $\alpha=\frac{\sigma}{p}$. Let η be a bump function of B^{\prime} in B. Recalling the proof of Lemma 2.6, we see that $v^{\alpha} \eta \in L_{l o c}^{p}\left(\left[0, T^{\prime}\right) ; W_{0}^{1, p}(B)\right)$. Applying (3.9) with

$$
w=v^{\alpha} \eta
$$

and using

$$
w^{p}=v^{\sigma} \eta^{p}
$$

we obtain that, for any $t \in[0, T]$,

$$
\int_{Q} v^{\sigma(1+\nu)} \eta^{p(1+\nu)} \leq S_{B}\left(\int_{Q}\left|\nabla\left(v^{\alpha} \eta\right)\right|^{p}\right) \sup _{t \in[0, T]}\left(\int_{B} v^{\sigma} \eta^{p}\right)^{\nu}
$$

By (2.12) we have

$$
\int_{Q}\left|\nabla\left(v^{\alpha} \eta\right)\right|^{p} \leq \frac{c_{2}}{c_{1}} \int_{Q} v^{\sigma}|\nabla \eta|^{p}
$$

and

$$
\sup _{t \in[0, T]}\left(\int_{B} v^{\lambda} \eta^{p}\right) \leq c_{2} \int_{Q} v^{\sigma}|\nabla \eta|^{p}
$$

Let us use the latter in the form

$$
\sup _{t \in[0, T]}\left(\int_{B} v^{\lambda^{\prime}} \eta^{p}\right) \leq c_{2}^{\prime} \int_{Q} v^{\sigma^{\prime}}|\nabla \eta|^{p},
$$

where

$$
\lambda^{\prime}=\sigma \quad \text { and } \quad \sigma^{\prime}=\lambda^{\prime}+\delta=\sigma+\delta
$$

Then we have

$$
\sup _{t \in[0, T]}\left(\int_{B} v^{\sigma} \eta^{p}\right) \leq c_{2}^{\prime} \int_{Q} v^{\sigma^{\prime}}|\nabla \eta|^{p} .
$$

It follows that

$$
\int_{Q} v^{\sigma(1+\nu)} \eta^{p(1+\nu)} \leq S_{B} \frac{c_{2}}{c_{1}} \int_{Q} v^{\sigma}|\nabla \eta|^{p}\left(c_{2}^{\prime} \int_{Q} v^{\sigma^{\prime}}|\nabla \eta|^{p}\right)^{\nu}
$$

Using that $\eta=1$ in B^{\prime} and $|\nabla \eta| \leq \frac{1}{r-r^{\prime}}$ we obtain

$$
\int_{Q^{\prime}} v^{\sigma(1+\nu)} \leq S_{B} \frac{c_{2}}{c_{1}} \frac{\left(c_{2}^{\prime}\right)^{\nu}}{\left(r-r^{\prime}\right)^{p(1+\nu)}}\left(\int_{Q} v^{\sigma}\right)\left(\int_{Q} v^{\sigma^{\prime}}\right)^{\nu}
$$

By Remark 2.7 we have

$$
\frac{c_{2}}{c_{1}} \leq C_{p, \delta}
$$

and, by the estimate (2.23) of Remark 2.8,

$$
c_{2}^{\prime} \leq C_{p, \delta}\left(\lambda^{\prime}\right)^{2-p}=C_{p, \delta} \sigma^{2-p}
$$

Hence, (4.2) follows.
Corollary 4.2. Under the hypotheses of Lemma 4.1, we have

$$
\begin{equation*}
\int_{Q^{\prime}} v^{\sigma(1+\nu)} \leq \frac{C S_{B} \sigma^{(2-p) \nu}\|v\|_{L^{\infty}(Q)}^{\delta \nu}}{\left(r-r^{\prime}\right)^{p(1+\nu)}}\left(\int_{Q} v^{\sigma}\right)^{1+\nu} \tag{4.3}
\end{equation*}
$$

where $C=C(p, \delta, \nu)$.

4.2 Mean value inequality

We assume here that $p>1$ and $\delta \geq 0$.
Lemma 4.3. Let the ball $B=B\left(x_{0}, R\right)$ be precompact and $T>0$. Let u be a non-negative bounded subsolution of (2.1) in $B \times[0, T)$ such that

$$
u(\cdot, 0)=0 \text { in } B
$$

Choose $t \in(0, T)$ and set

$$
Q=B \times[0, t] \quad \text { and } \quad Q^{\prime}=\frac{1}{2} B \times[0, t] .
$$

(see Fig. 1). Then, for any large enough $\sigma>0$, we have

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(Q^{\prime}\right)} \leq\left(\frac{C S_{B}}{R^{p(1+\nu)}}\right)^{\frac{1}{\sigma \nu}}\|u\|_{L^{\infty}(Q)}^{\frac{\delta}{\sigma}}\|u\|_{L^{\sigma}(Q)} \tag{4.4}
\end{equation*}
$$

where $C=C(p, q, \nu, \sigma)$.

