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1. Introduction

Let (M, g) be a connected smooth Riemannian manifold without boundary. A weighted
manifold is a triple (M, g, μ) with underlying manifold M , the Riemannian metric g, and
a measure

dμ = ψdvg,

where dvg is the Riemannian volume and ψ is a positive smooth function on M .
A weighted manifold1 M carries a natural second-order elliptic operator called the

(weighted) Laplace operator
Δ = divμ∇,

where ∇ is the gradient associated with g and divμ is the weighted divergence, that is
defined as the adjoint operator to ∇ with respect to measure μ (see (9) below).

We say that the weighted manifold M is parabolic if Δ does not admit a positive
fundamental solution. We say that M is stochastically complete if any bounded solution
u (t, x) in [0, +∞)×M of the associated heat equation ∂u

∂t = Δu is uniquely determined by
the initial value u|t=0. Equivalently, this means that etΔD1 ≡ 1 where ΔD is the Dirichlet
Laplacian and eΔDt is the associated heat semigroup (see Section 2 for details).

Any parabolic manifold is stochastically complete but the opposite implication is not
true. For example, all spaces Rn (with Euclidean measure) are stochastically complete,
whereas Rn is parabolic if and only if n = 1, 2.
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1We frequently write M for both (M, g) and (M, g, μ) when this does not cause a confusion.
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2 A. GRIGOR’YAN AND J. MASAMUNE

Let {Xt} be the minimal Brownian motion on M , that is, the diffusion process, gen-
erated by ΔD. Then it is well known, that the parabolicity of M is equivalent to the
recurrence of Xt, and the stochastic completeness of M is equivalent to the non-explosion
property of Xt, that is, to the fact that the lifetime of the process is ∞.

If (M, g) is geodesically complete, then one can state sufficient conditions for the
parabolicity and stochastic completeness in terms of the volume function

V (r) = μ (B (x0, r)) ,

where B (x0, r) is the geodesic ball of radius r centered at a fixed point x0 ∈ M . Namely,
the following implications are true:

∫ ∞ rdr

V (r)
= ∞ ⇒ the parabolicity of M (1)

∫ ∞ rdr

log V (r)
= ∞ ⇒ the stochastic completeness of M. (2)

For example, (1) holds provided V (r) ≤ Cr2, and (2) holds if V (r) ≤ exp
(
Cr2

)
. That the

condition V (r) ≤ Cr2 implies the parabolicity was first proved by S.Y.Cheng and S.T.Yau
[5]. The sharp sufficient condition (1) for parabolicity was proved in [16],[17],[28],[42].
The sufficient condition V (r) ≤ exp

(
Cr2

)
for the stochastic completeness was proved in

[8],[25],[29],[41] (see also an earlier result [15]), and the sharp result (2) was established in
[18].

For a model manifold with the pole at x0, both the parabolicity and stochastic com-
pleteness can be characterized solely in terms of the function V (r) and its derivative (see
Proposition 4.1 and [22]).

Let d be the Riemannian distance of M and (M,d) be the completion of the metric
space (M,d). The Cauchy boundary of M is defined by

∂CM = M \ M.

Note that M is geodesically complete if and only if ∂CM = φ.
We will define the notion of capacity of ∂CM in Section 2 and say ∂CM is polar if it has

capacity 0. The stochastic completeness and parabolicity can be violated for two reasons:
- a fast volume growth at ∞;
- the non-polarity of ∂CM .
It is easy to see that if ∂CM is bounded and polar, then the volume tests (1) and (2) for

the parabolicity and stochastic completeness, respectively, remain the same (see Remark
2.3).

There are several ways to characterize the parabolicity and the stochastic completeness
in a uniform way; for instance, using the Liouville property for Schrödinger operators (see
for e.g., [21]), curvature bounds [2],[9],[26],[27], [43], and the existence of cut-off functions
satisfying certain properties [35].

The main purpose of the present paper is to present and prove a new characterization
of these properties in terms of Green’s formula with the boundary at infinity. In the
statements below we understand the Laplace operator Δ in the distributional (weak)
sense. We denote Lp = Lp (M,μ) and suppress the M and dμ from the integrals when it
does not create a confusion.

Theorem 1.1. M is parabolic if and only if
∫

Δu = 0 for all u ∈ L∞ such that Δu ∈ L1. (3)
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Let M be a bounded open subset of Rn with a smooth boundary ∂M . Then, for any
function u ∈ C2

(
M
)
, we have by the classical Green formula

∫

M
Δu dμ =

∫

∂M

∂u

∂ν
dσ

where ν is the outward normal vector field on ∂M and σ is the area on ∂M . We see that
the condition (3) never holds, and the reason is the presence of the Dirichlet boundary
∂M .

In this example M is not geodesically complete. However, even if M is geodesically
complete, still one can have a non-zero value for

∫
Δu due to certain properties of M at

∞. For example, in R3 it is easy to construct a bounded super-harmonic function u (x)
such that u (x) = |x|−1 for large |x|. For this function we have

∫
Δu < 0 so that (3) fails.

Let W 1,2 be the space of L2 functions u whose gradient ∇u is also in L2. The space
W 1,2

0 is the closure of the set C∞
0 of smooth functions with compact support in W 1,2. The

restriction of Δ to {u ∈ W 1,2
0 : Δu ∈ L2} is referred to as the Dirichlet Laplacian ΔD.

Theorem 1.2. M is stochastically complete if and only if
∫

Δu = 0 for all u ∈ D(ΔD) ∩ L1 such that Δu ∈ L1. (4)

Examples to this theorem will be given below after Corollaries 1.3 and 1.6, and an ex-
tension will be given in Proposition 3.2. Propositions 4.2 and 4.3 show that the conditions
u ∈ L1 and ∇u ∈ L2 in (4) cannot be dropped.

Since on a geodesically complete manifold D(ΔD) = {u ∈ L2 : Δu ∈ L2}, we obtain
from Theorem 1.2 the following consequence.

Corollary 1.3. If M is geodesically complete, then it is stochastically complete if and
only if ∫

Δu = 0 for all u ∈ L1 ∩ L2 such that Δu ∈ L1 ∩ L2.

A similar example to Theorem 1.1 can be obtained on a model manifold (see Section 4).
Indeed, the Green function g(x, y) of a stochastic incomplete model manifold is integrable
at ∞. This allows to construct a bounded super-harmonic function u(x) such that u(x) =
g(x, y) for a fixed y ∈ M and large enough d(x, y). It follows that u ∈ L1 ∩ L∞ (this
implies that u ∈ L2 ) and Δu has compact support in particular, Δu ∈ L1 ∩ L2, while∫

Δu < 0. (See Proposition 4.1 for more detail.) The assumption of geodesic completeness
in Corollary 1.3 can not be replaced by the condition that ∂CM is compact and polar (see
Proposition 4.3).

Theorem 1.4. If M is geodesically complete, then it is stochastically complete if and only
if ∫

Δu = 0 for all u ∈ L1 ∩ L2 such that ∇u ∈ L1 ∪ L2 and Δu ∈ L1. (5)

Theorem 1.4 remains true for a geodesically incomplete manifold if ∂CM is polar and
if u satisfies in addition to (5) that u ∈ L∞(B) on a neighborhood B of ∂CM ; however,
the condition u ∈ L1 from (5) can not be removed (see Proposition 4.2).

In the next theorem, we are concerned with conditions for the identity W 1,2 = W 1,2
0 . It

is known that this is satisfied for geodesically complete manifolds [1]. The relation with
parabolicity and stochastic completeness is given by

parabolicity ⇒ stochastic completeness ⇒ W 1,2 = W 1,2
0 ,
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where the last implication follows from Theorem 1.7 below. We set A(k) = B(x0, 2k) \
B(x0, k) and A = ∪nA(k(n)) with k, n ≥ 1 and a sequence {k(n)}n>0 which goes to
∞ as n → ∞. Let D(Δp) with 1 ≤ p ≤ ∞ denote the closure of the space C∞

0 of
smooth functions with compact support with respect to Δ-graph norm in Lp and D =
∪1≤p≤∞D(Δp). Other two spaces are D′ = ∩k≥1D(Δk

D) and L = ∩1≤p≤∞Lp.

