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Abstract. Let M be a complete non-compact Riemannian manifold and let σ be a
Radon measure on M . We study the problem of existence or non-existence of positive
solutions to a semilinear elliptic inequaliy

−Δu ≥ σuq in M,

where q > 1. We obtain necessary and sufficent criteria for existence of positive solutions
in terms of Green function of Δ. In particular, explicit necessary and sufficient conditions
are given when M has nonnegative Ricci curvature everywhere in M , or more generally
when Green’s function satisfies the 3G-inequality.

Contents

1. Introduction 1
2. Examples 6
3. Preliminaries 8
4. Proof of Theorem 1.6 11
4.1. Weighted norm inequalities 11
4.2. Iterations of supersolutions 13
4.3. Completion of proof of Theorem 1.6 14
5. Proofs of Theorems 1.5 and 1.4 16
6. Proofs of Theorems 1.3, 1.1 and Corollary 1.2 18
References 22

1. Introduction

Let M be a connected complete non-compact Riemannian manifold. Denote by M+ (M)
the class of nonnegative Radon measures on M . In this paper we are concerned with the
following problem: characterize q > 1 and σ ∈ M+(M) for which there exists a positive
solution u ∈ C2 (M) to the following superlinear elliptic inequality:

Δu + σuq ≤ 0 in M, (1.1)

where Δ is the Laplace-Beltrami operator on M .
If such a solution u exists, then u is a non-constant positive superharmonic function on

M , so that M is non-parabolic. Hence, we can assume without loss of generality that M
is non-parabolic. In particular, the operator Δ on M has a positive finite Green function
(see [4]). Denote by G (x, y) the minimal Green function.
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Clearly, any C2 non-negative solution u of (1.1) satisfies the following integral inequality:

u(x) ≥
∫

M
G(x, y) [u(y)]qdσ(y). (1.2)

We also consider the integral inequality (1.2) independently of (1.1). By a solution of (1.2)
we mean any non-negative l.s.c. function that satisfies (1.2) for all x ∈ M .

In this paper, we give necessary and sufficient conditions for the existence of positive
solutions to (1.2) and (1.1) in terms of certain properties of the Green function. Of course,
any necessary condition for (1.2) will also be necessary for (1.1). On the other hand, if σ
has a smooth positive density with respect to μ then the existence of a positive solution
for (1.2) implies that for (1.1) (see Lemma 3.3 below). Hence, in the rest of the paper we
concentrate on the integral inequality (1.2) unless otherwise specified.

Denote also by μ the Riemannian measure on M and by d the geodesic distance. The
geodesic balls on M will be denoted by B(x, r) = {y ∈ M : d(x, y) < r}, where x ∈ M
and r > 0. In what follows, we assume without loss of generality that

∫ +∞

r0

tdt

μ(B(o, t))
< ∞ (1.3)

for some/all o ∈ M and r0 > 0, since it is known that condition (1.3) is necessary for the
non-parabolicity of M (see [3], [22]).

Our first result uses the following hypothesis:

G(x, y) ≈
∫ +∞

d(x,y)

tdt

μ(B(x, t))
, x, y ∈ M, (GLY)

where the sign ≈ means that the ratio of the left- and right-hand sides is bounded from
above and below by two positive constants. For example, estimate (GLY) holds if the
Ricci curvature of M is non-negative, which follows from the heat kernel estimate of Li
and Yau [16].

More generally, (GLY) holds whenever the following two conditions are satisfied:

(1) the volume doubling condition: for all x ∈ M and r > 0

μ(B(x, 2r)) ≤ C μ(B(x, r)); (VD)

(2) the Poincaré inequality: for any ball B = B(x, r) ⊂ M and any f ∈ C2 (B),
∫

B
|f − fB |

2dμ ≤ C r2

∫

B
|∇f |2dμ, (PI)

where fB stands for the mean value of f on B and C is some constant;

(see [5], [8], [15], [16], [19]).

Theorem 1.1. Assume that conditions (VD) and (GLY) are satisfied. Then (1.2) has a
positive solution if and only if there exist o ∈ M , r0 > 0 and C > 0 such that the following
two conditions hold:

∫ +∞

r0

[∫ +∞

r

tdt

μ(B(o, t))

]q−1
σ(B(o, r))
μ(B(o, r))

rdr < ∞, (1.4)

and

sup
x∈B(o,r)

[∫ r

0

σ(B(x, s))
μ(B(x, s))

sds

] [∫ +∞

r

tdt

μ(B(o, t))

]q−1

≤ C, (1.5)

for all r > r0.
Moreover, if (1.2) has a positive solution then both (1.4) and (1.5) hold for all o ∈ M

and r0 > 0 with C = C (o, r0).



SUPERLINEAR ELLIPTIC INEQUALITIES ON MANIFOLDS 3

In particular, Theorem 1.1 gives necessary and sufficient conditions for the existence of
a positive solution to (1.2) on manifolds M with nonnegative Ricci curvature.

Consider now a special case σ = μ, that is, the inequality

Δu + uq ≤ 0 in M. (1.6)

In this case (1.4) clearly implies (1.5). Thus, a necessary and sufficient condition for the
existence of a positive solution to (1.6) becomes

∫ +∞

r0

[∫ +∞

r

tdt

μ(B(o, t))

]q−1

rdr < ∞, (1.7)

for some r0 > 0. Furthermore, (1.7) can be simplified as follows.

Corollary 1.2. Under the assumptions of Theorem 1.1, inequality (1.6) has a C2 positive
solution if and only if ∫ +∞

r0

r2q−1dr

[μ(B(o, r))]q−1
< ∞, (1.8)

for some o ∈ M and r0 > 0.

