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1 Introduction

The purpose of this paper is to demonstrate in a rather general setup how isoperimetric inequal-
ities and lower bounds of the eigenvalues of the Laplacian can be derived from existence of a
distance function with controllable Laplacian. For x ∈ Rn, let us denote ρ(x) = |x| =

(∑
i x2

i

)1/2.
It is obvious that we have the following two relations

Δ(ρ2) = 2n, (1.1)

|∇ρ| = 1, x 6= 0. (1.2)

By integrating (1.1) over the ball B(r) of radius r centered at the origin, we obtain

2nVol(B(r)) =
∫

B(r)
Δ(ρ2) dVol(x) =

∫

∂B(r)
2ρ

∂ρ

∂ν
dA = 2rA(∂B(r))

where we have used the fact that on the boundary ∂ρ
∂ν = |∇ρ| = 1. Therefore, we have the

following identity for the volume function V (r) := Vol(B(r))

V (r) =
n

r
V ′(r). (1.3)

Of course, the relation (1.3) of the volume and the boundary area of the Euclidean ball is
well known from the elementary geometry. However, (1.1)-(1.2) can also be used in a rather
sophisticated way to prove the following isoperimetric inequality between the volume and the
boundary area of any bounded region Ω ⊂ Rn (assume for simplicity that the boundary ∂Ω is
smooth)

A(∂Ω) ≥ cVol1−1/n(Ω) . (1.4)

The constant c obtained in this way, is not the sharp one. As is well-known, the exact constant
c in (1.4) is one for which both sides of (1.4) coincide for Ω being a ball.

The present work makes consistent use of the hypothesis that, on a Riemannian manifold M ,
there exists a distance function1 ρξ(x) possessing an upper bound for |∇ρξ| and a lower bound
for Δρ2

ξ , where ∇ and Δ are the Riemannian gradient and Laplacian, respectively. Given that
much, we produce an isoperimetric inequality of type (1.4).

Furthermore, we derive from the isoperimetric inequality a lower bound for λk(Ω) being the
k-th Dirichlet eigenvalue of the Laplace operator in a region Ω ⊂ M . Here is one of our main
results, which will be proved at the end of Section 3. Denote by Bξ(r) the open ρ-ball centered
at ξ ∈ M of radius r.

1Despite the distance is symmetric in x, ξ, we use the asymmetric notation to emphasize that ρξ(x) is always
considered as a function of x, with a fixed ξ. Note that ρξ(x) is not necessarily the Riemannian distance.

2



Theorem 1.1 Let M be a complete Riemannian manifold of dimension n > 1. Let ρξ(x) be a
distance function on M such that, for some R0 ∈ (0, +∞] and all ξ ∈ M , the inequalities

|∇ρξ| ≤ 1 (1.5)

and
Δρ2

ξ ≥ 2n (1.6)

hold inside the ball Bξ(R0). Then, for any precompact open set Ω ⊂ M with smooth boundary
and such that

Vol (Ω) ≤ εRn
0 , (1.7)

we have
A(∂Ω) ≥ cVol(Ω)1−1/n , (1.8)

where ε and c are positive constants depending only on n.
Furthermore, if, for a positive integer k,

Vol (Ω) ≤ εRn
0 k (1.9)

then

λk(Ω) ≥ a

(
k

Vol(Ω)

)2/n

, (1.10)

with some a = a(n) > 0.

If R0 = ∞, that is, (1.5) and (1.6) hold all over M , then the restrictions (1.7) and (1.9) are
void, and we get (1.8) for all Ω and (1.10) for all Ω and k ≥ 1.

If R0 < ∞ then the isoperimetric inequality (1.8) is claimed to be true only for Ω with a
small enough volume. However, whatever is Vol(Ω), the condition (1.9) is satisfied for k large
enough, namely for

k ≥
Vol(Ω)
εRn

0

.

Therefore, the lower bound (1.10) is true for all λk(Ω) with such k.
The following smoothness of ρ is assumed: ρξ is Lipschitz in Bξ(R0) and ρ2

ξ is C∞ in Bξ(R0).
We can prove the same result assuming only that ρξ is Lipschitz in Bξ(R0), provided (1.6) holds
in the sense of distributions. However, in the latter case, the proof involves some technical
complications which make the argument less transparent and which are avoided by taking ρξ

being smooth enough.
Let us consider some examples when the hypotheses (1.5) and (1.6) hold.

Example 1.2 Let ρ be the geodesic distance on M . Then (1.5) is satisfied automatically. Sup-
pose that M is a Cartan-Hadamard manifold, that is, a simply connected geodesically complete
non-compact manifold with non-positive sectional curvature. The inequality (1.6) is satisfied,
by the comparison theorem for the Laplacian (see [31]). Thus, Theorem 1.1 applies on such a
manifold, with R0 = ∞.

The isoperimetric inequality (1.8) on Cartan-Hadamard manifolds was first proved by Hoff-
man and Spruck [19].
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Example 1.3 Let M be a n-dimensional minimal submanifold of RN and let ρξ(x) be the
Euclidean distance function in RN restricted to M . The inequality (1.5) is trivially satisfied.
The well-known fact that the coordinate functions in RN are harmonic on M (see, for example,
[27]) implies that, for the Laplacian on M ,

Δρ2
ξ = 2n. (1.11)

Thus, all the hypotheses of Theorem 1.1 are satisfied.
The isoperimetric inequality on minimal surfaces was originally proved by Bombieri, De

Giorgi and Miranda [2] (see also [1]). Michael and Simon [25] proved a similar result for more
general submanifolds of RN .

Example 1.4 Let M be a manifold with non-positive sectional curvature and let R0 be its
injectivity radius. Then (1.6) holds for the geodesic distance ρ. If, in addition, manifold M is a
compact then we may take Ω = M (the Dirichlet boundary condition disappears though when
considering λk(M)) and obtain the lower bound (1.10) for λk(M) provided

k ≥
Vol(M)

εRn
0

. (1.12)

Example 1.5 Let us show that one cannot in general obtain the estimate (1.10) for the lower
eigenvalues. Indeed, let M consist of l disjoint copies of a compact n-dimensional manifold K
for which the hypotheses of Theorem 1.1 hold. For example, K may be a flat torus, and R0 may
be its injectivity radius (see the previous example). Then (1.5) and (1.6) hold also on M with
the same R0 and ρξ(x) (define ρξ(x) to be a huge constant when x and ξ belong to different
copies of K). By Theorem 1.1, we have the lower bound (1.10) for λk(M) provided k satisfies
(1.12).

On the other hand, for any k ≤ l, we have λk(M) = 0, because the eigenvalue 0 has the
multiplicity l. Hence, the lower bound (1.10) fails if

k ≤ l =
Vol(M)
Vol(K)

.

We see that the restriction (1.12) on k has a correct (linear) order in Vol(M). Of course, one
may obtain from this example a connected manifold M , by gluing all the copies of K by thin
tubes.

Denote by p(t, x, y) the heat kernel of the Laplace operator on M and by h(B) the Cheeger
constant of an open set B ⊂ M , that is,

h(B) := inf
Ω⊂⊂B

A(∂Ω)
Vol(Ω)

= inf
f∈C∞

0 (B)
f 6≡0

∫
B |∇f | dμ
∫
B |f | dμ

.

The proof of Theorem 1.1 is a combination of various arguments as shown on the following
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diagram (we omit all quantors for simplicity):

Δρ2
ξ ≥ 2n (1.13)

⇓

h(Bξ(r)) ≥
n

r
(1.14)

⇓

A(∂Ω) ≥ cVol(Ω)1−1/n (1.15)

⇓

λ1(Ω) ≥
c2

4
Vol(Ω)−2/n (1.16)

⇓

p(t, x, y) ≤ Ct−n/2 (1.17)

⇓

λk(Ω) ≥ ak2/nVol(Ω)−2/n . (1.18)

Our contribution here is twofold:

1. the usage of the above chain of implications, which is new by itself (although most steps
considered separately may be not new);

2. the proof of the implication (1.14)=⇒(1.15) under the restriction (1.7).

For the latter, we use a localized (and simplified) version of the argument of Michael and Simon
[25]. The hypothesis (1.14) contains already some initial lower bound for A(∂Ω) provided Ω lies
in a ball of radius R0. However, even if Vol(Ω) is small as in (1.7), Ω may be long and thin and
may be not contained in any such ball. To prove the isoperimetric inequality (1.15) for such Ω,
we use a certain ball covering argument - see Steps 2 and 3 of the proof of Theorem 2.1 below.

All other implications are relatively well-known, but we provide full proofs for the sake of
completeness, especially as our setting does not altogether match those in the previous works.
The part (1.13)=⇒(1.14) is obtained simply by integration of (1.13) over Ω ⊂ B (see (2.10)).
Inequality (1.14) can be restated as follows: for any Ω ⊂ B(r)

A(∂Ω) ≥
n

r
Vol(Ω) , (1.19)

which is a weak form of (1.15).
The part (1.15)=⇒(1.16) is the well-known Cheeger argument [6] (see also [24])). It is

implemented here as Step 1 of the proof of Theorem 3.1.
The part (1.16)=⇒(1.17) is due to the second author [15] and Carron [3]. It is presented in

Steps 2-3 of the proof of Theorem 3.1.
Finally, the part (1.17)=⇒(1.18) uses the argument of Cheng and Li [8] (see also [15, Corol-

laries 2.1, 2.2]) and constitutes Step 4 of the proof of Theorem 3.1. See also Corollary 3.3 for
the final statement.

Let us mention that the sharp constant a in (1.10)/(1.18) is still unknown even for Rn.
According to the Pólya conjecture [28], it should be equal to the constant in the Weyl asymptotic
formula. The best known a in Rn is due to P.Li and the third author [20] (see also [21]).
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In Section 4, we obtain, under the hypotheses of Theorem 1.1, a certain Sobolev inequality.
We use a localized version of the argument of Federer and Fleming [14], [13] and Maz’ya [22],
[23].

In the second part of the paper, we consider the discrete case. Previously, two of the authors
[9] proved that under the assumption of

A(∂Ω) ≥ cVol(Ω)1−1/n ,

for any finite subset Ω of a graph Γ, we can derive Sobolev inequalities for graphs and establish
lower bounds for eigenvalues λk.