Figure 1: Cylinders Q and Q^{\prime}

Proof. Consider a sequence of radii

$$
r_{k}=\left(\frac{1}{2}+2^{-k-1}\right) R
$$

so that $r_{0}=R$ and $r_{k} \searrow \frac{1}{2} R$ as $k \rightarrow \infty$. Set

$$
B_{k}=B\left(x_{0}, r_{k}\right), \quad Q_{k}=B_{k} \times[0, t]
$$

so that

$$
B_{0}=B, \quad Q_{0}=Q \quad \text { and } \quad Q_{\infty}:=\lim _{k \rightarrow \infty} Q_{k}=Q^{\prime}
$$

(see Fig. 2).

Figure 2: Cylinders Q_{k}

Set also

$$
\sigma_{k}=\sigma(1+\nu)^{k}
$$

and

$$
J_{k}=\int_{Q_{k}} u^{\sigma_{k}}
$$

By (4.3) we have

$$
\begin{aligned}
J_{k+1} & \leq \frac{C S_{B_{k}} \sigma_{k}^{(2-p) \nu}\|u\|_{L^{\infty}\left(Q_{k}\right)}^{\delta \nu}}{\left(r_{k}-r_{k+1}\right)^{p(1+\nu)}} J_{k}^{1+\nu} \\
& \leq \frac{C 2^{k p(1+\nu)}(1+\nu)^{k(2-p) \nu} \sigma^{(2-p) \nu} S_{B}\|u\|_{L^{\infty}(Q)}^{\delta \nu}}{R^{p(1+\nu)}} J_{k}^{1+\nu} \\
& \leq A^{k} \Theta^{-1} J_{k}^{1+\nu},
\end{aligned}
$$

where

$$
A=2^{p(1+\nu)}(1+\nu)^{(2-p)_{+} \nu} \geq 1
$$

and

$$
\Theta^{-1}=\frac{C S_{B}\|u\|_{L^{\infty}(Q)}^{\delta \nu}}{R^{p(1+\nu)}}
$$

where we have absorbed $\sigma^{(2-p) \nu}$ into C.
By Lemma 6.1 (see Appendix), we conclude that

$$
\begin{aligned}
J_{k} & \leq\left(\left(A^{1 / \nu} \Theta^{-1}\right)^{1 / \nu} J_{0}\right)^{(1+\nu)^{k}}\left(A^{-1 / \nu} \Theta\right)^{1 / \nu} \\
& =A^{\frac{(1+\nu)^{k}-1}{\nu^{2}}} \Theta^{-\frac{(1+\nu)^{k}-1}{\nu}} J_{0}^{(1+\nu)^{k}}
\end{aligned}
$$

It follows that

$$
\left(\int_{Q_{k}} u^{\sigma_{k}}\right)^{1 / \sigma_{k}} \leq A^{\frac{1-(1+\nu)^{-k}}{\sigma \nu^{2}}} \Theta^{-\frac{1-(1+\nu)^{-k}}{\sigma \nu}}\left(\int_{Q} u^{\sigma}\right)^{1 / \sigma}
$$

As $k \rightarrow \infty$, we obtain

$$
\begin{aligned}
\|u\|_{L^{\infty}\left(Q^{\prime}\right)} & \leq A^{\frac{1}{\sigma \nu^{2}}} \Theta^{-\frac{1}{\sigma \nu}}\|u\|_{L^{\sigma}(Q)} \\
& =A^{\frac{1}{\sigma \nu^{2}}}\left(\frac{C S_{B}\|u\|_{L^{\infty}(Q)}^{\delta \nu}}{R^{p(1+\nu)}}\right)^{\frac{1}{\sigma \nu}}\|u\|_{L^{\sigma}(Q)} \\
& =\left(\frac{C S_{B}}{R^{p(1+\nu)}}\right)^{\frac{1}{\sigma \nu}}\|u\|_{L^{\infty}(Q)}^{\frac{\delta}{\sigma}}\|u\|_{L^{\sigma}(Q)}
\end{aligned}
$$

where $A^{1 / \nu}$ was absorbed into C.
Remark 4.4. Clearly, (4.4) implies

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(Q^{\prime}\right)} \leq\left(\frac{C S_{B}}{R^{p(1+\nu)}}\right)^{\frac{1}{\sigma \nu}}(t \mu(B))^{\frac{1}{\sigma}}\|u\|_{L^{\infty}(Q)}^{1+\frac{\delta}{\sigma}} \tag{4.5}
\end{equation*}
$$