Theorem 1.5. Suppose that V (r) < ∞ for every r > 0.
(a) If W 1,2

0 = W 1,2, then
∫

Δu = 0 for all u ∈ L1
loc such that ∇u ∈ L2

loc ∩ L2(B) ∩ L1(A) and Δu ∈ L1 (6)

for some open set B ⊃ ∂CM and a sequence {k(n)}n>0.
(b) If ∂CM is finite and

∫
Δu = 0 for all u ∈ D′ ∩ L such that ∇u ∈ L1 and Δu ∈ L, (7)

then W 1,2
0 = W 1,2.

If M is a bounded domain in Rn with smooth boundary, then W 1,2 6= W 1,2
0 and (6) and

(7) never hold true. Other example M is a complete manifold N punctured a compact
submanifold Σ ⊂ N of co-dimension 1. Indeed, the Cauchy boundary of M = N \ Σ is
Σ, and the solution to the boundary value problem: u|Σ = 1, u|B = 0 for some B ⊃ Σ
and Δu|B\Σ = 0, allows to construct u ∈ C∞(M) with support in B and

∫
Δu < 0.

Propositions 4.2 and 4.3 show that we can not remove the condition ∇u ∈ L2 ∩ L1 from
(6).

If M is geodesically complete, then the statement reduces to

Corollary 1.6. If M is geodesically complete, then
∫

Δu = 0 for all u ∈ L1
loc such that ∇u ∈ L1(A) and Δu ∈ L1 (8)

with some sequence {k(n)}n>0.

This result was proved in [14] in the case that k(n) = n. Proposition 4.2 shows that
we can not remove the condition ∇u ∈ L1 from (8). A weaker statement of the opposite
implication in the case that the Riemannian metric extends to ∂CM can be found in
Proposition 2.4.

We denote by ∇D and ∇N the gradient operators with domains W 1,2
0 and W 1,2, respec-

tively. The minimal Laplacian ΔM , the Dirichlet Laplacian ΔD, the Neumann Laplacian
Δ, and the Gaffney2 Laplacian ΔG are the restrictions of the distributional Laplacian Δ
to the following domains:

D(ΔM ) = the closure of C∞
0 with Δ-graph norm

D(ΔD) = {u ∈ W 1,2
0 : ∇u ∈ D(∇∗

D)}

D(ΔN ) = {u ∈ W 1,2 : ∇u ∈ D(∇∗
N )}

D(ΔG) = {u ∈ W 1,2 : ∇u ∈ D(∇∗
D)},

where ∇∗ is the adjoint operator of ∇. The following inclusions are obvious:

ΔM ⊂ ΔD ⊂ ΔG

ΔM ⊂ ΔN ⊂ ΔG.

2M.P. Gaffney studied the essential self-adjointness of the Hodge-Laplacian acting on the space of
differentiable forms [12]. If we restrict that Laplacian to the space of functions, then its essential self-
adjointness is equivalent to the self-adjointness of ΔG.
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Note that ΔD and ΔN are self-adjoint on an arbitrary weighted manifold. If M is geodesi-
cally complete, then all four Laplacians coincide. In general, ΔM and ΔG do not need
to be self-adjoint. For instance, ΔM on S2 \ {p} has infinitely many self-adjoint exten-
sions; ΔG is not even symmetric on a manifold with boundary due to the presence of the
boundary term in Green’s formula.

A self-adjoint operator A is called Markovian if the semigroup Tt = etA is Markovian,
i.e., 0 ≤ Ttu ≤ 1 μ-a.e., whenever 0 ≤ u ≤ 1 μ-a.e. Let A(ΔM ) be the set of Markovian
extensions of ΔM . Every A ∈ A(ΔM ) generates a Brownian motion on M according to the
boundary condition; in particular, the Dirichlet and Neumann Laplacians are Markovian
on arbitrary weighted manifolds (Proposition 3.4) and the associated Brownian motions
satisfy the absorbing and reflecting boundary conditions, respectively. The set A(ΔM ) is
furnished with a natural semi-order (see Subsection 3.3), and we consider the minimum
and maximum elements, that are used in the following statement.

Theorem 1.7. (a) The Dirichlet Laplacian ΔD and the Neumann Laplacian ΔN are the
minimum and maximum Markovian operators in A(ΔM ), respectively.

(b) The following three conditions are equivalent.

(i) W 1,2
0 = W 1,2 (that is, ΔD = ΔN ).

(ii) ΔG is self-adjoint.
(iii) ΔM has a unique Markov extension.

(c) If M is either stochastically complete, or geodesically complete, or ∂CM is polar,
then each of the conditions (i), (ii), and (iii) is satisfied.

Note that neither the parabolicity, nor the stochastic completeness, nor, the polarity
and compactness of ∂CM imply the self-adjointnes of ΔM . For instance, M = S2 \ {p} is
parabolic (in particular stochastically complete) and the Cauchy boundary {p} is polar,
but ΔM is not self-adjoint as explained above. Therefore, among all those infinitely many
self-adjoint extensions, ΔD(= ΔN = ΔG) is the only Markovian extension.

In this paper we consider a manifold without boundary however all our results remain
true for a manifold with boundary imposed Neumann boundary condition.

We arrange the article as follows. Section 2 is the preliminaries. In particular, we
discuss the relationship between the polarity of ∂CM and the Sobolev spaces W 1,2 and
W 1,2

0 . We prove all theorems in Section 3. In Section 4, we present and discuss some
examples. Some examples demonstrate that certain conditions in the main theorems can
not be removed, and other examples are related to the condition of the Cauchy boundary
to be polar and the manifold to be parabolic. They will show that the Minkowski co-
dimension of ∂CM equals 2 does not imply the polarity, that if ∂CM has infinite capacity,
then both W 1,2 = W 1,2

0 and W 1,2 6= W 1,2
0 may occur, and that the V (r) ∼ r2 at infinity

does not imply the parabolicity of a geodesically complete manifold.

2. Preliminaries

Let W 1,2 be the space of all functions u ∈ L2 = L2(M,μ), whose distributional gradient
∇u is also in L2. Then W 1,2 is a Hilbert space with the inner product

(u, v)1,2 =
∫

M
uv dμ +

∫

M
(∇u,∇v) dμ.

The space of smooth functions:
C∞ ∩ W 1,2

is dense in W 1,2 [33] [4]. Let W 1,2
0 be the closure of the space C∞

0 of smooth functions
with compact support in W 1,2. The weighted divergence divμ is the negative of the formal
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adjoint operator of ∇ determined as
∫

M
u divμX dμ = −

∫

M
Xudμ, (9)

for smooth function u and vector field X with compact support. The weighted Laplacian
Δ(= Δμ) is

Δu(x) = divμ∇u(x), for u ∈ C∞ and any x ∈ M.

A local expression shows that Δ is a second-order elliptic differential operator. As in
Introduction, we denote the Dirichlet Laplacian by ΔD and the associated semigroup in
L2 by

Tt = etΔD , for all t > 0.

The semigroup Tt can be uniquely extended to a bounded operator in all Lp with any
1 ≤ p ≤ ∞ and it has a smooth integral kernel k:

Ttu(x) =
∫

k(t, x, y)u(y) μ(dy), for u ∈ Lp with 1 ≤ p ≤ ∞, t > 0, and x ∈ M.

The function k is the smallest positive fundamental solution to the heat equation on M .
We say that the manifold M is stochastically complete if and only if

Tt1(x) ≡ 1, μ-a.e. for every t > 0.

The Cauchy boundary is
∂CM = M \ M,

where M is the completion of M with respect to the Riemannian distance. The associated
1-capacity is defined as follows. Let O denote the family of all open subsets of M . We
define for Ω ∈ O that

Cap(Ω) := inf
u∈L(Ω)

∫

M
u2 + |∇u|2 dμ, if L(Ω) 6= φ,

where L(Ω) is a set of u ∈ W 1,2 such that 0 ≤ u ≤ 1 and u|Ω∩M = 1. We let Cap(Ω) = ∞
if L(Ω) = φ, and Cap(φ) = 0. We define the capacity for an arbitrary set Σ ⊂ M as

Cap(Σ) := inf
Ω∈O, Σ⊂Ω

Cap(Ω).

We say Σ is polar if Cap(Σ) = 0. If Σ = φ, then Cap(Σ) = 0. The following can be proven
in the same way for the standard capacity (see for e.g., [11])

Lemma 2.1. The capacity defined above is a Choquet capacity3; namely, it satisfies

(a) A ⊂ B ⇒ Cap(A) ≤ Cap(B).
(b) If Ωn ⊂ Ωn+1, then Cap(∪Ωn) = supCap(Ωn).
(c) If Ωn+1 ⊂ Ωn and Ωn is compact, then Cap(∩Ωn) = inf Cap(Ωn).

