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1 Introduction

1.1 Motivation

Because of its intrinsic interest and its many applications in various areas of mathematics,
the heat diffusion equation on manifolds has been studied intensively. In particular, during
the past 30 years many authors attacked the problem of describing the global behavior of the
heat diffusion kernel p (t, x, y) on various Euclidean domains and manifolds. See for instance
[3, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 30, 31, 32, 33, 34, 48, 52, 56,
55, 60, 61, 62, 63, 64].

Since p (t, x, y) represents the temperature at point y at time t starting with a unit amount
of heat concentrated at x at time 0, one of the most basic questions one might ask concerns
the behavior of the functions p (t, x, y), supy′ p (t, x, y′), and supx′,y′ p (t, x′, y′) as t tends to +∞.
Another fundamental question is to describe the location of the approximate hot spot, that is,
of the set

{y : p (t, x, y) ≥ ε sup
y′
p
(
t, x, y′

)
},

where ε ∈ (0, 1), a starting point x and temperature t are fixed. The latter question is rather
difficult since it calls for precise global two sided bounds of the heat kernel.

The aim of this paper is to prove satisfactory estimates for the heat kernel on complete
manifolds with finitely many ends. These estimates were announced in [37]. The proofs are
quite involved and, in particular, make use of results from [38], [39], [40] and [41] (in fact, these
works were largely motivated by the applications presented here). Our main result, Theorem
6.6, allows us to answer the questions mentioned above and applies to a large class of manifolds
including the catenoid-like surface in Fig. 1, the three dimensional body (with the Neumann
boundary condition) in Fig. 2, and all non-parabolic manifolds with non-negative sectional
curvature outside a compact set. It seems likely that the techniques introduced here will be
essential to make further progress in our understanding of the heat kernel on manifolds that
contain parts with different geometric characteristics.

To the best of our knowledge, the large time behavior of the heat kernel on manifolds with
ends has been considered only in a handful of papers where some very partial results were
obtained. Among them are the papers by Benjamini, Chavel, Feldman [5], Chavel and Feldman
[9], and Davies [25], which have been a great source of motivation and insight for us. More
recently, Carron, Coulhon, and Hassell [8] obtained precise asymptotic results for manifolds
with a finite number of Euclidean ends.

It is well established that the long time behavior of the heat kernel reflects, in some way,
the large scale geometry of the manifold. Still, the number of situations for which satisfactory
upper and lower global bounds are known is very limited. If one excepts a few specific cases of
symmetric spaces (see [1]) and the case of fractal like manifolds (see [4]), all the known global
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Figure 1: Catenoid as a manifold with two ends

Figure 2: A domain in R3 with three ends: conical, planar, cylindrical
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two-sided estimates of the heat diffusion kernel p(t, x, y) have the form

c1

V (x,
√
t)

exp

(

−C1
d2(x, y)

t

)

≤ p(t, x, y) ≤
C2

V (x,
√
t)

exp

(

−c2
d2(x, y)

t

)

(1.1)

where V (x, r) is the volume of the ball of radius r around x and d(x, y) is the distance between
x and y. Such a two-sided bound indicates that the heat diffusion on M is controlled by the
volume growth of balls and by a universal Gaussian factor that reflects a simple distance effect
(see [29, 21, 34]). In terms of the hot spot problem, (1.1) indicates that the approximate hot
spot at time t starting from x is roughly described by the ball of radius

√
t centered at x.

Examples where (1.1) holds are complete manifolds having non-negative Ricci curvature
[48], manifolds which are quasi-isometric to those with non-negative Ricci curvature [31, 56] and
manifolds that cover a compact manifold with deck-transformation group having polynomial
volume growth [55, 57]. In fact, the two-sided estimate (1.1) is rather well understood, since it
is known to be equivalent to the conjunction of the following two properties:

(V D) the doubling volume property which asserts that there exists a finite constant C such
that, for all x ∈M and r > 0,

V (x, 2r) ≤ CV (x, r).

(PI) the Poincaré inequality on balls, which asserts that there exists a positive constant c such
that, for any ball B = B(x, r) ⊂M

λ
(N)
2 (B) ≥

c

r2
, (1.2)

where λ
(N)
2 (B) is the second Neumann eigenvalue of B (note that λ

(N)
1 (B) = 0).

It is known that (1.1) is also equivalent to the validity of a uniform parabolic Harnack
inequality for positive solutions of the heat equation in cylinder of the form (s, s+ r2)×B(x, r).
See [31, 55] and Section 5.1 below.

Typically, manifolds with ends do not satisfy (1.1). An example that was first considered by
Kuz’menko and Molchanov [46], is the connected sum of two copies of R3, that is, the manifold
M obtained by gluing together two punctured three-dimensional Euclidean spaces through a
small three dimensional cylinder. This manifold has two ends and its volume growth function is
comparable to that of R3, that is, V (x, r) ≈ r3. However, as was shown in [5], the lower bound
in (1.1) fails on M . Indeed, if x and y are in different ends and far enough from the compact
cylinder, then p(t, x, y) should be significantly smaller than predicted by (1.1), at least for some
range of t > 0, because all paths from x to y must go through the cylinder1. In other words,
there should be a bottleneck effect which must be accounted for if one wants to obtain precise
heat kernel estimates on M .

The manifolds on Fig. 1 and 2 do not satisfy (1.1) either. This is easy to see for the Euclidean
body in Fig 2 because the volume doubling property fails in this case. For the catenoid in Fig.
1, the volume doubling property is true but one can show that the Poincaré inequality (1.2)

1Another way to see that the lower bound in (1.1) fails is to disprove the uniform Harnack inequality. Indeed,
as was shown in [46], the connected sum of two copies of Rn, n > 2, admits a non-constant bounded harmonic
function, which contradicts the uniform Harnack inequality. The upper bound in (1.1) still holds on the manifold
in question (see Section 4.1). Hence, the lower bound fails.

4



fails. Sharp two sided estimates for the heat kernel on the catenoid follow from Theorem 7.1
below.

The goal of this paper is to develop tools that lead, in some generality, to upper and lower
bounds taking into account the bottleneck effect. In order to describe some of our results, let us
introduce the following terminology. Let M be a complete non-compact Riemannian manifold.
Let K ⊂ M be a compact set with non-empty interior and smooth boundary such that M \K
has k connected components E1, . . . , Ek and each Ei is non-compact. We say in such a case that
M has k ends Ei with respect to K. We will refer to K as the central part of M .

In many cases (in fact, in full generality if one admits as we will manifolds with boundary),
each Ei is isometric to the exterior of a compact set in another manifold Mi. In such case, we
write

M = M1#M2#...#Mk

and refer to M as a connected sum of the manifolds Mi. For instance, the example considered
above can be described in this notation as R3#R3.

1.2 Description of the results in model cases

To obtain a rich class of elementary examples, fix a large integer N (which will be the topological
dimension of M) and, for any integer m ∈ [1, N ], define the manifold Rm by

R1 = R+ × S
N−1, Rm = Rm × SN−m, m ≥ 2. (1.3)

The manifold Rm has topological dimension N but its “dimension at infinity” is m in the sense
that V (x, r) ≈ rm for r ≥ 1. Thus, for different values of m, the manifolds Rm have different
dimension at infinity but the same topological dimension N . This enables us to consider finite
connected sums of the Rm’s. In particular, for n 6= m, Rn#Rm is well-defined whereas Rn#Rm

does not make sense in the category of manifolds.
Fix N and k integers N1, N2, ..., Nk ∈ [1, N ] and consider the manifold

M = RN1#RN2#...#RNk . (1.4)

From the viewpoint of this paper, this is already an interesting class of examples for which we
would like to obtain global, two-sided, heat kernel estimates. This class of manifolds is also
useful for testing the validity of various geometric and analytic properties.

We now describe how the results obtained in this paper apply to the manifold M at (1.4)
when each Ni is larger than 2. This hypothesis means that all the ends of M are non-parabolic
and we set

n := min
1≤i≤k

Ni > 2. (1.5)

Let K be the central part of M and E1, . . . Ek be the ends of M so that Ei is isometric to
the complement of a compact set in RNi . With some abuse of notation, we write Ei = RNi \K.
Thus x ∈ RNi \K means that the point x ∈ M belongs to the end associated with RNi . For
any point x ∈M , set

|x| := sup
z∈K

d(x, z) .

Observe that since K has non-empty interior, |x| is separated from 0 on M and |x| ≈ 1+d (x,K).
In the following estimates we always assume that t ≥ t0 (where t0 > 0 is fixed), x, y are

points on M and d = d(x, y) is the geodesic distance in M . We follow the convention that
C,C1, . . . denote large finite positive constants whereas c, c1, . . . are small positive constants
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(these constants may depend on M but do not depend on the variables x, y, t). Given two
non-negative functions f, g defined on a domain I, we write

f ≈ g

to signify that there are constants 0 < c ≤ C <∞ such that, on I, cf ≤ g ≤ Cf .
1. Let us first consider the simplest case k = 2, i.e., M at (1.4) has two ends. To simplify

notation, set M = Rn#Rm where 2 < n ≤ m. Assume that x ∈ Rn \K and y ∈ Rm \K. Then
we claim that2

p(t, x, y) ≤ C1

(
1

tm/2 |x|n−2 +
1

tn/2 |y|m−2

)

exp

(

−c1
d2

t

)

(1.6)

and

p(t, x, y) ≥ c2

(
1

tm/2 |x|n−2 +
1

tn/2 |y|m−2

)

exp

(

−C2
d2

t

)

. (1.7)

K

n

m

x

y

Figure 3: Points x and y on Rn#Rm

In particular, if x and y are fixed and t→∞ then (1.6) and (1.7) yield

p(t, x, y) ≈
1

tn/2
, (1.8)

that is, the smallest end Rn determines the long term behavior of the heat kernel. This phe-
nomenon was observed by E.B.Davies [25] for a weighted one-dimensional complex.

If we allow x, y, t to vary in the range — call it the long time asymptotic regime —

|x| ≤ η(t), |y| ≤ η(t) (1.9)

where η denotes a positive function going to infinity slower than any positive power of t then
we obtain

p(t, x, y) ≈
q(x, y)

tn/2
, (1.10)

where

q(x, y) =

{
|y|2−m , m > n,

|x|2−n + |y|2−n , m = n.
(1.11)

2In fact, the upper bound (1.6) holds also when n ∈ {1, 2}, m ≥ n. However, the lower bound (1.7) fails in
this case.
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If instead we consider the medium time asymptotic regime

|x| ≈ |y| ≈
√
t and t→∞, (1.12)

(1.6)-(1.7) implies

p(t, x, y) ≈
1

t(n+m)/2−1
. (1.13)

Clearly, the decay of the heat kernel given by (1.13) is much faster than that of (1.8). This is the
bottleneck effect that was alluded to earlier. As far as we know, even the basic estimate (1.13)
is new, not to mention the full inequalities (1.6) and (1.7). Benjamini, Chavel and Feldman [5]
showed, for n = m and assuming (1.12), that

p(t, x, y) ≤
Cε

tn−1−ε , ∀ε > 0,

whereas (1.13) gives a better estimate

p(t, x, y) ≈
1

tn−1
.

2. Let k ≥ 3 be any integer. Assume that x ∈ RNi \K and y ∈ RNj \K where i 6= j. Then,
for all t ≥ t0,

p(t, x, y) ≤ C1

(
1

tn/2 |x|Ni−2 |y|Nj−2
+

1

tNj/2 |x|Ni−2
+

1

tNi/2 |y|Nj−2

)

exp

(

−c1
d2

t

)

(1.14)

and

p(t, x, y) ≥ c2

(
1

tn/2 |x|Ni−2 |y|Nj−2
+

1

tNj/2 |x|Ni−2
+

1

tNi/2 |y|Nj−2

)

exp

(

−C2
d2

t

)

. (1.15)

The last two terms in (1.14) and (1.15) are the same as the terms in (1.6) and (1.7), respectively.
There is also an additional effect due to the presence of at least three ends which is reflected in
the first term

1

tn/2 |x|Ni−2 |y|Nj−2
. (1.16)

Recall that n is the smallest of the numbers N1, N2, ..., Nk. If n = Ni or n = Nj , then the term
(1.16) is majorized by the other two terms in (1.14) and (1.15) (in particular, (1.14) and (1.15)
formally hold also for k = 2 in which case they are equivalent to (1.6) and (1.7), respectively).

Assuming (1.9), (1.14) and (1.15) give (1.10) with

q(x, y) =






|y|2−Nj , n = Nj < Ni,

|x|2−Ni , n = Ni < Nj ,

|x|2−n + |y|2−n , n = Ni = Nj ,

|x|2−Ni |y|2−Nj , n < min(Ni, Nj).

(1.17)

Note that the power of t in the long time asymptotic is again determined by the smallest end
Rn. In the last case in (1.17) when n < min(Ni, Nj), we see that the term (1.16) becomes the
leading term provided t is large enough, and we have

p(t, x, y) ≈
1

tn/2 |x|Ni−2 |y|Nj−2
. (1.18)

Each factor in this asymptotic has a heuristic interpretation in terms of the Brownian motion
(Xt)t≥0 on the manifold M which we now explain.
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a) |x|−(Ni−2) is roughly the probability that the process Xt started at x ever hits K;

b) t−n/2 is roughly the probability of making a loop from K to K through the smallest end
(i.e. the end Rn) in a time of order t;

c) |y|−(Nj−2) is roughly the probability of getting from K to y.

In particular, (1.18) says that the most probable way of going from x to y in a very long
time t involves visiting the smallest end.

x

y

K
Ni

n

Nj

Figure 4: The most probable trajectories from x to y go through the smallest end Rn

3. Finally, assume that both x, y ∈ RNi \K. Then, for all t ≥ t0,

p(t, x, y) ≤
C1

tNi/2
e−c1d

2/t +
C1

tn/2 |x|Ni−2 |y|Ni−2
e−c1(|x|2+|y|2)/t (1.19)

and
p(t, x, y) ≥

c2

tNi/2
e−C2d

2/t +
c2

tn/2 |x|Ni−2 |y|Ni−2
e−C2(|x|2+|y|2)/t. (1.20)

Assuming (1.9), we obtain (1.10) with

q(x, y) =

{
1, n = Ni,

|x|2−Ni |y|2−Ni , n < Ni.

In particular, if n < Ni then we obtain again (1.18), for t large enough.
Next, let us briefly discuss the mixed case where the restriction n = miniNi > 2 is relaxed

to maxiNi > 2. The word “mixed” refers to the fact that in this case M has both parabolic
and non-parabolic ends. A detailed discussion is given in Section 6 where full two-sided bounds
are obtained. Here we present selected results to give a flavour of what can occur:

1. Let M = R1#R3. Then, for large enough t, we have

p(t, x, y) ≈
1

t3/2
, sup

y
p (t, x, y) ≈

1

t
, sup

x,y
p (t, x, y) ≈

1

t1/2
.
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2. In the case M = R2#R3, we have

p(t, x, y) ≈
1

t log2 t
, sup

y
p (t, x, y) ≈

1

t log t
, sup

x,y
p (t, x, y) ≈

1

t

3. In the case M = R1#R2#R3, we have

p(t, x, y) ≈
1

t log2 t
, sup

y
p (t, x, y) ≈

1

t
, sup

x,y
p (t, x, y) ≈

1

t1/2
(1.21)

The estimates (1.21) also apply to the Euclidean body of Fig. 2.

Finally, heat kernel estimates for the manifold M = R2#R2 follow from the results of Section
7. We prove that, for large time,

p (t, x, y) ≈ sup
y
p (t, x, y) ≈ sup

x,y
p (t, x, y) ≈

1

t

whereas in the medium time asymptotic regime (1.12),

p(t, x, y) ≈

{
t−1 if x, y are in the same end
(t log t)−1 if x, y are in different ends.

The same estimates apply to the catenoid of Fig. 1.
The examples described above clearly show that the presence of more than one end brings in

interesting and somewhat complex new phenomena as far as heat kernel bounds are concerned.
The tools developed in this paper allows us to analyze much more general situations than (1.4).
For instance, we obtain a complete generalization of the above results (i.e., global matching
upper and lower heat kernel bounds) for the connected sum M = M1#M2#...#Mk provided
each Mi is a non-parabolic complete Riemannian manifold satisfying the hypotheses (V D) and
(PI) stated at the beginning of this introduction (see Theorems 4.9 and 5.10). In particular,
this result applies whenever each Mi has non-negative Ricci curvature.

1.3 Guide for the paper

The structure of the paper is as follows. Section 2 introduces notation and basic definitions.
Section 3 develops gluing techniques for which the key result is Theorem 3.5. These tech-

niques enable us to obtain bounds on the heat kernel p(t, x, y) on a manifold M with ends
E1, . . . , Ek and central part K in terms of:

(a) The size of p(t, u, v) where u, v ∈ K. Roughly speaking, for large t, this can be thought of
as a function of t alone but it depends on the global geometry of M and, in particular, of
all the ends taken together.

(b) Quantities that depend only on the geometry of the ends taken separately. One such
quantity is the Dirichlet heat kernel in Ei (i.e., the transition function of Brownian motion
killed as it exits Ei). Another such quantity is the probability that Brownian motion
started at x ∈ Ei hits K before time t. In both cases, it is clear that these quantities
involve only the end Ei.
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Section 4 is devoted to heat kernel upper bounds on manifolds with ends. It starts with
background on various results that are used in a crucial way in this paper. Several of these
results were in fact developed by the authors with the applications presented here in mind.
Faber-Krahn inequalities on manifolds with ends are studied in [41] where a rough initial upper
bound of the heat kernel on manifolds with ends is derived. Hitting probabilities are studied in
detail in [39]. Using these ingredients and the gluing techniques of Section 3, we prove sharp heat
kernel upper bounds on manifolds with ends under the basic assumption that each end satisfies
a certain relative Faber-Krahn inequality (other situations, e.g. flat Faber-Krahn inequalities,
can be treated by the same technique – see [42]). The main result of Section 4 is Theorem 4.9.

Section 5 is devoted to heat kernel lower bounds on M = M1#M2#...#Mk. These lower
bounds match (in some sense) the upper bounds of Section 4 but they require stronger hypothe-
ses. Namely, we assume that each Mi is a non-parabolic manifold satisfying (V D) and (PI).
Here the key ingredients are a lower bound for hitting probabilities that is taken from [39] and
a lower bound on the Dirichlet heat kernels of the different ends which is taken from [38]. Both
the lower bound on hitting probability and the lower bound on the Dirichlet heat kernels depend
crucially on the hypothesis that each end is non-parabolic. The main Theorem of Section 5 is
Theorem 5.10.

Sections 4 and 5 both ends with examples illustrating Theorems 4.9 and 5.10 respectively.
In particular, these examples cover the case of the manifolds M = RN1# . . .#RNk with n =
min1≤i≤kNi > 2, discussed earlier in this introduction.