We remark that, for general coefficients σ, the local uniform bound (1.5) provides an
additional restriction in comparison to (1.4), in particular in the special case M = Rn

where μ is Lebesgue measure (see [14]).
Let (VD) and (GLY) be satisfied on M . Assume in addition that, for some o ∈ M and

large enough r,

μ(B(o, r)) ≤ Crα(ln r)
α−2

2 (ln ln r)
α−2

2 (ln ln ln r)
α−2

2 ∙ ∙ ∙ (ln ∙ ∙ ∙ ln︸ ︷︷ ︸
k

r)
α−2

2 , (1.9)

where α > 2 and k is a positive integer. It is clear that the integral in (1.8) diverges if
q ≤ α

α−2 . Hence, by Corollary 1.2, in the case q ≤ α
α−2 there is no positive solution to

(1.6).
Condition (1.9) with k = 1 was considered previously in [9]. More precisely, [9, Theorem

1.1] says the following: if M is any connected complete manifold such that for some o ∈ M
and large enough r

μ(B(o, r)) ≤ c rα(ln r)
α−2

2 , (1.10)
then (1.6) has no positive solutions for any q ≤ α

α−2 . Let us emphasize that the result of
[9, Theorem 1.1] does not require preconditions (VD) and (GLY). Further results of this
type involving volume growth conditions can be found in [21, 24].

In the view of that, we conjecture the following.

Conjecture 1. On an arbitrary complete connected Riemannian manifold M , if
∫ +∞

1

r2q−1dr

[μ(B(o, r))]q−1
= ∞

(in particular, if (1.9) is satisfied) then there is no positive solution to (1.6).

One more conjecture is motivated by comparison of [9, Theorem 1.1] and Theorem 1.6
discussed below.

Conjecture 2. On an arbitrary complete connected Riemannian manifold M , if (1.10)
is satisfied then, for any o ∈ M ,

∫

B(o,1)c
G (x, o)

α
α−2 dμ (x) = ∞.

If this conjecture is true then [9, Theorem 1.1] follows from Theorem 1.6.
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Our next theorem shows that, for the necessity part of Theorem 1.1, it suffices to have
only a lower bound for the Green function.

Theorem 1.3. Suppose that (VD) is satisfied, and let (1.2) have a positive solution. If
the Green function satisfies the following lower bound, for some o ∈ M and all x ∈ M ,

G(x, o) ≥ C

∫ +∞

d(x,o)

tdt

μ(B(o, t))
, (1.11)

then (1.4) holds for any r0 > 0. If G satisfies the lower bound

G(x, y) ≥ C

∫ +∞

d(x,y)

tdt

μ(B(o, t))
, (1.12)

for all x, y ∈ M then (1.4) and (1.5) hold for any o ∈ M and r0 > 0.

Next, let us consider the following condition on G:

G(x, y) ≈ d̃(x, y)−γ , x, y ∈ M, (G)

where d̃ is some metric on M (not necessarily the geodesic distance) and γ > 0. The
existence of a metric d̃ satisfying (G) is known to be equivalent to the following inequality,
for all x, y ∈ M :

1
G(x, y)

≤ κ
( 1

G(x, z)
+

1
G(z, y)

)
, (3G)

with some constant κ > 0 (κ is called a quasi-metric constant – see [2]). Indeed, if (3G)
is satisfied, then ρ(x, y) := 1

G(x,y) is a quasi-metric, and by the general properties of a

quasi-metric we conclude that ρ (x, y) ≈ d̃(x, y)γ for some metric d̃ and γ > 0 (see [13]),
so that (G) is satisfied. The converse implication (G)⇒(3G) is obvious (see [6]).

For example, as we will show below in Lemma 6.1, estimates (GLY) yield (3G).
The next theorem provides necessary and sufficient conditions for the existence of a

positive solution to (1.2) under hypothesis (G). Denote by B̃(x, r) metric balls in the
metric d̃.

Theorem 1.4. Suppose that (G) holds for some metric d̃ and γ > 0. Then (1.2) has a
positive solution if and only if there exist o ∈ M , r0 > 0 and C > 0 such that

∫ +∞

r0

σ(B̃(o, t))
tγq+1

dt < ∞, (1.13)

and

sup
x∈B̃(o,r)

∫ r

0

σ(B̃(x, s))
sγ+1

ds ≤ C rγ(q−1), (1.14)

for all r > r0.

It was proved in [10, Corollary 2.3] that, under hypothesis (G) and assuming in addition
that

μ(B̃(o, r) ≈ rα, r ≥ r0 > 0, (1.15)

where α > γ, the inequality
Δu + uq ≤ 0 (1.16)

has no positive solution for any q ≤ α
γ . This result can be obtained also from Theorem

1.4 as we show in Section 2. However, the result of [10, Corollary 2.3] remains true even
if (1.16) is satisfied in the exterior of a compact in M , which is not covered by Theorem
1.4.
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Assume now that dσ = Φ(x)dμ, where the function Φ satisfies the condition

Φ(x) ≥ c d̃(x, o)m, for d̃(x, o) ≥ r0 > 0, (1.17)

with c > 0 and m > γ−α. It was proved in [10, Theorem 2.1] that, under the assumptions
(G) and (1.15), (1.1) has no positive solutions for any q ≤ α+m

γ . This result can similarly
be deduced from Theorem 1.4.

The following theorem yields the necessary part of Theorem 1.4 provided G satisfies
only the lower bound in (G).

Theorem 1.5. Let (1.2) have a positive solution. If there is a metric d̃ on M such that,
for some o ∈ M , γ, r0 > 0,

G(x, o) ≥ c d̃(x, o)−γ , (1.18)

for all x ∈ M such that d̃(x, o) ≥ r0 > 0, then (1.13) is satisfied.
Moreover, if we have, for all x, y ∈ M ,

G (x, y) ≥ c d̃(x, y)−γ , (1.19)

then (1.14) is satisfied as well.

We conclude with more general necessary conditions for the existence of a positive
solution to (1.2), without imposing any additional a priori assumptions on the Green
function G. These conditions are also sufficient under the assumption (3G).

Theorem 1.6. If there exists a positive solution to (1.2), then for all o ∈ M and a > 0,
the following conditions hold:

∫

M
min

(
G(x, o), a−1

)q
dσ(x) < ∞, (1.20)

and

sup
x∈M

∫

{y∈M : G(o,y)>r−1}
G(x, y)dσ(y) ≤ C rq−1, (1.21)

for all r > a, where C is a positive constant (that may depend on q, o and a).
If conditions (1.20) and (1.21) are satisfied for some o ∈ M and a > 0 and, in addition,

G satisfies (3G), then there exists a positive solution to (1.2).

Under the assumption (3G), certain necessary and sufficient conditions for (1.2) to have
a positive solution were established in [14]. In fact, our Theorem 1.4 can be derived from
[14, Theorem 1.2], but we give an independent proof by deducing it from Theorem 1.6.