However, obtaining the isoperimetric inequalities is not straightforward if we wish to start
with a distance function in the spirit of Theorem 1.1. For example, the graph distance function,
say, for the rectangular lattices Zn, does not satisfy (1.13). To circumvent this difficulty, we will
consider more than one distance-like functions and we will introduce a notion of spring ratio ν
(see definition (6.3) in Section 6). Here we state one of results that will be proved in Section 6.

The underlying space in the discrete setting is a weighted graph (Γ , σ) where σ is a measure
on the edge set E of Γ. It induces also a measure μ on the vertex set V of Γ (see Section 5 for
detailed definitions). Assume that there are a distance function ρξ(x) and a function qξ(x) of
pairs of vertices x, ξ which satisfy the following hypotheses, with some positive constants R0, δ
and ι:

for any vertex ξ and for all adjacent vertices x, y ∈ Bξ(R0),

|ρξ(x) − ρξ(y)| ≤ 1 ,

|qξ(x) − qξ(y)| ≤ ρξ(x) + ι ,

and, for any x ∈ Bξ(R0),

Δqξ(x) ≥ δ . (1.20)

Here Bξ(r) is the open ρ-ball centered at ξ of radius r, and Δ is the discrete Laplace operator
associated with the weight σ.

Furthermore, assume that
n := δνR0+1 ≥ 1 ,

where the spring ratio νr is as defined in (6.3). Then, for any subset Ω ⊂ V such that μ(Ω) ≤
εRn

0 , we have
σ(∂Ω) ≥ cμ(Ω)1−1/n

where c and ε are positive constants depending on the hypotheses (see Theorem 6.3).
The analogue of the function q in the case of manifolds would be 1

2ρ2, in which case (1.13)
would become (1.20) with δ = n. However, even for the rectangular lattice Zn, for all reasonable
choices of ρ and q, the number δ in (1.20) is smaller than n. An additional argument with the
spring ratio is required to recover the isoperimetric dimension n.

Under the above hypotheses, we obtain also the eigenvalues estimates analogous to Theorem
1.1. Most proofs in the graph case are similar to those in the case of manifolds. In Sections 6
and 7, we pay special attention to the differences between the discrete and continuous settings.

Acknowledgments. This work was done during the second author’s visit of the Harvard
University. He is grateful to the Mathematics Department of this university for its hospitality.
He also acknowledges support of the EPSRC (England).
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2 Isoperimetric inequality for weighted manifolds

By a weighted manifold, we call a pair (M,μ) of a Riemannian manifold M and a Radon measure
μ on M . We always assume that measure μ has a smooth strictly positive density η(x) with
respect to the Riemannian measure. It is well known that a Riemannian structure induces an
associated Laplace operator. Similarly, a weighted manifold possesses a natural weighted Laplace
operator defined by

Δf := η−1div(η∇f)

where ∇ and div are the Riemannian gradient and divergence, respectively. It is easy to see
that Δ is formally self-adjoint with respect to measure μ. If η ≡ 1 then Δ is the Riemannian
Laplace operator.

Apart from having measure μ on M , we assume that M is endowed with a distance function
ρξ(x) between the points x, ξ ∈ M (which is not necessarily the Riemannian distance). This
function should satisfy all usual axioms of the distance. We use the asymmetric notation for the
distance to facilitate considering it as a function of x, with a fixed ξ. Denote by

Bξ(r) :=
{
x ∈ M : ρξ(x) < r

}

balls associated with ρξ(x).
We always assume that ρξ(x) is Lipschitz as a function of x and that ρ2

ξ is C∞-smooth in
x, provided x varies in Bξ(R0) with a fixed radius R0. For example, if ρξ(x) is the Riemannian
distance then these assumptions hold provided R0 is smaller than the injectivity radius of M
(which ensures that x is away from the cut locus of ξ).

Other notation:

σ - the boundary area which has the density η with respect to the Riemannian Hausdorff
measure of codimension 1;

λk(Ω) - the k-th Dirichlet eigenvalue of −Δ in the region Ω ⊂ M .

Theorem 2.1 Let M be a geodesically complete manifold. Assume that there exists R0 > 0
such that, for any ξ ∈ M , the following inequalities hold in the ball Bξ(R0):

|∇ρξ| ≤ 1 (2.1)

and
Δρ2

ξ ≥ 2n, (2.2)

with some constant n > 1. Assume also that, for any ξ ∈ M , we have

lim sup
R→0

μ(Bξ(R))
Rn

≥ ω , (2.3)

with some constant ω > 0. Let Ω be an open subset of M with smooth boundary such that

μ(Ω) ≤
ω

5
Rn

0 . (2.4)
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Then
σ (∂Ω) ≥ cμ (Ω)1−1/n , (2.5)

where

c = 21−2n
(ω

5

)1/n
.

Remark 2.2 Constant c is not claimed to be sharp.

Remark 2.3 Manifold M may be not geodesically complete. However, Ω must be then precom-
pact. More precisely, we need in the proof that the intersection of Ω with any ball is precompact.

Remark 2.4 Condition (2.3) holds automatically if n is the dimension of M and if μ is the
Riemannian measure. However, in general, condition (2.3) cannot be dropped. Indeed, let
M = Rl with l > n and let ρξ(x) = |x − ξ|. Then Δρ2

ξ = 2l > 2n so that (2.2) is satisfied.

However, μ(Bξ(R))
Rn → 0 as R → 0, and (2.3) fails. Clearly, the isoperimetric inequality (2.5) does

not hold, for example, when Ω is a ball, in which case we have

σ (∂Ω) ∼ μ (Ω)1−1/l = o( μ (Ω)1−1/n ) as μ(Ω) → 0.

Proof. For any ξ ∈ M , let us introduce the following functions defined for r ∈ (0, +∞):

mξ(r) := μ(Ω ∩ Bξ(r) ) (2.6)

and
sξ(r) := σ( ∂Ω ∩ Bξ(r) ). (2.7)

STEP 1. We claim that following inequality holds

−
d

dr

(
r−nmξ(r)

)
≤ r−nsξ(r) , (2.8)

for almost every r ∈ (0, R0).
Since the point ξ will be fixed for a while, we skip the subscript ξ from all notation. By Sard’s

theorem, for almost all r, each of the sets {x ∈ M : ρ(x) = r} and {x ∈ ∂Ω : ρ|∂Ω(x) = r} con-
tains no critical points of ρ. Therefore, the former set, which is ∂B(r), is a smooth hypersurface
on M transversal to ∂Ω.

In other words, the boundary of the set Ωr := Ω ∩ B(r),

∂Ωr = (∂Ω ∩ B(r)) ∪ (∂B(r) ∩ Ω) , (2.9)

consists of two hypersurfaces which intersect transversely for almost every r.
For every such r, let us integrate (2.2) over Ωr, pre-multiplied by 1/2, assuming r ∈ (0, R0).

We obtain, by using the Green formula, (2.1) and ρ(x) ≤ r in B(r) (see Fig. 1)

nμ(Ωr) ≤
1
2

∫

Ωr

Δρ2 dμ

=
∫

∂Ωr

ρ
∂ρ

∂ν
dσ

≤ r

∫

∂Ωr

|∇ρ| dσ

≤ rσ(∂Ωr) . (2.10)
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Taking into account the splitting (2.9) and definitions (2.6), (2.7) we rewrite (2.10) as follows:

nm(r) ≤ rσ(∂Ω ∩ B(r)) + rσ(∂B(r) ∩ Ω)

= rs(r) + r
dm

dr
. (2.11)

Finally, dividing (2.11) by rn+1, we obtain (2.8).

r

ν

ν

U(r)

Figure 1: Ball B(r) and set Ω

STEP 2. Let us denote

r0 :=

(
5
ω

μ(Ω)

)1/n

(2.12)

and prove that, for any ξ ∈ Ω, there exists r ∈ (0, r0) such that

sξ(r) ≥
21−2n

r0
mξ(4r) . (2.13)

We start with the following elementary fact.

Lemma 2.5 Let f(r) be an absolutely continuous positive function on (0,∞) (see Fig. 2).
Assume that, for some r0 > 0, C ∈ (0, 4) and for almost every r ∈ (0, r0), we have

− f ′(r) <
C

r0
f(4r). (2.14)

Then

sup
(0,r0)

f(r) <
4 + 3C

4 − C
sup

(r0,4r0)
f(r)

9



Proof. For any r ∈ (0, r0), we have, by integrating (2.14),

f(r) − f(r0) <
C

r0

∫ r0

r
f(4u)du (2.15)

≤
C

4r0

∫ 4r0

0
f(t)dt

=
C

4r0

(∫ r0

0
+
∫ 4r0

r0

)

f(t) dt

≤
C

4
sup
(0,r0)

f +
3C

4
sup

(r0,4r0)
f. (2.16)

r r0 4r0

f

Figure 2: Example of function f

By replacing in the left-hand side of (2.15) f(r0) by sup(r0,4r0) f and by taking sup over
r ∈ (0, r0), we obtain from (2.15)-(2.16)

sup
(0,r0)

f − sup
(r0,4r0)

f <
C

4
sup
(0,r0)

f +
3C

4
sup

(r0,4r0)
f ,

whence (

1 −
C

4

)

sup
(0,r0)

f <

(

1 +
3C

4

)

sup
(r0,4r0)

f ,

which was to be proved.
Let us now prove (2.13). Assume from the contrary that, for all r ∈ (0, r0),

s(r) <
21−2n

r0
m(4r) .

(where we suppress again the subscript ξ). Observe that (2.4) and (2.12) imply r0 ≤ R0.
Therefore, we can use (2.8) and write

−
d

dr

(
r−nm(r)

)
<

2
r0

(4r)−nm(4r),

for almost every r ∈ (0, r0).