Section 6 treats the mixed case, that is, the case when at least one end is non-parabolic but
parabolic ends are also allowed. The main result of this section (as well as that of the whole
paper) is Theorem 6.6. In order to treat the mixed case, we use a Doob’s transform technique
that turns the original manifold into a weighted manifold all of whose ends are non-parabolic.
The difficulty here is to verify that the ends of this weighted manifold still satisfy (V D) and (PI).
This follows from a result of [40] provided the manifolds Mi satisfy (V D), (PI) and an additional
property labeled by (RCA) (the relative connectedness of certain annuli in Mi). Theorem 6.6
applies to all manifolds of type (1.4) with maxiNi > 2. These examples are discussed in detail
at the end of Section 6.

Section 7 deals with a restricted class of parabolic manifolds where all the ends have com-
parable volume growth. This allows us to treat the case of R2#R2. The general treatment of
parabolic manifolds with ends including R1#R2 require different additional arguments and is
postponed to the forthcoming paper [43].

Finally, Section 8 gives a perhaps surprising application of the main results (Theorems 4.9,
5.10) to the study of the one-dimensional Schrödinger operator with a positive potential of at
least quadratic decay at ∞.

Acknowledgements. The authors are grateful to Gilles Carron for useful discussions and
to the unnamed referee for careful reading of the manuscript.

2 Preliminaries

2.1 Weighted manifolds

Let N be a positive integer and M = (M,g) be an N -dimensional Riemannian manifold with
boundary δM (which may be empty). Given a smooth positive function σ on M , we define a
measure µ on M by dµ(x) = σ2(x)dx where dx is the Riemannian measure. The pair (M,µ) is
called a weighted manifold and it will be the main underlying space for our considerations. Let
us recall some standard definition from Riemannian geometry.
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For x, y ∈M , denote by d(x, y) the Riemannian distance induced by the metric g. Let

B(x, r) = {y ∈M | d(x, y) < r}

be the geodesic ball with center x ∈M and radius r > 0 and let

V (x, r) := µ(B(x, r))

be its µ-volume. For any set A ⊂M , denote by Aδ the δ-neighborhood of A.
The manifold M is called complete if the metric space (M,d) is complete. Equivalently, M

is complete if all metric balls are precompact. If δM = ∅ then M is complete if and only if M
is geodesically complete.

The Riemannian metric induces the notion of gradient. For any smooth enough function f

and vector field X on M , the gradient ∇f is the unique vector field such that g(∇f,X) = df(X).
In a coordinate chart x1, x2, ...xN , the gradient ∇f is given by

(∇f)i =
N∑

j=1

gij
∂f

∂xj
,

where gij are the matrix entries of the Riemannian metric g and gij are the entries of the inverse
matrix ‖gij‖

−1.
A weighted manifold possesses a divergence divµ which is a differential operator acting on

smooth vector fields and which is formally adjoint to ∇ with respect to µ. Namely, for any
smooth enough vector field F , the divergence divµF is a function which, in any coordinate
chart, is given by

divµF :=
1

σ2√g

N∑

i=1

∂

∂xi

(
σ2√gF i

)
,

where g := det ‖gij‖ . The weighted Laplace operator L on M is defined by

Lu := divµ(∇u) = σ−2div(σ2∇u),

for any smooth function u on M . When σ ≡ 1, divµF is the Riemannian divergence div F and
L coincides with the Laplace-Beltrami operator ∆ = div ◦ ∇.

Consider the Hilbert space L2(M,µ) and the Dirichlet form

D(u, v) =

∫

M

(∇u,∇v)dµ

defined for all u, v ∈ C∞0 (M), where C∞0 (M) is the set of smooth functions on M with compact
support (note that functions in C∞0 (M) do not have to vanish on δM). The integration-by-parts
formula for the operator L implies

D(u, v) = −
∫

M

uLvdµ−
∫

δM

u
∂v

∂ν
dµ′, (2.1)

where ν is the inward unit normal vector field on δM and µ′ is the measure with density σ2 with
respect to the Riemannian measure of codimension 1 on any smooth hypersurface, in particular,
on δM . Clearly, the operator L is symmetric on the subspace of C∞0 (M) of functions with
vanishing normal derivative on δM . It follows that the operator L initially defined on this
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subspace, admits a Friedrichs extension L which is a self-adjoint non-positive definite operator
on L2(M,µ).

The associated heat semigroup Pt = etL has a smooth integral kernel p(t, x, y) which is called
the heat kernel of (M,µ). Alternatively, the heat kernel can be defined as the minimal positive
solution u(t, x) = p(t, x, y) of the Cauchy problem






(∂t − L)u = 0 on (0,∞)×M
u(0, x) = δy (x)
∂u

∂ν

∣
∣
∣
∣
δM

= 0.
(2.2)

(see [12], [28], [54]). Note that the heat kernel is symmetric in x, y, that is,

p (t, x, y) = p (t, y, x) .

The operator L generates a diffusion process (Xt)t≥0 on M . Denote by Px the law of (Xt)t>0

given X0 = x ∈ M and by Ex the corresponding expectation. The heat kernel coincides with
the transition density for Xt with respect to measure µ, that is, for any Borel set A ⊂M ,

Px (Xt ∈ A) =

∫

A

p(t, x, y)dµ(y).

Note that the Neumann boundary condition corresponds to the fact that the process Xt is
reflected on the boundary δM . A weighted manifold (M,µ) is called parabolic if

∫ ∞

1
p (t, x, y) dt ≡ ∞

for some/all x, y ∈ M , and non-parabolic otherwise. It is known that the parabolicity of M is
equivalent to the recurrence of the associated diffusion Xt (see, for example, [35]).

Any open set Ω ⊂M (equipped with the restriction of µ to Ω) can be consider as a weighted
manifold with boundary3 δΩ = Ω ∩ δM . The weighted Laplace operator LΩ on Ω generates a
diffusion in Ω which is killed on ∂Ω and reflected on δΩ. Let pΩ(t, x, y) be the heat kernel in
(Ω, µ). It is convenient to extend pΩ (t, x, y) to M by setting pΩ (t, x, y) = 0 if one of the points
x, y is outside Ω.

We say that an open set Ω ⊂ M has smooth boundary if the topological boundary ∂Ω is a
smooth submanifold of M of dimension N − 1, which is transversal to δM (the latter condition
being void if δM is empty). If Ω has smooth boundary then pΩ (t, x, y) satisfies the Dirichlet
boundary condition on ∂Ω \ δM and the Neumann boundary condition on δΩ.

2.2 Connected sum of manifolds

Let {Mi}
k
i=1 be a finite family of non-compact Riemannian manifolds. We say that a Riemannian

manifold M is a connected sum of the manifolds Mi and write

M = M1#M2# · · ·#Mk (2.3)

if, for some non-empty compact set K ⊂M (called a central part of M), the exterior M \K is
a disjoint union of open sets E1, E2, . . . , Ek, such that each Ei is isometric to Mi \Ki, for some
compact Ki ⊂Mi; in fact, we will always identify Ei and Mi \Ki (see Fig. 5).

3Recall that, by the definition of a manifold with boundary, any point of δM is an interior point of M . For
the same reason, any point of δΩ is an interior point of Ω. Hence, the boundary δΩ of Ω as a manifold with
boundary is disjoint from the topological boundary ∂Ω of Ω as a subset of the topological space M .

12



E1

K

E1

E2

E2

E3

E3

Figure 5:

If (M,µ) and (Mi, µi) are weighted manifolds then the isometry is understood in the sense
of weighted manifolds, that is, it maps the measure µ to µi. Of course, taking connected sums
is not a uniquely defined operation. Without loss of generality, we will always assume that K is
the closure of an open set with smooth boundary.

Conversely, let M be a non-compact manifold and K ⊂ M be a compact set with smooth
boundary such thatM\K is a disjoint union of a finitely many connected open sets E1, E2, . . . , Ek
that are not precompact. We say that the Ei’s are the ends of M with respect to K. Con-
sider the closure Ei as manifold with boundary. Then by definition of a connected sum we
have M = E1#E2# · · ·#Ek. Sometimes it will be convenient to choose a precompact open
set E0 ⊂ M with smooth boundary containing K, so that M is covered by the open sets
E0, E1, ..., Ek.

Example 2.1 Say that a complete non-compact Riemannian manifold M (without boundary)
has asymptotically non-negative sectional curvature if there exists a point o ∈ M and a contin-
uous decreasing function k : (0,∞) 7→ (0,∞) satisfying

∫ ∞
sk(s)ds <∞

and such that the sectional curvature Sect(x) of M at x ∈ M satisfies Sect(x) ≥ −k(d(o, x)).
Such manifolds were studied in [47, 45] and include, of course, all manifolds with non-negative
sectional curvature outside a compact set. The catenoid of Fig 1 is also a manifold with asymp-
totically non-negative curvature.

All such manifolds have a finite number of ends and thus can be written as a connected sum
M = M1# . . .#Mk of complete manifolds; furthermore, each manifold Mi satisfies the properties
(V D) and (PI) as well as the property (RCA)4 (see [40, Sect. 7.5] and references therein).
Hence, our main Theorem 6.6 applies to all non-parabolic manifolds with asymptotically non-
negative sectional curvature.

Example 2.2 Let M be a complete non-compact Riemannian manifold (without boundary),
and assume that M has non-negative Ricci curvature outside a compact set. Then M has

4(RCA) stands for ”relative connectedness of annuli” – see Section 6 for the definition.
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finitely many ends ([6, 47]) and it can be written has has a connected sum M = M1# . . .#Mk,
where each Mi corresponds to an end of M . These Mi’s should be thought of as manifolds with
non-negative Ricci curvature outside a compact set having exactly one end (strictly speaking,
even so M has no boundary, we may have to allow the Mi’s to have a (compact) boundary).
It is known that if an end Mi satisfies (RCA) then it satisfies also (V D) and (PI) (see [40,
Propositions 7.6, 7.10]). Hence, our main Theorem 6.6 applies to all non-parabolic manifolds
with non-negative Ricci curvature outside a compact set, provided each end satisfies (RCA).

3 Gluing techniques for heat kernels

We start with general inequalities which relate the heat kernel with hitting probabilities on an
arbitrary weighted manifold (M,µ) . These inequalities will be one of the main technical tools
we introduce here to handle heat kernel estimates on manifolds with ends. However, in this
section we do not make any a priori assumption about the manifold in question.

For any closed set Γ ⊂M define the first hitting time by

τΓ = inf{t ≥ 0 : Xt ∈ Γ}.

Let us set
ψΓ(t, x) := Px(τΓ ≤ t). (3.1)

In other words, ψΓ(t, x) is the probability that the process hits Γ by time t. Observe that
ψΓ(t, x) is an increasing function in t, bounded by 1, and ψ(x, t) = 1 if x ∈ Γ. We will denote
by ψ′Γ the time derivative of ψΓ(t, x).

Lemma 3.1 Let Γ ⊂M be a closed set and Ω ⊂M be an open set such that ∂Ω ⊂ Γ. Then for
all x ∈ Ω, y ∈M , and t > 0

p(t, x, y) ≤ pΩ(t, x, y) + sup
0≤s≤t
z∈Γ

p(s, z, y)ψΓ(t, x). (3.2)

Furthermore, we have

p(t, x, y) ≤ pΩ(t, x, y) + sup
t/2≤s≤t
z∈Γ

p(s, z, y)ψΓ(
t

2
, x) + sup

t/2≤s≤t
ψ′Γ(s, x)

t/2∫

0

sup
z∈Γ

p(θ, z, y)dθ (3.3)

and

p(t, x, y) ≥ pΩ(t, x, y) + inf
t/2≤s≤t
z∈Γ

p(s, z, y) ψΓ(
t

2
, x) + inf

t/2≤s≤t
ψ′Γ(s, x)

t/2∫

0

inf
z∈Γ

p(θ, z, y)dθ . (3.4)

Remark 3.2 Inequality (3.2) will not be used in the main part of the paper. However, its proof
is instructive since it contains the main idea of the proof of the more involved inequalities (3.3),
(3.4) as well as other inequalities presented below.

Proof. By hypothesis any continuous path from x to y either intersects Γ or stays in Ω (the
latter can happen only in the case y ∈ Ω). Set τ = τΓ. The strong Markov property yields

p(t, x, y) = pΩ(t, x, y) + Ex
(
1{0≤τ≤t}p(t− τ ,Xτ , y)

)
(3.5)

= pΩ(t, x, y) + Ex
(
1{0≤τ≤ t2}

p(t− τ ,Xτ , y)
)

(3.6)

+Ex
(
1{ t2<τ≤t}

p(t− τ ,Xτ , y)
)

(3.7)
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(see Fig. 6).

Γ

y
x

Ω z=Xτ

Figure 6: A path between points x, y

The identity (3.5) implies

p(t, x, y) ≤ pΩ(t, x, y) + sup
z∈Γ

0≤θ≤t

p(t− θ, z, y)Px {0 ≤ τ ≤ t}

which is exactly (3.2).
To prove (3.3) and (3.4) we will use (3.6)-(3.7). The second term in (3.6) can be estimated

as above. This gives

Ex
(
1{0≤τ≤ t2}

p(t− τ ,Xτ , y)
)
≤ sup

z∈Γ
0≤θ≤ t

2

p(t− θ, z, y)ψΓ(
t

2
, x). (3.8)

To estimate the term in (3.7), let us denote by ν the joint distribution of (τ ,Xτ ) on (0,∞)×Γ.
Then we have

Ex
(
1{ t2<τ≤t}

p(t− τ ,Xτ , y)
)

=

t∫

t/2

∫

Γ

p(t− s, z, y)dν(s, z)

≤

t∫

t/2

sup
z∈Γ

p(t− s, z, y)

∫

Γ

dν(s, z)

=

t∫

t/2

sup
z∈Γ

p(t− s, z, y)∂sψΓ(s, x)ds

≤ sup
t
2
≤s≤t

ψ′Γ(s, x)

t∫

t/2

sup
z∈Γ

p(t− s, z, y)ds

whence (3.3) follows.
To prove (3.4) note that the second term in (3.6) is bounded below by

inf
z∈Γ

0≤θ≤t/2

p(t− θ, z, y)Px (0 ≤ τ ≤ t/2) = inf
z∈Γ

t/2≤s≤t

p(s, z, y)ψΓ(t/2, x) .
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Finally, the term in (3.7) is estimated from below by writing

Ex
(
1{ t2<τ≤t}

p(t− τ ,Xτ , y)
)
≥

t∫

t/2

inf
z∈Γ

p(t− s, z, y)

∫

Γ

dν(s, z)

=

t∫

t/2

inf
z∈Γ

p(t− s, z, y)∂sψΓ(s, x)ds

≥ inf
t/2≤s≤t

ψ′Γ(s, x)

t∫

t/2

inf
z∈Γ

p(t− s, z, y)ds.

Inequality (3.4) follows.

Lemma 3.3 Let Ω1 and Ω2 be two open sets in M with the topological boundaries Γ1 and Γ2

respectively. Assume that Γ2 separates Ω2 from Γ1. Then for all x ∈ Ω1, y ∈ Ω2, and t > 0 we
have

2p(t, x, y) ≥ pΩ1(t, x, y) + inf
t/2≤s≤t
v∈Γ1

p(s, v, y) ψΓ1
(
t

2
, x) + inf

t/2≤s≤t
w∈Γ2

p(s, w, x) ψΓ2
(
t

2
, y) (3.9)

and

p(t, x, y) ≤ pΩ1(t, x, y) + sup
t/2≤s≤t
v∈Γ1

p(s, v, y)ψΓ1
(
t

2
, x) + sup

t/2≤s≤t
w∈Γ2

p(s, w, x)ψΓ2
(
t

2
, y) . (3.10)

Furthermore, the following refinement of (3.10) takes places:

p(t, x, y) ≤ pΩ1(t, x, y) + sup
t/2≤s≤t
v∈Γ1

p(s, v, y)ψΓ1
(
t

2
, x) + sup

t/2≤s≤t
w∈Γ2

p̂Ω1(s, w, x)ψΓ2
(
t

2
, y) , (3.11)

where
p̂Ω1 (s, w, x) := p (s, w, x)− pΩ1 (s, w, x) . (3.12)

Remark 3.4 The hypothesis that Γ2 separates Ω2 from Γ1 means that either Ω1 and Ω2 are
disjoint or Ω2 ⊂ Ω1 (see below Fig. 7 and 8 respectively). Note that in the former case the term
pΩ1 (t, x, y) vanishes.

Proof. Applying (3.4) with Ω = Ω1, Γ = Γ1 we obtain

p(t, x, y) ≥ pΩ1(t, x, y) + inf
t/2≤s≤t
v∈Γ1

p(s, v, y) ψΓ1
(
t

2
, x)

and similarly

p(t, x, y) ≥ pΩ2(t, x, y) + inf
t/2≤s≤t
w∈Γ2

p(s, w, x) ψΓ2
(
t

2
, y).

Adding up these inequalities, we obtain (3.9).
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For the upper bound (3.10) we need some preparation. Fix some T > 0 and consider Px
as a measure in the space ΩT of all continuous paths ω : [0, T ] → M . Note that Px sits in
ΩT,x := {ω ∈ ΩT : ω (0) = x}. For any µ-measurable set A ⊂ M with µ (A) < ∞ define a
measure PA in ΩT by

PA (A) =

∫

A

Px (A) dµ (x) , (3.13)

where A is an event in ΩT . For any two such sets A,B ⊂ M define a probability measure
PT,A,B in ΩT by

PT,A,B (A) :=
PA (A ∩ (XT ∈ B))

PA (XT ∈ B)
.

For any paths ω ∈ ΩT denote by ω∗ the path obtained from ω by the time change t 7→ T − t,
that is ω∗ (t) = ω(T − t). Respectively, for any event A ⊂ ΩT set A∗ = {ω∗ : ω ∈ A}. Then we
claim that

PT,A,B (A) = PT,B,A (A∗) . (3.14)

Indeed, observe that by the symmetry of the heat kernel

PA (XT ∈ B) =

∫

A

Px (XT ∈ B) dµ (x) =

∫

A

∫

B

p (T, x, y) dµ (y) dµ (x) = PB (XT ∈ A) . (3.15)

Hence, (3.14) will follow if we show that

PA (A ∩ (XT ∈ B)) = PB (A∗ ∩ (XT ∈ A)) . (3.16)

It suffices to prove (3.16) for an elementary event A, that is for

A = (Xt1 ∈ E1, Xt2 ∈ E2, ..., Xtn ∈ En)

where 0 < t1 < t2 < ... < tn < T and Ek are measurable sets in M . For this A, we have

PA (A ∩ (XT ∈ B)) =

∫

A

Px (Xt1 ∈ E1, Xt2 ∈ E2, ..., Xtn ∈ En, XT ∈ B) dµ (x) ,

where the right hand side is equal to

∫

B

∫

En

...

∫

E1

∫

A

p (t1, x, z1) p (t2 − t1, z1, z2) ...p (T − tn, zn, y) dµ (x) dµ (z1) ...dµ (zn) dµ (y) .

(3.17)
Similarly, we have

PB (A∗ ∩ (XT ∈ A)) =

∫

B

Py (XT−tn ∈ En, ..., XT−t1 ∈ E1, XT ∈ A) dµ (y) ,

where the right hand side is equal to

∫

A

∫

E1

...

∫

En

∫

B

p (T − tn, y, zn) p (tn − tn−1, zn, zn−1) ...p (t1, z1, x) dµ (y) dµ (zn) ...dµ (z1) dµ (x) .