Let Ω be a pre-compact open set in M and K, a compact subset in Ω. We define the
relative capacity cap(K, Ω) for the pair (K, Ω) by

cap(K, Ω) := inf
u∈L(K,Ω)

∫

Ω
|∇u|2 dμ,

where L(K, Ω) is a set of u ∈ W 1,2 with support in Ω such that 0 ≤ u ≤ 1 and u|K = 1.
We let cap(K, Ω) = ∞ if L(K, Ω) = φ.

For an open pre-compact set K ⊂ Ω, we define its relative capacity by

cap(K, Ω) := cap(K, Ω).

3A Choquet capacity is usually defined for a subset of M .
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The following shows the relationship between the polarity of ∂CM and the Sobolev spaces
W 1,2 and W 1,2

0 . Let {Bk} be an exhaustion of M .

Lemma 2.2. (a) If ∂CM is polar, then W 1,2
0 = W 1,2.

(b) If Cap(Bk ∩ ∂CM) < ∞ for every k ≥ 1 and W 1,2
0 = W 1,2, then ∂CM is polar. In

particular, if W 1,2
0 = W 1,2, then either ∂CM is polar or there is a pre-compact open set B

of M such that Cap(B ∩ ∂CM) = ∞.
(c) If V (r) < ∞ with any r > 0 and W 1,2

0 = W 1,2, then ∂CM is polar.

Proof. (a) For u ∈ W 1,2, we construct un ∈ W 1,2
0 converging to u in W 1,2. Since W 1,2∩L∞

is dense in W 1,2, we may assume u to be bounded without loss of generality. Let Ωk with
k = 1, 2, ∙ ∙ ∙ be an open set of M such that

∂CM ⊂ Ωk+1 ⊂ Ωk for every k > 1

Cap(Ωk) → 0 as k → ∞.

For each k > 0, let φ
(k)
n ∈ L(Ωk) satisfy that ‖φ(n)

k ‖W 1,2 → Cap(Ωk) as n → ∞. Put

φn = φ
(n)
n and un = (1 − φn)u. Then un ∈ W 1,2

0 and since 1 − φn ↑ 1 μ-a.e,

un → u in L2 as n → ∞.

Since φn ↓ 0 μ-a.e., ∇u ∈ L2, ∇φn → 0 in L2 and u ∈ L∞,

∇un = (1 − φn)∇u − u∇φn → ∇u in L2 as n → ∞.

This proves (a).
(b) If Cap(B ∩ ∂CM) < ∞ for a pre-compact set B in M , then there exist an open set

O of M such that B ∩ ∂CM ⊂ O and a function u ∈ W 1,2 such that u|O∩M = 1. Since
W 1,2

0 = W 1,2, then there exists a sequence un ∈ C∞
0 which converges to u in W 1,2. Since

un has compact support in M , there is an open set Un in M such that B ∩ ∂CM ⊂ Un

and un(x) = 0 if x ∈ Un ∩ M .
Set vn = u − un. If x ∈ O ∩ Un ∩ M , then vn(x) = u(x) − un(x) = 1. Hence

vn ∈ L(O ∩ Un), and

Cap(B ∩ ∂CM) ≤ ‖vn‖W 1,2 → 0 as n → ∞,

in particular, Cap(Bk ∩ ∂CM) = 0 for every k > 0 due to the assumption. Because
∪k≥1 (Bk ∩ ∂CM) = ∂CM and by Lemma 2.1

0 = sup
k≥1

Cap (Bk ∩ ∂CM) = Cap(∂CM)

we conclude that ∂CM is polar.
(c) Let B be a pre-compact open set of M and r > 0 be such that B ∩ M ⊂ B(x0, r).

Consider the function u = ((2 − d(x0, ∙)r−1) ∧ 1)+. Since V (2r) < ∞, u ∈ L(B(x0, r)),
and hence, Cap(B ∩ ∂CM) ≤ Cap(B(x0, r)) < ∞. The assertion follows from (b). �

Remark 2.3. (1) If Cap(∂CM) = ∞, then both cases W 1,2 = W 1,2
0 and W 1,2 6= W 1,2

0
may occur. See Proposition 4.5.

(2) Suppose ∂CM is bounded and almost polar. If we also have (1), then split M
into M1 and M2 in a way such that they have compact intersection, ∂CM ⊂ ∂CM1, and
μ(M1) < ∞. Then M1 and M2 with the Neumann boundary condition are parabolic by
[32] and (1), respectively, and so is M by Proposition 14.1 (e) [22]. The same argument
together with Proposition 6.1 and Theorem 6.2 [22] shows that M is stochastically complete
under the volume test (2). The same results can be achieved by using Theorems 1.1 and
1.2.
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In the following we study other sufficient condition for the identity W 1,2 = W 1,2
0 . The

results to the end of this section will not be used in the later sections. Let ~W 1,1 be the
set of all vector fields X ∈ L1 whose distributional divergence divμX is in L1. ~W 1,1 is a
Banach space with the norm

‖X‖1,1 =
∫

M
|X| + |divμX| dμ.

Let ~W 1,1
0 be the closure of the space of smooth vector fields with compact support in ~W 1,1.

It is easy to see that the condition ~W 1,1 = ~W 1,1
0 implies that W 1,2 = W 1,2

0 . Indeed,
let u ∈ W 1,2 and X ∈ ~W 1,2. If ~W 1,1 = ~W 1,1

0 , then (∇u,X) = (u,−divμX), which
shows W 1,2 = W 1,2

0 . It is known that ~W 1,1 = ~W 1,1
0 if M is geodesically complete [14].

The opposite implication is also true if the Riemannian metric extends to the Cauchy
boundary:

Proposition 2.4. Let Σ be a closed subset of a geodesically complete manifold M . If Σ
is not empty, then

~W 1,1
0 (M \ Σ) ( ~W 1,1(M \ Σ).

Proof. Let Ω ⊂ M be a pre-compact open set with smooth boundary such that B(∂Ω) ∩
(M \ Ω) 6= φ. Let g be Green’s function of Ω with Dirichlet boundary condition. Extend
g to M by setting g(x) = 0 if x ∈ M \ Ω.

Set h = g(xo, ∙) with some xo ∈ Σ. Let ε > 0 and ψ ∈ C∞(R) be a convex function such
that

ψ(t) =

{
0, if t < ε,

t − 2ε, if t > 3ε.

Set u = ψ(h) and a smooth vector field, X = ∇u. Recall that h has the same magnitude
of the singularity of that of Green’s function of the Euclidean space of the same dimension
as M ; namely, if M has dimension n, then h(x) = gRn(0, x)+ f(x), with Green’s function
gRn of Rn and a smooth function f in Ω. Therefore, X ∈ ~W 1,1. It follows from the
identity

Δu = ψ′′(h)|∇h|2 + φ′(h)Δh,

that
∫

M
divμ(X) < 0.

By choosing ε > 0 sufficiently small, we obtain also
∫
M\Σ divμ(X) < 0.

Suppose X ∈ ~W 1,1
0 (M \ Σ). Then there exists a sequence of smooth vector field Xn

with compact support in M \ Σ such that Xn → X in ~W 1,1(M \ Σ), and
∫

M\Σ
divμ(X) = lim

n→∞

∫

M\Σ
divμ(Xn) = 0.

Therefore, X ∈ ~W 1,1(M \ Σ) \ ~W 1,1
0 (M \ Σ). �

We summarize some facts regarding to the polarity of ∂CM and the “completeness’’ in
terms of geodesics, Brownian motion, and some Sobolev spaces:
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0 < Cap(∂CM) < ∞

(1)
��

+3 ΔG 6= Δ∗
G

ks +3 ∃u 6= 0 ∈ W 1,2, Δu = u

~W 1,1 6= ~W 1,1
0

ks
(2)

(3)

�%
CCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCC
W 1,2 6= W 1,2

0

(4)
��

rz (5)

2:nnnnnnnnnnn

nnnnnnnnnnn

(6)
+3 Tt1 < 1 ks +3 ∃u 6= 0 ∈ L∞, Δu = u

W 2,2 6= W 2,2
0

ks
(8)

+3 ΔM 6= Δ∗
M

(7)rz mmmmmmmmmmmm

mmmmmmmmmmmm
ks +3 ∃u 6= 0 ∈ L2, Δu = u

∂CM 6= φ.