The structure of this paper is as follows.
In Section 2 we give examples of applications of Theorems 1.1 and 1.4.
In Section 3 we prove some preparatory results needed for the proofs of the above

theorems. In particular, we prove Proposition 3.4 giving one more necessary and sufficient
condition for the existence of positive solutions of (1.2) in terms of the Green function,
which however is difficult to verify.

In Section 4 we prove Theorem 1.6. This is the most technical part of the paper. The
proof of inequality (1.20) is based on weighted norm inequalities (Lemma 4.2), whereas the
proof of (1.21) uses Moser type iterations of supersolutions for integral operators (Lemma
4.4). Let us mention that these highly non-trivial techniques originate in [14].

In Section 5 we prove Theorems 1.5 and 1.4. For that, we verify that, if G satisfies
hypothesis (G), then conditions (1.13) and (1.14) become equivalent to conditions (1.20)
and (1.21) of Theorem 1.6.

In Section 6 we prove the remaining Theorems 1.1, 1.3 and Corollary 1.2, also by
reducing to Theorem 1.6.
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2. Examples

Example 2.1. Let M be Rn with n > 2. Then (VD) and (GLY) are trivially satisfied.
By Corollary 1.2, the inequality

Δu + uq ≤ 0

has a positive solution if and only if (1.8) is satisfied. Since

μ (B (o, r)) = crn,

we see that (1.8) is equivalent to
∫ ∞

1

r2q−1

rn(q−1)
dr =

∫ ∞

1
r−(n−2)q+n−1dr < ∞,

that is, to q > n
n−2 . This result is well known and goes back to [18] (see also [20]).

Consider now in Rn the inequality

Δu + |x|m uq ≤ 0.

By Theorem 1.1 it has a positive solution if and only if conditions (1.4), (1.5) are satisfied
with dσ = |x|mdμ. Similarly to the above computation, we obtain that this is the case if
and only if q > n+m

n−2 and m > −2. The result is also known and is due to [18].

Example 2.2. Let us recall the following result from [10, Theorem 2.6]. Let M be a
Riemannian manifold of bounded geometry such that

G (x, y) ≈ d (x, y)−γ if d (x, y) ≥ 1,

and
μ (B (x, r)) ≈ rα if r ≥ 1,

where α > γ > 0. Then the inequality

Δu + uq ≤ 0 (2.1)

has a positive solution if and only if q > α
γ .

Let us derive this result from our Theorem 1.4. In the setting of [10, Theorem 2.6],
the manifold M satisfies, in fact, the following conditions (where we assume for simplicity
that n = dim M > 2): for all x, y ∈ M ,

G(x, y) ≈






d(x, y)−γ if d(x, y) ≥ 1,

d(x, y)−(n−2) if d(x, y) < 1,
(2.2)

and, for all x ∈ M ,

μ(B(x, r)) ≈

{
rα, if r ≥ 1,
rn, if r ≤ 1.

(2.3)

It is easy to see that, for any δ1, δ2 ∈ (0, 1],

d̃(x, y) :=

{
d(x, y)δ1 , d(x, y) > 1,
d(x, y)δ2 , d(x, y) ≤ 1,

is a new metric on M . Choose

δ1 =
γ

γ̃
and δ2 =

n − 2
γ̃

,

where γ̃ is large enough to ensure that δ1, δ2 ≤ 1.
It follows from (2.2) that, for all x, y ∈ M ,

G(x, y) ≈ d̃(x, y)−γ̃ . (2.4)
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Hence, we can apply our Theorem 1.4 with σ = μ in order to obtain necessary and sufficient
condition for the existence of a positive solution to (2.1). Let us estimate the integral in
(1.13) as follows

∫ +∞

1

σ(B̃(o, t))
tγ̃q+1

=
∫ +∞

1

μ(B(o, t
1
δ1 ))

tγ̃q

dt

t

= δ1

∫ +∞

1

μ(B(o, r))
rδ1γ̃q

dr

r

≈
∫ +∞

1

rα

rγq

dr

r
,

where we have used the change t = rδ1 and (2.3). Clearly, the above integral is finite if
and only if

q >
α

γ
. (2.5)

Next, let us estimate the integral in (1.14) by splitting the domain of integration into [0, 1]
and [1, r], where r is large enough. We have

∫ 1

0

σ(B̃(x, s))
sγ̃+1

ds =
∫ 1

0

μ(B(x, s
1
δ2 ))

sγ̃

ds

s

= δ2

∫ 1

0

μ(B(x, τ ))
τ δ2γ̃

dτ

τ

≈
∫ 1

0

τn

τn−2

dτ

τ

≈ 1, (2.6)

and
∫ r

1

σ(B̃(x, s))
sγ̃+1

ds =
∫ r

1

μ(B(x, s
1
δ1 ))

sγ̃

ds

s

= δ1

∫ r1/δ1

1

μ(B(x, τ ))
τ δ1γ̃

dτ

τ

≈
∫ r1/δ1

1

τα

τγ

dτ

τ

≈ r
1
δ1

(α−γ) = r
γ̃ α−γ

γ . (2.7)

Combining with (2.6) and (2.7), we obtain
∫ r

0

σ(B̃(x, s))
sγ̃+1

≈ rγ̃ α−γ
γ .

Recall that condition (1.14) is
∫ r

0

σ(B̃(x, s))
sγ̃+1

≤ Crγ̃(q−1).

Hence, (1.14) is satisfied if and only if

α − γ

γ
≤ q − 1,

which is equivalent to q ≥ α
γ . Combining with (2.5) we recover [10, Theorem 2.6].
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3. Preliminaries

In this section we prove some preparatory results necessary for the proofs of the main
theorems. We use some results from [11], [12] and [14].

For any measure ω ∈ M+(M) denote by

Gω(x) =
∫

M
G(x, y) dω(y)

the Green potential of ω.
Let o ∈ M and let a > 0. We set

m(x) = ma,o(x) = min
(
G(x, o), a−1

)
, (3.1)

where sometimes we drop the subscripts a and o.
The proof of the following lemma is based on the (local) Harnack inequality on M (see

[5]).

Lemma 3.1. For any ω ∈ M+(M) (ω 6= 0), we have

Gω(x) ≥ C m(x) for all x ∈ M, (3.2)

where C > 0 may depend on ω, o, a.