(3.18)
Comparing (3.17) and (3.18) we obtain (3.16).
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Now we are in position to prove (3.10). For any path ω ∈ ΩT , denote by τ i (ω) the first
time the path ω hits Γi, provided ω does intersect Γi. Fix sets A ⊂ Ω1 and B ⊂ Ω2 and observe
that the measure PT,A,B sits on the set ΩT,A,B of paths ω such that ω (0) ∈ A and ω (T ) ∈ B.
Clearly, for any ω ∈ ΩT,A,B , either ω stays in Ω1 (which is only possible in the case Ω2 ⊂ Ω1) or
both τ1 (ω) and τ2 (ω∗) are defined and τ1 (ω) + τ2 (ω∗) ≤ T . Hence, in the latter case we have
either τ1 (ω) ≤ T/2 or τ2 (ω∗) ≤ T/2 (see Fig. 7 and 8).

v= Xτ (ω)

Γ2

1

Γ1
Ω1 Ω2

x y

w= Xτ (ω∗)2

Figure 7: The case Ω1 and Ω2 are disjoint. Any path from x to y crosses Γ1 and Γ2.

x
y

Γ2Γ1

Ω1

Ω2

v= Xτ (ω)
w= Xτ (ω∗)

1 2

Figure 8: The case Ω2 ⊂ Ω1. Any path from x to y either stays in Ω1 or crosses Γ1 and Γ2

Therefore, we obtain

1 ≤ PT,A,B (ω ⊂ Ω1) + PT,A,B (τ1 (ω) ≤ T/2) + PT,A,B (τ2 (ω∗) ≤ T/2) . (3.19)

By (3.14) we have
PT,A,B (τ2 (ω∗) ≤ T/2) = PT,B,A (τ2 (ω) ≤ T/2) .

Substituting into (3.19) and multiplying (3.19) by PA (XT ∈ B) = PB (XT ∈ A) we obtain

∫

A

∫

B

p (T, x, y) dµ (y) dµ (x) ≤ PΩ1
A (XT ∈ B)+PA (τ1 ≤ T/2, XT ∈ B)+PB (τ2 ≤ T/2, XT ∈ A) .

(3.20)
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Clearly, we have

PΩ1
A (XT ∈ B) =

∫

A

∫

B

pΩ1 (T, x, y) dµ (y) dµ (x) ,

whereas by the strong Markov property and (3.8)

PA (τ1 ≤ T/2, XT ∈ B) =

∫

A

∫

B

Ex
(
1{τ1≤T/2}p(T − τ1, Xτ1 , y)

)
dµ (y) dµ (x)

≤
∫

A

∫

B

ψΓ1
(
T

2
, x) sup

T/2≤s≤T
v∈Γ1

p (s, v, y) dµ (y) dµ (x) .

Similarly, we obtain

PB (τ2 ≤ T/2, XT ∈ A) ≤
∫

B

∫

A

ψΓ2
(
T

2
, x) sup

T/2≤s≤T
w∈Γ2

p (s, w, x) dµ (x) dµ (y) . (3.21)

Substituting into (3.20), dividing by µ (A)µ (B) and contracting the sets A and B to the points
x and y, respectively, we finish the proof of (3.10).

Finally, let us prove (3.11). If Ω1 and Ω2 are disjoint then pΩ1 (s, w, x) = 0 because x ∈ Ω1

and w /∈ Ω1. Therefore, by (3.12) p̂Ω1 (s, w, x) = p (s, w, x) so that (3.11) is identical to (3.10).
Assuming now that Ω2 ⊂ Ω1. The last term in (3.19) can be replaced by

PT,A,B (τ2 (ω∗) ≤ T/2 and ω∗ crosses ∂Ω1)

= PT,B,A (τ2 (ω) ≤ T/2 and ω crosses ∂Ω1)

= PT,B,A (τ2 (ω) ≤ T/2)− PT,B,A (τ2 (ω) ≤ T/2 and ω does not cross ∂Ω1) .

Multiplying by PB (XT ∈ A) we obtain that the last term in (3.20) can be replaced by

PB (τ2 ≤ T/2, XT ∈ A)− PB (τ2 ≤ T/2, Xt /∈ ∂Ω1 for all t ∈ [0, T ], XT ∈ A)

=

∫

B

∫

A

[
Ey
(
1{τ2≤T/2}p(T − τ2, Xτ2 , x)

)
− Ey

(
1{τ2≤T/2}pΩ1(T − τ2, Xτ2 , x)

)]
dµ (x) dµ (y)

≤
∫

B

∫

A

ψΓ2
(
T

2
, y) sup

T/2≤s≤T
w∈Γ2

p̂Ω1 (s, w, x) dµ (x) dµ (y) ,

where p̂Ω1 is defined by (3.12). Using this estimate instead of (3.21) we obtain (3.11).
The next statement is the main result of this section.

Theorem 3.5 Let Ω1 and Ω2 be two open sets in M with boundaries Γ1 and Γ2 respectively.
Assume that Γ2 separates Ω2 from Γ1. Write for simplicity ψi(t, x) = ψΓi(t, x), i = 1, 2, and set

G(t) :=

t∫

0

sup
v∈Γ1,w∈Γ2

p(s, v, w)ds and G(t) :=

t∫

0

inf
v∈Γ1,w∈Γ2

p(s, v, w)ds . (3.22)

Then, for all x ∈ Ω1, y ∈ Ω2, and t > 0,

p(t, x, y) ≤ pΩ1(t, x, y) + 2

[

sup
s∈[t/4,t]

sup
v∈Γ1,w∈Γ2

p(s, v, w)

]

ψ1(t, x)ψ2(t, y)

+G(t)

[

sup
s∈[t/4,t]

ψ′1(s, x)

]

ψ2(t, y) +G(t)

[

sup
s∈[t/4,t]

ψ′2(s, y)

]

ψ1(t, x) (3.23)
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and

2p(t, x, y) ≥ pΩ1(t, x, y) + 2

[

inf
s∈[t/4,t]

inf
v∈Γ1,w∈Γ2

p(s, v, w)

]

ψ1(
t

4
, x)ψ2(

t

4
, y) (3.24)

+G(
t

4
)

[

inf
s∈[t/4,t]

ψ′1(s, x)

]

ψ2(
t

4
, y) +G(

t

4
)

[

inf
s∈[t/4,t]

ψ′2(s, y)

]

ψ1(
t

4
, x).(3.25)

Proof. By (3.11) and the monotonicity of ψi (t, x) in t we have

p(t, x, y) ≤ pΩ1(t, x, y) + sup
t/2≤s≤t
v∈Γ1

p(s, v, y)ψ1(t, x) + sup
t/2≤s≤t
w∈Γ2

p̂Ω1(s, w, x)ψ2(t, y) . (3.26)

Applying (3.3) with Ω = Ω1 and Γ = Γ1 we obtain, for all w ∈ Γ2 and s > 0,

p̂Ω1(s, w, x) = p (s, x, w)− pΩ1 (s, x, w)

≤ sup
s/2≤θ≤s
z∈Γ1

p(θ, z, w)ψ1(s, x) + sup
s/2≤θ≤s

ψ′1(θ, x)

s∫

0

sup
z∈Γ1

p(θ, z, w)dθ .

Set
q (θ) := sup

z1∈Γ1,z2∈Γ2

p (θ, z1, z2) .

As ψi (t, x) is increasing in t, the above inequality gives, for s ∈ [t/2, t],

p̂Ω1 (s, w, x) ≤ sup
θ∈[t/4,t]

q (θ)ψ1 (t, x) + sup
θ∈[t/4,t]

ψ′1 (θ, x)

∫ t

0
q (θ) dθ.

Similarly, as pΩ2 (s, y, v) = 0, (3.3) with Ω = Ω2 and Γ = Γ2 implies that, for any v ∈ Γ1 and
s ∈ [t/2, t],

p (s, v, y) ≤ sup
θ∈[t/4,t]

q (θ)ψ2 (t, y) + sup
θ∈[t/4,t]

ψ′2 (θ, y)

∫ t

0
q (θ) dθ.

Using these two estimates in (3.26) yields (3.23).
The lower bound (3.24)-(3.25) is proved in a similar way. Indeed, by (3.9) we have

2p(t, x, y) ≥ pΩ1(t, x, y) + inf
t/2≤s≤t
v∈Γ1

p(s, v, y) ψ1(
t

4
, x) + inf

t/2≤s≤t
w∈Γ2

p(s, w, x) ψ2(
t

4
, y). (3.27)

Setting
q (t) := inf

z1∈Γ1,z2∈Γ2

p (θ, z1, z2)

and using (3.4) we obtain for any w ∈ Γ2 and s ∈ [t/2, t]

p(s, x, w) ≥ inf
t/4≤θ≤t

q (θ)ψ1(
t

4
, x) + inf

t/4≤θ≤t
ψ′1(θ, x)

t/4∫

0

q (θ) dθ,

and a similar inequality for p (s, y, v). Substituting into (3.27) finishes the proof.

Remark 3.6 Since ψi(t, x) is the Px-probability of Xt hitting Γi by time t, the function ψi(t, x)
is fully determined by the intrinsic geometry of the set Ωi, and so is pΩi . Thus, the estimates of
p(t, x, y) given by Theorem 3.5 are determined by the intrinsic geometries of Ωi and by estimates
of p(t, v, w) where v ∈ Γ1 and w ∈ Γ2. To obtain the latter, we will use different techniques for
upper and for lower bounds – see Sections 4.3 and 5.4.
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4 Upper bound

4.1 Faber-Krahn inequalities and the heat kernel

Let (M,µ) be a non-compact complete weighted manifold, possibly with boundary. For any
region Ω ⊂M, set

λ1(Ω) := inf
φ∈C∞0 (Ω)

∫
Ω |∇φ|

2 dµ
∫

Ω φ
2dµ

.

In words, λ1(Ω) is the smallest eigenvalue of L in Ω satisfying the Dirichlet condition on ∂Ω and
the Neumann condition on δΩ.

The classical Faber-Krahn theorem says that, for any open set Ω ⊂ RN and L = ∆,

λ1(Ω) ≥ cNµ(Ω)−2/N , (4.1)

where µ is the Lebesgue measure in RN (the constant cN is such that equality is attained for balls;
however, the exact value of cN is of no importance for our purpose). For an arbitrary manifold,
(4.1) may not be true. However, as balls in M are precompact, a compactness argument implies
that for any ball B (x, r) there exists b (x, r) > 0 such that for any open set Ω ⊂ B(x, r)

λ1(Ω) ≥ b(x, r)µ(Ω)−2/N .

If we know the function b(x, r) then we can control the heat kernel on M as follows.

Theorem 4.1 ([32, Theorem 5.2]) Assume that (M,µ) is a complete weighted manifold such
that, for any ball B(x, r) and any open set Ω ⊂ B(x, r),

λ1(Ω) ≥ b(x, r)µ(Ω)−α, (4.2)

where b(x, r) > 0 and α > 0. Then, for all x, y ∈M and t > 0,

p(t, x, y) ≤
C exp

(
−cd

2(x,y)
t

)

(
t2b(x,

√
t)b(y,

√
t)
)1/(2α)

.

One particular case of (4.2) will be frequently used so that we separate it out as the following
condition:

(RFK) The relative Faber-Krahn inequality : there exist α > 0 and c > 0 such that, for any ball
B(x, r) ⊂M and for any precompact open set Ω ⊂ B(x, r),

λ1(Ω) ≥
c

r2

(
V (x, r)

µ(Ω)

)α
. (4.3)

In other words, the condition (RFK) means that (4.2) holds with

b(x, r) =
c

r2
V (x, r)α.

For example, (RFK) holds with α = 2/N if M is a complete Riemannian manifold with non-
negative Ricci curvature (see [31, Theorem 1.4]).

Note that if (4.3) holds for some α = α0 then it is satisfied also for any smaller value α < α0

because µ (Ω) ≤ V (x, r) .
Consider also the following properties which in general may be true or not.
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(V D) The volume doubling property: for all x ∈M and r > 0,

V (x, 2r) ≤ CV (x, r). (4.4)

For a later reference, we also note that (V D) implies that for any ε > 0 and for all x, y ∈
M, t > 0,

V (y,
√
t)

V (x,
√
t)
≤

(

1 +
d (x, y)
√
t

)C
≤ Cε exp

(

ε
d2(x, y)

t

)

. (4.5)

(UED) The on-diagonal upper estimate of the heat kernel: for all x ∈M and all t > 0,

p(t, x, x) ≤
C

V (x,
√
t)
. (4.6)

(UE) The off-diagonal upper estimate of the heat kernel: for all x, y ∈M and all t > 0,

p(t, x, y) ≤
C

V (x,
√
t)

exp

(

−c
d2(x, y)

t

)

. (4.7)

Theorem 4.2 ([32, Proposition 5.2]) For any complete weighted manifold (M,µ), the following
equivalences take place

(RFK)⇐⇒ (V D) + (UED)⇐⇒ (V D) + (UE) .

Proposition 4.3 ([35, Theorem 11.1]) Let (M,µ) be a complete weighted manifold satisfying
(RFK). Then (M,µ) is non-parabolic if and only if

∫ ∞ ds

V (x,
√
s)
<∞. (4.8)

4.2 Hitting probability

Given a complete weighted manifold (M,µ), fix a compact set K with non-empty interior and
a reference interior point o ∈ K. Set

|x| := sup
y∈K

d (x, y) , x ∈M,

and

H∗(x, t) := min

{

1,
|x|2

V (o, |x|)
+

(∫ t

|x|2

ds

V (o,
√
s)

)

+

}

, (4.9)

where (·)+ is the positive part, that is, max(·, 0). Note that H∗ (x, t) in increasing in t. The
following result is a combination of Proposition 4.3 and Corollary 4.2 from [39].

Theorem 4.4 Let (M,µ) be a complete non-compact manifold satisfying (RFK), K ⊂M be a
compact set, o ∈ K be an interior point of K, and δ > 0. Then, for all x ∈M \Kδ and t > 0,

ψK(t, x) ≤ CH∗ (x, t) exp

(

−c
|x|2

t

)

(4.10)

and

∂tψK(t, x) ≤
C

V (o,
√
t)

exp

(

−c
|x|2

t

)

. (4.11)

Note that the function H used in [39, Corollary 4.2] is slightly different from the function
H∗ defined above, and this is why the present estimates require also Proposition 4.3 from [39].
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4.3 Initial upper bound

In this and the next section, we assume that M = M1#...#Mk and will use the notation from
Section 2.2. In particular, let us recall that M is the disjoint union of the central part K and
the ends E1, ...Ek with respect to K. Each Ei is identified with the complement of a compact
set in Mi.

Geodesic balls are denoted by B(x, r) in M and by Bi(x, r) in Mi. We also set V (x, r) =
µ(B(x, r)) and Vi(x, r) = µi(Bi(x, r)). Observe that if Bi(x, r) ⊂ Ei then Bi(x, r) = B(x, r) and
Vi(x, r) = V (x, r). For each index i ≥ 1, fix a reference point oi ∈ ∂Ei, and set

Vi(r) = Vi(oi, r), V0(r) = min
1≤i≤k

Vi(r). (4.12)

It will also be useful to set
V0 (x, r) ≡ V0 (r)

for all x ∈M . If all functions Vi (r) satisfy the doubling property then so does V0 (r).
For any x ∈M , r > 0, set

F (x, r) :=

{
V (x, r) , if B (x, r) ⊂ Ei, i ≥ 1,
V0(r), otherwise.

(4.13)

Note that if r stays bounded and x varies in a compact neighbourhood of K then Vi(x, r) ≈ rN .
For this range of x and r we have also

F (x, r) ≈ V0(r) ≈ rN ≈ V (x, r) . (4.14)

Theorem 4.5 ([41, Proposition 3.6]) Assume that for each i = 1, ..., k, the manifold (Mi, µi)
satisfies (RFK). Then there exists α > 0 and c > 0 such that for any ball B = B(x, r) ⊂ M

and for any open set Ω ⊂ B

λ1 (Ω) ≥
c

r2

(
F (x, r)

µ (Ω)

)α
.

Combining with Theorem 4.1 we obtain the following result.

Corollary 4.6 Assume that for each i = 1, ..., k, each manifold (Mi, µi) satisfies (RFK). Then
the heat kernel on (M,µ) satisfies

p(t, x, y) ≤
C

√
F (x,

√
t)F (y,

√
t)

exp

(

−c
d2(x, y)

t

)

, (4.15)

for all x, y ∈M and t > 0, where F is defined at (4.13).

Corollary 4.7 Let E0 be a precompact open set with smooth boundary containing K. Referring
to the setting of Corollary 4.6, we have:

(i) For any positive finite t0, for all x, y ∈M and 0 < t < t0,

p(t, x, y) ≤
C

√
V (x,

√
t)V (y,

√
t)

exp

(

−c
d2(x, y)

t

)

. (4.16)

(ii) For all x, y ∈ E0 and t > 0,

p(t, x, y) ≤
C

V0(
√
t)

exp

(

−c
d2(x, y)

t

)

. (4.17)
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Proof. (i) It suffices to show that, for all x ∈M and 0 < r < r0 := t20,

F (x, r) ≈ V (x, r) .

If B (x, r) is in some end Ei then F (x, r) = V (x, r) by definition. Otherwise, the condition
r < r0 implies that x belongs to Kr0 and the claim follows from (4.14).

(ii) It suffices to show that for all x ∈ E0 and r > 0,

F (x, r) ≥ cV0 (r) .

If B (x, r) is in Ei then r has a bounded range and hence the claim follows from (4.14). Otherwise,
we have F (x, r) = V0 (r) by definition.

Remark 4.8 The inequality (4.16) is equivalent to say that, for all x, y ∈M and 0 < t < t0,

p(t, x, y) ≤
C

V (x,
√
t)

exp

(

−c
d2(x, y)

t

)

. (4.18)

Indeed, (4.18) implies (4.16) by switching x, y in (4.18) and using the symmetry of the heat
kernel. Conversely, (4.16) implies (4.18). To see this, observe that the function V satisfies
V (x, 2r) ≤ CV (x, r) for all x ∈ M and all r ∈ (0, r0). It follows (see, e.g., [58, Lemma 5.2.7])
that

V (x,
√
t)

V (y,
√
t)
≤ exp

(

C
d(x, y)
√
t

)

which easily shows that (4.16) implies (4.18).

4.4 Full upper bounds

For any x ∈M set

ix =

{
i, if x ∈ Ei, i ≥ 1,
0, if x ∈ K.