5 Finite propagation speed

In this section we assume that M is geodesically complete. In particular, all balls are precompact. We assume here that

$$
p>1 \text { and } \delta>0
$$

5.1 Propagation speed inside a ball

The following theorem implies Theorem 1.1.
Theorem 5.1. Let u be a bounded non-negative subsolution of (2.1) in M_{T} with the initial condition $u(\cdot, 0)=u_{0}$. Let $B_{0}=B\left(x_{0}, R\right)$ be a ball such that $u_{0}=0$ in B_{0} (see Fig. 3). Set

$$
\begin{equation*}
t_{0}=\eta \iota\left(B_{0}\right) R^{p}\left\|u_{0}\right\|_{L^{\infty}(M)}^{-\delta} \wedge T \tag{5.1}
\end{equation*}
$$

where η is a sufficiently small positive constant depending only on p, q, ν and $\iota\left(B_{0}\right)$ is the normalized Sobolev constant defined in (3.5). Then

$$
u=0 \quad \text { in } \quad \frac{1}{2} B_{0} \times\left[0, t_{0}\right]
$$

Figure 3: The support of u_{0}

Proof. Set $r=\frac{1}{2} R$ and fix for a while a point $x \in \frac{1}{2} B_{0}$ so that $B:=B(x, r) \subset B_{0}$. Fix also some $t \in(0, T)$ and set

$$
Q_{k}=2^{-k} B \times[0, t] \quad \text { and } \quad J_{k}=\|u\|_{L^{\infty}\left(Q_{k}\right)}
$$

(see Fig. 4).

Figure 4: Cylinders Q_{k}

Choose and fix σ large enough as it is needed for Lemma 4.3. Then, by (4.5), we have

$$
\begin{aligned}
J_{k+1} & \leq\left(\frac{C S_{2^{-k} B}}{\left(2^{-k} R\right)^{p(1+\nu)}}\right)^{\frac{1}{\sigma \nu}}\left(t \mu\left(2^{-k} B\right)\right)^{\frac{1}{\sigma}} J_{k}^{1+\frac{\delta}{\sigma}} \\
& \leq 2^{k \frac{p(1+\nu)}{\sigma \nu}}\left(\frac{C S_{B}}{R^{p(1+\nu)}}\right)^{\frac{1}{\sigma \nu}}(t \mu(B))^{\frac{1}{\sigma}} J_{k}^{1+\frac{\delta}{\sigma}}
\end{aligned}
$$

Observe that, by (3.6) and $\frac{1}{\nu}=\kappa^{\prime}$,

$$
\left(\frac{S_{B}}{R^{p(1+\nu)}}\right)^{\frac{1}{\nu}} \mu(B)=\frac{R^{p / \nu}}{R^{p \frac{(1+\nu)}{\nu}} \iota(B) \mu(B)} \mu(B)=\frac{1}{\iota(B) R^{p}}
$$

so that

$$
\begin{aligned}
J_{k+1} & \leq 2^{k \frac{p(1+\nu)}{\sigma \nu}}\left(\frac{C t}{\iota(B) R^{p}}\right)^{\frac{1}{\sigma}} J_{k}^{1+\frac{\delta}{\sigma}} \\
& =A^{k} \Theta^{-1} J_{k}^{1+\omega}
\end{aligned}
$$

where

$$
\omega=\frac{\delta}{\sigma}, \quad A=2^{\frac{p(1+\nu)}{\sigma \nu}}
$$

and

$$
\Theta^{-1}=\left(\frac{C t}{\iota(B) R^{p}}\right)^{\frac{1}{\sigma}}
$$

By Lemma 6.1, if

$$
\begin{equation*}
\Theta^{-1} \leq A^{-1 / \omega} J_{0}^{-\omega} \tag{5.2}
\end{equation*}
$$

then, for all $k \geq 0$,

$$
\begin{equation*}
J_{k} \leq A^{-k / \omega} J_{0} \tag{5.3}
\end{equation*}
$$

The condition (5.2) is equivalent to

$$
\left(\frac{C t}{\iota(B) R^{p}}\right)^{\frac{1}{\sigma}} \leq A^{-1 / \omega} J_{0}^{-\omega}
$$

that is, to

$$
\begin{equation*}
t \leq C^{-1} \iota(B) R^{p} J_{0}^{-\delta} \tag{5.4}
\end{equation*}
$$

where A is absorbed to C. Since, by Lemma 2.9,

$$
J_{0}=\|u\|_{L^{\infty}(Q)} \leq\left\|u_{0}\right\|_{L^{\infty}(M)}
$$

the condition (5.4) is satisfied for $t=t_{0}$, where t_{0} is determined by (5.1) with $\eta=C^{-1}$.
Hence, for $t=t_{0}$ we obtain from (5.3) that, for any k,

$$
\|u\|_{L^{\infty}\left(2^{-k} B \times[0, t]\right)} \leq A^{-k / \omega}\left\|u_{0}\right\|_{L^{\infty}} .
$$