10



Next we apply Lemma 2.5, for function f(r) = r−nm(r) and for C = 2, which yields

sup
r∈(0,r0)

r−nm(r) < 5 sup
r∈(r0,4r0)

r−nm(r). (2.17)

The left-hand side of (2.17) is bounded from below by ω, by the hypothesis (2.3). The right
hand-side of (2.17) can be bounded from above by using the fact that m (r) ≤ μ(Ω), for all
r > 0. Thus, (2.17) implies, together with the definition (2.12) of r0,

ω <
5
rn
0

μ(Ω) = ω,

which is a contradiction.
STEP 3. We will prove here that

σ(∂Ω) ≥
21−2n

r0
μ(Ω), (2.18)

where r0 is defined by (2.12). Clearly, (2.18) implies (2.5).
To prove (2.18), let us recall that, for any point ξ ∈ Ω, there exists r = rξ ∈ (0, r0) such that

(2.13) holds. Then, for any x ∈ Ω, we have, by (2.13),

σ(∂Ω ∩ Bx(rx)) ≥
21−2n

r0
μ(Ω ∩ Bx(4rx)). (2.19)

Let us show that there exists a countable set T ⊂ Ω of points x such that all balls {Bx(rx)}x∈T

are disjoint whereas the balls {Bx(4rx)}x∈T cover Ω. If such a family of balls is found already,
then we just add up (2.19) for all x ∈ T and obtain (2.18).

Thus, we are left to prove the following statement.

Lemma 2.6 (The well-known ball covering argument). Let (M,d) be a metric space with a
countable base. Suppose that any point x from a set Ω ⊂ M is assigned a metric ball Bx(rx) of
radius rx ∈ (0, r0). Then there exists a (at most countable) set S ⊂ Ω such that all balls Bx(rx),
x ∈ S, are disjoint whereas the union of the balls Bx(4rx), x ∈ S, covers all of the set Ω.

Proof. We construct by induction a sequence of points xi which will form the set S, and an
auxiliary decreasing sequence of at most countable sets Ti ⊂ Ω. Here i = 0, 1, 2, ... is an integer
if Ω is a compact but, in general, i is a transfinite number so that we have to use the transfinite
induction.

By the countable basis hypothesis, there exists a countable family of balls Bx(rx) which
covers Ω as well. Let T0 be the set of their centers (there will be no point x0).

Given i ≥ 1 and assuming that Tj has been already constructed for all j < i, let us denote

T ∗
i =

⋂

j<i

Tj .

The inductive process stops at step i if T ∗
i is empty.

Otherwise, choose a point xi ∈ T ∗
i so that

ri := rxi >
2
3

sup
x∈T ∗

i

rx . (2.20)

11



xi
ri

x
rx

a point in Ti \ Ti*

x

rx

a point in Ti

4ri

d(x,xi)

Figure 3: Constructing of xi and Ti

Let us throw away from T ∗
i all points x such that

d(x, xi) ≤ ri + rx (2.21)

and denote by Ti the rest of T ∗
i (see Fig. 3).

Let us prove following two properties of the sequence {xi}:

(i) if i 6= j then the balls Bxi(ri) and Bxj (rj) are disjoint;

(ii) the union of all balls Bxi(4ri) covers Ω.

Proof of (i). By the construction of Ti, for any x ∈ Ti, the inequality (2.21) fails, which
implies that Bxi(ri) and Bx(rx) are disjoint. The same property is true for the previous inductive
steps: for any x ∈ Tj , j < i, the balls Bxj (rj) and Bx(rx) are disjoint. This can be applied for
x = xi because xi ∈ T ∗

i ⊂ Tj , whence (i) follows.
As a consequence of (i) we see that the points xi and xj are different for different i and j.

This implies that the inductive process will stop at some i because all xi belong to the countable
set T0 whereas the set of all transfinite numbers is uncountable.

Proof of (ii). It suffices to show that any ball Bx(rx) centered at T0 is covered by one of the
balls Bxi(4ri). For any x ∈ T0, there exists the smallest transfinite number i such that x /∈ Ti

(indeed, as was shown above, for all i large enough, Ti is empty whence x /∈ Ti). Hence, for any
j < i, we have x ∈ Tj , which implies x ∈ T ∗

i and x ∈ T ∗
i \ Ti. By construction, we have (2.21)

and rx < 3
2ri (the latter follows from (2.20)), whence

d(x, xi) + rx ≤ (ri + rx) + rx = ri + 2rx < 4ri .

Therefore, Bx(rx) is covered by Bxi(4ri).
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3 Eigenvalues of subsets

Theorem 3.1 Let us assume that, for any open precompact set Ω ⊂ M with smooth boundary
such that

μ (Ω) ≤ v0 ,

the following inequality holds
σ (∂Ω) ≥ cμ (Ω)1−1/n , (3.1)

where c > 0, v0 > 0 and n > 1 are constants. Then, for any open precompact open set Ω ⊂ M
and for any integer k such that

k ≥
(n + 2)e

v0
μ (Ω) , (3.2)

we have

λk(Ω) ≥ a

(
k

μ (Ω)

)2/n

, (3.3)

where a = e−2/n2−1 (n + 2)−1−2/n c2.

Proof. The proof consists of four steps.
STEP 1. We first prove Theorem 3.1 for k = 1. We replace hypothesis (3.2) by a weaker

assumption μ (Ω) ≤ v0, which suffices in this case. The following argument is due to Cheeger
[6] and Maz’ya [23].

Given a non-negative function f ∈ C∞
0 (Ω), we denote Ωt = {x : f(x) > t}. Since μ (Ωt) ≤

v0 and, by Sard’s theorem, the boundary ∂Ωt is smooth, for almost all t, we may apply the
isoperimetric inequality (3.1) for Ωt and obtain

σ(∂Ωt) ≥ cμ (Ωt)
1−1/n , (3.4)

for almost all t.
Next, we use the co-area formula

∫

M
|∇f | dμ =

∫ ∞

0
σ (∂Ωt) dt , (3.5)

which implies with (3.4)
∫

M
|∇f | dμ ≥ c

∫ ∞

0
μ (Ωt)

1−1/n dt

≥
c

μ (Ω)1/n

∫ ∞

0
μ (Ωt) dt

=
c

μ (Ω)1/n

∫

M
f dμ,

and ∫

M
f dμ ≤ c−1μ (Ω)1/n

∫

M
|∇f | dμ. (3.6)

We have, by the Cauchy-Schwarz inequality,
∫

M

∣
∣∇f2

∣
∣ dμ = 2

∫

M
f |∇f | ≤ 2

[∫

M
f 2 dμ

∫

M
|∇f |2 dμ

]1/2

(3.7)

13



By applying (3.6) to f2 instead of f and by (3.7), we obtain
∫

M
f 2 dμ ≤ c−1μ (Ω)1/n

∫

M

∣
∣∇f2

∣
∣ dμ

≤ 2c−1μ (Ω)1/n

[∫

M
f 2 dμ

∫

M
|∇f |2 dμ

]1/2

whence ∫

M
f 2 dμ ≤ 4c−2μ (Ω)2/n

∫

M
|∇f |2 dμ

and

λ1 (Ω) = inf
f∈C∞

0 (Ω)
f 6≡0

∫
M |∇f |2 dμ
∫
M f 2 dμ

≥
c2

4
μ (Ω)−2/n . (3.8)

STEP 2. Let us prove the following lemma which is a localized version of similar statements
in [17] and [15].

Lemma 3.2 Assume that, for any open precompact set Ω ⊂ M such that

μ (Ω) ≤ v0 , (3.9)

the following inequality holds
λ1(Ω) ≥ Λ(μ (Ω)),

where Λ(∙) is a non-negative non-increasing function on (0,∞). Let u(x) be a Lipschitz non-
negative function on M with compact support and let us denote

∫

M
u dμ = α and

∫

M
u2dμ = β.

Then, for any s ≥ s0 := α/v0,
∫

M
|∇u|2 dμ ≥ (β − 2sα) Λ(s−1α). (3.10)

Proof. We start with the obvious inequality

u2 ≤ (u − s)2+ + 2su ,

which holds for any s ≥ 0 and which implies

β =
∫

M
u2 dμ ≤

∫

{u>s}
(u − s)2 dμ + 2s

∫

M
u dμ

and

β − 2sα ≤
∫

{u>s}
(u − s)2 dμ. (3.11)

On the other hand,
μ {u > s} ≤ s−1α.

14



Ωs ={u > s}

u(x)

M

Figure 4: Function u and sets Ωs

Therefore, if s ≥ s0 := α
v0

, then the set Ωs := {u > s} (see Fig. 4) satisfies the hypothesis (3.9),
whence

λ1(Ωs) ≥ Λ (μ (Ωs)) ≥ Λ
(
s−1α

)
.

This implies

Λ
(
s−1α

) ∫

Ωs

(u − s)2 dμ ≤
∫

Ωs

|∇u|2 dμ. (3.12)

Comparison of (3.11) and (3.12) yields (3.10).
We apply Lemma 3.2 for Λ(v) = c2

4 v−2/n and for a function u such that
∫
M udμ ≤ 1, that is

α ≤ 1. For this function, (3.10) becomes
∫

M
|∇u|2 dμ ≥

c2

4
s2/n (β − 2s) (3.13)

provided s ≥ v−1
0 . The right-hand side of (3.13) takes the maximum at s = β

n+2 . Let us choose
the optimal s. If

β

n + 2
≥ v−1

0 ,

then we let s = β
n+2 and obtain

∫

M
|∇u|2 dμ ≥

c2

4
n

(n + 2)1+2/n
β1+2/n.

If
β

n + 2
< v−1

0 ,

then the best value of s in (3.13) is v−1
0 , whence

∫

M
|∇u|2 dμ ≥

c2

4
v
−2/n
0

(
β − 2v−1

0

)
+

.

We summarize the above inequalities in the following one:

∫

M
|∇u|2 dμ ≥ F (β) :=

c2

4






0, β ≤ 2v−1
0

v
−2/n
0

(
β − 2v−1

0

)
, 2v−1

0 < β ≤ (n + 2)v−1
0 ,

n

(n+2)1+2/n β1+2/n , β > (n + 2)v−1
0 ,

(3.14)
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(see Fig. 5). In fact, we will use this inequality only in the range β > (n + 2)v−1
0 . In this range,

(3.14) is a Nash type inequality. Nash [26] used a similar inequality to obtain upper bounds of
the heat kernel. So we do in the next step.

β

F(β) ~ β

F(β) ~ β1+2/n

0

F

2v0
-1 (n+2)v0

-1

Figure 5: Function F (β)

STEP 3. For any precompact region Ω ⊂ M , we denote by pΩ(t, x, y) the Dirichlet heat
kernel in Ω; that is, the kernel of the minimal heat semigroup etΔ in Ω with respect to the
measure μ (see [4], [7], [11], [16] for detailed definition and properties of heat kernels).