• (1) is Lemma 2.2. The opposite implication does not hold by Proposition 4.5.
• (2) was explained above.
• (3) is included in the proof of Theorem 1.5. Indeed, for X ∈ ~W 1,1 one may

construct Xn ∈ ~W 1,1
0 converging to X from χl

k(n)X. See also [13]. The opposite
implication holds true if the Riemannian metric extends to ∂CM by Proposition
2.4.

• (4), (5), and (8) follow from the definitions.
• (6) is (c) of Theorem 1.7.
• (7) was first proved in [7]. See also [38] [24]. The opposite implication is not true.

Indeed, if N is geodesically complete and Σ is a closed submanifold of N , then
W 2,2(N \ Σ) = W 2,2

0 (N \ Σ) if and only if codim(Σ) ≥ 4 [31]. This fact together
with Proposition 2.4 shows that W 2,2 = W 2,2

0 does not imply ~W 1,1 = ~W 1,1
0 .

• There are no implications between the stochastic completeness and the self-adjointness
of ΔM as we explained in Introduction.

• The characterizations of the self-adjointness of ΔG and ΔM in terms of 1-harmonic
functions follows by (5) and a standard argument. See [22] for the characterization
of the stochastic completeness in terms of 1-harmoinc functions.

Other characterization is the uniqueness of the solution to the heat equation in a certain
class.

Remark 2.5. Consider the Cauchy problem to find a smooth function u(t, x) on R+ ×M
such that {

∂u
∂t = Δu,

u(0+, ∙) ≡ 0.
(10)

Then

(10) has unique L∞-solutions ⇒ ΔG is self-adjoint. (11)

(10) has unique D(Δ∗
M )-solutions ⇔ ΔM is self-adjoint. (12)

The implication (11) follows from Proposition 3.7 together with the fact that the stochastic
completeness of M is equivalent to the uniqueness of L∞-solutions to (10) (see e.g. [22]).
The equivalence (12) was proved in [3] (see also [7] and [37]).

Remark 2.6. If M is stochastically complete, then there exists a sequence χn ∈ D(Δk
D)∩

Lp ∩ C∞ for any k > 0 and 1 ≤ p ≤ ∞ such that 0 ≤ χn ≤ 1, χn ↑ 1 and

Δχn → 0, as n → ∞.
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If M is geodesically complete, there exists a sequence χn ∈ C∞
0 such that 0 ≤ χn ≤ 1, χn ↑

1 and
∇χn → 0, as n → ∞.

Moreover, if M is geodesically complete, then for any u ∈ D(ΔD) there exists un ∈ C∞
0 (M)

such that
un → u, ∇un → ∇u, and Δun → Δu in L2 as n → ∞.

This is a consequence of the self-adjointness of ΔM . A direct proof for this fact seems to
construct χn ∈ C∞

0 such that 0 ≤ χn ≤ 1, χn ↑ 1 and

∇χn → 0 and Δχn → 0, as n → ∞. (13)

If M is geodesically complete and bounded geometry then there exists χn ∈ C∞
0 satisfying

that (13) (for e.g. [37]).

3. Proofs

In this section we prove the main theorems. The proof of each theorem is contained in
individual subsection.

3.1. Proof of Theorem 1.1: Parabolicity. The proof is taken from [19].

Proof of Theorem 1.1. Let u ∈ L∞ be non-constant and Δu ∈ L1. Let B ⊂ B′ ⊂ M be
arbitrary pre-compact open sets with smooth boundaries such that B ⊂ B′. Set Ω = B′\B.
We assume without loss of generality that

sup
M

u < 1 and inf
Ω

u > 0.

Additionally, we first assume that u ∈ C2. Let φ be the solution to the boundary value
problem: φ|∂B = 1, φ|∂B′ = 0, and Δφ = 0 in Ω. The function φ is the equilibrium
potential of Ω; namely,

cap(B,B′) =
∫

Ω
|∇φ|2.

Set w = φ − u. Since

w(x) = 1 − u(x) > 0, if x ∈ ∂B,

w(x) = −u(x) < 0, if x ∈ ∂B′,

there exists a regular value ε > 0 for w such that Γ = {w = ε} ⊂ Ω and
∫

Γ

∂w

∂ν
dσ ≥ 0,

where ν is the normal vector to Γ and σ is the surface measure on Γ. Thus,
∫

Γ

∂φ

∂ν
dσ ≥

∫

Γ

∂u

∂ν
dσ.

By Green’s formula and the fact that Δφ = 0 in Ω,

cap(B,B′) =
∫

Ω
|∇φ|2 dμ

=
∫

∂B

∂φ

∂ν
dσ =

∫

Γ

∂φ

∂ν
dσ +

∫

Ω∩{w>ε}
Δφdμ

=
∫

Γ

∂φ

∂ν
dσ

≥
∫

Γ

∂u

∂ν
dσ.
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Let {Bi} be an exhaustion of M such that Bi has smooth boundary and Bi−1 ⊂ Bi for
every i > 1. Since M is parabolic,

cap(Bk, Bm) → 0 as m → ∞.

For each k, let m(k) be such that cap(Bk, Bm(k)) → 0 as k → ∞. Let B = Bk, B′ = Bm(k),
and Ωk ⊃ Bk be an open set such that ∂Ωk = Γ as in the notations above. We deduce
that ∫

M
Δu = lim

k→∞

∫

Ωk

Δu = lim
k→∞

∫

∂Ωk

∂u

∂ν
dσ ≤ lim

k→∞
cap(Bk, Bm(k)) = 0.

If we apply this argumentation for 1 − u, then we find
∫

M
Δ(−u) ≤ 0,

and hence, ∫

M
Δu = 0.

We can remove the assumption of the smoothness of the function by applying the Friedrichs
mollifier (see for e.g., [4]).

Assume that M is not parabolic. Then M admits a positive Green function g. Let
u ∈ C∞

0 be u ≥ 0 and not identically 0. Then v =
∫

gu ∈ L∞ and
∫

Δv =
∫

u > 0.

�

3.2. Proof of Theorem 1.2: Stochastic completeness (General case). Let G be
the associated 1-resolvent operator to Tt; that is,

Gu =
∫ ∞

0
e−tTtu dt, for u ∈ Lp with any 1 ≤ p ≤ ∞.

Similar to Tt, G is a bounded operator in any Lp with 1 ≤ p ≤ ∞. Since Tt is an analytic
semigroup, G(L2) ⊂ D(ΔD).

Let en ∈ C∞
0 (M) satisfy that 0 ≤ en ≤ en+1 ≤ 1 for every n > 1, and en ↑ 1 μ-a.e. as

n → ∞. The next lemma follows immediately from the definition.

Lemma 3.1. The following three conditions are equivalent.

(1) M is stochastically complete.
(2) Gen ↑ 1, μ-a.e. as n → ∞.
(3) Δ(Gen) = Gen − en → 0, μ-a.e. as n → ∞.

Proof of Theorem 1.2. First, we assume that M is stochastically complete. Let u ∈
D(ΔD) ∩ L1 be such that Δu ∈ L1. By Lemma 3.1,

∫
Δu dμ = lim

n→∞
(Δu,Gen). (14)

If u ∈ D(ΔD), then, again by Lemma 3.1, (14) is

lim
n→∞

(u, Δ(Gen)) = lim
n→∞

(u,Gen − en) = 0.

We prove the opposite implication. Assume
∫

Δv = 0, for every v ∈ L1 ∩ D(ΔD) such that Δv ∈ L1. (15)
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Let φ ∈ C∞
0 (M) be a non-trivial and non-negative function. Set u = Ttφ and v = Gu

with arbitrary t > 0. Note that v satisfies the assumption of (15). Since G is self-adjoint,

(u,G(en) − en) = (u, ΔGen) = (u,GΔen) = (v, Δen) = (Δv, en).

The most right-hand side of this equation tends to 0 by (15). Since u > 0, this implies
that G(en) − en → 0; that is, the stochastic completeness of M by Lemma 2.2. �

Theorem 1.2 can be extended as follows.