For any k, we cover the ball $\frac{1}{2} B_{0}$ by a countable (or even finite) sequence of balls $B\left(x_{i}, 2^{-k} r\right)$ with $x_{i} \in \frac{1}{2} B_{0}$. Since for all i

$$
\|u\|_{L^{\infty}\left(B\left(x_{i}, 2^{-k} r\right) \times[0, t]\right)} \leq A^{-k / \omega}\left\|u_{0}\right\|_{L^{\infty}}
$$

we obtain that

$$
\|u\|_{L^{\infty}\left(\frac{1}{2} B_{0} \times[0, t]\right)} \leq A^{-k / \omega}\left\|u_{0}\right\|_{L^{\infty}} .
$$

Finally, letting $k \rightarrow \infty$, we obtain that $u=0$ in $\frac{1}{2} B_{0} \times[0, t]$, which was to be proved.

5.2 Propagation speed of support

As above, we assume here that

$$
p>1 \text { and } \delta>0
$$

For any set $K \subset M$ and any $r>0$, denote by K_{r} a closed r-neighborhood of K.
Corollary 5.2. Let $u(x, t)$ be a non-negative bounded subsolution of (2.1) in $M \times \mathbb{R}_{+}$with the initial function $u_{0}=u(\cdot, 0)$. Assume that the support $K=\operatorname{supp} u_{0}$ is compact. Then there exists $T>0$ and an increasing continuous function $\rho:(0, T) \rightarrow \mathbb{R}_{+}$such that

$$
\operatorname{supp} u(\cdot, t) \subset K_{\rho(t)}
$$

for all $t \in(0, T)$ (see Fig. 5).

Figure 5: The support of $u(\cdot, t)$
Here T and $\rho(t)$ may depend on u. The function $\rho(t)$ is called the propagation rate of u.
Proof. Let us fix a reference point $x_{0} \in K$ and define the following function for all $r>0$:

$$
\begin{equation*}
\varphi(r)=\frac{\eta}{4^{p+p / \nu}} \iota\left(B\left(x_{0}, r\right)\right) r^{p}\left\|u_{0}\right\|_{L^{\infty}(M)}^{-\delta} \tag{5.5}
\end{equation*}
$$

Denote $r_{0}=\operatorname{diam} K$. Let us prove that, for any $r \geq r_{0}$,

$$
t \leq \varphi\left(3 r+r_{0}\right) \Rightarrow \operatorname{supp} u(\cdot, t) \subset K_{r},
$$

that is,

$$
u(\cdot, t)=0 \text { in } M \backslash K_{r} .
$$

Let us fix a point $x \in K_{2 r} \backslash K_{r}$ (see Fig. 6). We have

$$
d(x, K) \leq 2 r \Rightarrow d\left(x, x_{0}\right) \leq 2 r+r_{0}
$$

Figure 6: A point $x \in K_{2 r} \backslash K_{r}$ and the ball $B(x, r)$

It follows that

$$
B(x, r) \subset B\left(x_{0}, 3 r+r_{0}\right)=B\left(x_{0}, R\right)
$$

where

$$
R:=3 r+r_{0}
$$

The condition $r \geq r_{0}$ implies $R \leq 4 r$. Since $B(x, r) \subset B\left(x_{0}, R\right)$, we have by the monotonicity of function (3.6) that

$$
\frac{\iota(B(x, r)) \mu(B(x, r))}{r^{p / \nu}} \geq \frac{\iota\left(B\left(x_{0}, R\right)\right) \mu\left(B\left(x_{0}, R\right)\right)}{R^{p / \nu}}
$$

It follows that

$$
\begin{aligned}
\iota(B(x, r)) r^{p} & \geq\left(\frac{r}{R}\right)^{p+p / \nu} \iota\left(B\left(x_{0}, R\right)\right) \frac{\mu\left(B\left(x_{0}, R\right)\right)}{\mu(B(x, r))} R^{p} \\
& \geq \frac{1}{4^{p+p / \nu}} \iota\left(B\left(x_{0}, R\right)\right) R^{p}
\end{aligned}
$$