Set also
|x| = sup

y∈K
d (x, y)

and notice that |x| is bounded away from 0. Define the function H(x, t) by

H(x, t) = min

{

1,
|x|2

Vix(|x|)
+

(∫ t

|x|2

ds

Vix(
√
s)

)

+

}

. (4.19)

Clearly, H (x, t) is bounded away from 0 when |x| is bounded from above. Let us spell out
explicitly the simple relationship between H and the functions H i

∗ obtained on each Mi by
considering a compact set Ki such that Ei = Mi \Ki and applying Definition (4.9). Setting for
convenience H0

∗ (x, t) = 1, we have

H(x, t) ≈ H ix
∗ (x, t). (4.20)

Indeed, for bounded x, we have H(x, t) ≈ 1 ≈ H ix
∗ (x, t) whereas, if x ∈ Ei with i ∈ {1, . . . , k},

then the volume functions used in (4.9) and (4.19) are comparable and thus H(x, t) ≈ H i
∗(x, t).
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In the case the function Vix (r) satisfies in addition the condition

Vix (R)

Vix (r)
≥ c

(
R

r

)2+ε

for all R > r ≥ 1,

with some c > 0 and ε > 0, one easily obtains from (4.19) that

H(x, t) ≈
|x|2

Vix(|x|)
(4.21)

(cf. the proof of Corollary 4.5 in [39]).
For x, y ∈M , let us set

d+(x, y) = inf{ length (γ) : γ(0) = x, γ(1) = y, γ ∩K 6= ∅}, (4.22)

where the infimum is taken over all curves γ : [0, 1] → M connecting x, y and passing through
K. Let us define also

d∅(x, y) = inf{ length (γ) : γ(0) = x, γ(1) = y, γ ∩K = ∅ }, (4.23)

where the infimum is taken over all curves γ[0, 1]→M connecting x, y, without intersecting K.
Note that always d+(x, y) ≥ d(x, y) and d∅(x, y) ≥ d(x, y), and, moreover, one of these

inequalities must in fact be an equality. For example, if x ∈ Ei ∪ K, y ∈ Ej ∪ K and i 6= j,
then d∅(x, y) = ∞ whence d+(x, y) = d(x, y). If x, y ∈ Ei then the elementary argument with
the triangle inequality shows that

|x|+ |y| − 2diamK ≤ d+ (x, y) ≤ |x|+ |y| (4.24)

and
d (x, y) ≤ d∅ (x, y) ≤ d (x, y) + CK (4.25)

where CK is a constant depending on K.
The next theorem is one of the main results of this paper.

Theorem 4.9 Assume that (M,µ) is a connected sum of complete non-compact weighted man-
ifolds (Mi, µi), i = 1, 2, ..., k, each of which satisfies (RFK). Assume further that (M,µ) is
non-parabolic. Then, for all x, y ∈M and t > 0, the heat kernel on M is bounded by

p(t, x, y) ≤ C

(
H(x, t)H(y, t)

V0(
√
t)

+
H(y, t)

Vix(
√
t)

+
H(x, t)

Viy(
√
t)

)

exp

(

−c
d2

+(x, y)

t

)

(4.26)

+
C

√
Vix(x,

√
t)Viy(y,

√
t)

exp

(

−c
d2
∅(x, y)

t

)

. (4.27)

Each term in (4.26)-(4.27) has a geometric meaning and corresponds to a certain way a
Brownian particle may move from x to y. To start with, the term (4.27) estimates the probability
of getting from x to y without touching K. This may happen only if x, y belong to the same
end Ei, and the term (4.27) comes from estimating pEi . The third (and, similarly, the second)
term in (4.26) estimates the probability that starting from x, the particle hits K before time t
and then reaches y in time of order t. The first term in (4.26) estimates the probability that
the particle hits K before time t, loops from K to K in time of order t and finally reaches y in
time smaller than t. It is natural to use the distance d+ in (4.26) since the corresponding events
involve trajectories from x to y passing through K. Using the distance d∅ in (4.27) reflects the
fact that the trajectories from x to y, corresponding to that term, avoid K.
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Remark 4.10 If x ∈ Ei ∪K and y ∈ Ej ∪K with i 6= j then d∅ (x, y) = ∞ so that the term
(4.27) vanishes, whereas d+ (x, y) in (4.26) can be replaced by d (x, y).

If x, y belong to the same end Ei and t ≥ t0 > 0 then, by (4.24), d+ (x, y) in (4.26) can be
replaced by |x|+ |y| and, by (4.25), d∅ (x, y) in (4.27) can be replaced by d (x, y).

Remark 4.11 If k = 2 and x ∈ E1 ∪ K, y ∈ E2 ∪ K then the term H(x,t)H(y,t)

V0(
√
t)

in (4.26) is

dominated by the two other terms and, hence, can be neglected.

Remark 4.12 An equivalent heat kernel estimate is obtained by replacing the volume functions
Vix
(√
t
)

and Viy
(√
t
)

in (4.26) by Vix
(
x,
√
t
)

and Viy
(
y,
√
t
)
, respectively. Indeed, if x ∈ K

then ix = 0 and

V0

(
x,
√
t
)

= V0

(√
t
)
.

If ix = i ≥ 1 and |x| is large enough then, by (4.5), for any ε > 0,

Vi
(√
t
)

Vi
(
x,
√
t
) =

Vi
(
oi,
√
t
)

Vi
(
x,
√
t
) ≤ Cε exp

(

ε
d2
i (x, oi)

t

)

≤ Cε exp

(

εC
d2

+ (x, y)

t

)

. (4.28)

If |x| is bounded then (4.28) holds again because

Vi

(√
t
)

= Vi

(
oi,
√
t
)
≈ Vi

(
x,
√
t
)
.

Indeed, for small t all these functions are of the order tN/2 and, for large t, (V D) applies. In
the same way, we obtain

Vi
(
x,
√
t
)

Vi
(√
t
) ≤ Cε exp

(

ε
d2
i (x, oi)

t

)

≤ Cε exp

(

εC
d2

+ (x, y)

t

)

.

Choosing ε small enough proves the claim.

Remark 4.13 Note that the term in (4.27) can be replaced by

C

Vix(x,
√
t)

exp

(

−c
d2
∅(x, y)

t

)

or by
C

Viy(y,
√
t)

exp

(

−c
d2
∅(x, y)

t

)

,

which can be seen by an argument similar to that of the previous remark.

Remark 4.14 Observe that the non-parabolicity of (M,µ) is equivalent to the fact that one
of the manifolds (Mi, µi) is non-parabolic (see [35, Proposition 14.1]). However, the estimate
(4.26)-(4.27) is sharp only if all (Mi, µi) are non-parabolic (see Sections 5.4 and 6).

Proof of Theorem 4.9. Set δ = diamK and let K ′ and K ′′ be compact sets with smooth
boundaries such that K ⊂ K ′ ⊂ K ′′ and

d
(
∂K, ∂K ′

)
≥ 2δ and d

(
∂K ′, ∂K ′′

)
≥ 2δ.

Since the estimate (4.26)-(4.27) is symmetric in x, y, there are three essentially different cases:

1. x, y ∈ K ′′.

2. x ∈ Ei \K ′ and y ∈ Ej \K ′′ where i, j > 0 may be the same or not.
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3. x ∈ K ′ and y ∈ Ej \K ′′ for some j > 0.

Case 1. Let x, y ∈ K ′′. By Corollary 4.7, we have

p(t, x, y) ≤
C

V0(
√
t)

exp

(

−c
d2(x, y)

t

)

. (4.29)

If d+(x, y) = d(x, y) then (4.29) implies

p(t, x, y) ≤
C

V0(
√
t)

exp

(

−c
d2

+(x, y)

t

)

≤ C
H(x, t)H(y, t)

V0(
√
t)

exp

(

−c
d2

+(x, y)

t

)

, (4.30)

(because H (x, t) and H (y, t) are separated from 0 for x, y ∈ K ′′), which in turn yields (4.26)-
(4.27). Moreover, if d+(x, y) ≤

√
t then the same argument works because the Gaussian factor

in (4.30) is comparable to 1.
Assume now that d+(x, y) > d(x, y) and d+(x, y) >

√
t. Then x and y belong to the same

end Ei, i ≥ 1, and d∅(x, y) = d(x, y). Also, t is bounded by 4diam2 (K ′′) whence

V0(
√
t) ≈ tN/2 ≈

√
Vi(x,

√
t)Vi(y,

√
t).

Therefore, the right hand side of (4.29) is majorized by the term (4.27).
Before we consider the other two cases, let us set

J :=

∞∫

0

sup
v,w∈K′′

d(v,w)≥δ

p(s, v, w)ds. (4.31)

It follows from (4.29) and from the condition d (v, w) ≥ δ that the integral (4.31) converges at 0.
The fact that M is non-parabolic, ensures the convergence of the integral (4.31) at ∞. Hence,
J <∞. The number J will enter the heat kernel upper bounds as a constant.

Case 2. (“the main case”) Let x ∈ Ei \K ′ and y ∈ Ej \K ′′ (see Fig. 9 when i 6= j).

x
y

K EjEi

K K’ K’’K’

Figure 9: Case x ∈ Ei \K ′ and y ∈ Ej \K ′′, i 6= j
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By Theorem 3.5 with Ω1 = Ei and Ω2 = Ej \K ′ we obtain

p(t, x, y) ≤ pEi (t, x, y) +



 sup
s∈[t/4,t]

sup
v∈∂K
w∈∂K′

p(s, v, w)



ψK(t, x)ψK′(t, y) (4.32)

+

t∫

0

sup
v∈∂K
w∈∂K′

p(s, v, w)ds

(

sup
s∈[t/4,t]

ψ′K(s, x)

)

ψK′(t, y) (4.33)

+

t∫

0

sup
v∈∂K
w∈∂K′

p(s, v, w)ds

(

sup
s∈[t/4,t]

ψ′K′(s, y)

)

ψK(t, x). (4.34)

If i 6= j then pEi (t, x, y) = 0 whereas for i = j Theorem 4.2 yields

pEi (t, x, y) ≤ pMi
(t, x, y) ≤

C
√
Vi
(
x,
√
t
)
Vi
(
y,
√
t
) exp

(

−c
d2
∅ (x, y)

t

)

,

where we have used the fact that dMi
(x, y) ≈ d∅ (x, y) for all x, y ∈ Ei \K ′.

As x ∈ Ei \K ′, the hitting probability ψK (t, x) depends only on the intrinsic properties of
the manifold (Mi, µi). Since (Mi, µi) satisfies (RFK), Theorem 4.4 and (4.20) yield

ψK(t, x) ≤ C H(x, t) exp

(

−c
|x|2

t

)

(4.35)

and

ψ′K(t, x) ≤
C

Vi(x,
√
t)

exp

(

−c
|x|2

t

)

. (4.36)

Since x ∈ Ei \K ′, we have di (xi, oi) ≈ |x| and, by Remark 4.12,

ψ′K(t, x) ≤
C

Vi(
√
t)

exp

(

−c
|x|2

t

)

. (4.37)

Similar estimates take place for ψK′ (t, y) and its time derivative for y ∈ Ej \K ′′. By (4.29),
we have for all v, w ∈ K ′

sup
s∈[t/4,t]

p(s, v, w) ≤
C

V0(
√
t)
. (4.38)

Finally, each integral in (4.33) and (4.34) is bounded from above by the constant J defined by
(4.31) because d (v, w) ≥ δ. Substituting the above estimates into (4.32)-(4.34) and observing
that

|x|2 + |y|2 ≈ d2
+(x, y),

we obtain (4.26)-(4.27).
Case 3. Let x ∈ K ′ and y ∈ Ej \K ′′ for some j > 0. Ω be an open subset of Ej containing

Ej \K ′′ but such that d (∂Ω,K ′) ≥ δ (see Fig. 10). By inequality (3.3) of Lemma 3.1 for this
Ω and for Γ = ∂Ω we have

p(t, x, y) ≤ sup
t/2≤s≤t
z∈Γ

p(s, z, x)ψΓ(t, y) + sup
t/2≤s≤t

ψ′Γ(s, y)

t∫

0

sup
z∈Γ

p(θ, z, x)dθ . (4.39)
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Figure 10: Case x ∈ K ′ and y ∈ Ej \K ′′

By (4.29) we obtain, for all x ∈ K ′, z ∈ Γ, and s ∈ [t/2, t],

p(s, z, x) ≤
C

V0(
√
t)
.

The integral in (4.39) is bounded from above by the constant J because d (x, z) ≥ δ. The
functions ψΓ(t, y) and ψ′Γ(s, y) are estimated as in (4.35) and (4.37), respectively. From (4.39)
we obtain

p(t, x, y) ≤ C

(
H(y, t)

V0(
√
t)

+
1

Vj(
√
t)

)

exp

(

−c
|y|2

t

)

, (4.40)

which implies (4.26)-(4.27) because H(x, t) ≈ 1 and |y| ≈ d+ (x, y).

Remark 4.15 Alternatively, Case 3 can be obtained directly from Case 2 by extending the
range of x using a local Harnack inequality argument (see Section 5.1 below).

Theorem 4.9 provides a heat kernel upper bound for all x, y ∈M and t > 0. Still, it may be
useful and convenient to write more explicit estimates for certain ranges of x, y, t.

Corollary 4.16 Let E0 be a precompact open set with smooth boundary containing K. Referring
to the setting of Theorem 4.9, we have the following estimates:

0. For any fixed t0 >0, if t ≤ t0 and x, y ∈M then

p(t, x, y) ≤
C

V (x,
√
t)

exp

(

−c
d2(x, y)

t

)

. (4.41)

1. If x, y ∈ E0 then, for all t > 0,

p(t, x, y) ≤
C

V0(
√
t)

exp

(

−c
d2(x, y)

t

)

. (4.42)

2. If x ∈ Ei, i ≥ 1, and y ∈ E0 then, for all and t > 0,

p(t, x, y) ≤ C

(
H(x, t)

V0(
√
t)

+
1

Vi(
√
t)

)

exp

(

−c
d2(x, y)

t

)

. (4.43)
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3. If x ∈ Ei, y ∈ Ej, i 6= j, i, j ≥ 1, then, for all t > 0,

p(t, x, y) ≤ C

(
H(x, t)H(y, t)

V0(
√
t)

+
H(y, t)

Vi(
√
t)

+
H(x, t)

Vj(
√
t)

)

exp

(

−c
d2(x, y)

t

)

. (4.44)

4. If x, y ∈ Ei, i ≥ 1, then, for all t > 0,

p(t, x, y) ≤ C
H(x, t)H(y, t)

V0(
√
t)

exp

(

−c
|x|2 + |y|2

t

)

+
C

Vi(x,
√
t)

exp

(

−c
d2(x, y)

t

)

. (4.45)

Proof. Parts 0,1 follow from Corollary 4.7 and Remark 4.8.
Part 2. If |x| is bounded then the result follows as in Part 1, so we can assume in the sequel

that |x| is large enough. If y ∈ K then using iy = 0, H(y, t) ≈ 1 and d+(x, y) ≥ d(x, y) in
(4.26)-(4.27), we obtain (4.43). Assume now y ∈ E0 \K. Then, for j = iy, we have y ∈ Ej ∩E0,
and (4.26)-(4.27) yields

p(t, x, y) ≤ C

(
H(x, t)

V0(
√
t)

+
1

Vi(
√
t)

+
H(x, t)

Vj(
√
t)

)

exp

(

−c
d2(x, y)

t

)

(4.46)

+
C

√
Vi(x,

√
t)Vj(y,

√
t)

exp

(

−c
d2
∅(x, y)

t

)

. (4.47)

Since V0

(√
t
)
≤ Vj

(√
t
)
, the third term in (4.46) can be absorbed into the first one. If j 6= i

then the term in (4.47) vanishes and (4.43) follows. Assuming now i = j, we have

d∅ (x, y) ≥ d (x, y) ≈ |x|

and, by Remark 4.12, the term (4.47) is dominated by the middle term in (4.46).
Part 3. Inequality (4.44) coincides with (4.26)-(4.27) since in this case d∅(x, y) = ∞ and

d+(x, y) = d(x, y).
Part 4. Assume first that |x| and |y| are bounded. If also t is bounded then the last term

in (4.45) is comparable with the right hand side of (4.42) and the claim follows from Part 1. If
t is large enough then the first term in (4.45) is comparable with the right hand side of (4.42)
and the claim again follows from Part 1.

If one of |x|, |y| is bounded and the other is large enough then the claim follows from Part
2. Now let us assume that both |x| and |y| are large enough. We always have d∅(x, y) ≥ d(x, y)
and in the present case d+(x, y) ≈ |x| + |y|. Thus, the first term in (4.26) and the term (4.27)
are dominated by the right hand side of (4.45).

To finish the proof, it suffices to show that the second term (and similarly, the third term)
in (4.26) is dominated by the last term of (4.45), that is

H(y, t)

Vi(
√
t)

exp

(

−c
d2

+(x, y)

t

)

≤
C

Vi(x,
√
t)

exp

(

−c′
d2(x, y)

t

)

.

As H (y, t) ≤ 1, this follows from Remark 4.12.
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4.5 Examples

Let us assume, under the hypotheses of Theorem 4.9, that

Vi(r) ≈

{
rNi , if r > r0

rN , if r ≤ r0
,

where all Ni > 2. By definition (4.12), we have

V0(r) ≈

{
rn, if r > r0

rN , if r ≤ r0
,

where
n := min

i
Ni > 2.

By definition (4.19) we have, for any x ∈ Ei,

H(x, t) ≈
1

|x|Ni−2
.

Thus, the estimates (4.44) and (4.45) yield, for t > t0 := r2
0, x ∈ Ei, y ∈ Ej ,

p(t, x, y) ≤ C

(
1

tn/2 |x|Ni−2 |y|Nj−2
+

1

tNi/2 |y|Nj−2
+

1

tNj/2 |x|Ni−2

)

exp

(

−c
d2(x, y)

t

)

(4.48)

when i 6= j, i, j ≥ 1, and

p(t, x, y) ≤
C

tn/2 |x|Ni−2 |y|Ni−2
exp

(

−c
|x|2 + |y|2

t

)

+
C

tNi/2
exp

(

−c
d2(x, y)

t

)

(4.49)

when i = j ≥ 1. These upper bounds yield the estimates (1.14) and (1.19) of the Introduction.
Note that if Ni or Nj is equal to n (which is the case when M has only two ends), then

(4.48) simplifies to

p(t, x, y) ≤ C

(
1

tNi/2 |y|Nj−2
+

1

tNj/2 |x|Ni−2

)

exp

(

−c
d2(x, y)

t

)

.

This gives (1.6).

5 Lower bounds

5.1 Parabolic Harnack inequality

Fix R0 ∈ (0,+∞] and consider the following property of a weighted manifold (M,µ), which in
general may be true or not:

(PHR0) The parabolic Harnack inequality (up to scale R0): there exists C > 0 such that any
positive solution u(t, x) of the heat equation ∂tu = Lu in a cylinder

Q = (τ , τ + 4T )×B(x0, 2R),
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B(x0,R)

Q

Figure 11: Cylinders Q+ and Q−

where x0 ∈M , 0 < R < R0, T = R2, and τ ∈ (−∞,+∞), satisfies the inequality

sup
Q−

u(t, x) ≤ C inf
Q+

u(t, x) , (5.1)

where

Q− = (τ + T, τ + 2T )×B(x0, R), Q+ = (τ + 3T, τ + 4T )×B(x0, R).

For simplicity, we will write (PH) for (PH∞). For example, (PH) holds for Riemannian
manifolds with non-negative Ricci curvature (see [48]). Moreover, (PH) still holds if the weighted
manifold M is quasi-isometric to a manifold of non-negative Ricci curvature and σ, σ−1 are
uniformly bounded on M (see [31, 55]). Other examples are described in [55] and [57].

