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Classical heat kernel

The heat kernel in Rn is the fundamental solution of the heat equation ∂tu = Δu:

pt (x) = 1

(4πt)n/2 exp
(
− |x|2

4t

)
.

This function is also called the Gauss-Weierstrass function. Some applications:

• Solving the Cauchy problem: u (t, ∙) = pt ∗ f .

• Mollification of functions: pt ∗ f → f as t → 0 locally uniformly provided f ∈ Cb (R).

• Proof of Sobolev embedding theorems.

• pt (x) is the Gauss distribution in Rn and

the transition density of Brownian motion:

P(Xt ∈ A) =
∫

A
pt(x)dx.

• Approximation of the Dirichlet integral:

for any f ∈ W 1,2(Rn) we have

∫

Rn

|∇f |2 dx = lim
t→0

1

2t

∫

Rn

∫

Rn

pt (x − y) |f (x) − f (y)|2 dxdy.
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Heat kernels on manifolds

Let M be a complete non-compact Riemannian manifold. The Laplace-Beltrami operator
Δ on M possesses the heat equation : the smallest positive fundamental solution pt(x, y) of
the heat equation ∂tu = Δu that is a smooth function of t > 0 and x, y ∈ M .

On any manifold, the heat kernel satisfies the following Varadhan asymptotics :

log pt(x, y) ∼ −
d2(x, y)

4t
as t → 0+,

where d is the geodesic distance. It also satisfies the upper bound of Davies-Gaffney : for
any disjoint measurable subsets A and B of M,

∫

A

∫

B

pt(x, y)dμ(x)μ(y) ≤
√

μ(A)μ(B) exp

(

−
d2(A,B)

4t

)

where μ is the Riemannian measure.
If RicciM ≥ 0 then the heat kernel admits two sided pointwise Gaussian estimates of Li–Yau :

pt (x, y) �
C

μ(B
(
x,
√

t
)
)
exp

(

−c
d2 (x, y)

t

)

,

where B(x, r) denotes geodesic ball. We see that the heat kernel on the Euclidean spaces
and manifolds exhibits the following space/time scaling: time=distance2.

2



Analysis on metric spaces: integration

Since the time of Newton and Leibniz, mathematical analysis consists of differentiation and
integration. By Lebesgue, integration amounts to construction of a measure.

Let (M,d) be a metric space and μ be a Borel measure on M . We always assume that M is
α-regular, that is, for any metric ball B(x, r) := {y ∈ M : d(x, y) < r} of radius r < r0,

μ (B (x, r)) ' rα, (1)

where α > 0. It follows from (1) that α is the Hausdorff dimension of M and Hα ' μ.

Hence, in some sense, α is a numerical characteristic of the integral calculus on M .

α-regular spaces with fractional α are usually called fractals.

Fractals first appeared in mathematics as curious examples

that initially served as counterexamples to illustrate various

theorems (like the Cantor set).

Here is a connected fractal set – Sierpinski gasket :
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Three steps of

construction of SG:

α = log 3
log 2

≈ 1.58.

Sierpinski carpet

and two steps of

construction of SC:

α = log 8
log 3

≈ 1.89.

Vicsek snowflake

and three steps of

construction of VS:

α = log 5
log 3

≈ 1.46,
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Analysis on metric spaces: differentiation

On certain metric spaces, including fractal spaces, it is possible to construct a Laplace-type
operator, by means of the theory of Dirichlet forms (Beurling–Deny and Fukushima).
A Dirichlet form in L2 (M,μ) is a pair (E ,F) where F is dense subspace of L2 (M,μ) and E
is a symmetric bilinear form on F with the following properties:

• It is positive definite, that is, E (f, f) ≥ 0 for all f ∈ F .

• It is closed, that is, F is complete with respect to the norm
∫

M

f 2dμ + E (f, f) .