Therefore, the hypothesis $t \leq \varphi(R)$ implies that

$$
t \leq \eta \iota(B(x, r))) r^{p}\left\|u_{0}\right\|_{L^{\infty}(M)}^{-\delta}
$$

Since $u(\cdot, 0)=0$ in $B(x, r)$, we conclude by Theorem 5.1 that

$$
u(\cdot, t)=0 \quad \text { in } B(x, r / 2)
$$

Since this is true for any $x \in K_{2 r} \backslash K_{r}$, we obtain that

$$
\begin{equation*}
u(\cdot, t)=0 \text { in } K_{2 r} \backslash K_{r} \tag{5.6}
\end{equation*}
$$

Let us show that also

$$
\begin{equation*}
u(\cdot, t)=0 \text { in } M \backslash K_{r} . \tag{5.7}
\end{equation*}
$$

Fix some $s \gg 2 r$ and let $\eta(x)$ be a bump function of $K_{s} \backslash K_{2 r}$ in $K_{2 s} \backslash K_{r}$; that is, η is the following function of $|x|:=d(x, K)$:

$$
\eta(x)=\left\{\begin{array}{l}
\left(\frac{|x|}{r}-1\right)_{+},|x| \leq 2 r \\
1,|x| \in[2 r, s] \\
2\left(1-\frac{|x|}{2 s}\right)_{+},|x| \geq s
\end{array}\right.
$$

(see Fig. 7).

Figure 7: Function η

Applying the inequality (2.12) of Lemma 2.6 in some open neighborhood Ω_{s} of $K_{2 s}$ with some fixed λ, we obtain

$$
\begin{equation*}
\left[\int_{\Omega_{s}} u^{\lambda} \eta^{p}\right]_{0}^{t} \leq c_{2} \int_{0}^{t} \int_{\Omega_{s}} u^{\sigma}|\nabla \eta|^{p} \tag{5.8}
\end{equation*}
$$

Since $u(\cdot, 0)=0$ on $\operatorname{supp} \eta$ and $\eta=1$ on $K_{s} \backslash K_{2 r}$, the left hand side here is bounded below by

$$
\int_{K_{s} \backslash K_{2 r}} u^{\lambda}(\cdot, t)
$$

Since $\eta=0$ in $K_{r}, u(\cdot, \tau)=0$ in $K_{2 r} \backslash K_{r}$ for all $\tau \leq t\left(\right.$ by (5.6)), and $\nabla \eta=0$ in $K_{s} \backslash K_{2 r}$, the right hand side in (5.8) is equal to

$$
c_{2} \int_{0}^{t} \int_{\Omega_{s} \backslash K_{s}} u^{\sigma}|\nabla \eta|^{p} .
$$

Since

$$
|\nabla \eta| \leq \frac{1}{s} \text { in } \Omega_{s} \backslash K_{s}
$$

we obtain that

$$
\int_{K_{s} \backslash K_{2 r}} u^{\lambda}(\cdot, t) \leq c_{2} \int_{0}^{t} \int_{\Omega_{s} \backslash K_{s}} u^{\sigma}|\nabla \eta|^{p} \leq \frac{c_{2}}{s^{p}} \int_{0}^{t} \int_{\Omega_{s} \backslash K_{s}} u^{\sigma} .
$$

The right hand side goes to 0 as $s \rightarrow \infty$, which implies that $u(\cdot, t)=0$ in $M \backslash K_{2 r}$, thus proving (5.7).

Now let us define in $\left[r_{0}, \infty\right)$ a function

$$
\psi(r)=\frac{1}{2} \sup _{s \in\left[r_{0}, r\right]} \varphi\left(3 s+r_{0}\right)
$$

so that $\psi(r)$ is monotone increasing. If $t \leq \psi(r)$ then $t \leq \varphi\left(3 s+r_{0}\right)$ for some $s \in\left[r_{0}, r\right]$, which implies by the first part of the proof that

$$
u(\cdot, t)=0 \text { in } M \backslash K_{s}
$$

and, hence,

$$
u(\cdot, t)=0 \text { in } M \backslash K_{r} .
$$

It is unclear whether ψ is continuous or not. As a monotone function, ψ may have only jump $\underset{\sim}{d i s c o n t i n u i t i e s . ~ B y ~ s u b t r a c t i n g ~ a l l ~ t h e s e ~ j u m p s, ~ w e ~ o b t a i n ~ a ~ c o n t i n u o u s ~ m o n o t o n e ~ f u n c t i o n ~}$ $\widetilde{\psi} \leq \psi$ with the same property:

$$
\begin{equation*}
t \leq \widetilde{\psi}(r) \Rightarrow u(\cdot, t)=0 \quad \text { in } M \backslash K_{r} \tag{5.9}
\end{equation*}
$$

As a continuous monotone increasing function, $\widetilde{\psi}$ has an inverse $\rho=\widetilde{\psi}^{-1}$ on $\left[t_{0}, T\right)$ where

$$
t_{0}=\widetilde{\psi}\left(r_{0}\right) \text { and } T=\sup \widetilde{\psi}
$$

Let us extend $\rho(t)$ to $t<t_{0}$ by setting $\rho(t)=\rho\left(t_{0}\right)$. Then $r=\rho(t)$ implies $t \leq \widetilde{\psi}(r)$, and by (5.9)

$$
u(\cdot, t)=0 \text { in } M \backslash K_{r},
$$

which was to be proved.