Proof. Without loss of generality we may assume that Gω 6≡ +∞. By the lower semicon-
tinuity of G(x, ∙), it follows that Gω is lower semicontinuous, and hence is bounded below
by a positive constant on every compact subset K of M (see also [9]).

Without loss of generality, we may assume that ω is supported in a fixed compact set
K ⊂ M such that o ∈ K, where 0 < ω(K) < ∞.

Let U be a precompact open neighborhood of K. To verify (3.2), notice first that

c := min {Gω(x) : x ∈ U} > 0

and, consequently,
Gω(x) ≥ c ≥ c am(x) for all x ∈ U.

For any x ∈ M \ U , the function h(z) := G(x, z) is harmonic in U . Hence, by a local
Harnack’s inequality (see [5, Theorem 13.10]), we have h(z) ≥ CK,U h(o) for all z ∈ K,
where CK,U > 0 is the local Harnack constant associated with a couple K,U. It follows
that, for all x ∈ M \ U ,

Gω(x) =
∫

K
G(x, z) dω(z)

≥ CK,U

∫

K
G(x, o) dωK(z)

= CK,U ω(K) G(x, o) ≥ CK,U ω(K) m(x).

Hence, we obtain (3.2) for all x ∈ M. �

Lemma 3.2. Inequality (1.2) has a positive solution if and only if the following integral
equation

u(x) =
∫

M
G(x, y) [u(y)]qdσ(y) + Gω, x ∈ M, (3.3)

has a solution for some measure ω ∈ M+(M) (ω 6= 0), that is, there exists u > 0 so that

u = G(uqdσ) + Gω.

Moreover, ω can be chosen to be compactly supported in M and with smooth density with
respect to σ.
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Proof. Let u > 0 be a positive solution of (1.2). Consider a function v = εu where
ε ∈ (0, 1). We have

v = εu ≥ εG (uqdσ) = ε1−qG (vqdσ)

= G (vqdσ) +
(
ε1−q − 1

)
G (vqdσ)

= G (vqdσ) + (ε − εq) G (uqdσ) .

Since u is positive and lower semi-continuous, it is bounded below by a positive constant
on any compact set. Hence, there exists a non-negative non-zero function ϕ ∈ C∞

0 (M)
such that u ≥ ϕ everywhere. It follows that

v ≥ G (vqdσ) + h, (3.4)

where the function h = (ε − εq) G (ϕqdσ) is positive and superharmonic on M . By [12,
Theorem 5.1], the existence of a positive solution to (3.4) implies that

G (hqdσ) ≤
h

q − 1
.

It follows that the function h̃ := δh with δ =
(

q−1
q

) q
q−1

satisfies

G
(
h̃qdσ

)
≤

(

1 −
1
q

)q h̃

q − 1
.

By [11, Theorem 3.5] (see also [1], [14]), there exists a positive solution ṽ of the equation

ṽ = G(ṽqdσ) + h̃.

It follows that ṽ is a positive solution to (3.3) with ω = (ε − εq) δϕqdσ.
The converse statement is obvious. �

Lemma 3.3. Assume that a measure σ ∈ M+(M) has a smooth positive density with
respect to μ. If the integral inequality (1.2) has a positive solution then the differential
inequality (1.1) has a positive C∞ solution.

Of course, conversely, any smooth solution of (1.1) also solves (1.2).

Proof. By Lemma 3.2, if (1.2) has a positive solution then the integral equation

u = G(uqdσ) + h (3.5)

also has a positive solution, where h = Gω as in Lemma 3.2. Let us mollify u by using
a certain heat semigroup in order to obtain a smooth function. For that, consider the
energy form

E (f, f) =
∫

M
|∇f |2 dμ

in the measure space (M,σ). Since σ is absolutely continuous with respect to μ, E extends
to a regular Dirichlet form in L2 (M,σ). The generator of this Dirichlet form is 1

ΦΔ where
Φ = dσ

dμ (see [5, Exercise 3.11]). In particular, the notions of harmonic and superharmonic

functions with respect to Δ and 1
ΦΔ are the same. It is easy to see that the Green functions

of Δ in (M,μ) and 1
ΦΔ in (M,σ) are the same, so we denote them both by G (x, y) as

before.
Let {Pt}t≥0 be the heat semigroup of E in L2 (M,σ) and pt (x, y) be the corresponding

heat kernel, that is, a smooth positive function of t > 0, x, y ∈ M such that

Ptf (x) =
∫

M
pt (x, y) f (y) dσ (y) .
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For any t > 0, set
ut (x) = Ptu (x) .

Since u is superharmonic, we have Ptu ≤ u. In particular, ut is finite and, hence, ut ∈
C∞ (M). Let us prove that ut satisfies (1.1). Using the Green operator

K =
∫ ∞

0
Ptdt,

that has in (M,σ) the kernel G (x, y) , let us rewrite (3.5) in the form

u = K(uq) + h,

which implies

ut = Pt (Kuq) + Pth

= K (Ptu
q) + Pth

= K ((Ptu)q) + K (Ptu
q − (Ptu)q) + Pth,

where the operators K and Pt commute. Since
∫

M
pt (x, y) dσ (y) ≤ 1,

we obtain by Jensen’s inequality that

w := Ptu
q − (Ptu)q ≥ 0.

Hence, in the identity
ut = Kuq

t + Gw + Pth,

both functions Gw and Pth are superharmonic, and all functions are smooth. Applying
1
ΦΔ to both sides of this identity (see [5, Lem. 13.1]), we obtain

1
Φ

Δut ≤ −uq
t .

Hence, ut solves (1.1) for any t > 0. �

In the next statement, we prove a criterion for solvability of (1.2) and (1.1) in terms of
the function m defined in (3.1) for some fixed o ∈ M and a > 0.

Proposition 3.4. Inequality (1.2) has a positive solution if and only if, for some C > 0,

G[mqdσ](x) ≤ C m(x), x ∈ M. (3.6)

If (3.6) is satisfied and σ has a smooth positive density then (1.1) has a C∞ solution.

Proof. If (3.6) is satisfied then u = εm is a solution of (1.2) for ε = C
− 1

q−1 . If in addition
σ has a smooth positive density then, by Lemma 3.3, (1.1) also has a positive solution.