Let us prove that, for any Ω, the heat kernel admits the following upper bound, for all t > 0
and x ∈ Ω,

pΩ(t, x, x) ≤ max
(
K0, Kt−n/2

)
, (3.15)

where
K0 = (n + 2)v−1

0 and K = c−n2n/2 (n + 2)n/2+1 . (3.16)

Fix x ∈ Ω and denote

I(t) =
∫

Ω
p2
Ω(t, x, y) dμ(y).

By the semigroup property and by the symmetry of the heat kernel, we have I(t) = pΩ(2t, x, x).
Denote also u(t, y) = pΩ(t, x, y). The heat equation

ut = Δu

implies, by multiplying by u and by integrating over Ω, that

I ′(t) = −2
∫

Ω
|∇u|2 dμ(y).

Since
∫
Ω u(t, y) dμ(y) ≤ 1, we can apply (3.14), which yields

I ′(t) ≤ −2F (I). (3.17)

16



Function I(t) is decreasing in t, and I(t) → ∞ as t ↓ 0. We would like to integrate (3.17) when
I(t) stays in the range ((n+2)v−1

0 ,∞). This means that the variable t should vary within (0, t0),
where I(t0) = (n + 2)v−1

0 . By integrating (3.17) from 0 to t < t0, we obtain

∫ ∞

I

dI

F (I)
≥ 2t

and (see Fig. 6)
I(t) ≤ c−n (n + 2)n/2+1 t−n/2. (3.18)

t0 t0

(n+2)v0
-1

constt -n/2

Figure 6: Upper bound for I(t)

Thus, if I(t) ≥ (n + 2)v−1
0 , then (3.18) holds. Otherwise, I(t) < (n + 2)v−1

0 , and we can
write, for all t > 0,

I(t) ≤ max
(
(n + 2)v−1

0 , c−n (n + 2)n/2+1 t−n/2
)

and, changing t to t/2

pΩ(t, x, x) ≤ max
(
(n + 2)v−1

0 , c−n2n/2 (n + 2)n/2+1 t−n/2
)

.

STEP 4. Let us finally prove (3.3), assuming (3.2). What follows is a modification of the
argument of Cheng and Li [8].

Inequality (3.15) implies
∫

Ω
pΩ(t, x, x) dμ(x) ≤ μ (Ω)max

(
K0, Kt−n/2

)
. (3.19)

By the trace formula, we have, for any k ≥ 1,

∫

Ω
pΩ(t, x, x) dμ(x) =

∞∑

j=1

e−λj(Ω)t ≥ ke−λk(Ω)t

17



whence, by (3.19), we obtain

ke−λk(Ω)t ≤ μ (Ω)max
(
K0, Kt−n/2

)

and

λk(Ω) ≥
1
t

log
k

μ (Ω)max
(
K0, Kt−n/2

) . (3.20)

Let us choose here t to satisfy
k

μ (Ω) Kt−n/2
= e

or

t =

(
eKμ (Ω)

k

)2/n

. (3.21)

For this t, we claim that
K0 ≤ Kt−n/2.

Indeed, by (3.21) and (3.16), this is equivalent to

μ (Ω) ≤
k

K0e
=

v0

(n + 2)e
k

which is true by the hypothesis (3.2).

0

2

4

-2

-4

1 2 3 4

Figure 7: Functions t → 1
t log 5

max(1, t−1)
(thin) and t → 1

t log 1
max(1, t−1)

(thick)

Let us mention that if k is not big enough then the right hand side of (3.20) may be non-
positive for all t. In this case, we get no non-trivial lower bound for λk. Typical graphs of the
right-hand side of (3.20) are shown on Fig. 7.
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Hence, (3.20) implies, for t from (3.21) and K from (3.16),

λk (Ω) ≥

(
eKμ (Ω)

k

)−2/n

= e−2/n2−1 (n + 2)−1−2/n c2

(
k

μ (Ω)

)2/n

,

which was to be proved.
By putting together Theorem 2.1 and 3.1, we obtain the following Corollary.

Corollary 3.3 Under the hypotheses of Theorem 2.1, for any precompact open set Ω ⊂ M and
for any integer k ≥ 1 such that

k ≥ κ
μ (Ω)
ωRn

0

,

where κ = κ(n), we have

λk(Ω) ≥ a

(
k

μ (Ω)

)2/n

,

where a = c1(n)ω2/n > 0.

Indeed, by Theorem 2.1, we have the isoperimetric inequality

σ (∂Ω) ≥ c μ (Ω)1−1/n ,

where c = 21−2n
(

ω
5

)1/n, provided

μ(Ω) ≤ v0 :=
1
5
ωRn

0 .

We feed this to Theorem 3.1 and obtain

λk(M) ≥ c1(n)ω2/n

(
k

μ (Ω)

)2/n

,

provided

k ≥
5e(n + 2)

ωRn
0

μ (Ω) .

Theorem 1.1 from Introduction is a particular case of Theorem 2.1 and Corollary 3.3, for
n = dim M and for μ being the Riemannian measure. The hypothesis (2.3) of Theorem 2.1
holds automatically because μ(Bξ(R)) ∼ ωnRn as R → 0.

4 Sobolev inequality

Let us introduce the notation

‖f‖α =

[∫

M
|f |α dμ

]1/α

.
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Theorem 4.1 Assume that, for any precompact open set Ω ⊂ M with smooth boundary, such
that

μ(Ω) ≤ v0,

the following inequality holds
σ(∂Ω) ≥ cμ(Ω)1−1/n, (4.1)

where c > 0, v0 > 0 and n > 1. Then, for any Lipschitz function f with compact support, the
following inequality holds

∫

M
|∇f | dμ + cΘ(Ω0)

∫

M
|f | dμ ≥ c2−1/n

[∫

M
|f |

n
n−1 dμ

]n−1
n

(4.2)

where Ω0 = {x ∈ M : |f(x)| > 0} and

Θ(Ω) :=

{
0, if μ (Ω) ≤ v0,

v−1
0 μ (Ω)1−1/n , if μ (Ω) > v0.

Furthermore, for any p ∈ [1, n), we have

C ‖∇f‖p + cΘ(Ω0) ‖f‖p ≥ c21/p−1−1/n ‖f‖ np
n−p

, (4.3)

with some constant C = C(n, p) > 0.

Remark 4.2 In inequality (4.2), one can get rid of the term 2−1/n provided μ(Ω0) ≤ v0. In
this case, we get the inequality

∫

M
|∇f | dμ ≥ c

[∫

M
|f |

n
n−1 dμ

]n−1
n

(4.4)

where the constant c is sharp - see [14], [23], [18].

Proof. Let us first prove (4.2). Without loss of generality, we may assume f ∈ C∞
0 (M) and

f ≥ 0. Denote Ωt := {x : f(x) > t} (see Fig. 8).

Ω0
Ωt={ f > t}

f(x)

M

Figure 8: Level sets of function f(x)

20



Let t0 be large enough so that
μ (Ωt0) ≤ v0 (4.5)

(such t0 always exists). Then, for any t ≥ t0, we have also μ (Ωt) ≤ v0 and, by hypotheses, the
isoperimetric inequality (4.1) holds for Ωt, that is

σ (∂Ωt) ≥ cμ (Ωt)
1−1/n .

The co-area formula (3.5) implies
∫

M
|∇f | dμ ≥

∫ ∞

t0

σ (∂Ωt) dt

and ∫

M
|∇f | dμ ≥ c

∫ ∞

t0

μ (Ωt)
1−1/n dt = c

∫ ∞

0
μ (Ωt0+s)

n−1
n ds. (4.6)

Let us use the inequality of Hardy, Littlewood and Pólya which says that, for any non-
negative non-increasing function h on (0,∞) and for any α ≥ 1,

∫ ∞

0
h1/α(s) ds ≥

[∫ ∞

0
h(s) d(sα)

]1/α

.

Applying it to h(s) = μ (Ωt0+s) and

α =
n

n − 1

we obtain

∫ ∞

0
μ (Ωt0+s)

1/α ds ≥

[∫ ∞

0
μ (Ωt0+s) d(sα)

]1/α

=

[∫ ∞

t0

μ (Ωt) d((t − t0)
α)

]1/α

=

[∫

M
(f − t0)

α
+ dμ

]1/α

. (4.7)

If μ(Ω0) ≤ v0 then we can take t0 = 0 and obtain from (4.6)-(4.7) the sharp Sobolev
inequality (4.4). This is the classical way of proving the Sobolev inequality, which is due to
Federer – Fleming [14] and Maz’ya [22], [23, Section 2.3.3].

In general, t0 may be positive. We apply the elementary inequality

(x + y)a ≤ 2α−1 (xα + yα) ,

which holds for all α ≥ 1 and positive x, y, and obtain

(f − t0)
α
+ ≥ 21−αfα − tα0 ,

whence ∫

M
(f − t0)

α
+ dμ =

∫

Ω0

(f − t0)
α
+ dμ ≥ 21−α

∫

Ω0

fαdμ − tα0 μ (Ω0) . (4.8)
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By another elementary inequality

(x − y)1/α
+ ≥ x1/α − y1/α

we have [

21−α

∫

Ω0

fαdμ − tα0 μ (Ω0)

] 1
α

+

≥ 2
1
α
−1

[∫

Ω0

fαdμ

] 1
α

− t0μ (Ω0)
1
α . (4.9)

Combining together (4.6)-(4.9), we obtain

∫

M
|∇f | dμ ≥ c 2−1/n

[∫

M
f

n
n−1 dμ

]n−1
n

− c t0μ (Ω0)
n−1

n . (4.10)

Let us choose t0 now to satisfy (4.5). If μ(Ω0) ≤ v0 then we take t0 = 0 and obtain (4.4). If
μ(Ω0) > v0, then we observe that

μ (Ωt0) ≤
1
t0

∫

M
f dμ.