Consider also the following properties of M which, in general, may be true or not.

(PI) The Poincaré inequality : for any x ∈M , r > 0 and for any function f ∈ C1(B(x, 2r))

∫

B(x,2r)
|∇f |2 dµ ≥

c

r2
inf
ξ∈R

∫

B(x,r)
(f − ξ)2 dµ . (5.2)

(ULE) The upper and lower estimate of the heat kernel: for all x, y ∈M, t > 0,

c2

V (x,
√
t)

exp(−C2
d2

t
) ≤ p(t, x, y) ≤

C1

V (x,
√
t)

exp(−c1
d2

t
) , (5.3)

where d = d(x, y).

The following theorem combines results of [31] and [55]. For this statement, recall that (V D)
and (RFK) are defined Section 4.1.

Theorem 5.1 Let (M,µ) be a complete weighted manifold. Then the following is true:

1. (V D) + (PI)⇐⇒ (PH)⇐⇒ (ULE).

2. (V D) + (PI) =⇒ (RFK).
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Remark 5.2 Clearly, assertion 2 follows from assertion 1 and Theorem 4.2.
Theorem 5.1 admits an extension treating (PHR0) with R0 < ∞. In this case, (V D) and

(PI) are also restricted to balls of radii < R0, and (ULE) holds for all x, y ∈ M and t < R2
0

(see [2, 53, 31, 33, 55, 57] or [58, Section 5.5.1]).

The following standard consequence of (PHR0) will be useful (see [58, Corollary 5.4.4]).

Lemma 5.3 Assume that M satisfies (PHR0) for some R0 > 0 and let u (t, x) be a positive
solution to the heat equation ∂tu = Lu in (0,∞)×M . Then, for all positive ρ, c, C there exists
a constant a = a (ρ, c, C) > 0 such that

u(t, x) ≥ au(s, y) if t > s ≥ cρ2 , cρ2 ≤ t− s ≤ Cρ2 , d(x, y) ≤ Cρ. (5.4)

5.2 Dirichlet heat kernel

For any open set Ω of a complete weighted manifold (M,µ), the Dirichlet heat kernel pΩ in Ω
satisfies

pΩ(t, x, y) ≤ p(t, x, y). (5.5)

The next theorem provides for non-parabolic manifolds a lower bound for pΩ, which matches
the upper bound (5.5).

Theorem 5.4 ([38, Theorem 3.3])Let (M,µ) be a non-parabolic, complete weighted manifold.
Assume that the parabolic Harnack inequality (PH) holds on (M,µ). Let K ⊂M be a compact
set and Ω := M \K. Then there exists δ > 0 and, for each t0 > 0, there exist positive constants
C and c such that, for all t ≥ t0 and all x, y /∈ Kδ,

pΩ(t, x, y) ≥
c

V (x,
√
t)

exp

(

−C
d2(x, y)

t

)

. (5.6)

Remark 5.5 Recall that (PH) implies the upper bound (ULE). Thus, under the hypotheses
of Theorem 5.4, inequality (5.5) implies that, for all x, y /∈ K and t > 0,

pΩ(t, x, y) ≤
C

V (x,
√
t)

exp

(

−c
d2(x, y)

t

)

. (5.7)

Hence the lower bound (5.6) is, in a sense, optimal. Furthermore (5.6) means that the Dirichlet
heat kernel pΩ(t, x, y) is essentially of the same order of magnitude than the global heat kernel
p(t, x, y). This hangs on the transience of the process Xt which escapes to infinity without
touching K, with a positive probability. Therefore, the influence of the killing condition on the
boundary ∂K becomes negligible in the long term. If, instead, the process Xt is recurrent then
pΩ may be substantially smaller than p (see [43]).

Remark 5.6 Since the heat kernel pΩ(t, x, y) is symmetric in x, y, (5.6) implies also the sym-
metric inequality

pΩ(t, x, y) ≥
c

V (y,
√
t)

exp

(

−C
d2(x, y)

t

)

. (5.8)
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5.3 Hitting probability

Theorem 4.4 gives an upper bound for the hitting probability ψK (t, x). Here we will also need
a lower bound.

Theorem 5.7 ([39, Theorem 4.4]) Let (M,µ) be a complete non-compact non-parabolic weighted
manifold satisfying (PH), and let K be a compact subset of M with non-empty interior. Then,
for any δ > 0 and for all x /∈ Kδ , t > 0,

cH∗(x, t) exp

(

−C
|x|2

t

)

≤ ψK(t, x) ≤ CH∗(x, t) exp

(

−c
|x|2

t

)

, (5.9)

where |x| and H∗(x, t) are as in Section 4.2.

For the application of this theorem, we will need the following elementary lemma.

Lemma 5.8 On an arbitrary manifold M , we have, for all x ∈M and t > 0,

H∗(x, 2t) ≤ 2H∗(x, t).

Proof. We have (see definition (4.9) of H∗)

H∗(x, t) := min

{

1,
r2

V (r)
+

(∫ t

r2

ds

V (
√
s)

)

+

}

,

where V (r) := V (o, r), o ∈ K is a fixed point, and r = |x| > 0. It suffices to show

r2

V (r)
+

(∫ 2t

r2

ds

V (
√
s)

)

+

≤
2r2

V (r)
+ 2

(∫ t

r2

ds

V (
√
s)

)

+

. (5.10)

We will use only the fact that the function V (r) is increasing. If t ≤ r2 then (5.10) follows from

∫ 2t

r2

ds

V (
√
s)
≤

r2

V (r)
.

If t > r2 then, by change of variable s = ξ/2, we obtain

2

∫ t

r2

ds

V (
√
s)
≥
∫ 2t

2r2

dξ

V (
√
ξ)

and

∫ 2t

r2

ds

V (
√
s)
− 2

∫ t

r2

ds

V (
√
s)
≤

∫ 2t

r2

ds

V (
√
s)
−
∫ 2t

2r2

ds

V (
√
s)

=

∫ 2r2

r2

ds

V (
√
s)
≤

r2

V (r)
,

whence (5.10) follows.
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5.4 Full lower bounds

This section applies the results of Section 3, 5.2, and 5.3 to obtain global lower bounds for the
connected sum M = M1#M2#...#Mk. We start with a simple lemma dealing with the small
time behavior of the heat kernel.

Lemma 5.9 Assume that (M,µ) is a connected sum of complete non-compact weighted mani-
folds (Mi, µi), i = 1, 2, ..., k, each of which satisfies (PH). Then, for all x, y ∈M and t > 0, For
any finite R0, the manifold M satisfies (PHR0). Moreover, for any finite t0 there exist positive
constants c, C such that for 0 < t ≤ t0 and all x, y ∈M ,

c

V (x,
√
t)

exp

(

−C
d2(x, y)

t

)

≤ p(t, x, y) ≤
C

V (x,
√
t)

exp

(

−c
d2(x, y)

t

)

. (5.11)

Proof. Let first R0 be so small that any ball of radius 2R0 on M lies either in one of the
ends Ei or in E0. Then one can apply either the Harnack inequality from Mi or the one from
E0 which holds just due to the compactness of E0. By a standard chaining argument, (PHR0)
holds to any finite R0. The estimate (5.11) follows then from Theorem 5.1 and Remark 5.2.
Note that no hypotheses concerning the parabolicity/non-parabolicity of the ends are required
for Lemma 5.9.

In the rest of this section we use the same notation as in Sections 2.2, 4.3, and 4.4. In
particular, the function H on M is defined at (4.19).

Theorem 5.10 Assume that (M,µ) is a connected sum of complete non-compact weighted man-
ifolds (Mi, µi), i = 1, 2, ..., k, each of which satisfies (PH). Assume further that each (Mi, µi) is
non-parabolic. Then, for all x, y ∈M and t > 0,

p(t, x, y) ≥ c

(
H(x, t)H(y, t)

V0(
√
t)

+
H(y, t)

Vix(
√
t)

+
H(x, t)

Viy(
√
t)

)

exp

(

−C
d2

+(x, y)

t

)

(5.12)

+
c

√
Vix(x,

√
t)Viy(y,

√
t)

exp

(

−C
d2
∅(x, y)

t

)

. (5.13)

Remark 5.11 Since (PH) implies (RFK) and the non-parabolicity of one end (Mi, µi) implies
the non-parabolicity of (M,µ) (see [35, Proposition 14.1]), the heat kernel upper bound (4.26)-
(4.27) of Theorem 4.9 applies in the present setting. The upper bound (4.26)-(4.27) matches
the lower bound (5.12)-(5.13).

Remark 5.12 In (5.12) one can replace Vix(
√
t) and Viy(

√
t) respectively by Vix(x,

√
t) and

Viy(y,
√
t) (see Remark 4.12).

Remark 5.13 The term
√
Vix(x,

√
t)Viy(y,

√
t) in (5.13) can be replaced by either Vix(x,

√
t)

or Viy(y,
√
t) – see Remark 4.13.

We precede the proof by a series of lemmas in which the hypotheses of Theorem 5.10 are
always implicitly assumed. It will be useful to choose the neighborhood E0 of K as follows. By
Theorem 5.4 applied to Mi, there exists δi > 0 such that, for all x, y ∈ Ei \Kδi and t ≥ t0

pEi(t, x, y) ≥
c

Vi(x,
√
t)

exp

(

−C
d2
i (x, y)

t

)

, (5.14)
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where t0 > 0 is arbitrary. Set
δ = max

1≤i≤k
δi

and choose E0 so that it contains Kδ.

Lemma 5.14 Fix t0 > 0. For all x, y ∈ Ei, i ≥ 1, and t ≥ t0,

p(t, x, y) ≥
c

Vi(x,
√
t)

exp

(

−C
d2(x, y)

t

)

. (5.15)

Proof. Observe that, for all x, y ∈ Ei and t > 0,

p(t, x, y) ≥ pEi(t, x, y), (5.16)

where pEi is the Dirichlet heat kernel of Ei. For x, y ∈ E′i := Ei \Kδ, we have d (x, y) ≈ di (x, y).
Hence, for such x, y, (5.15) follows from (5.14) and (5.16).

In general, for x, y ∈ Ei and t ≥ t0, find the points x′ ∈ E′i and y′ ∈ E′i such that d(x, x′) ≤ 2δ
and d(y, y′) ≤ 2δ.

x

y

KKEi Kδ

y

x

K2

Figure 12: Points x, y ∈ Ei and x′, y′ ∈ E′i

By Lemma 5.9, M satisfies (PHR0) for any finite R0. Setting t′ = t− t0/4 and t′′ = t− t0/2
and applying (5.4) twice, we obtain

p(t, x, y) ≥ cp(t′, x′, y) ≥ c′p(t′′, x′, y′) ≥
c

Vi(x′,
√
t′′)

exp

(

−C
d2(x′, y′)

t′′

)

,

where we have used (5.15) for p(t′′, x′, y′). Inequality (5.15) for p(t, x, y) follows from t′′ ≈ t,

d2(x′, y′) ≤ C(d2(x, y) + δ2),

and
Vi(x

′,
√
t′′) ≤ CVi(x,

√
t), (5.17)

which is a consequence of (V D).

Lemma 5.15 Fix t0 > 0. For all x, y ∈ E0 and all t ≥ t0,

p(t, x, y) ≥
c

V0(
√
t)
. (5.18)
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Proof. Fix t ≥ t0 and choose i ≥ 1 so that (see the definition of V0 at (4.12))

V0(
√
t) = Vi(

√
t).

Fix a point z ∈ Ei ∩ E0. Using (5.4) observe that, for all x, y ∈ E0 and t ≥ t0,

p(t, x, y) ≥ cp(t′, z, z),

where t′ = t− t0/2. By Lemma 5.14 and the doubling property (V D) in Mi, we have

p(t′, z, z) ≥
c

Vi(z,
√
t′)
≥

c′

Vi(z,
√
t)
.

Applying again the doubling property (V D) in Mi, we get

Vi(z,
√
t) ≤ CVi(oi,

√
t) = CVi

(√
t
)

= CV0

(√
t
)
.

Combining the above three estimates, we obtain (5.18).

Lemma 5.16 Fix t0 > 0. For all x, y ∈M and t ≥ t0, we have

p(t, x, y) ≥
cH(x, t)H(y, t)

V0(
√
t)

exp

(

−C
|x|2 + |y|2

t

)

. (5.19)

Proof. Case 1. Assume x, y ∈ K. Then (5.19) follows from Lemma 5.15 and H ≤ 1. By
symmetry, we can now assume y /∈ K.

Case 2. Assume that x ∈ Ei and y ∈ Ej (where i, j ≥ 1 may be equal or not) and apply
Theorem 3.5 with Ω1 = Ei and Ω2 = Ej (see Fig. 13). Using also Theorem 5.7, Lemma 5.8,
(4.20) and Lemma 5.15, we obtain, for t ≥ t0/2,

p(t, x, y) ≥

(

inf
s∈[t/4,t]

inf
v,w∈K

p(s, v, w)

)

ψK(t/4, x)ψK(t/4, y)

≥
c

V0(
√
t)
H(x, t)H(y, t) exp

(

−C
|x|2 + |y|2

t

)

.

x y

Ej
Ei

K

Figure 13: Points x ∈ Ei and y ∈ Ej
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Case 3. Finally, assume x ∈ K and y ∈ Ej , j ≥ 1. Let x′ be a fixed point in Ej ∩E0 (hence
at bounded distance from x). By Case 2, for t ≥ t0 and t′ := t− t0/2, we have

p
(
t′, x′, y

)
≥

c

V0(
√
t)
H(x, t)H(y, t) exp

(

−C
|x|2 + |y|2

t

)

,

where we have used H (x′, t) ≈ H (x, t) ≈ 1 and |x′| ≈ |x| ≈ 1. By the local Harnack inequality
(5.4), we have

p (t, x, y) ≥ cp
(
t′, x′, y

)
,

whence (5.19) follows.

Lemma 5.17 Fix t0 > 0. For all x, y ∈M and t ≥ t0, we have

p(t, x, y) ≥
cH(x, t)

Viy(
√
t)

exp

(

−C
|x|2 + |y|2

t

)

. (5.20)

Proof. Case 1. Assume y ∈ E0. Then (5.20) follows from (5.19) because H (y, t) ≈ 1 and
Viy
(√
t
)
≥ V0

(√
t
)
.

Case 2. Assume that x, y /∈ E0. Then, for some i, j ≥ 1, we have x ∈ E′i := Ei \Kδ and
y ∈ E′j . Lemma 3.1 with Γ = K and Ω = M \K gives

p(t, x, y) ≥ inf
t/2≤s≤t
z∈K

p(s, z, y)ψK(t/2, x).

z

Ej
K

K
Kδ

y

z
E0

Figure 14: Points y ∈ E′j , z ∈ K and z′ ∈ E0 ∩ E′j

Fix z′ ∈ E0 ∩ E′j . As z′ ∈ E0 and z ∈ K (see Fig. 14), the local Harnack inequality (5.4)
yields

p(s, z, y) ≥ cp(s′, z′, y),

for all s ≥ t0/2 and s′ = s− t0/4. Since

p(s′, z′, y) ≥ pEj (s
′, z′, y),

we obtain, for all t ≥ t0,

p(t, x, y) ≥ c inf
t/4≤s′≤t

pEj (s
′, z′, y)ψK(t/2, x). (5.21)
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As x ∈ E′i, Theorem 5.7 gives the lower bound for ψK (t/2, x). As y and z′ are in E′j , Theorem
5.4 gives the lower bound for pEj (s

′, z′, y). Using also s′ ≈ t and dj(y, z
′) ≤ C |y|, (5.21) gives

p(t, x, y) ≥
cH(x, t/2)

Vj(y,
√
t)

exp

(

−C
|x|2 + |y|2

t

)

.

Finally, by Remark 4.12, Lemma 5.8 and (4.20), we obtain (5.20).
Case 3. Assume x ∈ E0 and y /∈ E0. Fix a point x′ in M \ E0. By the local Harnack

inequality (5.4), we have
p (t, x, y) ≥ cp

(
t′, x′, y

)

where t′ = t− t0/2. Using the previous case to estimate p (t′, x′, y) and noticing that H (x, t) ≈
H (x′, t) ≈ 1, we finish the proof.

Proof of Theorem 5.10. Fix t0 > 0 and let E0 be large enough so that is contains K√t0 .
Let us assume t ≤ t0 and deduce the estimate (5.12)-(5.13) from the lower bound in (5.11) of
Lemma 5.9 and its symmetric version in x, y. Since H ≤ 1, d(x, y) ≤ d+(x, y), it suffices to
prove

V (x,
√
t) ≤ CVix(x,

√
t) and V (x,

√
t) ≤ CεV0(

√
t) exp

(

ε
d+(x, y)2

√
t

)

, ∀ε > 0. (5.22)

If x ∈ E0 then all the functions V (x,
√
t), V0(

√
t), Vix(x,

√
t) are of the order tN/2. Assume that

x ∈ Ei \ E0 for some i ≥ 1. Then B(x,
√
t) ⊂ Ei and

V (x,
√
t) = Vi(x,

√
t),

which proves the first inequality in (5.22). Next, by (4.5) we have

V (x,
√
t)

Vi(oi,
√
t)

=
Vi(x,

√
t)

Vi(oi,
√
t)
≤ Cε exp

(

ε
d2
i (x, oi)√

t

)

≤ Cε exp

(

Cε
d2

+ (x, y)
√
t

)

.

Finally, since Vi
(
oi,
√
t
)
≈ V0

(√
t
)
≈ tN/2, (5.22) follows.

Let now t ≥ t0. Note that d∅ (x, y) is finite only when x, y are in the same end, say Ei. This
is the only case when we need to prove (5.13), and it follows from Lemma 5.14, its symmetric
version in x, y, and d (x, y) ≤ d∅ (x, y). We are left to prove (5.12). If both x, y ∈ E0 then this
follows from Lemma 5.15. If one of the points x, y is outside E0 then d+ (x, y) ≈ |x| + |y|, and
(5.12) follows by adding up the inequalities (5.19) of Lemma 5.19, (5.20) of Lemma 5.17 and its
symmetric version in x, y.

The next corollary gives lower bounds for x, y in different regions of M . Taken together, they
are equivalent to the lower bound of Theorem 5.10 but are more explicit. These lower bounds
match case by case the upper bounds of Corollary 4.16.

Corollary 5.18 Referring to the setting of Theorem 5.10, the following estimates of p(t, x, y)
hold.

0. For any fixed t0 > 0, if t ≤ t0 and x, y ∈M then

p(t, x, y) ≥
c

V (x,
√
t)

exp

(

−C
d2(x, y)

t

)

.
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1. If x, y ∈ E0, then, for all t > 0,

p(t, x, y) ≥
c

V0(
√
t)

exp

(

−C
d2 (x, y)

t

)

.

2. If x ∈ Ei, i ≥ 1, y ∈ E0 then, for all t > 0,

p(t, x, y) ≥ c

(
H(x, t)

V0(
√
t)

+
1

Vi(
√
t)

)

exp

(

−C
d2 (x, y)

t

)

.