Assume now that (1.2) has a solution u > 0. By Lemma 3.2, there exists ω ∈ M+(M)
(ω 6= 0) such that

u = G(uqdσ) + Gω. (3.7)

By Lemma 3.1, we have, for some constant c > 0, that in M

Gω ≥ cm =: h.

Consequently, u satisfies the inequality

u ≥ G(uqdσ) + h. (3.8)

Note that h = cm is obviously superharmonic and, hence, satisfies the following domina-
tion principle:

G(fdσ)(x) ≤ h(x) in supp(f) =⇒ G(fdσ)(x) ≤ h(x) in M, (3.9)
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for any bounded measurable function f ≥ 0 with compact support, such that G(fdσ) is
bounded on supp(f).

By [12, Theorem 5.1], the existence of a solution to (3.8) implies

G[hqdσ] ≤
1

q − 1
h,

which proves (3.6). �

4. Proof of Theorem 1.6

We will need the following lemma that follows from [12, Lemma 2.5 and Remark 2.6].
An earlier version of this lemma was obtained in [14] for quasi-metric kernels.

Lemma 4.1. Let 1 < s < ∞, and let σ ∈ M+(M) be a measure such that the Green
function G (x, ∙) is locally integrable with respect to σ for any x ∈ M . Then, for all
x ∈ M,

[Gσ(x)]s ≤ sG[(Gσ)s−1dσ](x). (4.1)

4.1. Weighted norm inequalities. The following lemma was obtained earlier in [14] for
quasi-metric kernels (see also [23]).

Lemma 4.2. Let 1 < q < ∞, and let σ, ω ∈ M+(M). Assume that G (x, ∙) is locally
integrable with respect to σ and that Gω is locally bounded. Assume also that for all
x ∈ M

G[(Gω)qdσ](x) ≤ cGω(x). (4.2)

Then we have
||G(fdσ)||Ls(ω) ≤ C ||f ||Ls(σ), for all f ∈ Ls(σ), (4.3)

where s = q
q−1 and C = sc

s−1
s , and

||G(gdω)||Lq(σ) ≤ C||g||Lq(ω), for all g ∈ Lq(ω). (4.4)

Proof. Let us first prove that, for all f ∈ Ls(σ),

||G(fdσ)||Ls(ν) ≤ sc ||f ||Ls(σ), (4.5)

where dν = (Gω)qdσ. By a standard approximation argument, it suffices to prove (4.5)
assuming that f is non-negative, compactly supported and bounded.

Using inequality (4.1) with f dσ in place of σ, we obtain

[G(f dσ)]s ≤ sG
[
f [G(f dσ)]s−1 dσ

]
, (4.6)

whence by Fubini’s theorem
∫

M
[G(f dσ)]sdω ≤ s

∫

M
G
[
f [G(f dσ)]s−1 dσ

]
dω

= s

∫

M
f [G(f dσ)]s−1(Gω) dσ.

By Hölder’s inequality, the right-hand side is bounded by
∫

M
f [G(f dσ)]s−1(Gω) dσ ≤ ||f ||Ls(σ)

[∫

M
[G(f dσ)]s(Gω)qdσ

] 1
q

.

Combining the above two estimates, we obtain
∫

M
[G(f dσ)]sdω ≤ s ||f ||Ls(σ)

[∫

M
[G(f dσ)]sdν

] 1
q

, (4.7)
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where dν = (Gω)qdσ. Using (4.6) and Hölder’s inequality exactly as above, but with ν in
place of ω, we obtain

∫

M
[G(f dσ)]sdν ≤ s ||f ||Ls(σ)

[∫

M
[G(f dσ)]s(Gν)qdσ

] 1
q

.

By (4.2), we have

Gν = G[(Gω)qdσ] ≤ cGω,

and hence

(Gν)qdσ ≤ cq(Gω)qdσ = cqdν.

Consequently,
∫

M
[G(f dσ)]sdν ≤ sc||f ||Ls(σ)

[∫

M
[G(f dσ)]sdν

] 1
q

. (4.8)

Let us show that the left hand side here is finite. Indeed, we have
∫

M
[G(f dσ)]sdν =

∫

M
[G(f dσ)]s(Gω)qdσ

≤ s

∫

M
G
[
f [G(f dσ)]s−1 dσ

]
(Gω)q dσ

= s

∫

M
f [G(f dσ)]s−1 G ((Gω)q dσ) dσ

≤ sc

∫

M
f [G(f dσ)]s−1 (Gω) dσ.

Since f is bounded and has a compact support, while Gω is locally bounded from below
by positive constants, it follows from (4.2) that G (fdσ) is bounded by const Gω. Since
Gω is locally bounded and the above integral can be reduced to supp f , we obtain that
this integral is finite. Hence, it follows from (4.8) that

||G(f dσ)||Ls(ν) ≤ sc ||f ||Ls(σ),

which proves (4.5). From (4.7) and (4.5) we obtain
∫

M
[G(f dσ)]sdω ≤ ss cs−1 ||f ||sLs(σ),

which proves (4.3). Finally, we prove (4.4) by duality argument:

||G(gdω)||Lq(σ) = sup
f∈Ls(σ)

∫
M G(gdω)fdσ

‖f‖Ls(σ)

= sup
f∈Ls(σ)

∫
M gG (fdσ) dω

‖f‖Ls(σ)

≤ sup
f∈Ls(σ)

‖g‖Lq(ω) ‖G (fdσ)‖Ls(ω)

‖f‖Ls(σ)

≤ C ‖g‖Lq(ω) .

�
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4.2. Iterations of supersolutions. We remark that by Proposition 3.4, condition (3.6)
is necessary and sufficient for the solvability of (1.2), that is, for the existence of a non-
trivial superharmonic function u > 0 such that

u(x) ≥ G(uqdσ)(x), for all x ∈ M. (4.9)

For all x ∈ M and r > 0 set

A(x, r) := {y ∈ M : G(x, y) ≥ r−1}, x ∈ M, r > 0. (4.10)

We will need the following two lemmas. We start with a preliminary estimate of GσA(x),
where A = A(o, r) and dσA = χA dσ.