5.3 Curvature and propagation rate

Corollary 5.3. Let M be complete and non-compact. Let u be a bounded non-negative subsolution in $M \times \mathbb{R}_{+}$with the initial condition $u(\cdot, 0)=u_{0}$. Set $K=\operatorname{supp} u_{0}$. Assume that for some $x_{0} \in K$ and all large enough r, we have

$$
\begin{equation*}
\operatorname{Ricci}_{B\left(x_{0}, r\right)} \geq-\frac{c}{r^{2}} \tag{5.10}
\end{equation*}
$$

where $c>0$. Then, for any $t>0$,

$$
\operatorname{supp} u(\cdot, t) \subset K_{C t^{1 / p}}
$$

where C depends on $\left\|u_{0}\right\|_{L^{\infty}}, p, q, n, c$.
Proof. It follows from (3.8) and (5.10), that $\iota\left(B\left(x_{0}, r\right)\right) \geq$ const >0 for all $r>0$. Hence, using the same notation as in Corollary 5.2, we obtain from (5.5),

$$
\varphi(r) \geq c^{\prime} r^{p}
$$

whence

$$
\rho(t) \leq C t^{1 / p}
$$

which yields the claim.
Corollary 5.4. Let M be a Cartan-Hadamard manifold. Let u be a bounded non-negative subsolution in $M \times \mathbb{R}_{+}$with the initial condition $u(\cdot, 0)=u_{0}$. Set $K=\operatorname{supp} u_{0}$. Assume that for some $x_{0} \in K$ and for all large enough r, we have

$$
\begin{equation*}
\mu\left(B\left(x_{0}, r\right)\right) \leq c r^{\alpha}, \tag{5.11}
\end{equation*}
$$

where $c>0$ and $n \leq \alpha<n+p$. Then, for all large enough t,

$$
\operatorname{supp} u(\cdot, t) \subset K_{C t^{1 /(n+p-\alpha)}}
$$

where C depends on $\left\|u_{0}\right\|_{L^{\infty}}, p, q, n, \alpha, c$.

Note that the restriction $\alpha \geq n$ follows automatically from (5.11) because on CartanHadamard manifolds always $\mu\left(B\left(x_{0}, r\right)\right) \geq$ const r^{n}.

Proof. Since M is a Cartan-Hadamard manifold, we have $S_{B} \leq$ const for all geodesic balls $B \subset M$ (see [25]). It follows from (3.5) and (5.11) that, for large r,

$$
\iota\left(B\left(x_{0}, r\right)\right) \geq \operatorname{const} r^{p \kappa^{\prime}-\alpha}
$$

By (3.4) we have $k^{\prime} \geq \frac{n}{p}$, whence

$$
\iota\left(B\left(x_{0}, r\right)\right) \geq \text { const } r^{n-\alpha}
$$

Using again the same notation as in Corollary 5.2, we obtain from (5.5) that

$$
\varphi(r) \geq \mathrm{const} r^{n+p-\alpha}
$$

which yields $\rho(t) \leq C t^{1 /(n+p-\alpha)}$.
Remark 5.5. The propagations rates of Corollaries 5.3 and 5.4 seem to be not sharp. Obtaining sharp estimates is a matter for future work.

6 Appendix: an auxiliary lemma

The following lemma was used in Sections 4 and 5.
Lemma 6.1. Let a sequence $\left\{J_{k}\right\}_{k=0}^{\infty}$ of non-negative reals satisfy

$$
J_{k+1} \leq \frac{A^{k}}{\Theta} J_{k}^{1+\omega} \quad \text { for all } k \geq 0
$$

where $A, \Theta, \omega>0$. Then, for all $k \geq 0$,

$$
J_{k} \leq\left(\left(A^{1 / \omega} \Theta^{-1}\right)^{1 / \omega} J_{0}\right)^{(1+\omega)^{k}}\left(A^{-k-1 / \omega} \Theta\right)^{1 / \omega}
$$