Proposition 3.2. (1) If M is stochastically complete, then
∫

Δu = 0 for all u ∈ D(ΔD) ∪ D ∩ L1 such that Δu ∈ L1. (16)

(2) If ∫
Δu = 0 for all u ∈ D′ ∩ L such that Δu ∈ L,

then M is stochastically complete.

Proof. (1) If u ∈ D(ΔD), then the statement was proved in Theorem 1.2. If u ∈ D, then
there exists uk ∈ C∞

0 such that uk → u and Δuk → Δu in Lp with some p ∈ [1,∞].
Taking into account that Gen ∈ L, Lemma 3.1 yields that

∫
Δu dμ = lim

n→∞
lim

k→∞
(Δuk, (Gen))

= lim
n→∞

lim
k→∞

(uk, Δ(Gen))

= lim
n→∞

(u, Δ(Gen)) = lim
n→∞

(u,Gen − en) = 0.

(2) can be proven as in the proof of Theorem 1.2] since G ◦ Tt(C∞
0 ) ⊂ D′ ∩ L and G,

Tt, and Δ commute with each other on C∞
0 . �

3.3. Proof of Theorem 1.4: Stochastic completeness (Geodesically complete
case). In this subsection, we assume that M is geodesically complete. Fix an arbitrary
point xo ∈ M and set for k ≥ 1 that

χk(x) = 1 ∧ (k−1(2k − d(x, x0))+. (17)

This sequence of functions enjoys the property: χk ∈ W 1,2
0 (due to the geodesic complete-

ness), χk(x) ↑ 1 and ∇χk(x) → 0 as k → ∞ μ-a.e.

Proof of Theorem 1.4. First we assume that M is stochastically complete. Let u ∈ L1∩L2

be such that ∇u ∈ L2 and Δu is integrable. Let en ∈ L2 be the function which appeared
above. By Lemma 2.2 Gen ↑ 1 μ-a.e. as n → ∞. Since (Δu)(Gen) is integrable and χk ↑ 1
μ-a.e. as k → ∞,

∫
Δu = lim

n→∞

∫
(Δu)(Gen) = lim

n→∞
lim

k→∞

∫
(Δu)(Gen)χk.

Because χk has compact support (due to the geodesic completeness), the last expression
of the above equation is

lim
n→∞

lim
k→∞

−
∫

(∇u,∇(χk(Gen)))

= lim
n→∞

lim
k→∞

−

[∫
χk(∇u,∇(Gen)) + (Gen)(∇u,∇χk)

]

. (18)
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Since (Gen)∇u ∈ L1 and ∇χk → 0 μ-a.e. as k → ∞, the second term in (18) tends to 0 as
k → ∞. Due to the fact u ∈ L2 and Gen ∈ D(Δ) ⊂ W 1,2

0 , it follows that u∇(Gen) ∈ L1

and

lim
k→∞

∫
(u∇χk,∇(Gen)) = 0.

Hence, (18) is

lim
n→∞

lim
k→∞

−

[∫
(χk∇u,∇(Gen)) +

∫
(u∇χk,∇(Gen))u

]

= lim
n→∞

lim
k→∞

−
∫

(∇(χku),∇(Gen))

= lim
n→∞

lim
k→∞

∫
χkuΔ(Gen)

= lim
n→∞

∫
u(Δ(Gen)),

where the last expression is 0 because u ∈ L1 and Δ(Gen) → 0 μ-a.e. as n → ∞ by Lemma
2.2.

The opposite implication follows from Theorem 1.2. �

3.4. Proof of Theorem 1.5: Sobolev spaces.

Proof of Theorem 1.5 (a). Let A(k) be a subset of M as in Introduction, and u ∈ L1
loc be

a function such that
{
∇u ∈ L2(B) ∩ L1(A) ∩ L2

loc for some open B ⊃ ∂CM

Δu ∈ L1

for a sequence k(n) → ∞ as n → ∞ and for A = ∪n≥1A(k(n)).
Since W 1,2

0 = W 1,2 and V (r) < ∞ for every r > 0, ∂CM is polar by Lemma 2.2. Hence
we find a sequence of open sets Ol of M satisfying ∂CM ⊂ Ol ⊂ B, and a sequence of
functions el ∈ L(Ol) such that ‖el‖W 1,2 → 0 as l → ∞.

Employing χk defined in (17), set χl
k = (1 − el)χk with k, l ≥ 1. Then χl

k ∈ W 1,2
0 .

Taking into account that χk and ∇χk are supported in B(x0, 2k) and A, respectively,

0 =
∫

divμ

(
χl

k(n)∇u
)

=
∫

B(x0,2k)
χk(n)(∇el,∇u) +

∫

A
(1 − el)(∇χk(n),∇u) +

∫
χl

k(n)Δu. (19)

Since B(x0, 2k) = (B(x0, 2k) \ B) ∪ B, ∇u ∈ L2(B(x0, 2k)). Therefore the first term in
(19) tends to 0 as l → ∞ because ∇el → 0 in L2. The second term of (19) tends to 0 as
n → ∞ because ∇u is integrable on A and ∇χk(n) → 0 as n → ∞. The third term of (19)
clearly converges to

∫
Δu. �

If ∂CM is finite, then let B be a pre-compact open set of M such that ∂CM ⊂ B. We
denote by B the closure (not the completion) of B in M . In order to prove Theorem 1.5
(b), we need

Lemma 3.3. Assume that ∂CM is finite and has finite capacity. If W 1,2
0 (M) 6= W 1,2(M),

then W 1,2
0 (B) 6= W 1,2(B).



14 A. GRIGOR’YAN AND J. MASAMUNE

Proof. Since ∂CM has a finite capacity, there exists an open set B′ of M such that ∂CM ⊂
B′ and μ(B′) < ∞. Because B \ B′ is a pre-compact subset of M , μ(B) ≤ μ(B \ B′) +
μ(B′) < ∞. Thus, 1 ∈ W 1,2(B), and

Cap(∂CB) < ∞.

Since if u ∈ W 1,2(M) then u|B ∈ W 1,2(B), it follows that Cap(∂CB) ≥ Cap(∂CM) > 0.
The assertion follows from Lemma 2.2. �

Proof of Theorem 1.5 (b). Since ∂CM is finite and V (r) < ∞ for every r > 0, we find a
pre-compact open set B of M such that ∂CM ⊂ B and μ(B) < ∞. Let ∇DN be the
restriction of ∇N to W 1,2

0 (B). The associated Laplacian ΔDN is

ΔDN = −∇∗
DN∇DN .

Due to the Von Neumann theorem, ΔDN is self-adjoint. Moreover, since ∇DN is a restric-
tion of ∇N , ΔDN is Markovian by Lemma 3.5. Any function u ∈ D(ΔDN ) satisfies the
Dirichlet boundary condition on ∂CB(= ∂CM) and the Neumann boundary condition on
∂B.

If we suppose W 1,2
0 (M) 6= W 1,2(M), then W 1,2

0 (B) 6= W 1,2(B) by Lemma 3.3. Since
1 ∈ W 1,2(B) and etΔN 1 = 1, where ΔN is the Neumann Laplacian of B, this implies
that etΔDN 1 < 1, and we may apply the argument of the proof of Theorem 1.2 and the
following remark to find a function u ∈ Lp(B) ∩ D(Δk

DN ) such that Δu ∈ Lp(B) with all
1 ≤ p ≤ ∞ and k ≥ 1 and ∫

B
Δu 6= 0.

For an open set B′ ⊂ M such that ∂CM ⊂ B′ and B′ ⊂ B, let χ ∈ C∞(M) satisfy
that χ|B′ = 1 and supp[χ] ⊂ B. Since ∇χ and Δχ are supported in B \ B′ and B \ B′

is pre-compact in M , both ∇(χu) and Δ(χu) are in L2. Because (1 − χ)u satisfies the
Neumann boundary condition on ∂(B \ B′),

∫

B
Δu =

∫

B
Δ(χu) +

∫

B
Δ(1 − χ)u =

∫

B
Δ(χu).

Thus, we may assume that supp[u] ⊂ B without loss of generality. We extend u to M by
defining its value to be 0 on M \B and denote it by the same symbol. Clearly u ∈ L∩D′
and Δu ∈ L. Finally, since μ(B) < ∞, ∇u is integrable, which completes the proof. �

3.5. Proof of Theorem 1.7: Markov uniqueness. Denote by A the set of non-positive
definite self-adjoint extensions A of the minimal Laplacian ΔM , i.e,

A = {A ⊂ Δ∗
M : A = A∗ and (Au, u) ≤ 0 for u ∈ D(A)}.