Lemma 4.3. Let 1 < q < ∞, and let σ ∈ M+(M). Assume that condition (3.6) is
satisfied for some o ∈ M and a > 0. Then the following estimate holds:

GσA(o,r)(x) ≤ Crq m(x), for all x ∈ M, r ≥ a, (4.11)

where the constant C is the same as in (3.6).

Proof. Fix some r ≥ a. For any y ∈ A(o, r), we have G(y, o) ≥ r−1. Since a−1 ≥ r−1, it
follows that

m(y) = min[G(y, o), a−1] ≥ r−1

and, consequently,

G[mqdσA(o,r)](x) =
∫

A(o,r)
G(x, y) m(y)q dσ(y) ≥ r−q GσA(o,r)(x).

By (3.6), we have

G[mqdσA(o,r)](x) ≤ C m(x), for all x ∈ M, r ≥ a. (4.12)

Combining with the previous estimate yields

r−q GσA(o,r)(x) ≤ C m(x), for all x ∈ M, r ≥ a. (4.13)

which is equivalent to (4.11). �

The proof of the next lemma is based on Moser type iterations of estimate (3.6) and
Lemma 4.3.

Lemma 4.4. Let 1 < q < ∞, and let σ ∈ M+(M). Let (3.6) be satisfied for some o ∈ M
and a > 0. Then the following estimate holds

GσA(o,r)(x) ≤ c rq−1 (4.14)

for all x ∈ M and r ≥ a, where the constant c may depend on q, o and a.

Proof. Fix r ≥ a. We start with (4.13) as our first estimate. Let us raise (4.13) to the
power q and apply G (∙dσ) . Using further (3.6), we obtain, for any x ∈ M ,

C−q r−q2
G[(GσA(o,r))

qdσ](x) ≤ G[mqdσ](x) ≤ C m(x). (4.15)

By (4.1) with s = 1 + q, we have
(
GσA(o,r)

)1+q (x) ≤ (1 + q) G
[(

GσA(o,r)

)q
dσA(o,r)

]
(x) ,

which together with (4.15) yields

C−q r−q2
(1 + q)−1(GσA(o,r))

1+q ≤ C m(x).

Raising again to the power q, applying G (∙dσ) and using (3.6), we obtain

C−q2
r−q3

(1 + q)−qG[(GσA(o,r))
q(1+q)dσA(o,r)](x) ≤ C1+q m(x).
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By (4.1) with s = 1 + q + q2 = 1 + q(1 + q), have
(
GσA(o,r)

)1+q+q2

(x) ≤
(
1 + q + q2

)
G
[(

GσA(o,r)

)q(1+q)
dσA(o,r)

]
(x) ,

whence we deduce our third iteration

C−q2
r−q3

(1 + q)−q(1 + q + q2)−1(GσA(o,r))
1+q+q2

(x) ≤ C1+q m(x).

Iterating this process further, we obtain, for our j-th iteration, as in [12, Corollary 2.8],
that

C−qj−1
r−qj

c(j, q)(GσA(o,r))
1+q+q2+∙∙∙+qj−1

(x) ≤ C1+q+...+qj−1
m(x), (4.16)

where

c(j, q) =
j−1∏

k=1

(1 + q + q2 + ∙ ∙ ∙ + qk)−qj−1−k
.

Now we raise both sides of (4.16) to the power q−j , and let j → ∞. Note that, as in the
proof of [14, Theorem 3.8], the infinite product

∞∏

k=1

(1 + q + q2 + ∙ ∙ ∙ + qk)q−1−k

=
∞∏

k=1

qkq−1−k
∞∏

k=1

(1 + q−1 + q−2 + ∙ ∙ ∙ + q−k)q−1−k

≤
∞∏

k=1

qkq−1−k
∞∏

k=1

(
q

q − 1

)q−1−k

=q(q−1)−2

(
q

q − 1

) 1
q(q−1)

is convergent. Hence,

c(q) = lim
j→∞

c(j, q)q−j
=

∞∏

k=1

(1 + q + q2 + ∙ ∙ ∙ + qk)−q−1−k
> 0,

from which we obtain

C− 1
q r−1 c(q) (GσA(o,r))

1
q−1 (x) ≤ C

1
q−1 ,

which completes the proof of (4.14). �

4.3. Completion of proof of Theorem 1.6.

Proof of necessity. Assume that (1.2) has a positive solution. Fix o ∈ M , a > 0 and define
m by (3.1), that is,

m(x) := min
(
G(x, o), a−1

)
.

By Proposition 3.4, we have that (3.6) is satisfied. Setting

dω = mqdσ,

we obtain
Gω ≤ Cm,

which, in particular, implies that Gω is bounded. Raising this inequality to the power q
and integrating against dσ, we obtain

G ((Gω)q dσ) ≤ cGω,
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with c = Cq, which coincides with the hypothesis (4.2) of Lemma 4.2. By this lemma, we
have (4.4), that is, for all g ∈ Lq (ω),

||G(gdω)||Lq(σ) ≤ C ||g||Lq(ω). (4.17)

Let K be a compact subset of M such that ω (K) > 0. Notice that ω (K) < ∞, since σ
is a Radon measure and m is bounded. Letting g = χK in (4.17) and observing that by
Lemma 3.1

m ≤ CG (χKdω) = CG (gdω) ,

we obtain
‖m‖Lq(σ) < ∞, (4.18)

which proves condition (1.20) of Theorem 1.6.
In order to prove (1.21), observe that by Proposition 3.4 we have (3.6). Hence, the

hypotheses of Lemma 4.4 are satisfied, and we conclude by this lemma that (4.14) hold,
which coincides with (1.21). This completes the proof of the necessity part of Theorem
1.6. �

Proof of sufficency. Let us prove that under hypotheses (1.20), (1.21) and (3G), inequality
(1.2) has a positive solution. By Proposition 3.4, it suffices to verify (3.6), that is,

G (mqdσ) (x) ≤ Cm (x) ,

for all x ∈ M , where
m(x) = min

(
G (o, x) , a−1

)
.