Therefore, (4.5) is satisfied for

t0 =
1
v0

∫

M
f dμ. (4.11)

For this t0, we deduce form (4.10)

∫

M
|∇f | dμ + cv−1

0 μ (Ω0)
1−1/n

∫

M
f dμ ≥ c2−1/n

[∫

M
f

n
n−1 dμ

]n−1
n

,

which was to be proved.
Now we prove (4.3). Denote g := (f − t0)+ and G := {g > 0} = Ωt0 . By the choice of t0, we

have μ(G) ≤ v0. Therefore, as was shown above, the function g satisfies the Sobolev inequality
(4.4). Moreover, (4.4) holds as well for the function gκ, for any κ ≥ 1. Applying also the Hölder
inequality, we obtain

c

[∫
g

κn
n−1 dμ

]n−1
n

≤ κ

∫
gκ−1 |∇g| dμ

≤ κ

[∫
|∇g|p dμ

]1/p [∫
g(κ−1)qdμ

]1/q

, (4.12)

where q is defined by 1
p + 1

q = 1. Choose κ = p(n−1)
n−p so that

κn

n − 1
= (κ − 1) q.

Then after obvious simplifications, (4.12) implies

c ‖g‖ np
n−p

≤ C ‖∇g‖p

where C = C(n, p).
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By setting α = np
n−p we can rewrite this as

C ‖∇f‖p ≥ c ‖(f − t0)+‖α .

We apply again inequalities (4.8), (4.9) and obtain

C ‖∇f‖p ≥ c21/α−1 ‖f‖α − ct0μ (Ω0)
1/α .

Taking t0 as in (4.11), we have

C ‖∇f‖p + c
μ (Ω0)

1/α

v0
‖f‖1 ≥ c21/α−1 ‖f‖α .

Finally, we observe that, by the Cauchy–Schwarz inequality,

‖f‖1 =
∫

Ω0

f dμ ≤ μ(Ω0)
1−1/p ‖f‖p

whence

C ‖∇f‖p + c
μ (Ω0)

1−1/n

v0
‖f‖p ≥ c21/α−1 ‖f‖α ,

which was to be proved.

5 Analysis on weighted graphs

Let Γ denote a connected graph with the vertex set V and the edge set E. For vertices x, y ∈ V ,
we write x ∼ y if x and y are neighbors in Γ, that is, x and y are adjacent and joined by an
edge, which will be denoted by xy. Here we consider locally finite graphs i. e., every vertex has
a finite number of neighbors.

For a subset Ω of vertices in Γ, we denote by ∂Ω the set of edges which join a vertex in Ω
with a vertex outside Ω. We normally assume that each edge in ∂Ω is oriented so that it points
outwards from Ω unless otherwise specified.

5.1 Measures on graphs

We consider a weighted graph in which each edge e is associated with a positive edge weight σe.
For any edge set S ⊂ E, we define its measure by

σ(S) =
∑

e∈S

σe .

If edge e connects vertices x, y then we write also σe = σxy = σyx. Extend the function σxy

by zero for those x and y which are not neighbors so that it becomes a (symmetric) function on
V × V . Depending on the context, we may regard σxy as a measure on edges or as a function
on pairs of vertices.

For any vertex x ∈ V , we introduce the vertex weight

μx :=
∑

{y:y∼x}

σxy .
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For example, if σe = 1 on all edges then μx is the number of neighbors of the vertex x, that is,
the degree of x. We regard μx as a measure on vertices. Namely, for any subset Ω of vertices,
we define

μ(Ω) =
∑

x∈Ω

μx .

A graph Γ equipped with the weight σ (and its derivative - measure μ) is called a weighted
graph and is denoted by (Γ, σ).

5.2 Discrete Laplacian

Given a real-valued function f on the vertex set of (Γ, σ), we consider its gradient ∇ and the
Laplace operator Δ. The gradient of f assigns the following value to each ordered pair x, y ∈ V

∇xyf = f(y) − f(x).

Expression ∇f can also be considered as a function on oriented edges: if e = −→xy then ∇ef =
∇xyf .

The Laplace operator Δ is defined on all functions f on V as follows:

Δf(x) =
1
μx

∑

{y:y∼x}

(∇xyf)σxy =
1
μx

∑

{y:y∼x}

f(y)σxy − f(x) . (5.1)

The matrix of Δ has in the bases {δx}x∈V the following components

Δ(x, y) =

{
σxy/μx , x 6= y,
−1 , x = y.

Although this matrix is not symmetric, in another basis
{

μ
−1/2
x δx

}

x∈V
, the Laplace operator is

represented by a symmetric matrix

Δ̃(x, y) =

{
σxy

(
μxμy

)−1/2
, x 6= y

−1, x = y.

See [10] for more details.

5.3 Green’s formula

The following discrete analogue of the Green formula is true. If Ω is a finite subset of V and f
is a function on Ω then

∑

x∈Ω

Δf(x) μx =
∑

x∈Ω
y/∈Ω

(∇xyf) σxy =
∑

e∈∂Ω

(∇ef) σe . (5.2)

If f and g are functions on V and one of them has a finite support then
∑

x∈V

Δf(x) g(x) μx = −
1
2

∑

x,y∈V

(∇xyf ) (∇xyg) σxy = −
∑

e∈E

(∇ef) (∇eg) σe . (5.3)

The multiple 1
2 appears in the middle term because each edge counts twice. In the third term,

each edge may be oriented arbitrarily because the product (∇ef) (∇eg) does not depend on the
choice of orientation.
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5.4 Integration versus Summation

Most of the proofs in the case of graphs follow the same line of arguments as in the case of
manifolds. This becomes especially clear if we write down the basic facts from analysis on
graphs in terms of integration against the measures μ and σ. By suppressing the subscripts of
μ, σ and ∇, we can write

∑

x∈V

f(x)μx =
∫

V
f dμ ,

∑

e∈E

|∇ef |σe =
∫

E
|∇f | dσ ,

∑

e∈E

(∇ef) (∇eg) σe =
∫

E
∇f ∇g dσ,

where f, g are functions on V .
The Green formula (5.3) can be rewritten, by using the integration, as follows

∫

V
Δf g dμ = −

∫

E
∇f ∇g dσ , (5.4)

provided one of the functions f, g has finite support.

5.5 Eigenvalues of Laplacian

Let Ω be a finite subset of vertices of a weighted graph (Γ, σ). Denote by C0(Ω) a class of
functions on V which vanish outside Ω. We say that a function f defined on V satisfies the
Dirichlet boundary condition in Ω if f ∈ C0(Ω). Denote by ΔΩ restriction of the Laplace
operator Δ to the space C0(Ω) that is,

ΔΩf(x) =

{
Δf(x), x ∈ Ω,
0, x /∈ Ω.

The operator ΔΩ is referred to as the Laplace operator with the Dirichlet boundary condition
in Ω.

As follows easily from the Green formula (5.4), for all f, g ∈ C0(Ω),
∫

Ω
(ΔΩf) g dμ = −

∫

E
∇f ∇g dσ =

∫

Ω
(ΔΩg) f dμ .

In particular, the operator ΔΩ is symmetric with respect to the measure μx and negative definite.
Let |Ω| denote the number of vertices in Ω. The space C0(Ω) has the finite dimension

|Ω|. Therefore, the operator −ΔΩ has a real positive2 spectrum consisting of |Ω| eigenvalues
λ1 ≤ λ2 ∙ ∙ ∙ ≤ λ|Ω|. The corresponding eigenfunctions φi ∈ C0(Ω) are called the Dirichlet eigen-
functions of Ω.

The first eigenvalue λ1(Ω) can also be defined by the variational principle

λ1(Ω) = inf
f∈C0(Ω)

f 6≡0

∫
E |∇f |2 dσ
∫
V f2dμ

.

2Strictly speaking, this is true if Ω is a proper subset of V . If Ω = V then |Ω| < ∞ implies λ1 (Ω) = 0 because
the constant function is the first eigenfunction.
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5.6 Heat kernel

Given a finite set Ω ⊂ V , we introduce the heat kernel pΩ(t, x, y) (where x, y ∈ V and t ≥ 0) as
the kernel of the operator etΔΩ with respect to the measure μ. In other words, for any function
f ∈ C0(Ω),

etΔΩf(x) =
∫

V
pΩ(t, x, y)f(y)dμy.

The following are the basic properties of the heat kernel pΩ which follow directly from the
definition.

1. pΩ(t, x, y) ≥ 0; moreover, if x or y /∈ Ω then pΩ(t, x, y) = 0.

2. pΩ(t, x, y) = pΩ(t, y, x).

3. For a fixed vertex y, pΩ(t, x, y) as a function of x ∈ Ω and t ≥ 0, satisfies the heat equation

∂

∂t
pΩ(t, x, y) = ΔpΩ(t, x, y).

4. p(0, x, ∙) = μ−1
x δx .

5. If {φi}
|Ω|
i=1 are the eigenfunctions of −ΔΩ which form an orthonormal basis in L2(Ω, μ),

and {λi} are the corresponding eigenvalues then

pΩ(t, x, y) =
|Ω|∑

i=1

e−tλiϕi(x)ϕi(y) .

In particular, it implies the trace formula

∫

V
pΩ(t, x, x) dμx =

|Ω|∑

i=1

e−tλi .

6. For all x and t ≥ 0, ∫

V
pΩ(t, x, y)dμy ≤ 1 .

7. For all x, y and 0 ≤ s ≤ t,

pΩ(t, x, y) =
∫

V
pΩ(s, x, z) pΩ(t − s, z, y) dμz .

5.7 Co-area formula

The co-area formula (3.5) has a well-known discrete analogue (see, for example [5], [10], [29],
[32]).

Proposition 5.1 Given any function f on V , let us denote

Ωt = {x ∈ V : f(x) > t}.

Then ∫

E
|∇f | dσ =

∫ ∞

−∞
σ(∂Ωt) dt . (5.5)
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Proof. For any edge e := xy ∈ E, there corresponds an interval Ie ⊂ R which is defined as
follows:

Ie = [f(y), f(x)) if f(x) ≥ f(y).

Also, let us denote
σ(Ie) = σxy .

Then we have ∫

E
|∇f | dσ =

1
2

∑

{x,y:x∼y}

|f(x) − f(y)| σxy =
∑

e∈E

|Ie|σ(Ie)

where |Ie| is the Euclidean length of the interval Ie.
The boundary ∂Ωt consists of edges e = xy such that x ∈ Ωt and y /∈ Ωt. This is equivalent

to f(x) > t and f(y) ≤ t which, in turn, can be written as t ∈ Ie. Thus, we have

σ(∂Ωt) =
∑

e∈∂Ωt

σe =
∑

{e: Ie3t}

σ(Ie) =
∑

e∈E

σ(Ie)1Ie(t) .