In particular, if $\Theta \geq A^{1 / \omega} J_{0}^{\omega}$, then $J_{k} \leq A^{-k / \omega} J_{0}$ for all $k \geq 0$.
Proof. Consider the sequence

$$
X_{k}=\left(\left(A^{1 / \omega} \Theta^{-1}\right)^{1 / \omega} J_{0}\right)^{(1+\omega)^{k}}\left(A^{-k-1 / \omega} \Theta\right)^{1 / \omega}
$$

Then we have

$$
X_{0}=\left(A^{1 / \omega} \Theta^{-1}\right)^{1 / \omega} J_{0}\left(A^{-1 / \omega} \Theta\right)^{1 / \omega}=J_{0}
$$

and

$$
\begin{aligned}
\frac{A^{k}}{\Theta} X_{k}^{1+\omega} & =\frac{A^{k}}{\Theta}\left(\left(A^{1 / \omega} \Theta^{-1}\right)^{1 / \omega} J_{0}\right)^{(1+\omega)^{k+1}}\left(A^{-k-1 / \omega} \Theta\right)^{\frac{1+\omega}{\omega}} \\
& =\left(\left(A^{1 / \omega} \Theta^{-1}\right)^{1 / \omega} J_{0}\right)^{(1+\omega)^{k+1}} A^{k} \Theta^{-1}\left(A^{-k-1 / \omega} \Theta\right)\left(A^{-k-1 / \omega} \Theta\right)^{\frac{1}{\omega}} \\
& =\left(\left(A^{1 / \omega} \Theta^{-1}\right)^{1 / \omega} J_{0}\right)^{(1+\omega)^{k+1}} A^{-1 / \omega}\left(A^{-k-1 / \omega} \Theta\right)^{1 / \omega} \\
& =\left(\left(A^{1 / \omega} \Theta^{-1}\right)^{1 / \omega} J_{0}\right)^{(1+\omega)^{k+1}}\left(A^{-(k+1)-1 / \omega} \Theta\right)^{1 / \omega}=X_{k+1}
\end{aligned}
$$

Hence, by comparison we obtain $J_{k} \leq X_{k}$, which was to be proved.