Hence, it suffices to verify that, for all x ∈ M

G(mqdσ)(x) ≤ Ca−1 (4.19)

and
G(mqdσ)(x) ≤ CG (o, x) . (4.20)

Using integration with respect to the level sets of m and noticing that 0 ≤ m ≤ a−1, we
obtain

G(mqdσ)(x) =
∫

M
G (x, y) mq (y) dσ (y)

= q

∫ a−1

0

(∫

{y∈M : m(y)>t}
G (x, y) dσ (y)

)

tq−1dt

≤ q

∫ a−1

0

(∫

{y∈M : G(o,y)>t}
G (x, y) dσ (y)

)

tq−1dt

= q

∫ ∞

a

(∫

{y∈M : G(o,y)>r−1}
G (x, y) dσ (y)

)

r−q−1dr

≤ qC

∫ ∞

a
rq−1r−q−1dr = qCa−1,

where in the last line we used (1.21). Hence, (4.19) is proved.
In order to prove (4.20), let us set

R = G(x, o),

where in view of (4.19) we may assume that R < (2κa)−1, and split the domain of
integration in G(mqdσ) into two parts:

G(x, y) ≤ 2κR and G(x, y) > 2κR,
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where κ is the constant from (3G). In the first part, we have by (1.20)
∫

{y∈M : G(x,y)≤2κR}
G(x, y)mq(y)dσ(y) ≤ 2κR

∫

M
mq(y)dσ(y)

= CR = CG (x, o) .

In the second part, we have G(x, y) > 2κR and hence,

1
G (x, y)

<
1

2κG (x, o)
,

which implies by (3G)

1
G (x, o)

≤ κ

(
1

G (y, o)
+

1
G (x, y)

)

≤ κ

(
1

G (y, o)
+

1
2κG (x, o)

)

=
κ

G (y, o)
+

1
2G (x, o)

.

It follows that
1

2G (x, o)
≤

κ

G (y, o)
,

and hence G(y, o) ≤ 2κG(x, o). Consequently, we obtain

m (y) ≤ 2κG(x, o),

and by (1.21) with r = (2κR)−1 > a,
∫

{y∈M : G(y,o)>2κR}
G(x, y) m(y)qdσ(y) ≤ C G(x, o) q (2κR)−(q−1) = CG (x, o) .

Combining with the previous estimate, we obtain (3.6), thus finishing the proof. �

5. Proofs of Theorems 1.5 and 1.4

We prove here Theorems 1.5 and 1.4 using our Theorem 1.6. Hence, in the proof of the
necessary conditions in Theorems 1.5 and 1.4 we can assume that conditions (1.20) and
(1.21) are satisfied, for any a > 0.

Proof of Theorem 1.5. Using (1.18), (1.20) with large enough a and integration with re-
spect to the level sets, obtain

∞ >

∫

M
min

(
G (x, o) , a−1

)q
dσ (x)

≥
∫

{x∈M : d̃(x,o)≥r0}
min

(
G (x, o) , a−1

)q
dσ (x) (5.1)

≥ c

∫

{x∈M : d̃(x,o)≥r0}

[
min

(
d̃(x, o)−γ , a−1

)]q
dσ(x) (5.2)

= cq

∫ min(r−γ
0 ,a−1)

0
σ
(
{x ∈ M : min

(
(d̃(x, o))−γ , a−1

)
> s}

)
sq−1 ds

= cq

∫ a−1

0
σ
(
{x ∈ M : d̃(x, o))−γ > s}

)
sq−1 ds

= cq

∫ a−1

0
σ
(
B̃
(
o, s−1/γ

))
sq−1 ds
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= cγq

∫ ∞

aγ

σ(B̃(o, r))
dr

rγ q+1
,

whence (1.13) follows.
Assuming that (1.19) is satisfied, let us deduce (1.14). We have, for any r > 0,

G (o, y) > r−1 ⇐ d̃(o, y) < (cr)1/γ =: ρ,

so that {
y ∈ M : G (o, y) > r−1

}
⊃ B̃(o, ρ).

Applying (1.19) again, we obtain
∫

{y∈M : G(o,y)>r−1}
G (x, y) dσ (y) ≥ c

∫

B̃(o,ρ)
d̃(x, y)−γdσ(y),

which together with (1.21) yields
∫

B̃(o,ρ)
d̃(x, y)−γdσ(y) ≤ Cργ(q−1),

for all x ∈ M and ρ > (ca)1/γ . Using integration with respect to the level sets of d̃(x, ∙),
we obtain

∫

B̃(o,ρ)
d̃(x, y)−γdσ(y) = γ

∫ ∞

0
σ
(
B̃(o, ρ) ∩ B̃(x, s)

)
s−γ−1ds.

whence ∫ ∞

0
σ
(
B̃(o, ρ) ∩ B̃(x, s)

)
s−γ−1ds ≤ Cργ(q−1), (5.3)

for all x ∈ M and ρ > (ca)1/γ .
If x ∈ B̃(o, ρ

2) and 0 < s ≤ ρ
2 , then B̃(x, s) ⊂ B̃(o, ρ). Hence, we obtain, for all

x ∈ B̃(o, ρ
2),

∫ ρ
2

0
σ(B̃(x, s)) s−γ−1ds ≤ C ργ(q−1).

Denoting r = ρ
2 , we obtain the condition (1.14). �

Proof of Theorem 1.4. As was mentioned above, condition (G) is equivalent to (3G), that
is, G is a quasi-metric kernel. Therefore, Theorem 1.4 can be deduced from [14, Theorem
4.10]. However, we give here an independent proof.

The necessity of conditions (1.13) and (1.14) follows from Theorem 1.5.
We will prove the sufficiency of conditions (1.13) and (1.14) by showing that they imply

conditions (1.20) and (1.21), respectively. Consequently, the existence of a solution of
(1.2) follows by the second part of Theorem 1.6.

In the proof of Theorem 1.5 we have shown that (1.18), (1.20) implies (1.13). The same
argument shows that, if (G) holds, then (1.13) implies (1.20). Indeed, in (5.2) we have ≈
instead of ≥, so that (1.13) yields

∫

{x∈M : d̃(x,o)≥r0}
min

(
G (x, o) , a−1

)q
dσ (x) < ∞.