• It is Markovian, that is, if f ∈ F then f̃ := min(f+, 1) ∈ F and E(f̃ , f̃) ≤ E (f, f).

Any Dirichlet form has the generator: a positive definite self-adjoint operator L in L2(M,μ)
with domain dom (L) ⊂ F such that (Lf, g) = E (f, g) for all f ∈ dom (L) and g ∈ F .

For example, the Dirichlet integral

E(f, f) =

∫

Rn

|∇f |2 dx (2)

is the quadratic part of a Dirichlet form (E ,F) with domain F = W 1
2 (Rn). Its generator is

L = −Δ with dom (L) = W 2
2 (Rn) .
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Another example of a Dirichlet form in Rn:

E(f, f) =

∫

Rn

∫

Rn

(f (x) − f (y))2

|x − y|n+s dxdy, (3)

where s ∈ (0, 2) and F = B
s/2
2,2 (Rn) . Its generator is L = (−Δ)s/2 .

The generator L of any Dirichlet form determines the heat semigroup {e−tL}t≥0 in L2(M,μ).

If the operator e−tL for t > 0 is an integral operator:

e−tLf (x) =

∫

M

pt(x, y)f(y)dμ(y) for all f ∈ L2,

then its integral kernel pt(x, y) (that is ≥ 0) is called the heat kernel of L.

A Dirichlet form (E ,F) is called strongly local if E(f, g) = 0 whenever

f = const in a neighborhood of supp g.

For example, the Dirichlet form (2) is strongly

local, while the Dirichlet form (3) is non-local.
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The local Dirichlet form (2) with the generator L = −Δ has the heat kernel

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

. (4)

The non-local Dirichlet form (3) with the generator L = (−Δ)s/2 has the heat kernel that
admits the following estimate:

pt(x, y) '
1

tn/s

(

1 +
|x − y|

t1/s

)−(n+s)

. (5)

In the special case s = 1 the heat kernel of (−Δ)1/2 coincides with the Cauchy distribution
with the scale parameter t:

pt(x, y) =
cnt

(
t2 + |x − y|2

)n+1
2

=
cn

tn

(

1 +
|x − y|2

t2

)−n+1
2

,

where cn = Γ
(

n+1
2

)
/π(n+1)/2.
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A Dirichlet form (E ,F) is called regular if F ∩ C0 (M) is dense both in F and C0 (M). For
example, the both Dirichlet forms (2) and (3) are regular.

Any regular Dirichlet form (E ,F) determines a Markov processes {Xt}t≥0 on M with the

transition semigroup e−tL, which means that

Exf (Xt) = e−tLf (x) for all f ∈ C0 (M) and t ≥ 0.

If the heat kernel of (E ,F) exists then it

serves as the transition density of {Xt}:

Px(Xt ∈ A) =

∫

A

pt(x, y)dμ(y),

for any Borel set A ⊂ M and t > 0.

If (E ,F) is local then {Xt} is a diffusion process (=with continuous trajectories), while
otherwise the trajectories of the process {Xt} contain jumps.

For example, the local Dirichlet form (2) with the generator L = −Δ determines Brownian
motion in Rn with the transition density (4).

The non-local Dirichlet form (3) with the generator L = (−Δ)s/2 determines a symmetric
stable Levy process in Rn of the index s with the transition density (5).
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If a metric measure space M possesses a strongly local regular Dirichlet form (E ,F) then its
generator L can be regarded as an analogue of the Laplace operator; hence, it determines in
some sense differential calculus on M .

Nontrivial strongly local regular Dirichlet forms have been successfully constructed on large
families of fractals, in particular, on SG by Barlow–Perkins ’88, Goldstein ’87 and Kusuoka
’87, on SC by Barlow–Bass ’89 and Kusuoka–Zhou ’92, on p.c.f. fractals (including VS ) by
Kigami ’93.

Each of these fractals can be regarded as limit of a sequence of approximating graphs Γn.