We say that S ∈ A is Markovian if the semigroup generated by S in L2 is Markovian. A
subset AM of A is

AM = {S ∈ A : S is Markovian}.

For A ∈ AM , consider the closure EA of the quadratic form (−Au, v) with u, v ∈ D(A). We
denote the domain of EA by FA. The pair (EA,FA) is called the Dirichlet form associated
with A. A Dirichlet form (E ,F) defines a complete metric E-1 on F :

E-1[u] = ‖u‖2 + E [u], u ∈ F ,

where E [∙] = E(∙, ∙). A semi-order ≺ in A is defined by A1 ≺ A2 if and only if

D(EA1) ⊂ D(EA2) and EA1 [u] ≥ EA2 [u], for all u ∈ D(EA1).

The following fact is well known (see for e.g., [24]), but we give an alternative proof for
the sake of the completeness.
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Lemma 3.4 ([24]). The Laplacians ΔD and ΔN are Markovian on an arbitrary weighted
manifold.

Proof. Let ψε ∈ C∞(R) with ε > 0 satisfy −ε ≤ ψε ≤ 1 + ε, ψε(t) = t if t ∈ [0, 1], and
0 ≤ ψ′ − ε ≤ 1. For u ∈ W 1,2 ∩ C∞ and uε = ψε(u),

E [uε] =
∫

|∇uε|
2 =

∫
|ψ′

ε(u)∇u|2 ≤
∫

|∇u|2 = E [u],

where E [u] =
∫
|∇u|2. Hence (E ,W 1,2 ∩ C∞) is a Markovian form [11]. The generator

of the closure of this form is ΔN , and since the generator associated to the closure of a
Markovian form is Markovian [11], ΔN is Markovian.

We can prove that ΔD is Markovian in the same way. �

The following is (i) in Theorem 1.7.

Lemma 3.5. The Dirichlet Laplacian and Neumann Laplacian are the minimum and
maximum elements in AM , respectively.

Proof. First, we show that (E ,W 1,2
0 ) is the minimum element. Let A ∈ AM . Since W 1,2

0

is the closure of C∞
0 with respect to E-1 norm, W 1,2

0 ⊂ FA(= D(EA)). For any u ∈ W 1,2
0 ,

let un ∈ C∞
0 such that un → u in W 1,2

0 as n → ∞. By the equation Aun = Δun and the
lower-semicontinuity of EA,

E [u] = lim
n→∞

(−Aun, un) = lim
n→∞

EA[un] ≥ EA[u].

Next, we show that ΔN is the maximum element. The associated form is (E ,W 1,2).
Let φ ∈ C∞

0 such that 0 ≤ φ ≤ 1. Let v ∈ FA be a solution of Av = λv with λ > 0. By
the hypo-ellipticity of A, v is smooth. Set vn = (v ∨ (−n)) ∧ n with n = 1, 2, ∙ ∙ ∙ . Since
v2
n ∈ FA ∩ L∞ for any n, it follows by (3.2.13) in [11] that

EA[v] = lim
n→∞

EA[vn] ≥ lim
n→∞

[

EA(vnφ, vn) −
1
2
EA(v2

n, φ)

]

.

Since vnφ = vφ for large n and vφ ∈ C∞
0 , on which A and Δ agree point wise, the most

right-hand side in the above equation is

lim
n→∞

[

EA(vφ, vn) +
1
2
(v2

n, Aφ)

]

= lim
n→∞

[

(−A(vφ), vn) +
1
2
(v2

n, Δφ)

]

=(−A(vφ), v) +
1
2
(v2, Δφ)

=(−Δ(vφ), v) +
1
2
(Δ(v2), φ)

=(−vφ, Δv) + (|∇v|2 + vΔv, φ)

=(−vφ, λv) + (|∇v|2 + λv2, φ)

=
∫

φ|∇v|2.

By letting φ ↑ 1, EA[u] ≥ E [u]. Since

FA = W 1,2
0 ⊕ {u ∈ FA : Δu = λu}, λ > 0,

any w ∈ FA can be decomposed as w = η + u, where η ∈ W 1,2
0 and u ∈ FA satisfies

Δu = λu. Now,
E [w] ≤ E [η] + E [u] ≤ E [η] + EA[u] = EA[w] < ∞,

and w ∈ W 1,2. Thus FA ⊂ W 1,2 and we arrived at the conclusion. �
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The following, which is (ii) of Theorem 1.7, is easy

Lemma 3.6. The following conditions are equivalent.
(i) ΔD = ΔN .
(ii) ΔG is self-adjoint.
(iii) ΔM has a unique Markov extension.

Proof. The implication (i) ⇒ (ii) follows from the definition of ΔD, ΔN , and ΔG. Since
ΔD ⊂ ΔG and ΔN ⊂ ΔG, if ΔG is self-adjoint, then ΔD = ΔG = ΔN , which is (ii)
⇒ (i). The equivalence between (iii) and (i) follows from the fact that ΔD and ΔN are
Markovian, and they are the minimum and maximum elements of Markovian operators
by Proposition 3.5. �

The next is (iii) of Theorem 1.7.

Lemma 3.7. If M is stochastically complete or geodesically complete, or ∂CM is polar,
then W 1,2

0 = W 1,2.

Proof. Suppose W 1,2
0 6= W 1,2. Then two operators ΔD and ΔN are not identical, and

hence etΔD 6= etΔN . Taking into account that the kernel of etΔD is the smallest positive
fundamental solution to the heat equation,

u(t) :=
(
etΔN − etΔD

)
u > 0

for a non-trivial u ∈ C0 with u ≥ 0. Since u(t) is a bounded solution to the Cauchy
problem with initial data 0, M is stochastically incomplete by Theorem 6.2 in [22].

We already showed that the polarity of ∂CM implies W 1,2
0 = W 1,2 in Proposition 2.2.

In particular, since the Cauchy boundary of a geodesically complete manifold is empty
and it is polar, W 1,2

0 = W 1,2. (The last fact is well known. See for e.g., [12], [1]). �

4. Polarity of the Cauchy boundary

This section consists of two subsections. In Subsection 4.1, we present some examples of
manifolds which demonstrate that we can not drop certain conditions from main theorems.
In Subsection 4.2 we will mainly study the Cauchy boundary. We will present an example
of ∂CM which has co-dim(∂CM)=2 but not polar, and an example of a non-parabolic
geodesically complete manifold with V (r) ∼ r2 for large r > 0 (Proposition 4.4). We
also present an example which demonstrates that if ∂CM has infinite capacity, then both
W 1,2 = W 1,2

0 and W 1,2 6= W 1,2
0 may occur (Proposition 4.5).

Our examples are warp-prodcuts or model manifolds. Let us recall the definitions and
their Laplacians and the Green functions. For further properties of a model manifold, see
[22]. The product N = (0,∞) × Sn with the Riemannian metric

dr2 + σ2(r)gθ,

where gθ is the Riemannian metric of Sn and σ = σ(r) is a positive smooth function, is
called the warp product of (0,∞) and Sn. The condition

σ(0) = 0 and lim
r→0

σ′(r) = 0 (20)

is the necessary and sufficient condition such that the Riemannian metric extends to
o := {0} × Sn. The point o is called the pole of N and it is the Cauchy boundary ∂CN .
If (20) is satisfied, then the manifold M = N ∪ {o} is called a model manifold. Clearly, a
model manifold is geodesically complete.

The volume element is
ωnσndr,
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where ωn is the volume of Sn. The surface area S = S(r) of the boundary ∂B(o, r) of
B(o, r) is

S(r) = ωnσn(r)

and the volume V (r) of B(o, r) is

V (r) =
∫ r

0
S(ξ) dξ = ωn

∫ r

0
σn(ξ) dξ.

The associated Laplacian is

Δu = u′′ +
σ′

σ
u′ +

1
σ2

Δθu = u′′ +
S′

S
u′ +

1
σ2

Δθu, (21)

where the prime stands for the derivative with r > 0 and Δθ is the Laplacian on Sn. By
(21), the positive function4:

g(x) =
∫ ∞

r(x)

dr

S(r)
(22)

solves Laplace’s equation. If M is a model manifold, the function (22) is Green’s function
g with pole at o.