Finally, by interchanging the summation and the integration, we obtain
∫ +∞

−∞
σ(∂Ωt) dt =

∑

e∈E

∫ +∞

−∞
σ(Ie)1Ie(t) dt =

∑

e∈E

σ(Ie) |Ie|

whence (5.5) follows.

6 Discrete isoperimetric inequality

6.1 Statement of the results

The purpose of this section is to prove a graph analogue of Theorem 2.1. As was mentioned in
Introduction, in other to do so we need some more structure on the graph.

We will consider distance functions on V . The simplest example of a distance function on
V is the graph distance which is, by definition, the number of edges in the shortest edge path
joining two points of V . We assume that we are given some distance function on V and denote
it by ρξ(x), where x, ξ ∈ V . Denote by Bξ(x) the ball defined by ρ, that is,

Bξ(r) =
{
x : ρξ(x) < r

}
.

Let us assume that ρξ has the following property:

|∇xyρξ| ≤ 1, (6.1)

for any edge xy ∈ E and for any vertex ξ ∈ V . For example, (6.1) obviously holds for the graph
distance.

Next, we will need the following constant characterizing a structure of edges at the boundary
of the ball Bξ(r). Given points ξ, x ∈ V , consider the following sum of σxy over all points y
adjacent to x and satisfying ρξ(y) < ρξ(x):

μ(ξ)
x =

∑

{y: y∼x and ρξ(y)<ρξ(x)}

σxy . (6.2)
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Clearly, μ
(ξ)
x ≤ μx (see Fig. 9). We define the spring ratio νr, for any r > 0, as follows

νr = inf
ξ∈M

x∈Bξ(r)

μx

μ
(ξ)
x

(6.3)

ξ

xy

Figure 9: Example: μ
(ξ)
x = 2 and μx = 5

Example 6.1 We consider the graph (Γ, σ) with the vertex set Zn and with the measure

σxy =

{
1, if x and y differ exactly at one coordinate by 1,
0, otherwise.

For vertices x, ξ ∈ Zn, we define the distance by

ρξ(x) = max
1≤i≤n

|xi − ξi| . (6.4)

Clearly,
∣
∣∇xyρξ(x)

∣
∣ ≤ 1 and (6.1) is satisfied. The ρ-ball Bξ(r) is a cube centered at ξ and

with the sides parallel to the coordinate axis. Let us find the spring ratio νr defined by (6.3).
Assume for simplicity that ξ is the origin. Any point x 6= ξ has at most one neighbor y such
that maxi |yi| < maxi |xi|, that is ρξ(y) < ρξ(x). Thus, μ

(ξ)
x = 1 or 0. Since μx = 2n, we conclude

νr = 2n (see Fig. 10).

Together with the function ρξ(x), we consider another function qξ(x) - an analogue of the
square distance. We postulate the following properties of q, for some positive constants δ, ι and
R0:

(i) qξ(x) ≥ 0, and qξ(x) = 0 if and only if x = ξ.

(ii) For any vertex ξ and for arbitrary adjacent vertices x, y ∈ Bξ(R0),

∇xyqξ ≤ ρξ(x) + ι ; (6.5)

clearly, we can always assume that
ι ≥ 1. (6.6)
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xy

ξ

μx =1(ξ)

x

μx =0(ξ)

Figure 10: Z2 with the metric ρξ(x) = maxi |xi − ξi| has the spring ratio νr = 4 (μx = 4 and

max μ
(ξ)
x = 1)

(iii) For any vertex ξ and all x ∈ Bξ(R0),

Δqξ(x) ≥ δ. (6.7)

Example 6.2 Let (Γ, σ) be the rectangular lattice graph defined on Zn as in Example 6.1. Let
us consider

ρξ(x) = max
1≤i≤n

|xi − ξi|

and

qξ(x) =
1
2

n∑

i=1

(xi − ξi)
2.

In other word, ρξ(x) is the l∞-distance whereas qξ(x) is determined by the l2-distance. Condition
(i) is obvious. Let us verify (ii) and (iii), assuming for simplicity that ξ is the origin.
For x ∼ y, we know that y is obtained from x by changing by 1 of one of the coordinates of x.
Let this coordinate be x1. Since |x1| ≤ ρξ(x), we obtain (see Fig. 11)

∇xyqξ =
1
2

((x1 ± 1)2 + x2
2 + ... + x2

n) −
1
2

n∑

i=1

xi
2 = ±x1 +

1
2
≤ ρξ(x) +

1
2

whence (ii) follows.
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yx

ξ x1

x2

q(x)

q(y)

Figure 11: Computing ∇xyqξ

To verify (iii), for any y ∼ x, we denote by y′ the vertex symmetric to y with respect to x.
The contribution of the points y and y′ to the sum (5.1), defining the Laplace operator

Δqξ(x), is equal to (see Fig. 12)

qξ(y) + qξ(y
′) − 2qξ(x) =

1
2
|y|2 +

1
2

∣
∣y′
∣
∣2 −

∣
∣
∣
∣
y + y′

2

∣
∣
∣
∣

2

=

∣
∣
∣
∣
y − y′

2

∣
∣
∣
∣

2

= 1.

Since we have n such pairs of neighbors of x, and μx = 2n, we see that

Δqξ(x) =
1
2
,

and (6.7) is satisfied with δ = 1/2.
We remark that neither of other natural choices of q such as

q(x) =
1
2

(
∑

i

|xi|

)2

or

q(x) =
1
2

max |xi|
2 ,

admits both (6.5) and (6.7) with δ ≥ 1/2.
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yx

ξ x1

x2

y’

Figure 12: Computing Δqξ(x)

Definition. Given positive numbers δ, ι and R0, we say that a weighted graph (Γ, σ) has
property P (δ, ι, R0) if there exist a distance function ρ satisfying (6.1) and a function q satisfying
the hypotheses (i)-(iii) such that

n := δνR0+1 ≥ 1, (6.8)

where νR0+1 and δ come from (6.3) and (6.7) respectively.

The claim that a graph has property P (δ, ι, R0) contains two different issues. First, it means
the existence of functions ρ and q as above. Second, it means that the number n defined by
(6.8) is greater than or equal to 1. In particular, a small δ in (6.7) is allowed provided it is
compensated by a large spring ratio νR0+1 defined by (6.3). In what follows, the number n will
play the role of the isoperimetric dimension.

It will be more convenient for us to replace the argument δ in P (δ, ι, R0) by n because δ will
be used only through n. So, by somewhat abusing the notation, we will refer to the property
P (n, ι, R0) rather than to P (δ, ι, R0). The value of the number ι is not of much importance. We
will assume ι ≥ 1 as in (6.6).

Note that Proposition 6.5 in the next section states that the property P (n, ι, R0) implies the
following lower bound of the volume of any ball of radius r < R0:

μ(Bξ(r)) ≥ b μξ rn ,

where b = b(ι, n) > 0. Moreover, the following isoperimetric inequality is true.

Theorem 6.3 Assume that the weighted graph (Γ, σ) has property P (n, ι, R0). Assume also
that

ω′ := inf
x∼y

σxy > 0 (6.9)
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and denote
ω := inf

x∈V
μx .

Let Ω be a finite subset of V such that

μ(Ω) ≤
ω

θ
Rn

0 , (6.10)

where
θ := 8ιne2n2

. (6.11)

Then
σ(∂Ω) ≥ cμ(Ω)1−1/n (6.12)

where c := 4−n−3ν−1
R0+1ι

−1e−2nω′ω1/n−1.

As an immediate consequence of Theorem 6.3 (with R0 = ∞) and Examples 6.1 and 6.2, we
have the following:

Corollary 6.4 For the lattice graph on Zn, for any finite subset Ω of vertices, we have

σ(∂Ω) ≥ cμ(Ω)1−1/n.

where c = c(n) > 0.

The constant c obtained in this way is not optimal. See [30] for the sharp constant c in Zn.
Let us emphasize that Theorem 6.3 is not a straight analogue of Theorem 2.1. To start with,

in the setting of manifolds, we needed only one distance function ρ. However, also for manifolds,
we can choose the function q by

q =
1
2
ρ2. (6.13)

We have then |∇q| ≤ ρ which follows from |∇ρ| ≤ 1 and which is the analogue of (6.5). The
hypothesis (2.2) takes the form

Δq ≥ n, (6.14)

which is the analogue of (6.7). The reason why we do not assume the relation (6.13) for the
graphs, is that we do not know whether there exists a function ρ on Zn such that (6.5) and (6.7)
hold with q = 1

2ρ2.
There is a more substantial difference between the continuous and discrete case. In the case

of manifolds, the isoperimetric dimension n comes directly from the lower bound of Δq as in
(6.14). In the case of graphs, n is the product of two quantities δ and ν = νR0+1 that come
from different hypotheses. The spring ratio ν has no analogue for manifolds. It is clear that the
Laplace operator of the distance function on a graph does not catch the isoperimetric dimension
as we have seen for Zn. The spring ratio ν helps “to see” the dimension.

One may wonder if it is possible to catch the sharp isoperimetric inequality only by using
the spring ratio. The answer is negative.

Indeed, let us consider graph Γ which is the direct product of a cycle Ck with an odd k and
Z1 (see Fig. 13); in other words, Γ is a discrete cylinder based on Ck. Let the distance ρ on
Γ be the maximum of the graph distances in Ck and in Z1, analogously to (6.4). It is easy to
see that νr = 4 for this graph (for any r > 1) exactly as for Z2. However, the isoperimetric
dimensions of Z2 and Ck × Z1 are clearly different.

The rest of this Section is devoted to the proof of Theorem 6.3.
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Figure 13: Graph C5 × Z1

6.2 Boundary of a ball

We start with the following statement establishing relation between the boundary area of a ball
and its volume.