Approximating graphs Γ1, Γ2, Γ3 for SG
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Define on each Γn a Dirichlet form En by

En (f, f) =
∑

x∼y

(f (x) − f (y))2

(where x ∼ y denotes neighboring vertices on Γn), and then consider a scaled limit

E (f, f) = lim
n→∞

RnEn (f, f) (6)

with an appropriate renormalizing sequence {Rn} .
The main difficulty is to ensure the existence of {Rn} such that this limit exists in (0,∞)
for a dense in L2 family of functions f .
For p.c.f. fractals one chooses Rn = ρn where, for example, ρ = 5

3
for SG and ρ = 3 for VS,

and the limit in (6) exists due to monotonicity.

For SC the situation is much harder. Initially a strongly local Dirichlet form on SC was
constructed by Barlow and Bass ’89 in a different way by using a probabilistic approach.
After a work of Barlow, Bass, Kumagai and Teplyaev ’10 it became possible to claim that
the limit (6) exists for a certain sequence {Rn} such that Rn ' ρn, where the exact value of
ρ is still unknown. Numerical computation indicates that ρ ≈ 1.25.
Other methods of constructing a strongly local Dirichlet form on SC were proposed by
Kusuoka and Zhou ’92 and AG and M.Yang ’19.
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Walk dimension

In all the above examples of fractals, the strongly local Dirichlet form possesses the heat
kernel that satisfies the following sub-Gaussian estimate:

pt(x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(7)

(where C, c > 0), for all x, y ∈ M and t ∈ (0, t0) (Barlow–Perkins ’88, Barlow–Bass ’92).

Here α is the Hausdorff dimension of the underlying metric space (M,d) while β is a new
parameter that is called the walk dimension. It can be regarded as a numerical characteristic
of the differential calculus on M that is determined by the generator L.

It is known that always β ≥ 2. Moreover,

for any pair of reals α ≥ 1 and β ∈ [2, α + 1]

there exists a geodesic metric measure space

with the heat kernel satisfying (7)

(Barlow ’04).

Hence, we obtain a large family of regular metric measure spaces that are characterized by
a pair (α, β) , where α is responsible for integration while β is responsible for differentiation.
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The Euclidean space Rn belongs to this family with α = n and β = 2 (in the case β = 2 the
estimate (7) becomes Gaussian).

On fractals the values of β is determined by the scaling parameter ρ. It is known that:

- on SG : β = log 5
log 2

≈ 2.32 (and α = log 3
log 2

≈ 1.58)

- on VS : β = log 15
log 3

≈ 2.46 (and α = log 5
log 3

≈ 1.46)

- on SC : β = log(8ρ)
log 3

≈ 2.10 (and α = log 8
log 3

≈ 1. 89).

The walk dimension β has the following probabilistic meaning.

For any open set Ω ⊂ M , denote by τΩ

the first exit time of diffusion Xt from Ω:

τΩ = inf {t > 0 : Xt /∈ Ω} .

It is known that if (7) holds, then for any
ball B (x, r) with r < r0,

ExτB(x,r) ' rβ.

That is, we have fractal scaling time=distanceβ

that is different from Euclidean time=distance2.

12



Besov spaces characterization of β

Given an α-regular metric measure space (M,d, μ) , it is possible to define a family Bσ
p,q of

Besov spaces, where p, q ∈ [1,∞], σ > 0. Here we need only the following special cases: for
any σ > 0 the space Bσ

2,2 consists of functions f ∈ L2(M,μ) such that

‖f‖2
Ḃσ

2,2
:=

∫ ∫

M×M

|f(x) − f(y)|2

d(x, y)α+2σ
dμ(x)dμ(y) < ∞,

and Bσ
2,∞ consists of functions f ∈ L2(M,μ) such that

‖f‖2
Ḃσ

2,∞
:= sup

0<r<r0

1

rα+2σ

∫ ∫

{d(x,y)<r}

|f(x) − f(y)|2 dμ(x)dμ(y) < ∞.