References

[1] S. Andres and M. T. Barlow. Energy inequalities for cutoff functions and some applications. Journal für die reine und angewandte Mathematik (Crelles Journal), 2015(699):183-215, 2015.
[2] D. Andreucci and A. F. Tedeev. Asymptotic properties of solutions to the Cauchy problem for degenerate parabolic equations with inhomogeneous density on manifolds. Milan Journal of Mathematics, 89(2):295-327, 2021.
[3] D. Aronson. Regularity of flows in porous media: a survey. In Nonlinear Diffusion Equations and Their Equilibrium States I, pages 35-49. Springer, 1988.
[4] T. Aubin. Some nonlinear problems in Riemannian geometry. Springer Science \& Business Media, 1998.
[5] A. Bamberger. Étude d'une équation doublement non linéaire. Journal of functional analysis, 24(2):148-155, 1977.
[6] G. I. Barenblatt. On self-similar motions of a compressible fluid in a porous medium. Akad. Nauk SSSR. Prikl. Mat. Meh, 16(6):679-698, 1952.
[7] P. Bénilan and M. G. Crandall. The continuous dependence on φ of solutions of $u_{t}-$ $\Delta \varphi(u)=0$. Indiana University Mathematics Journal, 30(2):161-177, 1981.
[8] F. Bernis. Existence results for doubly nonlinear higher order parabolic equations on unbounded domains. 1986.
[9] D. Blanchard and G. A. Francfort. Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term. SIAM Journal on Mathematical Analysis, 19(5):1032-1056, 1988.
[10] V. Bögelein, F. Duzaar, and P. Marcellini. Parabolic systems with p, q-growth: a variational approach. Archive for Rational Mechanics and Analysis, 210(1):219-267, 2013.
[11] M. Bonforte and G. Grillo. Asymptotics of the porous media equation via Sobolev inequalities. Journal of Functional Analysis, 225(1):33-62, 2005.
[12] P. Buser. A note on the isoperimetric constant. Ann. Sci. Ecole Norm. Sup., 15:213-230, 1982.
[13] N. De Ponti, M. Muratori, and C. Orrieri. Wasserstein stability of porous mediumtype equations on manifolds with Ricci curvature bounded below. Journal of Functional Analysis, 283(9):109661, 2022.
[14] S. Dekkers. Finite propagation speed for solutions of the parabolic p-laplace equation on manifolds. Communications in Analysis and Geometry, 13(4):741-768, 2005.
[15] J. I. Díaz and M. Herrero. Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 89(3-4):249-258, 1981.
[16] E. DiBenedetto. Degenerate parabolic equations. Springer Science \& Business Media, 1993.
[17] E. DiBenedetto, U. P. Gianazza, and V. Vespri. Harnack's inequality for degenerate and singular parabolic equations. Springer Science \& Business Media, 2011.
[18] E. DiBenedetto and M. A. Herrero. On the Cauchy problem and initial traces for a degenerate parabolic equation. Transactions of the American Mathematical Society, 314(1):187-224, 1989.
[19] L. C. Evans. Application of nonlinear semigroup theory to certain partial differential equations. In Nonlinear evolution equations, pages 163-188. Elsevier, 1978.
[20] A. Grigor'yan. The heat equation on non-compact Riemannian manifolds. Math. USSR Sb., 72:47-77, 1992.
[21] A. Grigoryan. Estimates of heat kernels on Riemannian manifolds. London Math. Soc. Lecture Note Ser, 273:140-225, 1999.
[22] G. Grillo and M. Muratori. Smoothing effects for the porous medium equation on Cartan-Hadamard manifolds. Nonlinear Analysis, 131:346-362, 2016.
[23] G. Grillo, M. Muratori, and F. Punzo. The porous medium equation with measure data on negatively curved Riemannian manifolds. Journal of the European Mathematical Society, 20(11):2769-2812, 2018.
[24] C. E. Gutiérrez and R. L. Wheeden. Mean value and Harnack inequalities for degenerate parabolic equations. In Colloquium Mathematicum, volume 1, pages 157-194, 1990.
[25] D. Hoffman and J. Spruck. Sobolev and isoperimetric inequalities for Riemannian submanifolds. Communications on Pure and Applied Mathematics, 27(6):715-727, 1974.
[26] A. V. Ivanov. Regularity for doubly nonlinear parabolic equations. Journal of Mathematical Sciences, 83(1):22-37, 1997.
[27] A. S. Kalashnikov. Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations. Russian Mathematical Surveys, 42(2):169, 1987.
[28] S. Kamin and J. L. Vázquez. Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Revista Matemática Iberoamericana, 4(2):339-354, 1988.
[29] J. Kinnunen and P. Lindqvist. Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation. Annali di Matematica Pura ed Applicata, 185(3):411-435, 2006.
[30] O. Ladyzhenskaya, V. Solonnikov, and N. Uraltseva. Linear and quasilinear equations of parabolic type, transl. math. Monographs, Amer. Math. Soc, 23, 1968.
[31] L. Leibenson. General problem of the movement of a compressible fluid in a porous medium. izv akad. nauk sssr. Geography and Geophysics, 9:7-10, 1945.
[32] L. Leibenson. Turbulent movement of gas in a porous medium. Izv. Akad. Nauk SSSR Ser. Geograf. Geofiz, 9:3-6, 1945.
[33] Q. Li. Weak harnack estimates for supersolutions to doubly degenerate parabolic equations. Nonlinear Analysis, 170:88-122, 2018.
[34] J.-L. Lions. Quelques méthodes de résolution de problemes aux limites non linéaires. 1969.
[35] J. J. Manfredi and V. Vespri. Large time behavior of solutions to a class of doubly nonlinear parabolic equations. Electronic Journal of Differential Equations., 1994(1994)(02):117, Mar. 1994.
[36] J. Moser. Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math., 17:101-134, 1964.
[37] P.-A. Raviart. Sur la résolution de certaines équations paraboliques non linéaires. Journal of Functional Analysis, 5(2):299-328, 1970.
[38] J. Saá. Large time behaviour of the doubly nonlinear porous medium equation. Journal of mathematical analysis and applications, 155(2):345-363, 1991.
[39] L. Saloff-Coste. Aspects of Sobolev-type inequalities. LMS Lecture Notes Series, vol. 289. Cambridge Univ. Press, 2002.
[40] D. Stan and J. L. Vázquez. Asymptotic behaviour of the doubly nonlinear diffusion equation $u_{t}=\Delta_{p} u^{m}$ on bounded domains. Nonlinear Analysis: Theory, Methods \mathcal{B} Applications, 77:1-32, 2013.
[41] S. Sturm. Existence of weak solutions of doubly nonlinear parabolic equations. Journal of Mathematical Analysis and Applications, 455(1):842-863, 2017.
[42] J. L. Vázquez. The porous medium equation: mathematical theory. Oxford University Press on Demand, 2007.
[43] J. L. Vázquez. Fundamental solution and long time behavior of the porous medium equation in Hyperbolic space. Journal de Mathématiques Pures et Appliquées, 104(3):454484, 2015.

Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, D-33501, Bielefeld, Germany
grigor@math.uni-bielefeld.de
philipp.suerig@uni-bielefeld.de