Proposition 6.5 Assume that the weighted graph (Γ, σ) has property P (n, ι, R0). Then, for
any value r ∈ [0, R0) and any vertex ξ ∈ V , we have

σ(∂Bξ(r)) ≥
δ

r + ι
μ(Bξ(r)) (6.15)

and
μ(Bξ(r)) ≥ b μξ rn , (6.16)

where
b = ι−n exp

(
−n2

)
. (6.17)

Proof. For simplicity, we will write ν = νR0+1 and B(r) = Bξ(r). To prove (6.15), we sum up
the inequality (6.7) pre-multiplied by μx, over the ball B(r) and use the Green formula (5.2).
We obtain

δ μ(B(r)) ≤
∑

x∈B(r)

Δq(x) μx =
∑

x∈B(r)
y/∈B(r)

(∇xyq) σxy. (6.18)

Of course, the summation on the right-hand side of (6.18) is restricted to adjacent x, y. Therefore,
we can use the hypothesis (6.5), which states that

∇xyq ≤ ρ(x) + ι ≤ r + ι.

Thus, (6.18) implies
δμ(B(r)) ≤ (r + ι) σ(∂B(r)), (6.19)

which proves (6.15).
Next we prove that, for all r ∈ [0, R0),

μ(B(r + 1)) − μ(B(r)) ≥
n

r + ι
μ(B(r)). (6.20)
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In the view of (6.19) and (6.8), inequality (6.20) will follow from

σ(∂B(r)) ≤
1
ν

(μ(B(r + 1)) − μ(B(r))) (6.21)

where we write ν = νR0+1.
Let us verify (6.21). The hypothesis (6.1) implies that if x is adjacent to y ∈ B(r) then

x ∈ B(r + 1). Therefore, any edge e ∈ ∂B(r) connects a vertex y ∈ B(r) with a vertex
x ∈ B(r + 1) \ B(r) whence

σ(∂B(r)) ≤
∑

y∈B(r)
x∈B(r+1)\B(r)

σxy .

Fix a vertex x ∈ B(r + 1) \ B(r) and consider all edges e which join x with a vertex y in B(r)
(see Fig. 14).

x

B(r)

B(r+1)

Figure 14: The edges at x contributing to σ(∂B(r)) are bold whereas the others are dashed

The sum of σxy over all such y is at most μ
(ξ)
x as defined by (6.2). Therefore, we have

σ(∂B(r)) ≤
∑

x∈B(r+1)\B(r)

μ(ξ)
x .

From the definition (6.3) of the spring ratio, we know that

μ(ξ)
x ≤

μx

ν
.
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Hence,

σ(∂B(r)) ≤
1
ν

∑

x∈B(r+1)\B(r)

μx =
1
ν

μ (B(r + 1) \ B(r)) ,

which proves (6.21) and, thus, (6.20).
Clearly, (6.20) can be rewritten as

μ(B(r + 1)) ≥ (1 +
n

r + ι
)μ(B(r)). (6.22)

For an integer r ∈ [1, R0), we iterate (6.22) to obtain

μ(B(r)) ≥ μ(B(0))
r−1∏

k=0

(

1 +
n

k + ι

)

. (6.23)

By using the elementary inequality 1 + x ≥ exp(x − 1
2x2) (x > 0), μ(B(0)) = μξ and ι ≥ 1 (see

(6.6)) we derive from (6.23)

μ(B(r)) ≥ μξ exp

(

n
r−1∑

k=0

1
k + ι

−
n2

2

r−1∑

k=0

1
(k + ι)2

)

≥ μξ exp

(

n

∫ r+ι

ι

ds

s
−

n2

2

∞∑

k=0

1
(k + 1)2

)

≥ μξ

(
r + ι

ι

)n

exp
(
−n2

)

≥ μξ

(
r + 1

ι

)n

exp
(
−n2

)
. (6.24)

Observe that (6.24) is true also for r = 0 because μ(B(0)) = μξ.
Finally, for any r ∈ [0, R0), we obtain

μ(B(r)) ≥ μ(B(brc)) ≥ μξ

(r

ι

)n
exp

(
−n2

)

whence (6.16) follows.

6.3 Proof of isoperimetric inequality

Here we prove Theorem 6.3. Let us denote

r0 =

(

θ
μ(Ω)

ω

)1/n

(6.25)

where θ is defined by (6.11). Hypothesis (6.10) implies that r0 ≤ R0.
Let ξ be any point in Ω (we may assume that Ω is not empty). By Proposition 6.5 and by

the obvious inequality b > θ−1 (see (6.17) and (6.11)) we have

μ(Bξ(R0)) ≥ b μξ Rn
0 > θ−1ω rn

0 = μ(Ω) .
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Therefore, the complement to Ω is not empty which implies that ∂Ω is not empty, too and, by
(6.9), μ(∂Ω) ≥ ω′ .

We write then
σ(∂Ω)

μ(Ω)
n−1

n

≥
ω′

(θ−1ω)
n−1

n rn−1
0

.

If we assume that r0 is small enough, say, as follows

r0 ≤ 2n2 + 1 ,

then we obtain
σ(∂Ω) ≥ θ

n−1
n (2n2 + 1)1−n ω′ω−n−1

n μ(Ω)
n−1

n .

It follows easily from (6.11) that

θ
n−1

n (2n2 + 1)1−n ≥ 1

whence we conclude
σ(∂Ω) ≥ ω′ω−n−1

n μ(Ω)
n−1

n ,

which proves (6.12) for r0 ≤ 2n2 + 1.
We may assume in the sequel

r0 > 2n2 + 1. (6.26)

The further proof will be split into three steps.
STEP 1. The boundary ∂(Ω ∩ Bξ(r)) can be partitioned into two parts:

∂+
ξ (r) = {xy ∈ E : x ∈ Ω ∩ Bξ(r) and y /∈ Ω}

and
∂−

ξ (r) = {xy ∈ E : x ∈ Ω ∩ Bξ(r) and y ∈ Ω \ Bξ(r)}

(see Fig. 15). Denote
mξ(r) := μ(Bξ(r) ∩ Ω).

We claim that the following inequality holds, for all r ∈ [0, R0],

mξ(r) − mξ(r + 1) +
n

r + ι
mξ(r) ≤ νσ(∂+

ξ (r)) , (6.27)

where ν = νR0+1.
The point ξ will be fixed during the proof of (6.27) so we skip the subscript ξ from all

notation. As in the proof of Proposition 6.5, we integrate (6.7) over Ω ∩ B(r) and obtain, by
the Green formula (5.2),

δ m(r) ≤
∑

x∈Ω∩B(r)

Δq(x)μx =
∑

xy∈∂(Ω∩B(r))

(∇xyq ) σxy. (6.28)

For any edge xy ∈ ∂(Ω ∩ B(r)), we estimate ∇xyq by using (6.5). Indeed, for x ∈ Ω ∩ B(r),
we have, by (6.5),

∇xyqξ ≤ ρξ(x) + ι ≤ r + ι.
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Ω

B(r)

B(r+1)

yx

y

x

Figure 15: Splitting of ∂(Ω ∩ B(r)) - the dashed edges belong to ∂+(r), bold - to ∂−(r)

Therefore, we obtain from (6.28)

δ m(r) ≤ (r + ι) σ( ∂(Ω ∩ B(r)) ). (6.29)

We now prove the following estimate of the measure of ∂−(r):

σ(∂−(r)) ≤
1
ν

(m(r + 1) − m(r)). (6.30)

Indeed, for any edge xy ∈ ∂−(r) with x ∈ B(r), (6.1) implies y ∈ B(r + 1). In order to add up
σxy over all xy ∈ ∂−(r), we first group those edges xy with the same end y. Since x ∈ B(r) and

y /∈ B(r), the sum of σxy over all possible x (such that xy ∈ ∂−(r)) is at most μ
(ξ)
y , by (6.2).

Thus,

σ(∂−(r)) ≤
∑

y∈Ω∩(B(r+1)\B(r))

μ(ξ)
y

≤
1
ν

∑

y∈Ω∩(B(r+1)\B(r))

μy

=
1
ν

(m(r + 1) − m(r))

where we have used μ
(ξ)
y ≤ 1

ν μy (see (6.3)).
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By combining (6.29) and (6.30), we conclude

δ m(r) ≤ (r + ι)σ(∂+(r)) +
r + ι

ν
(m(r + 1) − m(r)),

whence (6.27) follows.
STEP 2. We claim that there exists r ∈ [0, r0] such that

σ(∂+(r)) ≥
ε

r0
m(4r), (6.31)

where
ε = 4−n−1ν−1. (6.32)

Assume on the contrary that, for all r ∈ [0, r0], we have

σ(∂+(r)) <
ε

r0
m(4r).

Together with (6.27), this yields

m(r) − m(r + 1) +
n

r + ι
m(r) ≤

νε

r0
m(4r). (6.33)

Let us introduce a new function φ(r) = m(r− ι)/rn, which is defined for all r ≥ ι. Replace r by
r − ι in (6.33) and rewrite the latter as follows:

rnφ(r) − (r + 1)nφ(r + 1) +
n

r
rnφ(r) ≤

νε

r0
(4r)nφ(4r). (6.34)

By dividing (6.34) by (r + 1)n and by using (6.32), we obtain

(
r

r + 1
)nφ(r) − φ(r + 1) ≤

1
4r0

(
r

r + 1
)nφ(4r) −

n

r
(

r

r + 1
)nφ(r). (6.35)

Since, for any x ∈ [0, 1] and n ≥ 1,

1 − xn ≤ n(1 − x),

we have
1 − (

r

r + 1
)n ≤

n

r + 1
.

Therefore,

φ(r) − φ(r + 1) = (
r

r + 1
)nφ(r) − φ(r + 1) +

[

1 − (
r

r + 1
)n

]

φ(r)

≤

[

(
r

r + 1
)nφ(r) − φ(r + 1)

]

+
n

r + 1
φ(r),

and (6.35) implies, for ι ≤ r ≤ ι + r0,

φ(r) − φ(r + 1) ≤

[
1

4r0
(

r

r + 1
)nφ(4r) −

n

r
(

r

r + 1
)nφ(r)

]

+
n

r + 1
φ(r)

≤
1

4r0
φ(4r) +

n

r + 1

[

1 −

(
r

r + 1

)n−1
]

φ(r)

≤
1

4r0
φ(4r) +

n(n − 1)
(r + 1)2

φ(r).
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Thus, we have

φ(r) − φ(r + 1) ≤
1

4r0
φ(4r) +

n2

(r + 1)2
φ(r), ∀r ∈ [ι, r0 + ι]. (6.36)

On the other hand, we know also that, for all r ≥ ι,

φ(r) =
m(r − ι)

rn
≤

μ(Ω)
rn

(6.37)

and

φ(r) ≥
μ(B(0))

rn
≥

ω

rn
. (6.38)

We would like to bring to a contradiction using (6.36), (6.37) and (6.38). Denote

L =
⌈
2n2 + ι

⌉
, (6.39)

R = br0 + ιc . (6.40)

By (6.26), (6.39) and (6.40), we have

ι < L < R ≤ r0 + ι.