It is easy to see that the space Bσ
2,2 shrinks as σ increases. Define

σ∗ = sup{σ > 0 : Bσ
2,2 is dense in L2} . (8)

If σ < 1 then Bσ
2,2 contains all Lipschitz functions with compact support. Hence, σ∗ ≥ 1.

In Rn, if σ > 1 then Bσ
2,2 = {0} so that σ∗ = 1. On most fractal spaces σ∗ > 1.
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Theorem 1 (AG, Jiaxin Hu, Ka-Sing Lau) Let (E ,F) be a strongly local Dirichlet form on
(M,d, μ) such that its heat kernel exists and satisfies the sub-Gaussian estimate

pt(x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(9)

with some α and β. Then the following is true:
(a) the space M is α-regular (consequently, α = dimH M and μ ' Ha);
(b) β = 2σ∗ (consequently, β ≥ 2);
(c) F = Bσ∗

2,∞ and E(f, f) ' ‖f‖2
Ḃσ∗

2,∞
.

Corollary 2 Both α and β in (9) are the invariants of the metric structure (M,d) alone.

Indeed, σ∗ is defined by using metric d and measure μ, while in this case μ ' Hα is also
determined by d. Therefore, σ∗ and β are also invariants of the metric space (M,d).

Note that σ∗ is defined by (8) for any regular metric space. In the view of Theorem 1, we
redefine now the notion of the walk dimension by setting

β := 2σ∗ .

Hence, β is the second invariant of a regular metric space after the Hausdorff dimension α.
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Here is a classification of regular metric spaces according to their walk dimension .

A metric space (M,d) is called ultra-metric if it satisfies a stronger triangle inequality

d(x, y) ≤ max (d (x, z) , d (y, z)) for all x, y, z ∈ M.

Examples of ultra-metric spaces: the field Qp of p-adic numbers with the p-adic distance
|x − y|p and Qn

p with max-distance. All ultra-metric spaces are totally disconnected and,
hence, cannot carry a non-trivial diffusion. On the other hand, on such spaces, for any
σ > 0, the space Bσ

2,2 contains indicator functions 1B of all balls and, hence, is dense in L2.
Consequently, σ∗ = ∞ (A.Bendikov, AG, Eryan Hu, Jiaxin Hu, ’21).
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An approach to construction of local Dirichlet forms

An open question. Let (M,d, μ) be an α-regular metric measure space (or even self-
similar). Assume σ∗ < ∞. Does there exist a strongly local (regular) Dirichlet form in M?
Does there exist a heat kernel satisfying the sub-Gaussian estimate (9) with β = 2σ∗?
Which additional conditions may be required?

Here is a possible approach to construction of such a Dirichlet form based on the family of
Besov spaces. For any σ < σ∗ we need to define in Bσ

2,2 a quadratic form Eσ(f, f) with the
following properties:

(i) Eσ(f, f) ' ‖f‖2
Ḃσ

2,2
=

∫ ∫

M×M

|f(x) − f(y)|2

d(x, y)α+2σ
dμ(x)dμ(y),

(ii) there should exist in some sense the limit

lim
σ→σ∗

(σ∗ − σ) Eσ,

(iii) this limit should determine a strongly local regular Dirichlet form on M .

In Rn this method works with Eσ(f, f) = ‖f‖2
Ḃσ

2,2
and yields the Dirichlet integral. For SG

and SC this method was realized by AG and Meng Yang ’18 and ’19. However, in the general
case there are two many difficulties.
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A related question: how to determine the walk dimension, even for self-similar sets?

Each self-similar set is determined by the first step in its construction:

SG SC VS

It is well known how to compute the Hausdorff dimension: α = log A
log B

where A is the number
of remaining cells after the first step, and B is the contraction ratio.

An open question. How to compute the walk dimension β using the first step in the
fractal construction? This must be some graph invariant.