3. If x ∈ Ei, y ∈ Ej, i 6= j, i, j ≥ 1 then, for all t > 0,

p(t, x, y) ≥ c

(
H(x, t)H(y, t)

V0(
√
t)

+
H(x, t)

Vj(
√
t)

+
H(y, t)

Vi(
√
t)

)

exp

(

−C
d2 (x, y)

t

)

.

4. If x, y ∈ Ei, i ≥ 1, then, for all t > 0,

p(t, x, y) ≥
cH(x, t)H(y, t)

V0(
√
t)

exp

(

−C
|x|2 + |y|2

t

)

+
c

Vi(x,
√
t)

exp

(

−C
d(x, y)2

t

)

. (5.23)

Proof. Part 0 coincides with the lower bound of Lemma 5.9. This lemma implies also Part
1 for t ≤ t0 because V0

(√
t
)
≈ V

(
x,
√
t
)

for bounded x and t. For t > t0, Part 1 follows from
Lemma 5.15.

In Part 2, if |x| is bounded then the estimate follows from Part 1. If |x| is large enough then
d+ (x, y) ≈ d (x, y), and the estimate follows from Theorem 5.10 and H (y, t) ≈ 1.

Part 3 also follows from Theorem 5.10 because in this case d+ (x, y) = d (x, y).
Part 4 for t ≥ t0 follows by adding up the estimates of Lemmas 5.14 and 5.16. If t < t0 then

the second term in (5.23) dominates because by (4.5)

Vi
(
x,
√
t
)

V0

(√
t
) ≈

Vi
(
x,
√
t
)

Vi
(√
t
) ≤ Cε exp

(

ε
d2
i (x, oi)

t

)

≤ Cε exp

(

ε
|x|2

t

)

and |x|+ |y| ≥ d (x, y). Then (5.23) follows from Part 0 and the first inequality in (5.22).

Remark 5.19 In the proofs in this section, we have used some lower bounds for the heat kernel
obtained in Section 3, namely, the middle term in (3.4) (Lemma 3.1) and the last term in (3.24)
(Theorem 3.5). Alternatively, we could have used the full estimate (3.24)-(3.25) of Theorem 3.5.
However, this would require using the lower estimates of the time derivative ψ′K (t, x) obtained
in [39]. These estimates are more involved than the estimates of ψK (t, x) given by Theorem 5.7.

5.5 Examples

Assume that each Mi is a complete non-compact Riemannian manifold of non-negative Ricci
curvature equipped with its Riemannian measure µi. Assume in addition that

∫ ∞ dt

Vi(x,
√
t)
<∞
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so that each Mi is non-parabolic. Then all hypotheses of Theorem 5.10 are satisfied, and we
have the heat kernel lower bounds on M = M1#M2#...#Mk implied by this theorem. For the
case when

Vi(r) ≈

{
rN , r ≤ 1,
rNi , r > 1

with Ni > 2, the upper bounds for p were considered in Example 4.5. Now Theorem 5.10 yields
the matching lower bounds, which proves the estimates (1.15), (1.20) of the Introduction.

Another source of examples are domains in Euclidean space with ends isometric to convex
domains of revolution. For instance, in R3 with coordinates x = (x1, x2, x3), set xi = (xj , xk),

i, j, k ∈ {1, 2, 3}, i 6∈ {j, k}, j < k, and ‖xi‖ =
√
x2
j + x2

k. For i = 1, 2, 3, consider the (closed)

domains of revolution

Di = {x = (x1, x2, x3) : xi ≥ 0, ‖xi‖ ≤ fi(xi)}

where the functions fi are smooth, concave with fi(0) = 0 and all derivatives equal to +∞
at 0. Let M be the closure of a domain in R3 such that there exists a compact K ⊂ M for
which M \K has 3 connected components E1, E2, E3 with Ei isometric to the complement of
a compact set in Di. Thus, M = D1#D2#D3. Convex domains in Rn satisfy (V D), (PI) and
(PH). Hence Theorems 4.9 and 5.10 apply and yield matching upper and lower bounds for the
heat kernel on M . Assume for instance that for each i and r ≥ 1, fi(r) ≤ r. Then, in the
notation of Theorems 4.9 and 5.10, for i = 1, 2, 3 and r ≥ 1, we have

Vi(r) ≈
∫ r

0
fi(s)

2ds ≈ rfi(r)
2.

In particular, if fi(r) =
√
r logαi (2 + r), αi > 0, then for r large enough

Vi(r) ≈ r
2 logαi r.

Of course, examples with more than 3 ends are easily constructed in a similar fashion.
More generally, consider a weighted manifold M = M1# . . .#Mk satisfying the hypothesis

of Theorem 5.10 and such that for all i = 1, 2, ...k,

Vi(r) ≈ r
2 logαi r , ∀r > 2, (5.24)

where αi > 1. Set α = mini αi. Clearly, by (4.12) we have,

V0(r) ≈ r2 logα r , ∀r > 2.

Therefore, by Theorems 4.9 and 5.10, the long term behavior of the heat kernel is given by

p(t, x, y) ≈
1

V0(
√
t)
≈

1

t logα t
, t→∞.

Let us compute H(x, t) assuming x ∈ Ei and |x| > 2. Definition (4.19) of H gives

H(x, t) ≈ log−αi |x|+
(

log1−αi |x|2 − log1−αi t
)

+
. (5.25)

In particular, one has
H(x, t) ≈ log−αi |x| if |x| ≥ c

√
t (5.26)
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and
H(x, t) ≈ log1−αi |x| if |x| ≤ Ctε, ε < 1/2. (5.27)

Suppose now that x ∈ Ei, y ∈ Ej , i 6= j, i, j ≥ 1, and

|x| ≤ C
√
t and |y| ≤ C

√
t. (5.28)

Hence, Corollary 4.16(3) and Corollary 5.18(3) yield

p(t, x, y) ≈
H(x, t)

t logαj t
+
H(y, t)

t logαi t
+
H(x, t)H(y, t)

t logα t
. (5.29)

Let t be large enough. For |x| ≈ |y| ≈
√
t, (5.26) and (5.29) give

p(t, x, y) ≈
1

t logαi+αj t
.

For |x| ≤ Ctε and |x| ≤ Ctε with ε < 1/2, (5.29) and (5.27) give

p(t, x, y) ≈
1

t logαj t logαi−1 |x|
+

1

t logαi t logαj−1 |y|
+

1

t logα t logαi−1 |x| logαj−1 |y|
.

In particular, if |x| ≈ |y| ≈ tε with ε < 1/2 then

p(t, x, y) ≈
1

t logαi+αj−1 t
.

Remark 5.20 In the examples above, the ends can easily be ordered according to their volume
growth and, in particular, one can identify the “smallest ” end (or ends). However, in the
settings of Theorems 4.9 and 5.10, it is well possible that no such ordering exists. Indeed, one
can construct two pointed manifolds (M1, o1), (M2, o2), both satisfying (PH) and such that the
volume functions Vi(r) = Vi(oi, r) satisfy

lim sup
r→∞

V1(r)

V2(r)
= lim sup

r→∞

V2(r)

V1(r)
=∞.

Nevertheless, Theorems 4.9 and 5.10 yield matching upper and lower bounds for the heat
kernel of M1#M2.

6 The mixed case

This section is devoted to heat kernel estimates on connected sums M = M1# . . .#Mk when
manifold M is nonparabolic but some of the ends Mi’s are parabolic (recall that M is non-
parabolic if and only if at least one of the Mi’s is non-parabolic [35, Proposition 14.1]) The case
when M is parabolic (i.e., all Mi’s are parabolic) will be treated in a forthcoming paper [43] (a
special case is considered in Section 7 below).
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6.1 Harmonic functions

Let (M,µ) be a weighted manifold. We say that a function u defined in a region Ω ⊂ M is
harmonic if ∆µu = 0 in Ω. If the boundary δM is non-empty, then we require in addition that
u satisfies the Neumann boundary condition on δΩ := Ω ∩ δM , that is

∂u

∂n

∣
∣
∣
∣
δΩ

= 0. (6.1)

For the purposes of this section, we need to be able to construct a harmonic function in an
exterior domain with a controlled rate of growth at infinity. For that, we introduce a new
geometric assumption. Fix a reference point o ∈M and consider the following condition that in
general may be true or not:

(RCA) Relative connectedness of the annuli : there exists A > 1 such that, for all R large enough
and for any two points x, y ∈ M both at distance R from o, there is a continuous path γ

connecting x to y and staying in the annulus B(o,AR) \B(o,R/A) (see Fig. 15).

o

x

y

γ

AR

A-1R
R

Figure 15: A path γ connecting x and y in the annulus

In particular, M has property (RCA) if the annuli B(o,AR)\B(o,R/A) are connected. Note
that, although property (RCA) is defined for a pointed manifold (M,o), the role of the pole o
is very limited. Indeed, (M,o) has property (RCA) if and only if (M,o′) has it for some other
point o′ (the value of the constant A may change, as well as how large R has to be before the
relevant connectedness property holds true).

Note that Rn satisfies (RCA) if and only if n ≥ 2. The manifolds Rn introduced above
satisfy (RCA) for all n ≥ 1. It is easy to see that any two-dimensional convex surface in R3

satisfies (RCA) provided it is complete and unbounded. It was shown in [51] that any complete
weighted manifold M satisfying the Poincaré inequality (PI), the doubling volume property
(V D), and the condition

V (o, r)

V (o, s)
≥ c

(r
s

)N
,

for some point o ∈ M , and all r > s > 1, where c > 0 and N > 2, satisfies (RCA) (see also a
previous result of [44, Proposition 4.5]).

The following statement is a consequence of [38, Lemma 4.5].
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Lemma 6.1 If a complete weighted manifold M satisfies (PH) and (RCA) then, for any non-
empty compact set K ⊂ M with smooth boundary, there exists a non-negative continuous func-
tion u on M such that u = 0 on K, u is positive and harmonic in M \ K and satisfies the
following estimate

u(x) ≈
∫ r2

1

ds

V (o,
√
s)
,

for all large enough r = d (x, o).

Note that in the case when M is non-parabolic, the function u is bounded while in the
parabolic case u (x)→∞ as x→∞.

From now on, let M = M1#...#Mk be a connected sum as in Section 2.2. As before, let K
be the central part of M , that is, a compact set with smooth boundary such that M \K is the
disjoint union of k connected components E1, ...Ek (the ends with respect to K), and each end
Ei is identified with the complement of a compact set in Mi. Define a subset I ⊂ {1, . . . , k} by

i ∈ I ⇐⇒Mi is parabolic. (6.2)

The structure of various spaces of harmonic functions on complete Riemannian manifolds with
finitely many ends has been studied in [59], and these results are easily extended to weighted
manifolds. The following statement is a consequence of [59, Lemma 3.1 and Proposition 2.7].

Proposition 6.2 Let M = M1# . . .#Mk be a connected sum of complete weighted manifolds
(Mi, µi), and assume that M is non-parabolic. For each i ∈ I, let ui be a non-negative continuous
function on M which vanishes on M \ Ei and is harmonic on Ei. Then there exists a positive
harmonic function h defined on all of M and such that |h −

∑
i∈I ui| is uniformly bounded on

M .

Note that the assumption that M is non-parabolic cannot be omitted. It is known (see
[59] and the references therein) that each parabolic end Ei, i ∈ I, admits a continuous non-
negative harmonic function ui vanishing on the boundary ∂Ei and such that supEi ui = ∞.
Thus, Proposition 6.2 produces an unbounded positive harmonic function on M , whereas on
any parabolic manifold any positive harmonic function is constant.

In what follows, we will use property (RCA) as one of our basic assumption on the com-
ponents Mi of M . From this viewpoint, (RCA) is a very natural assumption. It implies that
the ends Ei are connected at infinity, i.e., that M has exactly k “true ends”. Furthermore, it
prohibits the situation when Mi consists of two “nearly” disjoint unbounded parts connected
only by a rare sequence of small tubes.

Proposition 6.3 Let M = M1# . . .#Mk be a connected sum of complete weighted manifolds
(Mi, µi). Assume that M is non-parabolic and that, for each i = 1, . . . , k, Mi satisfies (PH).
Assume further that, for each i ∈ I, Mi satisfies (RCA). Then there exists a positive harmonic
function h on M such that, for all x ∈M ,

h(x) ≈ 1 +

(∫ |x|2

1

ds

Vix(
√
s)

)

+

.

Remark 6.4 It follows from the above estimate of the function h that h(x) ≈ 1 if x stays in
any non-parabolic end whereas h(x)→∞ if x→∞ within a parabolic end.
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Proof. For each i ∈ I, manifold Mi satisfies the hypotheses of Lemma 6.1. Hence, there is
a continuous function ui on M that vanishes on M \ Ei, is positive and harmonic on Ei, and
satisfies the estimate

ui(x) ≈
∫ |x|2

1

ds

Vi(
√
s)
.

for all x ∈ Ei and |x| large enough. Applying Proposition 6.2, we obtain a desired harmonic
function h.

6.2 Doob’s transform

Let (M = M1# . . .#Mk, µ) be a connected sum of complete non-compact weighted manifolds
(Mi, µi). Let h be an arbitrary positive harmonic function on M . We can then consider the new

weighted manifold M̃ = (M, µ̃) where

dµ̃ = h2dµ.

Moreover, by restricting h to Ei = Mi \ Ki and extending the resulting function smoothly to

a function hi defined on Mi, i ∈ {1, . . . , k}, we obtain new weighted manifolds M̃i = (Mi, µ̃i)
where dµ̃i = h2

i dµi and such that

M̃ = M̃1# . . .#M̃k.

As h is harmonic on M , the weighted Laplacian

L̃ = Lµ̃ = h−2divµ(h2∇)

of M̃ is related to the weighted Laplacian L of M by the formula

L̃ = h−1 ◦ L ◦ h.

This implies that the heat kernels on M and M̃ are related exactly by

p̃(t, x, y) =
p(t, x, y)

h(x)h(y)
. (6.3)

Thus, in this situation, any estimate of p̃(t, x, y) translates easily into an estimate of p(t, x, y).

Proposition 6.5 Let M = M1# . . .#Mk be a connected sum of complete non-compact weighted
manifolds (Mi, µi). Assume that M is non-parabolic and that, for each i = 1, . . . , k, Mi satisfies
(PH). Assume further that, for each i ∈ I, MI satisfies (RCA). Let h be the harmonic function

from Proposition 6.3 and let M̃i = (Mi, µ̃i), i = 1, . . . , k, be the corresponding weighted manifolds

constructed as above. Then each M̃i, i = 1, . . . , k, is non-parabolic and satisfies (PH).

Proof. This is essentially [38, Lemma 4.8]. More precisely, if i is such that Mi is non-

parabolic then hi ≈ 1. It then follows that M̃i is still non-parabolic and satisfies (PH) (see
Theorem 5.1). If instead i is such that Mi is parabolic, that is, i ∈ I, then

hi(x) ≈ 1 +

(∫ |x|2

1

ds

Vi(
√
s)

)

+

.

In this case, the hypothesis that Mi satisfies (RCA) and (PH) (hence (V D)) together with [40,

Theorem 5.7] shows that M̃i satisfies (PH). A classical argument (see, e.g., the proof of [38,

Lemma 4.8]) shows that M̃i is non-parabolic.
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6.3 Full two-sided bounds

For a connected sum M = M1# . . .#Mk satisfying the hypotheses of Proposition 6.5, let M̃ ,
M̃i, i ∈ {1, . . . , k} be the weighted manifolds constructed in Section 6.2 using the function h of

Proposition 6.3. We will use a tilde ˜ to denote objects relative to the manifold M̃ . In particular,
H̃ denotes the function defined at (4.19) relative to M̃ .

Proposition 6.5 allows us to apply Theorems 4.9 and 5.10 to M̃ . This yields two-sided heat
kernel estimates for p̃(t, x, y) which we can transfer to the heat kernel p(t, x, y) of M using (6.3).
The resulting estimates are recorded in the following Theorem that gathers in one statement all
the main results of this paper, that is, the upper bounds of Theorems 4.9 and the lower bounds
of 5.10. Recall that I defined by (6.2), is the set of indices i such that Mi is parabolic.

Theorem 6.6 Let M = M1# . . .#Mk be a connected sum of complete non-compact weighted
manifolds Mi. Assume that M is non-parabolic and that each Mi, i = 1, . . . , k, satisfies (PH).
Assume further that, for each i ∈ I, Mi satisfies (RCA). Referring to the weighted manifolds

M̃i introduced above, the heat kernel p(t, x, y), t > 0, x, y ∈ M , of the weighted manifold M

satisfies

p(t, x, y) ≤ Ch(x)h(y)

(
H̃(x, t)H̃(y, t)

Ṽ0(
√
t)

+
H̃(x, t)

Ṽiy(
√
t)

+
H̃(y, t)

Ṽix(
√
t)

)

exp

(

−c
d2

+(x, y)

t

)

+
Ch(x)h(y)

√
Ṽix(x,

√
t)Ṽiy(y,

√
t)

exp

(

−c
d2
∅(x, y)

t

)

and

p(t, x, y) ≥ ch(x)h(y)

(
H̃(x, t)H̃(y, t)

Ṽ0(
√
t)

+
H̃(x, t)

Ṽiy(
√
t)

+
H̃(y, t)

Ṽix(
√
t)

)

exp

(

−C
d2

+(x, y)

t

)

+
ch(x)h(y)

√
Ṽix(x,

√
t)Ṽiy(y,

√
t)

exp

(

−C
d2
∅(x, y)

t

)

Remark 6.7 In the estimates above one can replace Ṽix(
√
t) and Ṽiy(

√
t) respectively by

Ṽix(x,
√
t) and Ṽiy(y,

√
t) (see Remarks 4.12 and 5.12). Similarly,

√
Ṽix(x,

√
t)Ṽiy(y,

√
t) can

be replaced by either Ṽix(x,
√
t) or Ṽiy(y,

√
t) (see Remarks 4.13 and 5.13).

Remark 6.8 Any geodesically complete non-compact manifold M with asymptotically non-
negative sectional curvature can be written as M = M1# . . .#Mk where each end Mi satisfies
(PH) and (RCA) (cf. Example 2.1). Thus, Theorem 6.6 yields heat kernel bounds on any such
manifold as long as it is non-parabolic. The same applies to manifolds with non-negative Ricci
curvature outside a compact set, provided each end satisfies (RCA) (cf. Example 2.2).

Let us give some general formulas for computing the various terms in Theorem 6.6. For
i = 0, 1, . . . , k, set

ηi(r) := 1 +

(∫ r2

1

ds

Vi(
√
s)

)

+

(6.4)

and note that

h(x) ≈ ηix(|x|) ≥ c
|x|2

Vix(|x|)
. (6.5)
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By [38, Lemma 4.8], we have, for x ∈ Ei, i = 0, 1, . . . , k,

Ṽi(x, r) ≈ (η2
i (|x|) + η2

i (r))Vi(x, r). (6.6)

Hence
Ṽi(r) ≈ η

2
i (r)Vi(r). (6.7)

and

H̃(x, t) ≈
|x|2

η2
ix

(|x|)Vix (|x|)
+

1

ηix (|x|) ηix
(√
t
)

(∫ t

|x|2

ds

Vix(
√
s)

)

+

. (6.8)

When comparing (6.8) with Definition 4.19 note that, by (6.5), the right-hand side of (6.8) is
always bounded above so that there is no need to take the minimum with 1.