Let us set
M := max

r∈[L,R]
r is integer

φ(r). (6.41)

By iterating (6.36), we obtain, for any integer r ∈ [L,R],

φ(r) − φ(R + 1) ≤
1

4r0

R∑

k=r

φ(4k) + n2
R∑

k=r

φ(k)
(k + 1)2

≤
1

4r0

4R∑

k=L

φ(k) + n2
R∑

k=L

M

(k + 1)2

≤
1

4r0

[
4R∑

k=R+1

+
R∑

k=L

]

φ(k) + n2 M

L

≤
3R

4r0

μ(Ω)
(R + 1)n

+
R − L + 1

4r0
M + n2 M

L
(6.42)

where we have used (6.37) and (6.41).
It follows from (6.40), (6.39) that R+1 ≥ r0, R−L+1 ≤ r0 and L ≥ 2n2. Therefore, (6.42)

implies

φ(r) − φ(R + 1) ≤
3
4

μ(Ω)
rn
0

+

(
1
4

+
1
2

)

M. (6.43)

Choose r ∈ [L,R] so that φ(r) = M and apply (6.37) in the form

φ(R + 1) ≤
μ(Ω)

(R + 1)n
≤

μ(Ω)
rn
0

.
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Hence, we obtain from (6.43)

M ≤
7
4

μ(Ω)
rn
0

+
3
4
M,

whence, by (6.25),

M ≤ 7
μ(Ω)
rn
0

= 7
ω

θ
.

In particular, this implies
φ(L) ≤ 7

ω

θ
(6.44)

whereas, by (6.38),

φ(L) ≥
ω

Ln
. (6.45)

On the other hand, definitions (6.11) of θ and (6.39) of L imply

θ

7
> ιne2n2

> ιn(1 + 2n + 2n2)n ≥
(
ι + 1 + 2n2

)n
> Ln

and we see that (6.44) and (6.45) contradict each other.
STEP 3. For each vertex ξ ∈ Ω, we denote by rξ the value of r determined by (6.31). Therefore,
by (6.31), we have

σ(∂+
ξ (r)) ≥

ε

r0
μ( Bξ(4rξ) ∩ Ω) ∀ ξ ∈ Ω , (6.46)

where
∂+

ξ (r) = {uv ∈ E : u ∈ Ω ∩ Bξ(r) and v /∈ Ω}. (6.47)

By Lemma 2.6, there exists a subset T ⊂ Ω such that

(i) all balls Bx(rx), for x ∈ T , are disjoint;

(ii) the union of the balls Bx(4rx), for x ∈ T , covers Ω.

We claim that, for distinct x, y ∈ T , the sets of edges ∂+
x (rx) and ∂+

y (ry) are disjoint. This
is not altogether trivial because the boundaries ∂Bx(rx) and ∂By(ry) may have a common edge
(the filled edge on Fig. 16). However, if there is an edge e ∈ ∂+

x (rx) ∩ ∂+
y (ry) then the edge

e must have a vertex in Ω ∩ Bx(rx) and a vertex in Ω ∩ By(ry). Due to (i), these vertices are
different. Therefore, both vertices of e belong to Ω which contradicts the definition (6.47) of
∂+

x (r).
Hence, all sets ∂+

x (rx), x ∈ T , are disjoint whence

∑

x∈T

σ(∂+
x (rx)) ≤ σ(∂Ω) . (6.48)

On the other hand, (ii) implies

μ(Ω) ≤
∑

x∈T

μ(Bx(4rx) ∩ Ω). (6.49)
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Ω

Figure 16: The boundaries ∂+
x (rx), x ∈ T , are disjoint (the dashed edges on the picture) whereas

the balls Bx(4rx) cover Ω.

Using (6.49), (6.46), (6.48), (6.25), we obtain

μ(Ω) ≤
∑

x∈T

μ(Bx(4rx) ∩ Ω)

≤
r0

ε

∑

x∈T

σ(∂+
x (rx))

≤
r0

ε
σ(∂Ω)

= ε−1 μ(Ω)1/n(
θ

ω
)1/nσ(∂Ω).

This implies together with (6.11), (6.32) and ω ≥ ω′ that

σ(∂Ω) ≥ εθ−1/nω1/nμ(Ω)1−1/n ≥ 4−n−3ν−1ι−1e−2nω′ω1/n−1μ(Ω)1−1/n ,

which was to be proved.

7 Eigenvalues and Sobolev inequality on graphs

Most proofs below follow the same lines as their continuous counterparts in the previous sections.
We emphasize only those places of the proofs which require additional argument specific to the
discrete setup.
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Proposition 7.1 In a weighted graph (Γ, σ), we assume that

σ(∂Ω) ≥ cμ(Ω)1−1/n

for any Ω satisfying μ(Ω) ≤ v0, where c > 0, v0 > 0 and n > 1. Then the Dirichlet eigenvalue
λ1(Ω) satisfies

λ1(Ω) ≥
c2

2
μ(Ω)−2/n.

Proof. The proof is almost identical to that in Step 1 of Theorem 3.1. Only inequality (3.7),
which is a part of Cheeger’s argument, requires modification because we cannot use in the graph
case the formula ∇f2 = 2f ∇f . However, the recipe is well known how to overcome this difficulty
(see, for example, [10], [12]). So, we argue as follows:

∫

E
|∇f2|dσ =

1
2

∑

x,y

|f2(x) − f2(y)|σxy

=
1
2

∑

x,y

|f(x) − f(y)| ∙ |f(x) + f(y)|σxy

≤

(
1
2
(
∑

x,y

(f(x) − f(y))2σxy) ∙
1
2
(
∑

x,y

(f(x) + f(y))2σxy)

)1/2

≤

(

(
∫

E
|∇f |2dσ) ∙ (

∑

x

f2(x)μx +
∑

y

f2(y)μy)

)1/2

≤

(

2(
∫

E
|∇f |2dσ) ∙ (

∫

V
f2dμ)

)1/2

.

This allows us to follow the rest of the proof as in the continuous case with a modified constant
(off by a factor 2).

Next Lemma is a straight analogue of Lemma 3.2.

Lemma 7.2 In a weighted graph (Γ, μ), we assume that for any Ω satisfying μ(Ω) ≤ v0,

λ1(Ω) ≥ Λ(μ(Ω))

where Λ is a non-negative non-increasing function. Let u(x) denote a non-negative function
defined on the vertex set of Γ with finite support. We denote

∫

V
udμ = α, and

∫

V
u2dμ = β.

Then for any s ≥ s0 = α/v0, we have
∫

E
|∇u|2dσ ≥ (β − 2sα)Λ(s−1α).

Now we are ready to state the following lower bounds for λk for large k.
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Theorem 7.3 In a weighted graph (Γ, σ), we assume that

σ(∂Ω) ≥ cμ(Ω)1−1/n

for any Ω satisfying μ(Ω) ≤ v0, where c > 0, v0 > 0 and n > 1. Then the Dirichlet eigenvalue
λk(Ω) satisfies

λk(Ω) ≥ a

(
k

μ(Ω)

)2/n

for a = e−2/n(n + 2)−1−2/nc2, provided

|Ω| ≥ k ≥
(n + 2)e

v0
μ(Ω).

The proof goes the same way as that of Theorem 3.1. The latter used certain properties
of the heat kernel and the Laplace operator which all are available in the case of a graph as
was shown in Section 5. The constant a is twice as big as one in Theorem 3.1 because we use
Proposition 7.1 instead of (3.8).

Combining the above theorem with Theorem 6.3, we obtain the following result.

Corollary 7.4 Assume that the weighted graph (Γ, σ) satisfies the hypotheses of Theorem 6.3.
Then, for any finite set Ω ⊂ V , the Dirichlet eigenvalue λk(Ω) satisfies

λk(Ω) ≥ a

(
k

μ(Ω)

)2/n

,

provided

|Ω| ≥ k ≥ κ
μ(Ω)
ωRn

0

,

where κ = c1(n) ιn > 0 and a = c2(n) ι−2ν−2
R0+1ω

′2ω2/n−2 > 0.

Corollary 7.5 For the lattice graph on Zn, for any finite subset Ω of vertices, we have

λk(Ω) ≥ a

(
k

μ(Ω)

)2/n

,

where k is any integer between 1 and |Ω| and a = a(n) > 0.

Similarly to Theorem 4.1, we have the following Sobolev inequality.

Theorem 7.6 In a weighted graph (Γ, σ), suppose that for a finite subset Ω of vertices with

μ(Ω) ≤ v0,

the following holds
σ(∂Ω) ≥ cμ(Ω)1−1/n

for some c, v0 > 0 and n > 1. Then, for any function f with finite support, we have

∫

E
|∇f | dσ + cΘ(Ω0)

∫

V
|f | dμ ≥ c2−1/n

[∫

V
|f |

n
n−1 dμ

]n−1
n
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where Ω0 = {x ∈ M : |f(x)| > 0} and

Θ(Ω) :=

{
0, if μ (Ω) ≤ v0,

v−1
0 μ (Ω)1−1/n , if μ (Ω) > v0.

Furthermore, for any p ∈ [1, n),

C

[∫

E
|∇f |p dσ

] 1
p

+ cΘ(Ω0)

[∫

V
|f |p dμ

] 1
p

≥ c2
1
p
−1− 1

n

[∫

V
|f |

pn
n−p dμ

]n−p
np

,

where C = C(n, p) > 0.
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109 (1985) 113-119.

46


	Introduction
	Isoperimetric inequality for weighted manifolds
	Eigenvalues of subsets
	Sobolev inequality
	Analysis on weighted graphs
	Measures on graphs
	Discrete Laplacian
	Green's formula
	Integration versus Summation
	Eigenvalues of Laplacian
	Heat kernel
	Co-area formula

	Discrete isoperimetric inequality
	Statement of the results
	Boundary of a ball
	Proof of isoperimetric inequality

	Eigenvalues and Sobolev inequality on graphs