The exact value of β remains open for the Sierpinski carpet.
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Self-similar heat kernels

Let (M,d) be metric space and μ be an α-regular measure on M .

Theorem 3 (AG–Takashi Kumagai) Let (E ,F) be a regular Dirichlet form on M . Assume
that its heat kernel satisfies the following estimate:

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

,

where α, β > 0 and Φ is a positive function on [0,∞). Then the following dichotomy holds :

• either the Dirichlet form E is strongly local and Φ (s) � C exp(−cs
β

β−1 ).

• or the Dirichlet form E is non-local and Φ (s) ' (1 + s)−(α+β).

That is, in the first case pt (x, y) satisfies the sub-Gaussian estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(10)

while in the second case we obtain a stable-like estimate

pt (x, y) '
1

tα/β

(

1 +
d (x, y)

t1/β

)−(α+β)

. (11)
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Estimating heat kernels: strongly local case

Let M be a metric space with precompact balls, μ be an α-regular measure on M and (E ,F)
be a strongly local regular Dirichlet form on M .
Definition. We say that (M,d) satisfies the chain condition (CC) if ∃C such that for all
x, y ∈ M and for n ∈ N there exists a sequence {xk}

n
k=0 of points in M such that x0 = x,

xn = y, and

d(xk−1, xk) ≤ C
d(x, y)

n
, for all k = 1, ..., n.

Definition. We say that (E ,F) satisfies the Poincaré inequality with exponent β if, for any
ball B = B (x, r) on M and for any function f ∈ F ,

EB (f, f)≥
c

rβ

∫

εB

(
f − f

)2
dμ, (PI)

where f = −
∫

εB
fdμ, and c, ε are small positive constant independent of B and f . For example,

in Rn (PI) holds with β = 2 and ε = 1.
Let A b B be two open subset of M . Define the capacity of the capacitor (A,B) as follows:

cap(A,B) := inf {E (ϕ, ϕ) : ϕ ∈ F , ϕ|A = 1, supp ϕ b B } .
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Definition. We say that (E ,F) satisfies the capacity condition if, for any two concentric
balls B0 := B(x,R) and B := B(x,R + r),

cap(B0, B) ≤ C
μ (B)

rβ
. (cap)

Conjecture. (CC) + (PI) + (cap) ⇔(10)

The implication ⇐ is known to be true, so the main difficulty is in ⇒ .
Let A b B be two open subset of M . For any measurable function u on B, define the
generalized capacity capu(A,B) by

capu(A,B) = inf
{
E
(
u2ϕ, ϕ

)
: ϕ ∈ F , ϕ|A = 1, supp ϕ b B

}
.

Definition. We say that the generalized capacity condition (Gcap) holds if, for any u ∈ F
and for any two concentric balls B0 := B(x,R) and B := B(x,R + r),

capu(B0, B) ≤
C

rβ

∫

B

u2dμ. (Gcap)

Theorem 4 (AG–J.Hu–K.S.Lau ’15) (CC) + (PI) + (Gcap) ⇔ (10).
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Estimating heat kernels: jump case

Let now (E ,F) be a jump type Dirichlet form given by

E (f, f) =

∫∫

M×M

(f (x) − f (y))2 J(x, y)dμ(x)dμ(y),

where J is a symmetric jump kernel. We use the following condition instead of the Poincaré
inequality:

J(x, y) ' d (x, y)−(α+β) . (J)

Theorem 5 (AG-E.Hu–J. Hu ’16 and Z.Q.Chen-Kumagai-J.Wang ’16)

(J) + (Gcap) ⇔ (11).

In the case β < 2 it is easy to show that (J)⇒ (Gcap) so that in this case we obtain the
equivalence

(J) ⇔ (11).

The latter was also shown by Chen and Kumagai ’03, although under some additional
assumptions about the metric structure of (M,d).

Conjecture. (J) + (cap) ⇔ (11).
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