The following statement follows by inspection from the estimates of Theorem 6.6.

Corollary 6.9 Under the hypotheses and notation of Theorem 6.6, we have, for any fixed
x, y ∈M and all large enough t,

sup
x′,y′

p
(
t, x′, y′

)
≈ max

i

1

Vi
(√
t
)

sup
y′
p
(
t, x, y′

)
≈ max

i

1

Vi
(√
t
)
ηi
(√
t
)

p (t, x, y) ≈ max
i

1

Vi
(√
t
)
η2
i

(√
t
) .

In particular, if I = ∅ then, for any fixed x, y ∈M and all large t,

p (t, x, y) ≈ sup
y′
p
(
t, x, y′

)
≈ sup

x′,y′
p
(
t, x′, y′

)
≈ max

i

1

Vi
(√
t
) .

Using the parabolicity test (4.8) and its consequence that ηi (r)→∞ as r →∞ on any parabolic
end, one can prove that if I 6= ∅ then

lim inf
t→∞

p (t, x, y)

supy′ p (t, x, y′)
= 0 and lim inf

t→∞

supy′ p (t, x, y′)

supx′,y′ p (t, x′, y′)
= 0.

Using the remarks from Section 2.2, we obtain the following.

Corollary 6.10 Let M be a complete non-parabolic Riemannian manifold without boundary.
Assume that either M has asymptotically non-negative sectional curvature, or M has non-
negative Ricci curvature outside a compact set and each end satisfies (RCA). Then M has
a parabolic end if and only if for some/any x, y ∈M ,

lim inf
t→∞

p(t, x, y)

supx′,y′ p(t, x
′, y′)

= 0.
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6.4 Examples

Example 6.11 Let M1 = R1 := R+ × SN−1, M2 = R3 and consider the connected sum
M = R1#R3. We have, for r > 1,

V1(r) ≈ r and V2(r) ≈ r3.

By (6.4), we obtain, for r > 1,

η1(r) ≈ r and η2(r) ≈ 1.

Then, by (6.7), Ṽi satisfies
Ṽ1(r) ≈ r3 and Ṽ2(r) ≈ r3,

whence
Ṽ0(r) = min(Ṽ1(r), Ṽ2(r)) ≈ r3.

Using (6.8) to compute H̃(x, t), we find that H̃(x, t) ≈ η1(|x|)−1 if x ∈ E1 and H̃(x, t) ≈
|x|2/V2(|x|) if x ∈ E2. It follows that, for all x ∈M and all t > 0,

H̃(x, t) ≈ |x|−1.

Hence, Theorem 6.6 yields the following estimates:

1. For x ∈ E0 ∪ E1, y ∈ E0 ∪ E2 and t ≥ 1,

c

t3/2

(

1 +
|x|
|y|

)

e−Cd
2(x,y)/t ≤ p(t, x, y) ≤

C

t3/2

(

1 +
|x|
|y|

)

e−cd
2(x,y)/t. (6.9)

2. For x, y ∈ E0 ∪ E1 and t ≥ 1,

p(t, x, y) ≥
c |x| |y|

√
t(t+ |y|2)(t+ |x|2)

e−Cd
2(x,y)/t

and

p(t, x, y) ≤
C |x| |y|

√
t(t+ |y|2)(t+ |x|2)

e−cd
2(x,y)/t. (6.10)

Note that for |x| ≥ |y| ≥
√
t, the above two estimates reduce to

c

t1/2
e−Cd(x,y)2/t ≤ p(t, x, y) ≤

C

t1/2
e−cd(x,y)2/t

as it should whereas for |x| ≈
√
t ≥ 1 and |y| ≈ tε, ε ∈ [0, 1/2], we get p(t, x, y) ≈ t−(1−ε).

3. For x, y ∈ E0 ∪ E2, and t ≥ 1,

c

t3/2
e−C

d(x,y)2

t ≤ p(t, x, y) ≤
c

t3/2
e−C

d(x,y)2

t . (6.11)

In (6.9), the contributions of both ends R1 and R3 to the long time behavior of the heat
kernel on M are of the same order t−3/2. This may seem surprising in view of the heat kernel
estimates (1.6)-(1.7) for the manifold Rn#Rm with n,m > 2, which contains both terms t−n/2

and t−m/2. The explanation is that what counts for the manifold R1#R3 is the heat kernel
long time behavior on R̃1 rather than that on R1. On R̃1, we have Ṽ1(r) ≈ r3 and therefore a
heat kernel behavior of order t−3/2. This effect was first observed by E.B.Davies [25] in a model
situation of a one-dimensional complex.
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Example 6.12 Let us now generalize the previous example and describe a situation where the
formulas (6.4), (6.7) and (6.8) can be simplified. Assume that, for r large enough and i ∈ I (i.e.,
Ei is a parabolic end),

∫ r2

1

ds

Vi(
√
s)
≈

r2

Vi(r)
. (6.12)

Then, for r large enough, we have

ηi(r) ≈
r2

Vi(r)
, Ṽi(r) ≈

r4

Vi(r)

Ṽix(x, r) ≈

(
|x|4

Vi(|x|)2
+

r4

Vi(r)2

)

Vix(x, r)

H̃(x, t) ≈ |x|−2 Vix(|x|).

For example, (6.12) holds if Vi(r) ≈ rαi with 0 < αi < 2 in which case we obtain

ηi(r) ≈ r2−αi , Ṽi(r) ≈ r4−αi = rα
∗
i

Ṽix(x, r) ≈
(
|x|4−2αix + r4−2αix

)
Vix(x, r)

≈ (|x|2α
∗
ix
−4 + r2α∗ix−4)Vix(x, r)

H̃(x, t) ≈ |x|αi−2 = |x|2−α
∗
i

where
α∗i := 4− αi.

We see that Ṽi(r) and H̃(x, t) behave like the corresponding functions on a non-parabolic mani-
fold with volume growth rα

∗
i . Hence, to some extent, the parabolic manifold with volume growth

rαi can be regarded as dual to the non-parabolic manifold with volume growth rα
∗
i . This leads

to the following statement.

Corollary 6.13 Referring to the setting of Theorem 6.6, assume further that for each manifold
Mi there is a positive real ni 6= 2 such that Vi(r) ≈ rni for r ≥ 1. Set

n∗i :=

{
4− ni, ni < 2
ni, ni > 2

and
n := min

1≤i≤k
n∗i .

1. If x ∈ E0 ∪ Ei, y ∈ E0 ∪ Ej, 1 ≤ i 6= j ≤ k, and t ≥ 1 then

p(t, x, y) ≤ C

(
1

tn/2 |x|n
∗
i−2 |y|n

∗
j−2

+
1

tn
∗
j/2 |x|n

∗
i−2

+
1

tn
∗
i /2 |y|n

∗
j−2

)

× |x|(2−ni)+ |y|(2−nj)+ exp

(

−c
d2(x, y)

t

)

(6.13)

and

p(t, x, y) ≥ c

(
1

tn/2 |x|n
∗
i−2 |y|n

∗
j−2

+
1

tn
∗
j/2 |x|n

∗
i−2

+
1

tn
∗
i /2 |y|n

∗
j−2

)

× |x|(2−ni)+ |y|(2−nj)+ exp

(

−C
d2(x, y)

t

)

. (6.14)
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2. If x, y ∈ Ei, 1 ≤ i ≤ k, and t ≥ 1 then

p(t, x, y) ≤
C(|x||y|)(2−ni)−

tn/2
exp

(

−c
|x|2 + |y|2

t

)

(6.15)

+

(
C |x| |y|

(|x|+
√
t)(|y|+

√
t)

)(2−ni)+ 1
√
Vi(x,

√
t)Vi(y,

√
t)

exp

(

−c
d2(x, y)

t

)

and

p(t, x, y) ≥
c(|x||y|)(2−ni)−

tn/2
exp

(

−C
|x|2 + |y|2

t

)

(6.16)

+

(
c |x| |y|

(|x|+
√
t)(|y|+

√
t)

)(2−ni)+ 1
√
Vi(x,

√
t)Vi(y,

√
t)

exp

(

−C
d2(x, y)

t

)

.

In particular, (6.13)-(6.14) gives (1.6)-(1.7) and (1.14)-(1.15) for the manifold

RN1#RN2#...#RNk

when all Ni are larger than 2. The estimate (6.9) for the manifold R1#R3 is also a straight-
forward consequence of (6.13)-(6.14). Similarly, (6.15)-(6.16) gives (1.19)-(1.20). It also gives
(6.10)-(6.11) for R1#R3 although in that case there are additional simplifications due to the
similarity of the behavior of both ends.

The long time asymptotic in Corollary 6.13 is determined by the term t−n/2 where n =
mini n

∗
i . This was noticed by Davies [25] for an one-dimensional complex, modelling manifolds

with ends. If ni > 2 for all i = 1, . . . k then n/2 can be interpreted as the exponent of the largest
heat kernel of the Mi’s. However, in general this is not true. It turns out that t−n

∗
i /2 is the

long time decay rate of the Dirichlet heat kernel of Ei, that is, the heat kernel on Ei with the
vanishing boundary condition on ∂Ei. Therefore, the term t−n/2 is determined in general by the
largest Dirichlet heat kernel on the Ei’s. In fact, we have used precise estimates of the Dirichlet
heat kernel on each Ei as crucial tools for the proof of the results described above.

Assume that x ∈ Ei, y ∈ Ej , 1 ≤ i 6= j ≤ k. Consider the long time asymptotic regime
|x| ≤ η(t), |y| ≤ η(t) where η is a positive function going to infinity slower than any positive
power of t (see (1.9)). In this case, Corollary 6.13 gives

p(t, x, y) ≈
q(x, y)

tn/2

with

q(x, y) = |x|(2−ni)+ |y|(2−nj)+ ×






|y|2−n
∗
j if n = n∗j < n∗i ,

|x|2−n
∗
i if n = n∗i < n∗j

|x|2−n
∗
i + |y|2−n

∗
j if n = n∗i = n∗j ,

|x|2−n
∗
i |y|2−n

∗
j if n < min{n∗i , n

∗
j}.

This generalizes (1.17) which treats the case where all ni are greater than 2.
Next consider the medium time asymptotic regime when |x| , |y| ≈

√
t and t → ∞. In this

case Corollary 6.13 gives

p(t, x, y) ≈ t[(2−ni)++(2−nj)+−n∗i−n
∗
j+2]/2. (6.17)
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If both ni, nj are greater than 2 then (6.17) gives p(t, x, y) ≈ t−(ni+nj)/2+1 as in (1.13). Similarly,
if both ni, nj are less than 2 (in this case there must be another end that is non-parabolic) then

(6.17) becomes p(t, x, y) ≈ t−(n∗i+n∗j )/2+1. However, if ni < 2 and nj > 2 then (6.17) gives
p(t, x, y) ≈ t−nj/2. Thus, in this third case, the medium time asymptotic is determined only by
the larger end, in contrast to the previous two cases where both ends contribute.

However, the most interesting paradoxical effect in (6.13)-(6.14) occurs if ni < 2, nj > 2,
|x| ≈

√
t, and |y| ≈ 1. In this case, the middle term in (6.13)-(6.14) dominates and gives

p(t, x, y) ≈ t−1, (6.18)

regardless of the exponents ni, nj ! Therefore, if x moves away at the rate
√
t in a parabolic end

and y stays in E0, then p(t, x, y) ≈ t−1 is larger than p(t, y, y) ≈ p(t, u, v), u, v ∈ E0, since the
latter satisfies p(t, u, v) ≈ t−n/2. Note that p(t, x, x) ≈ t−ni/2 in this situation. The explanation
is that if x and y are close to the central part and t is large then the process Xt started at
x tends to escape to infinity within the larger end so that its chances to loop back to y are
relatively small. On the contrary, if Xt starts at the point x located at the smaller end at the
distance

√
t from the central part, then it cannot escape to infinity within this end because of

its parabolicity. Hence, it moves towards the central part and hits y in time t with a higher
probability. Note that, in this type of heuristic explanation, it is easy to forget that p(t, x, y) is
symmetric!

To describe what the above estimates say concerning the approximate hot spot for fixed x

and large t, consider the function

H(y) =
p(t, x, y)

supy′ p(t, x, y
′)
.

• If all manifolds Mi are non-parabolic then H (y) ≈ 1 on the set

{|y| ≈ 1} ∪
⋃

{i:ni=m}

{
y ∈ Ei : |y| ≤ C

√
t
}

where m = minni (see Fig. 16). Moreover, in this region

p (t, x, y) ≈
1

V0

(√
t
) ≈

1

tm/2
≈ p (t, x, x) .

• If some Mi are parabolic and some non-parabolic then H (y) ≈ 1 on the set

⋃

{i∈I:ni=m}

{
y ∈ Ei : |y| ≈

√
t
}
,

where m = minni (see Fig. 17). Moreover, in this region

p (t, x, y) ≈
1

t
�

1

tn/2
≈ p (t, x, x) .

Example 6.14 Let us take M1 = R2 and M2 = R3. For r > 2 and |x| > 2, we have

V1(r) ≈ r2, V2(r) ≈ r3,
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x

ni

m

nj

|y| C t
_

Figure 16: Non-parabolic case: the highest temperature (up to a constant factor) is attained in
the shaded area.

ni

m

nj

|y| t
_

x

Figure 17: Mixed case: the highest temperature (up to a constant factor) is attained in the
shaded area.
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h1(x) ≈ log(1 + |x|), h2(x) ≈ 1,

Ṽ1(r) ≈ r2 log2(2 + r), Ṽ2(r) ≈ r3,

Ṽ0(r) = min(Ṽ1(r), Ṽ2(r)) ≈ r2 log2(2 + r),

and
Ṽ1(x, r) ≈ [log2(2 + |x|) + log2(2 + r)]r2, Ṽ2(x, r) ≈ r3.

We first discuss the case where x ∈ E1, y ∈ E2. Then, for t > 1, we have H̃(y, t) ≈ |y|−1

whereas

H̃(x, t) ≈
1

log2(1 + |x|)
+

(
1

2 log(1 + |x|)
−

1

log(1 + t)

)

+

.

Hence, for such x, y, t, we obtain

p(t, x, y) ≤ C

(
log(1 + |x|)

|y| t log2(1 + t)
+

1

t3/2

[
1

log(1 + |x|)
+

(
1

2
−

log(1 + |x|)
log(1 + t)

)

+

])

e−c
d2(x,y)

t ,

p(t, x, y) ≥ c

(
log(1 + |x|)

|y| t log2(1 + t)
+

1

t3/2

[
1

log(1 + |x|)
+

(
1

2
−

log(1 + |x|)
log(1 + t)

)

+

])

e−C
d2(x,y)

t .

In particular, for fixed x, y, the long time asymptotic is given by

p(t, x, y) ≈
1

t log2 t
.

The medium time asymptotic when |x| ≈ |y| ≈
√
t is given by

p(t, x, y) ≈
1

t3/2 log t
.

If instead |x| ≈
√
t and |y| ≈ 1 then (compare with (6.18))

p(t, x, y) ≈
1

t log t
.

Next, assume that x, y ∈ E1 with |x|, |y| ≤ C
√
t. Then we have

p(t, x, y) ≈
log(1 + |x|) log(1 + |y|)

t log2 t
.

Finally, if x, y ∈ E2 and |y| ≤ |x| ≤ C
√
t, then

p(t, x, y) ≈
1

|y|t log2 t
+

1

t3/2
.

Example 6.15 Our last example is M = R1#R2#R3 (this is essentially the same as the
manifold with boundary on Fig. 2). For this example, we will only write down the long time
and medium time estimates. The various functions entering the inequalities of Theorem 6.6
have been already computed in the previous examples. The long time asymptotic for any fixed
x, y ∈M is given by

p(t, x, y) ≈
1

t log2 t
.
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Setting Mi = Ri, we obtain for the medium time regime |x| ≈ |y| ≈
√
t, that

p(t, x, y) ≈






t−1/2 if x, y ∈ E1

t−1 if x, y ∈ E2

(t log t)−1 if x ∈ E1 ∪ E3, y ∈ E2

t−3/2 if x ∈ E1 ∪ E3, y ∈ E3

.

If |x| ≈ 1 and |y| ≤ C
√
t, we get

p(t, x, y) ≈






1
t

(
1

log2 t
+ |y|√

t

)
if y ∈ E1

1+log|y|
t log2 t

if y ∈ E2

1
t

(
1√
t

+ 1
|y| log2 t

)
if y ∈ E3.

This proves the estimates (1.21) from the Introduction and allows to allocate the approximate
hot spots as follows. For fixed x, t, set again

H (y) =
p (t, x, y)

supy′ p (t, x, y′)
.

Then, for large enough t, we have the following (see Fig. 18):

• H (y) ≈ 1 occurs only in the annulus E1 ∩
{
|y| ≈

√
t
}

so that the approximate hot spot
contains such an annulus and is contained in one.

• H (y) ≈ 1
log t on E1 ∩

{
|y| ≈

√
t

log t

}
and on E2 ∩ {log y ≈ log t} (for y ∈ E2 this is the

approximate maximal value of H).

• H (y) ≈ 1
log2 t

on {|y| ≈ 1} (for y ∈ E3 this is the approximate maximal value of H).

x

3

1

2

|y| t , (y) 1
_

|y| t /log t
_

|y| 1

log|y| log t

(y) 1/log t

(y) 1/log2 t

Figure 18: The approximate hot spot (darkest shade) and other relatively hot regions on the
manifold R1#R2#R3.
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7 The homogeneous parabolic case

In this section we consider a very restricted class of parabolic manifolds with ends for which the
results from [38], [39], and Theorem 3.5 suffice to obtain sharp two-sided bounds (an example of
such a manifold is the catenoid). Let M = M1# . . .#Mk be a connected sum of complete non-
compact weighted manifolds. We assume that each Mi satisfies (PH), (RCA) and is parabolic.
We assume further that M is homogeneous in the sense that, for any i, j ∈ {1, . . . , k} and all
r > 0, we have

Vi(r) ≈ Vj(r) ≈ V0(r). (7.1)

Thus all the ends Mi of M have essentially the same volume growth. In this case, set

η(r) = 1 +

(∫ r2

1

ds

V0(
√
s)

)

+

,

Q(x, t) =
|x|2

η(|x|)V0(|x|)
+

1

η(
√
t)

(∫ t

|x|2

ds

V0(
√
s)

)

+

,

and

D(x, t) =
η(|x|)

η(|x|) + η(
√
t)
.

With this notation, we have the following result.

