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ON STOCHASTICALLY COMPLETE MANIFOLDS
uoc 517.956

A. A. GRIGOR'YAN

A Riemannian manifold is said to be 8tochMtically complete if every two Wiener
processes on it have the same transition function. For example, a Euclidean space is
stochastically complete, but a proper open subset of R n is not , because Wiener processes
with different boundary cond itions have different t ransit ion funct ions. We remark that
there is always at least one Wiener process [i.e., a di ffusion process generated by t he
Laplace operator) on an arbitrary smooth connected Riemannian manifold (see 11]).

It is known that a necessary condition for stochastic completeness of a manifold is
its completeness as a metric space. However, not every metrically complete manifold is
stochastically complete : a Wiener process can with posit ive probab ility leave a manifold
in a finite t ime, and the subsequent mot ion of the Brownian particle is determined by
the condit ions on the boundary at infinity and is thus nonunique (see (2]). Vau 131
proved that if a complete manifold has Ricci curvat ure that is bounded below, then it is
stochastically complete. We now formulate our main result .

THEOREM 1. Let M be a compkte Riemannian manifold, and let V(r ) be the volume
of a geodesic ball of radiw r with fixed center 0 E M . If

(1) !~('/I0g V ('))d' = 00,

then M is stochMtically complete.

R EMARKS. 1) If the Ricci curvature is bounded below, then V( r) ~ eCr , and hence
(1) holds. What is more, (I) also holds if

VCr) ~ eCr~

0 '

etc.
2) Theorem 1 is valid also for man ifolds with a boundary if the reflect ion condit ion is

assumed on the boundary, i.e., t he one-sided Neuman n condition .
3) Condit ion (1) is sharp in the following sense . If j OO (r/log f (r») dr < 00 for a

positive funct ion fer) (regular in some sense), then there is a complete manifold M such
that V(r) :5 e f( r) , and M is not stochastically complete.

PROOF OF T HEOREM 1. To a Wiener process there corresponds a transit ion function
Pt(x , N ): the probability of hit t ing a Borel set N c M from the point z in a t ime t.
Fur ther ,

(2)

and for every continuous bounded function v(y ) on M t he function

(3) u(l ,x) = Lv(y )P,(x,dy)
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satisfies the inverse diffusion equation

(4) aulat = f~u

I
I

and the initial condition u!t=o = v.
If there exist two transition functions p (l ) and p (2) , then we consider the di fference

U = U( l ) - U (2 ) between the functions u(i ) and U (2 ) determined from (3). T he function
u sati sfies equat ion (4) wit h t he init ial condition

(5) ul,~o ~ O.

Moreover, it follows from (2) and (3) that lu(ill ::s sup [u] < 00; hence u is bounded. It
can be deduced from (4), (5) and the boundedness of u that u sa a (and so p ( l ) = p (2»).
This follows from the next theorem, which is of independent interest .

T HEOREM 2. Suppose that M is a complete Riemannian manifold, and u(t, x ) is
a solution of (4) with the initial condition (5) defined in the strip MT = M x 10, T] .
Suppose that for any R > 0

[T [ u2(t , x ) dx dt < ef(R),
Jo JBR

where BR is a geodesic bail with fixed center 0 E M , and f( R) ~s a monotonically
increasing function such that

Then u ss a in MT .

REMARKS. 1) Theorem 2 is valid also for manifolds with boundary aM under t he
condit ion that on the boundary u(t, z] satisfies the Neumann condit ion (/.I is the normal)

(7)

(8) au;av 1 8M~ O.

,
j>o:,/;:\>,>:

What is more, instead of (4) we can consider the more general paraboli c equation

(9) p(x )au;at ~ div(o(t, x )Vu ) + bt', x)Vu + crt , x)u,

I

....'
).

where a(t,x) is a posit ive selfadjoint operator T:z; M --+ T:z;M depending smoot hly on t

and x , b(t , x ) is a smooth vector field, and p(x) and c(t,x) are smooth functions, wit h
p(x ) > O.

Suppose that all the expressions lIall , lIa- 1 1l ,p (x),p(x)- I, Ibl, and c, are uniformly
bounded above. Then every solut ion of (9) with the condit ions (5), (6) , and (8) (where
v is the conormal corresponding to the operat or a) is equal to zero in MT .