4.1. Examples. The following is the example to Theorem 1.2.

Proposition 4.1. Let M be a model manifold and g be Green’s function. Then

non-parabolic ⇐⇒
∫ ∞ dr

S(r)
< ∞ ⇐⇒ finiteness of g.

If M is non-parabolic, then

stochastic incomplete ⇐⇒
∫ ∞ V (r)

S(r)
dr < ∞ ⇐⇒ g ∈ L1 (outside a compact).

In particular, if M is stochastically complete, there exists a positive super-harmonic func-
tion u such that u ∈ L1 ∩ L∞, Δu ∈ L2, and

∫
Δu < 0.

Proof. The implications for parabolicity follow from (22) and the definition. The first
equivalence for the stochastic completeness can be found in [22]. For the second equiva-
lence, observe

∫

Bc(o,1)
g dμ =

∫ ∞

1
g(r) S(r)dr

=
∫ ∞

1
S(r)

∫ ∞

r

dt

S(t)
dr

=
∫∫

1≤r≤t<∞

g(r)
S(t)

dtdr

=
∫ ∞

1

1
S(t)

∫ t

1
S(r)drdt

=
∫ ∞

1

V (t) − V (1)
S(t)

dt.

4It may be identically +∞.
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Next assume that M is stochastically incomplete and let φ ∈ C∞(0,∞) be a super-
harmonic function satisfying that

ψ(t) =

{
t, 1 < t,

2, t > 3.

Set u = ψ(g). Clearly u ∈ L1 ∩ L∞ and Δu has compact support. Moreover, u is
super-harmonic and

∫
Δu < 0. �

The next proposition shows that we may not drop the conditions u ∈ L1 in (5) and
∇u ∈ L1 in (6), respectively.

Proposition 4.2. Let M be an (n + 1)-dimensional model manifold. We assume that
σ(r) = rs with s > 0 at infinity. If sn > 3, then M is stochastically complete and there
exists a measurable function u such that

∫
Δu 6= 0, u ∈ D(ΔD) \ L1, ∇u /∈ L1, and Δu ∈ L1.

Proof. Since

V (r) = ωn

∫ r

0
ξsn dξ =

ωn

sn + 1
rsn+1,

M is stochastically complete by the volume test (2).
Let g be Green’s function with pole at o:

g(x) =
∫ ∞

r(x)

dr

S(r)
=

1
ωn

∫ ∞

r(x)
r−sn dr =

1
(sn − 1)ωn

r(x)1−sn.

Let ψ ∈ C∞(0,∞) be super-harmonic such that

ψ(t) =

{
t, if t < 1

2, if t > 3,

and ψ′′(t) < 0 if t ∈ (1, 3). Set

u(x) =

{
ψ(g(x)), if x 6= 0

2, if x = 0.

Then ∫
u ≥ C(n, s)

∫

g≤3
r1−snrsn dr = ∞

and
∫

u2 ≤
∫

{g>1}
22 +

∫

{g<1}
g2 ≤ 4μ(g > 1) + C(n, s)

∫

{g<1}
r2(1−sn)rsn dr

= 4μ(g > 1) + C(n, s)
∫

{g<1}
r2−sn dr,

which is finite since sn > 3. Since Δg = 0 if r > 0, it follows that

Δu(x) =
(
ψ′′(g)|∇g|2 + ψ′(g)Δg

)
(x)

= ψ′′(g)|∇g|2(x)

{
< 0, if 1 < g(x) < 3

= 0, otherwise.

Thus,

Δu ∈ L1 ∩ L2 and
∫

M
Δu < 0.
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Since u and Δu are in L2 and M is geodesically complete, u ∈ D(Δ). Since ∇u = φ′(g)∇g,
∫

|∇u| ≥
∫

g<1
|∇g| =

∫

g<1
r−snrsndr = ∞.

�

Any Euclidean space Rn with n ≥ 5 satisfies the condition of Proposition 4.2 since
σ(r) = r and s = 1.

The next proposition shows that we may not drop the condition ∇u ∈ L2 from (4) and
(6).

Proposition 4.3. Let N be a 3-dimensional non-parabolic model manifold and M =
N \ {o}. There exists a measurable function u on N such that

∫
Δu 6= 0, u ∈ L1 ∩ L2, ∇u ∈ L1 \ L2, and Δu ∈ L1 ∩ L2.

Note that the Cauchy boundary ∂CM = {o} is polar and hence W 1,2(N) = W 1,2
0 (N). The

manifold can be stochastically complete.

Proof. Let g(∙) = gN (xo, ∙), where gN is Green’s function of N . Let ψ ∈ C∞(R) be a
convex function defined as

ψ(t) =

{
0, t ≤ 1,

t − 2, t ≥ 3,

and ψ′′ > 0 if t ∈ (1, 3). Set u = ψ(g) ∈ C∞(M). Since the magnitude of the singularity
of g is r−1, where r is the distance from xo,∫

M
uk �

∫

g>1
(ψ(g(r)))kr2dr �

∫

g>1
(r−1 − 2)kr2 dr < ∞ if k = 1, 2,

thus u ∈ L1 ∩ L2. Since Δg = 0 and ∇g 6= 0, it follows that

Δu(x) =
(
ψ′′(g)|∇g|2 + ψ′(g)Δg

)
(x)

{
> 0, if 1 < g(x) < 3

= 0, otherwise.

Thus, Δu ∈ L1 ∩ L2. On the other hand, since for small r

|∇u(x)| = |ψ′(g)∇g(x)| � r(x)−2,

we obtain ∫
|∇u| =

∫

g>1
|∇u| �

∫

g>1
r−2r2dr < ∞,

and ∇u /∈ L2. �

The Euclidean space R3 is parabolic and satisfies the condition of Proposition 4.3.

4.2. Some notes about the Cauchy boundary. Let us recall some known sufficient
conditions for ∂CM to be polar which is closely related with our examples.

A very general criteria is the following: If ∂CM is compact and
∫

0

ρ dρ

V (ρ)
= ∞, (23)

then ∂CM is polar. This statement can be proven in a similar way of the proof of Theorem
7.1 [22]. This condition is satisfied; for example, if V (ρ) ≤ ρ2, or V (ρ) ≤ ρ2(ln(1/ρ)), or if
there exists ρk → 0 such that

V (ρk) ≤ const ρ2
k.

Concrete examples, whose ∂CM ’s polarity can be stated in terms of a certain “co-dimension’’,
are the following:
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• Let M be a manifold with polar Cauchy boundary and Σ be its compact sub-
manifold. If Σ has co-dimension equal or greater than 2, then M \ Σ has polar
Cauchy boundary.

• If M is an algebraic variety in CPn or an Riemannian orbifold, then the singular
set Σ ⊂ M is the Cauchy boundary of its regular part, M \ Σ. If Σ has a (real)
co-dimension equal or greater than 2, then it is polar (see for e.g., M. Nagase [34]
and P. Li and G. Tian [30] for algebraic varieties and T. Shioya [36] for Riemannian
orbifolds.).

• The lower-Minkowski codimension codimM (∂CM) of ∂CM is

lim inf
ρ→0

(
ln V (ρ)

ln ρ

)

.

If codimM (∂CM) ≥ 2 + ε with some ε > 0 then (23) is satisfied [31].

It is easy to show that (23) implies codimM (∂CM) ≥ 2 and all the Cauchy boundaries
of the examples above satisfy this estimate. However, the opposite implication does not
need to be true. Namely,

Proposition 4.4. (a ) There exists a Cauchy boundary ∂CM , which is a manifold, the
Minkowski co-dimension is 2, namely,

lim
r→0

ln V (r)
ln r

= 2,

not polar, and W 1,2
0 (M) 6= W 1,2(M).

(b ) There exists a non-parabolic model manifold M such that

lim
r→∞

ln V (r)
ln r

= 2.

Proof of (a). Let M = (0,∞)× Sn with n ≥ 1 be the warp product of (0,∞) and Sn. Let

σ(r) =

(
rf (f ln r)′

ωn

)1/n

, r ∈ (0, 1/2),

where

f(r) = 2 + (1 + ε)
ln | ln r|

ln r
, ε > 0, r > 0.

A direct calculation shows that limr→0 σ(r) = 0. The Cauchy boundary is the point
{0} × Sn. We also find limr→0 σ′(r) 6= 0. (Thus the Riemannian metric does not extends
to the Cauchy boundary.)