Theorem 7.1 Let M = M1# . . .#Mk be a connected sum of complete non-compact weighted
manifolds. Assume that M is parabolic and that each Mi satisfies (PH), (RCA). Assume
further that M satisfies (7.1). Referring to the notation introduced above, the heat kernel on M

satisfies, for all x, y ∈M and t > 0,

p(t, x, y) ≤
C

V0(
√
t)

(Q(x, t)Q(y, t) +Q(x, t)D(y, t) +D(x, t)Q(y, t)) exp

(

−c
d+(x, y)2

t

)

+
CD(x, t)D(y, t)

√
V (x,

√
t)V (y,

√
t)

exp

(

−c
d∅(x, y)2

t

)

and

p(t, x, y) ≥
c

V0(
√
t)

(Q(x, t)Q(y, t) +Q(x, t)D(y, t) +D(x, t)Q(y, t)) exp

(

−C
d+(x, y)2

t

)

+
cD(x, t)D(y, t)

√
V (x,

√
t)V (y,

√
t)

exp

(

−C
d∅(x, y)2

t

)

.

Proof. For any fixed t0 and t ∈ (0, t0) these bounds reduce to the two-sided estimate
given by Lemma 5.9. For t > t0, using the local Harnack inequality provided by Lemma 5.9,
it suffices to consider the case where |x|, |y| are large enough. In this case, we either have
d(x, y) ≈ d+(x, y) ≈ |x| + |y| or d(x, y) ≈ d∅(x, y) depending on whether or not x, y are in
different ends.

In order to use Theorem 3.5, we need two-sided estimates for the following quantities:

1. p(t, u, v) when |u|, |v| are bounded;
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2. ψ(t, x) when |x| is large enough;

3. ψ′(t, x) when |x| is large enough.

4. pEi(t, x, y) when |x|, |y| are large enough, x, y ∈ Ei.

Here ψ is the hitting probability for the central part K of M and pEi is the Dirichlet heat
kernel in the end Ei.

We start with point 1. Because, by hypothesis, the volume functions Vi, i ∈ {1, . . . , k} are
all comparable, Theorems 5.1(2) and 4.5 show that the manifold M has the doubling volume
property (V D) and satisfies the relative Faber-Krahn inequality (4.3) for some α > 0. In
particular, it follows from Theorem 4.1 that, for all t > t0 and |u|, |v| bounded,

p(t, u, v) ≤
C

V0(
√
t)
. (7.2)

By [18, Theorem 7.2], we also have the matching lower bound

p(t, u, v) ≥
c

V0(
√
t)
. (7.3)

Note that the above argument strongly uses the homogeneity hypothesis, i.e., the fact that all
ends have comparable volume growth. Without this hypothesis, Theorem 4.5 does not provide
a sharp central upper bound when M is parabolic. Under the present hypotheses, (7.2)-(7.3)
takes care of point 1 above.

For points 2 and 3, i.e., two-sided bounds on ψ(t, x) and ψ′(t, x), observe that the problem
is localized to each of the different ends, separately. The desired two-sided bounds are given in
[39, Theorem 4.6].

Finally, a two-sided bound on the Dirichlet heat kernel of each end is provided by [38,
Theorem 4.27], taking care of point 4.

Given those results, the rest of the proof of Theorem 7.1 reduces to bookkeeping and we
omit the details.

We will illustrate Theorem 7.1 with two different examples.

Example 7.2 Consider the connected sum R2#R2 of two Euclidean planes (the same estimates
apply to the catenoid). The hypotheses of Theorem 7.1 are satisfied and η(r) ≈ log(2+r). Hence,

Q(x, t) ≈
1

log(2 + |x|)
+

(
1

2
−

log(2 + |x|)
log(2 + t)

)

+

and

D(x, t) ≈
log(2 + |x|)

log(2 + |x|) + log(2 + t)
.

For all t > 0, and x, y in the same end Ei ∪ E0, i = 1 or 2, we obtain

c

t
exp

(

−C
d(x, y)2

t

)

≤ p(t, x, y) ≤
C

t
exp

(

−c
d(x, y)2

t

)

.

Indeed, for t ∈ (0, 1), this follows from Lemma 5.9. Fix ε ∈ (0, 1/2). If t ≥ 1 and |x|, |y| ≥ tε,
then the term involving d∅ dominates (essentially) and gives the desired two-sided bound. If
|x| ≤ tε and |y| ≥ tε then Q(x, t) ≈ 1 ≈ D(y, t) whereas if |x|, |y| ≤ tε then D(x, t) ≈ 1 ≈ D(y, t).
In these two cases, the term involving d+ dominates (essentially) and gives the desired result.
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For t ≥ 1, x ∈ E1, y ∈ E2 and |x|, |y| ≤ C
√
t, we have

p(t, x, y) ≈
C

t
(Q(x, t)D(y, t) +D(x, t)Q(y, t) +Q(x, t)Q(y, t)) .

In particular, for t ≥ 1, x ∈ E1, y ∈ E2 and |x|, |y| ≈
√
t, we have

p(t, x, y) ≈
1

t log t

because

D(x, t) ≈ D(y, t) ≈ 1, Q(x, t) ≈ Q(x, t) ≈
1

log(2 + t)
.

For t ≥ 1, x ∈ E1, |y| ∈ E2 and |x| ≈
√
t, |y| ≈ tε, ε ∈ [0, 1/2), we have

p(t, x, y) ≈
1

t

because Q(y, t) ≈ 1 and D(x, t) ≈ 1.

Example 7.3 In our second example, we assume that the function V0 satisfies the following
additional condition ∫ r2

1

ds

V0(
√
s)
≤ C

r2

V0(r)
. (7.4)

In particular, (7.4) is satisfied when V0(r) ≈ rα, r > 1, for a real α ∈ (0, 2).

Corollary 7.4 Under the hypotheses of Theorem 7.1, assume further that V0 satisfies (7.4).
Then, for all x, y ∈M and t > 0, the heat kernel satisfies (ULE), that is,

c

V (x,
√
t)

exp

(

−C
d(x, y)2

t

)

≤ p(t, x, y) ≤
C

V (x,
√
t)

exp

(

−c
d(x, y)2

t

)

. (7.5)

and M satisfies the parabolic Harnack inequality (PH).

Proof. Although (7.5) can be proved by inspection of the upper and lower bound in Theorem
7.1, it is simpler to first observe that the upper bound immediately follows from Corollary 4.6.
Indeed, under the hypothesis that each Mi satisfy the volume doubling property and that (7.1)
holds, the function F defined at (4.13) satisfy

F (x, r) ≈ V (x, r).

Indeed, if the ball B(x, r) is contained in one of the ends Ei then F (x, r) = V (x, r) by definition.
If not, then B(x, r)∩K 6= ∅ and it follows that F (x, r) = V0(r) ≈ V (x, r) because of the doubling
property. Now the upper bound in (7.5) follows immediately from (4.5) and Corollary 4.6. Note
that we have not used the additional hypothesis (7.4) to prove this upper bound.

For t ≤ t0, the matching lower bound follows from Lemma 5.9.
To prove the matching lower bound for t ≥ t0 we use Theorem 7.1. Observe that (7.4)

implies

η(r) ≈ 1 +
r2

V (r)
, Q(x, t) ≈ 1.
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By Theorem 7.1, this implies that for |x| ≤
√
t

p(t, x, y) ≥
c

V0(
√
t)

exp

(

−c
|x|2 + |y|2

t

)

.

By the volume inequality (4.5), this gives

p(t, x, y) ≥
c

V (x,
√
t)

exp

(

−C
|x|2 + |y|2

t

)

.

As d(x, y) ≥ |y|2 − |x|2 − diam(K), the last inequality implies (7.5) if |x| ≤
√
t. By symmetry,

we can now assume that |x| and |y| are larger than
√
t and thus D(x, t) ≈ D(y, t) ≈ 1. If x, y

are in the same end, then d∅(x, y) ≈ d(x, y) whereas if they are in different ends, d+(x, y) ≈
d(x, y) ≈ |x|+ |y|. In the first case, the lower bound in (7.5) follows directly from the bounds of
Theorem 7.1 using the term involving d∅. In the second case, it follows from (4.5) and Theorem
7.1, using the term involving d+. This finishes the proof of (7.5).

The fact that M satisfies (PH) follows from (7.5) and Theorem 5.1.
The statement of Corollary 7.4 was proved by a different method in [40, Theorem 7.1].

8 One-dimensional Schrödinger operator

In this section we apply our main result to estimate the heat kernel q (t, x, y) of the operator
d2

dx2 − Φ in R where Φ is a smooth non-negative function on R. Assume that there is a smooth
positive function h in R satisfying the equation h′′ −Φh = 0. Let λ be the Lebesgue measure in
R and µ be a measure in R defined by

dµ = h2dλ. (8.1)

It is easy to verify the following identity

d2

dx2
− Φ = h ◦ L ◦ h−1 (8.2)

where

L =
1

h2

d

dx

(

h2 d

dx

)

is the Laplace operator for the weighted manifold (R, µ) (cf. the discussion in Section 6.2). This

implies that the operator d2

dx2 −Φ in L2 (R, λ) is unitary equivalent to the operator L in L2 (R, µ).
Consequently, if p (t, x, y) is the heat kernel for L then we have the identity

q (t, x, y) = p(t, x, y)h (x)h (y) . (8.3)

The manifold (R, µ) can be considered as a connected sum of (R+, µ) and (R−, µ). If (R+, µ)
and (R−, µ) satisfy (PH) and are non-parabolic, then the heat kernel p (t, x, y) can be estimated
by Theorems 4.9 and 5.10. This and (8.3) lead to the desired estimates of q (t, x, y).

A particularly interesting case, which received attention in literature is when Φ (x) = c |x|−2

for large x (see, e.g., [27], [49], [50], [65]). In this case, as we will see below, the exponent of
the long time decay of q (t, x, y) depends on c. In Rn, n ≥ 2, this problem is actually easier and
the result is simpler than in R1 because Rn satisfies (RCA) and the gluing techniques are not
necessary (see [36, Section 10.4]).

We start with the following lemma.
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Lemma 8.1 Let Φ (x) be a smooth function on R such that

0 ≤ Φ (x) ≤ C0 |x|
−2 ,

for some C0 > 0 and for all x ∈ R. Then the solution h of the initial value problem

h′′ − Φh = 0

h (0) = 1

h′ (0) = 0

is a smooth positive function on R, and there exists a constant C = C (C0) > 1 such that

C−1 ≤
h (x)

h (y)
≤ C (8.4)

for all x, y ∈ R of the same sign such that

1

2
|y| ≤ |x| ≤ 2 |y| . (8.5)

If in addition Φ (0) > 0 then there there exists a constant δ > 0 such that

h (x)

h (y)
≥ δ
|x|
|y|

(8.6)

for all x, y of the same sign such that |x| ≥ |y| ≥ 1.

Proof. Note that if h is positive on some interval then h is convex on this interval, due
to the equation h′′ = Φh. Since h is positive in a neighborhood of 0, there is a maximal open
interval I containing 0 where h is positive. It follows that h is convex in I and since h′ (0) = 0,
h increases in the positive part of I and decreases in the negative part of I. Hence, if I has a
finite end, then h will have a non-zero limit at that end, which contradicts the maximality of I.
Thus, I = R which finishes the proof of the positivity of h.

To prove (8.4), let us consider the function g = h′

h . It suffices to show that, for some constant
A,

|g (x)| ≤
A

|x|
(8.7)

because then we have, for positive x, y satisfying (8.5),

ln
h (x)

h (y)
=

∫ x

y

g (t) dt ≤ A ln
x

y
≤ A ln 2

whence (8.4) follows. Negative x, y are handled similarly.
We will prove (8.7) with A being the unique positive root of the equation

A2 −A = C0.

Assume that (8.7) is not true for some x > 0. Since (8.7) holds for x = 0, there is the minimal
a > 0 such that g (a) = A

a and g (x) > A
x in a right neighborhood of a, say in (a, b). It is easy

to see that g satisfies the equation
g′ + g2 = Φ. (8.8)
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It follows that in the interval (a, b)

g′ (x) = Φ (x)− g2 (x) ≤
C0 −A2

x2
= −

A

x2
.

Integrating this differential inequality from a to x ∈ (a, b), we obtain

g (x)− g (a) ≤ −A

(
1

a
−

1

x

)

,

whence

g (x) ≤
A

x
+ g (a)−

A

a
=
A

x
,

which contradicts the choice of the interval (a, b).
If Φ (0) > 0 then h′ (0) = 0 implies that h′ (x) > 0 for x > 0. Hence, also g (x) > 0 for x > 0.

It follows from (8.8) that in (0,+∞)
g′

g2
+ 1 ≥ 0.

Integrating this differential inequality, we obtain, for x ≥ 1,

1

g (x)
−

1

g (1)
≤ x− 1

whence

g (x) ≥
1

x+ α

where α =
(

1
g(1) − 1

)

+
. Using g = (lnh)′ and integrating again, we obtain, for all x ≥ y ≥ 1,

h (x)

h (y)
≥
x+ α

y + α
≥ δ

x

y

where δ = 1
1+α . The case x ≤ y ≤ −1 is handled similarly.

To state the next result, we will use the notation f � gc,C , which means that both inequalities
f ≤ gc,C and f ≥ gc,C hold but with different values of the positive constants c, C.

Theorem 8.2 Let Φ (x) be a smooth function on R such that

0 ≤ Φ (x) ≤ C0 |x|
−2 ,

for some C0 > 0 and for all x ∈ R and Φ (0) > 0, and let h (x) be defined as in Lemma 8.1.

Then the heat kernel q (t, x, y) of the operator d2

dx2 − Φ satisfies the estimates:

0. For all x, y ∈ R and 0 < t ≤ 1,

q(t, x, y) �
C
√
t

exp

(

−c
|x− y|
t

2
)

.

1. For all x ≤ 1, y ≥ −1, t ≥ 1,

q (t, x, y) �
C
√
t

(
h (y) (1 + |x|)

h (x)h2
(√
t
) +

h (x) (1 + |y|)

h (y)h2
(
−
√
t
)

)

exp

(

−c
|x− y|2

t

)

.
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2. For all x, y of the same sign σ such that |x| , |y| ≥ 1 and for all t ≥ 1,

q(t, x, y) �
C
√
t

|x| |y|
h (x)h (y)

(
1

h2
(√
t
) +

1

h2
(
−
√
t
)

)

exp

(

−c
|x|2 + |y|2

t

)

+
Ch (x)h (y)

√
th
(
x+ σ

√
t
)
h
(
y + σ

√
t
) exp

(

−c
|x− y|2

t

)

.

Proof. Define measure µ on R by (8.1). The main point of this proof is to estimate the
heat kernel p (t, x, y) of the weighted manifold (R, µ) and use it to estimate q (t, x, y) by (8.3).

Set M1 = M2 = [0,+∞) so that R = M1#M2 where we follows the agreement that M1

maps to the positive half-line of R and M2 maps to the negative half-line. Let the central part
be K = [−1, 1].

Define on Mi the function hi by

h1 (x) = h (x) , h2 (x) = h (−x) .

Then (R, µ) is a connected sum of (M1, µ1) and (M2, µ2) where dµi = h2
i dλ.

Since (Mi, λ), i = 1, 2, satisfies (PH) and (RCA), the weighted manifold (Mi, µi) also
satisfies (PH) because the function h is increasing in |x| and satisfies (8.4) (see [40, Theorem
5.7] and [38, Theorem 2.11]). The volume function Vi (x, r) on (Mi, µi) is estimated by

Vi (x, r) ≈ rh2
i (x+ r) , (8.9)

where the factor r comes from the volume of balls in (Mi, λ). It follows from (8.6) that hi (r) ≥ cr
for r ≥ 1 whence Vi (x, r) ≥ cr3 for r ≥ 1. By Proposition 4.3, this implies that (Mi, µi) is non-
parabolic.

Hence, all the hypotheses of Theorems 4.9, 5.10 are satisfied and we can apply these theorems
to estimate the heat kernel p (t, x, y) of (R, µ). Using the notation of Section 4.3, we have

Vi (r) ≈ rh2
i (r) , i = 1, 2

and
V0 (r) ≈ rmin (h1 (r) , h2 (r))2 .

Due to (8.6), we have

Vi (R)

Vi (r)
≥ c

(
R

r

)3

for R ≥ r ≥ 1. Therefore, the function H (x, t) defined in Section 4.4, can be estimated by (4.21)
as follows:

H (x, t) ≈
x2

Vi (|x|)
≈
|x|

h2 (x)
if |x| > 1 and x ∈Mi,

and
H (x, t) ≈ 1 if |x| ≤ 1.

Applying Corollaries 4.16, 5.18 for the cases 0 and 2 and Theorems 4.9, 5.10 for the case 1 (cf.
Remark 4.10), we obtain estimates for p (t, x, y), which by (8.3) imply the desired estimates for
q (t, x, y).
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Corollary 8.3 Let Φ (x) ≥ 0 for all x, Φ (0) > 0, and

Φ (x) =

{
α+ |x|

−2 , x > x0,

α− |x|
−2 , x < −x0,

where x0 > 0 and α+, α− are non-negative constants. Set

β± =
1

2
+

√
1

4
+ α± . (8.10)

Then the heat kernel q (t, x, y) of the operator d2

dx2 − Φ (x) satisfies the estimates:

0. For all x, y ∈ R and 0 < t ≤ 1,

q(t, x, y) �
C
√
t

exp

(

−c
|x− y|
t

2
)

.

1. For all x ≤ 1, y ≥ −1, t ≥ 1,

q (t, x, y) � C

(
〈x〉1−β−〈y〉β+

tβ++1/2
+
〈x〉β−〈y〉1−β+

tβ−+1/2

)

exp

(

−c
|x− y|2

t

)

.

where 〈·〉 = 1 + |·| .

2. For all x, y ≥ 1 and all t ≥ 1,

q(t, x, y) � C
|x|1−β+ |y|1−β+

tβ+1/2
exp

(

−c
|x|2 + |y|2

t

)

+
C

t1/2

(

1 +

√
t

|x|

)−β+
(

1 +

√
t

|y|

)−β+

exp

(

−c
|x− y|2

t

)

,

where β = min
(
β+, β−

)
. A similar estimate holds for x, y ≤ −1 with β− instead of β+.

Proof. Consider function f (x) = xγ for x > 0. It is easy to see that f ′′/f = γ (γ − 1)x−2.
Therefore, if γ2 − γ = α then f satisfies f ′′ − αx−2f = 0. For α > 0 this quadratic equation has
two roots

γ1 =
1

2
+

√
1

4
+ α and γ2 =

1

2
−

√
1

4
+ α

and γ1 > 0 > γ2. It follows that any solution to the equation u′′ − αx−2u = 0 on an interval
(a,+∞) is a linear combination of the functions xγ1 and xγ2 . This implies that either u (x) ∼
cxγ1 or u (x) ∼ cxγ2 as x→ +∞.

As a consequence, we obtain that the function h (x) from Lemma 8.1 satisfies

h (x) ≈ xβ+ on [1,+∞) and h (x) ≈ |x|β− on (−∞, 1],

where β+, β− are defined by (8.10). Substituting into Theorem 8.2, we finish the proof.
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9 Appendix - the list of conditions

(RFK) - relative Faber-Krahn inequality, Section 4.1,

(V D) - volume doubling, Introduction and Section 4.1,

(PI) - Poincaré inequality, Introduction and Section 5.1,

(PH) - parabolic Harnack inequality, Section 5.1,

(ULE) - upper and lower estimates of the heat kernel, Section 5.1,

(RCA) - relative connectedness of annuli, Section 6.1.
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