2) An analogous theorem was proved in [41 in the case when M is a domain in R" and
the lower te rms in (9) are absent. Here we give a simple proof for an arbitrar y manifold.
We emphasize that (1) is not assumed in the formul ation of Theorem 2, but only metric
completeness is required . The last requirement is essential.

The proof of Theorem 1 is completed as follows. Since u is bounded, for any T > a
and R > 0

rT r u2 dxdt s CTV( R ).Jo JB R

Let f( R ) = 10g V(R) ; then (7) follows from (1), and u == 0 by T heorem 2.
We proceed to a proof of Theorem 2. The main point in the proof is the use of

a felicitously chosen test function. Let p(x) be a Lipschitz function on M such that
\'Vpl ::s I. For example, t his can be the function giving the distance to some set. We
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consider the function g(t ,x) = p{x)'l/ 2(t - e}, defined for t :f:. 3 (3 fixed). It follows from
IVpi :5 1 that g satisfies

(10)

(ll)

(12)

.

We also consider for each R > a a standard cutoff funct ion 7I(x) with compact support
in the bal l B'lR and equal to 1 in the ball B(3/'l)R' Let us multiply equation (4) bye971'lu
and integrate over the cylinder Cyl = B'lR x It - 6.t , tl for some t and 6.t:

2 [] UTU7l'le9 dxdr = j rr 6.u . uf/'le9 dxdr.
Ji.; i;

We next use integrat ion by parts. The resulting expressions (Vu, Vf/)f/U and (Vu, Vg)u
can be estimated from above in terms of l IVul'lf]'l + [Vf]l 'lu'l and ! IVul'l + !u'ljVgl'l
respectively. As a result, the three integrals containing ]Vul'lf] 'le9 are annihilated, and
we get that

r u'lf]'le91: _~! _ j"r u'lf]'le98gjar
Jau J Cyl

s 2j"{ IVf]I'l u'le9 +! j.[ u'l'7'leIl IVgl'l .
J Cyl 2 J CYI

Using (10), we can throw away the second terms on both sides of (11); observing that
IV711 :5 C/ R (here and below the letter C denotes an absolute positive constant) , we get
that

{ u'l(t, x)e9dx:5 { u'l(t -.6.t,x)e'ldx

J811 J811
CI.' /, a+ ] dr U (T,x)e'dx.
R l - ~I 8211\8(Jn lll

We now make the form of 9 concrete. Let p(x) be the funct ion giving the distance to
the ball B R , i.e., if x E B R , then p(x) = 0, and if x is at a distance r > R from the point
0, then p(x ) = r - R. Also, let s = t + 6.t , l.e.,

g(T,X ) ~ - p(x)' / 2(t + At - T) $ 0,

and g(T,X) = 0 for x E B R. Therefore, in t he first two integrals in (12) the factor e9 can
be omitted . For x E B'lR\ B(3/'l} R we have t hat

p(x )' / 2(, - T) ~ (, - R)' / 2(, - T) '" C- , R'/ At.

Choose 6.t so tha t C -I R'l/ 6.t ;::: !(2R), i.e., .6.t :5 C -I(2R)'l/ f (2R ). Then we get from
(12) that

{ u'l(t ,x)dx :5 { u'l(t -.6.t , x) dx+ C'l tt u'l(r,x)e-/('lR )dxdr,
J811 J8211 R JJCyl

or using (6),

(13) r .'(t ,x)dx s r .'(t - At, x )dx + C/R' .
J811 J8211

We next take the sequence of radi i R/r; = 2/r; R, k: = 0, 1,2, ... , and a sequence

6.t /r; :5 C - 'RZ +1/ !( R/r; +t).

It can easily be deduced from (7) that L~ RZ!f(R".) = 00 (to do t his, reduce (7) by
a change of variable to the integral of a monotone functio n, and the rest is obvious) .
Therefore, t he sequence 6.t/r; can be chosen so that .6.to + 6.t l +...+ .6.tm = t for some



m. If in (13) we now estimate the integral on the righ....hand side again according to (13)
and continue th is up to the time zero, when u = 0, we get

{ u2 (t,X)dx :5 Ct'~ :5 ;2 '
JBR k ""O k

Lett ing R - 00 and using the fact that t < T is arbitrary, we get that u e O.
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