Then V (r) = rf(r) for r ∈ (0, 1/2) and

lim
r→0

ln V (r)
ln r

= lim
r→0

f(r) = 2.

We claim that V is convex for small r > 0. Defining a function f from the identity
ln V = f ln r, we obtain V ′/V = (f ln r)′, V ′ = V (f ln r)′, and

V ′′ = V ′(f ln r)′ + V (f ln r)′′ = V ((f ln r)′)2 + V (f ln r)′′

= V [((f ln r)′)2 + (f ln r)′′]. (24)
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Obviously, we have

f ′ = (1 + ε)

[
ln r

r ln r − ln | ln r|
r

(ln r)2

]

= (1 + ε)
(1 − ln | ln r|)

r(ln r)2

f ′′ = (1 + ε)
− r(ln r)2

r ln r − (1 − ln | ln r|)(r(ln r)2)′

(r(ln r)2)2

= (1 + ε)
− ln r − (1 − ln | ln r|)(ln r)(ln r + 2)

(r(ln r)2)2

= −(1 + ε)
ln r

(r(ln r)2)2
[1 + (1 − (ln | ln r|))(ln r + 2)],

whence it follows that

(f ln r)′′ = f ′′ ln r + 2f ′(ln r)′ + f(ln r)′′ = f ′′ ln r + 2f ′r−1 − fr−2

= − (1 + ε)
[1 + (1 − ln | ln r|)(ln r + 2)]

(r ln r)2
+ 2(1 + ε)

(1 − ln | ln r|)
(r ln r)2

− r−2
[
2 + (1 + ε)

ln | ln r|
ln r

]

=
(1 + ε)
(r ln r)2

[−1 +
ln | ln r|

ln r
− ln r] − r−2

[
2 + (1 + ε)

ln | ln r|
ln r

]

∼−
2
r2

as r → 0

On the other hand, we have,

((f ln r)′)2 = (f ′ ln r + f/r)2 =

[
(1 + ε)(1 − ln | ln r|)

r ln r
+

2 + (1 + ε) ln | ln r|
ln r

r

]2

= r−2

[
(1 + ε)(1 − ln | ln r|)

ln r
+ 2 + (1 + ε)

ln | ln r|
ln r

]2

∼
4
r2

as r → 0

Thus, comparing this with the above estimate of (f ln r)′′ and taking into account (24),
we see that there exists R ∈ (0, 1/2) such that

V ′′(r) ≥ 0 for r ∈ (0, R).

Therefore,

V ′(r) ≥
(V (r) − V (0))

r
and

∫ R

r

dr

V ′(r)
≤
∫ R

r

rdr

V (r)
=
∫ R

r

dr

r1+(1+ε) ln | ln r|/ ln r
=
∫ R

r

dr

r| ln r|1+ε
= [| ln r|−ε]Rr . (25)

Let us extend V (r) for r ≥ R to satisfy
∫ ∞

R

dr

V ′(r)
= C < ∞.

Let φ be the solution to the following boundary problem in Ω(r, r′) := B(r′) \ B(r) with
r < r′:

Δφ = 0, φ|∂B(r) = 1, φ|∂B(r′) = 0.
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By (21), we have

φ(s) =

(∫ r′

r

dr

V ′(r)

)−1 ∫ r′

s

dρ

V ′(ρ)
.

Hence,

Cap(B(r)) ≥ lim
r′→∞

∫

Ω(r,r′)
|∇φ|2 dμ =

∫

∂B(r)

∂φ

∂ν
dσ

=

(∫ ∞

r

dr

V ′(r)

)−1

=

(∫ R

r

dr

V ′(r)
+
∫ ∞

R

dr

V ′(r)

)−1

.

By (25), the last expression is bounded from below by
(∫ R

r

rdr

V (r)
+ C

)−1

=
(
[| ln r|−ε]Rr + C

)−1
→
(
| ln R|−ε + C

)−1
> 0, as r → 0.

This shows that ∂CM is not polar. Because Cap(∂CM) < ∞, we conclude by Proposi-
tion 2.2 that W 1,2

0 (M) 6= W 1,2(M). �

Proof of (b). Let f be the same function as in the previous example. Assume that the Rie-
mannian metric extends to ∂CM and M is a geodesically complete Riemannian manifold;
namely, a model manifold. If V (r) = rf(r) for large r > 0, then

lim
r→∞

V (r)
r2

= 2

and ∫ ∞ rdr

V (r)
< ∞.

Furthermore, in the similar way as above, we find V ′′(r) ≥ 0 for large r > 0 which implies
that M is not parabolic. �

Proposition 4.5. (a ) There exists a stochastically complete manifold M such that Cap(∂CM) =
∞. In particular, W 1,2 = W 1,2

0 .
(b ) There exists a stochastically incomplete manifold M such that Cap(∂CM) = ∞ and

W 1,2 = W 1,2
0 .

(c ) There exists a manifold M such that Cap(∂CM) = ∞ and W 1,2 6= W 1,2
0 ; for

instance, M = R2 \ R with standard Euclidean measure.

Proof of (a). Consider M = ((0, 1]; μ), where dμ(x) = dx/x. We impose the Neumann
boundary condition at x = 1. The Cauchy boundary is the point ∂CM = {0} and the
volume of B(0, r) is

∫ r
0 dx/x = ∞ for any r ∈ (0, 1). Therefore, the L2-norm of any

function which is 1 on a neighborhood of ∂CM is infinite, thus, Cap(∂CM) = ∞.
Next we show the stochastic completeness. Let r be the distance from x = 1 and

V (r) =
∫ r

0

dx

1 − x
.

Then ∫ ρ V (r)
V ′(r)

dr =
∫ ρ − ln(1 − r)

1 − r
dr =

1
2

(ln(1 − ρ))2 → ∞, ρ → 1.

This implies the stochastic completeness (see Section 6 [22]). In particular, W 1,2 = W 1,2
0 .
�
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Proof of (b). Consider M = ((0,∞); μ), where the measure μ and the volume V (r) satisfy:
dμ(x) = dx/x for x close to 0 and

∫ ∞ V (r)
V ′(r)

dr < ∞.

Then M is stochastically incomplete (Section 6 [22]). We have showed Cap(∂CM) = ∞
above.

We show that W 1,2 = W 1,2
0 . For u ∈ W 1,2, we construct a sequence uε ∈ W 1,2

0 such
that uε → u in W 1,2 as ε → 0. Since W 1,2 ∩ C∞ is dense in W 1,2, we may assume that u
is smooth without loss of generality. Then u should satisfy:

u(0) = lim
x→0

u(x) = 0 and u′(0) = lim
x→0

u′(x) = 0.

Set

ψε(t) =

{
(t − ε)+, if t ≥ 0,

(t + ε) ∧ 0, if t < 0,

with ε > 0 and uε = ψε(u). If u(x) < ε then uε(x) = ψε(uε(x)) = 0. Since u(0) = 0,
uε ∈ W 1,2

0 with any ε > 0. Set

Oε = {x ∈ M : |u(x)| < ε} and Cε = M \ Oε.

If vε = u − uε, then

vε(x) =

{
u(x), if x ∈ Oε,

±ε, if u(x) ∈ Cε.

∫ 1

0
v2
ε dμ =

∫

Oε

v2
ε dμ +

∫

Cε

v2
ε dμ =

∫

Oε

u2 dμ +
∫

Cε

ε2 dμ =: (I) + (II).

Set Ou = {x ∈ M : u(x) = 0}. Since 1Oε\Ou
→ 0 μ-a.e. as ε → 0,

(I) =
∫

Oε

u2 dx

x
=
∫

Oε\Ou

u2 dx

x
→ 0, ε → 0.

Since u′(0) = 0, we may assume that |u′(x)| ≤ 1 for any x ∈ (0, ε) for sufficiently small
ε > 0, and

|u(x)| ≤
∫ x

0
|u′(ξ)| dξ ≤ x.

If xε = min{x > 0 : u(x) = ε}, then xε ≥ ε. Thus,

(II) ≤
∫ 1

xε

ε2
dx

x
= −ε2 ln(xε) ≤ −ε2 ln(ε) → 0, ε → 0.

Since ∫ 1

0
(v′ε)

2 dx

x
=
∫

Oε

(u′)2
dx

x
=
∫

Oε\Ou

(u′)2
dx

x
→ 0, ε → 0,

uε → u in W 1,2 as ε → 0 and W 1,2 = W 1,2
0 . �
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