Since ∫

{x∈M : d̃(x,o)<r0}
min

(
G (x, o) , a−1

)q
dσ (x) ≤ a−qσ(B̃ (o, r0)) < ∞,

we obtain (1.20).
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Let us now obtain (1.21). It follows from (1.13) and the monotonicity of σ(B̃(o, t)) in
t, that

σ(B̃(o, t)) ≤ Ctγq, (5.4)

for all t > r0. Under the hypotheses (G), that is,

G(x, y) ≈ d̃(x, y)−γ , for all x, y ∈ M.

the condition (1.21), that is,

sup
x∈M

∫

{y: G(o,y)>r−1}
G(x, y)dσ(y) ≤ Crq−1, for all r > r0,

where r0 > 0, is clearly equivalent to

sup
x∈M

∫

B̃(o,t)
d̃(x, y)−γdσ(y) ≤ Ctγ(q−1) for all t > t0,

where t0 > 0. The latter is in turn equivalent to
∫ ∞

0

σ(B̃(x, s) ∩ B̃(o, t))
sγ+1

ds ≤ Ctγ(q−1)

for all x ∈ M and t > t0. Note first that by (5.4)
∫ ∞

t

σ(B̃(x, s) ∩ B̃(o, t))
sγ+1

ds ≤
∫ ∞

t

Ctγq

sγ+1
ds = Ctγ(q−1).

To estimate a similar integral from 0 to t, observe first that the intersection

B̃(x, s) ∩ B̃(o, t)

is empty if
d̃ (x, o) ≥ s + t,

In particular, if d̃ (x, o) ≥ 2t, then
∫ t

0

σ(B̃(x, s) ∩ B̃(o, t))
sγ+1

ds = 0.

Assume now that d̃ (x, o) < 2t. Then x ∈ B̃(o, 2t) and we obtain by (1.14) that
∫ t

0

σ(B̃(x, s) ∩ B̃(o, t))
sγ+1

ds ≤
∫ 2t

0

σ(B̃(x, s))
sγ+1

ds ≤ Ctγ(q−1),

which was to be proved. �

6. Proofs of Theorems 1.3, 1.1 and Corollary 1.2

Fix o ∈ M and define for any ρ > 0

R(ρ) :=
∫ +∞

ρ

tdt

μ(B(o, t))
. (6.1)

Notice that R(ρ) is a decreasing function of ρ, and by the doubling property (VD),

R(ρ) ≤ CR(2ρ), ρ > 0. (6.2)

Indeed, letting t = 2s in (6.1), we obtain

R(2ρ) =
∫ +∞

2ρ

tdt

μ(B(o, t))
= 4

∫ +∞

ρ

sds

μ(B(o, 2s))
≥ cR(ρ).
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Lemma 6.1. Suppose β > 0, and R(ρ) (ρ > 0) satisfies (6.1). We set

d̃(x, y) = 1/R(d(x, y)), x, y ∈ M.

If the doubling property (VD) holds, then d̃ satisfies the quasi-triangle inequality

d̃(x, z) ≤ κ
[
d̃(x, y) + d̃(y, z)

]
, x, y, z ∈ M,

with some κ > 0.

Proof. Clearly, it suffices to prove

min [R(d(x, y)), R(d(y, z))] ≤ κR(d(x, z)). (6.3)

Since d is a metric, for every triple x, y, z ∈ M , we have that either d(x, y) ≥ 1
2d(x, z), or

d(y, z) ≥ 1
2d(x, z).

If d(x, y) ≥ 1
2d(x, z), then by (6.2),

R(d(x, y)) ≤ R

(
1
2
d(x, z)

)

≤ C R (d(x, z)) .

If d(y, z) ≥ 1
2d(x, z), then similarly

R(d(y, z)) ≤ R

(
1
2
d(x, z)

)

≤ C R (d(x, z)) ,

which finishes the proof of (6.3). �

Proof of Theorem 1.3. By Theorem 1.6, the existence a positive solution (1.2) implies
(1.20) and (1.21) for any a > 0. Using condition (1.11), we can replace G(x, o) in (1.20)
by R(d(x, o)), where the function R (ρ) is defined by (6.1), thus obtaining

∫

M
min

(
R(d(x, o)), a−1

)q
dσ < ∞. (6.4)

Integration in level sets of min
(
R(d(x, o)), a−1

)
yields

∫

M
min

(
R(d(x, o)), a−1

)q
dσ

= q

∫ ∞

0
σ
(
{x ∈ M : min

(
R(d(x, o)), a−1

)
> s}

)
sq−1 ds

= q

∫ a−1

0
σ ({x ∈ M : R(d(x, o)) > s}) sq−1 ds. (6.5)

Making here a change s = R (r), observing that

{x ∈ M : R(d(x, o)) > s} = B(o, r),

and setting a−1 = R(r0) we obtain that
∫

M
min

(
R(d(x, o)), a−1

)q
dσ = q

∫ ∞

r0

[∫ ∞

r

tdt

μ(B(o, t))

]q−1 σ(B(o, r))
μ(B(o, r))

r dr, (6.6)

which together with (6.4) finishes the proof of (1.4).
Let us now deduce (1.5), assuming (VD) and (1.12). By (1.12), we have, for any r > 0,

G (o, y) > r−1 ⇐ R (d (o, y)) > (cr)−1 .

If r > r0 for some large r0 then the equation

(cr)−1 =
∫ ∞

ρ

tdt

μ(B(o, t))
= R (ρ)
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has a unique positive solution ρ = ρ (r). Hence,

G (o, y) > r−1 ⇐ R (d (o, y)) > R (ρ) ⇔ d (o, y) < ρ,

so that {
y ∈ M : G (o, y) > r−1

}
⊃ B(o, ρ).

By (1.12), we obtain
∫

{y∈M :G(o,y)>r−1}
G (x, y) dσ (y) ≥ c

∫

B(o,ρ)
R (d (x, y)) dσ(y), (6.7)

On the other hand, by Fubini’s theorem, we have
∫

B(o,ρ)
R (d (x, y)) dσ(y) =

∫

B(o,ρ)

∫ ∞

d(x,y)

tdt

μ(B(x, t))
dσ(y)

=
∫ ρ

0

σ(B(o, ρ) ∩ B(x, t))
μ(B(x, t))

tdt. (6.8)

Hence, (1.21) yields, for all x ∈ M and r > a,
∫ ρ

0

σ(B(o, ρ) ∩ B(x, t))
μ(B(x, t))

tdt ≤ Crq−1.

If x ∈ B(o, ρ
2) and 0 < s ≤ ρ

2 , then B(x, s) ⊂ B(o, ρ). Hence, we obtain, for all x ∈ B(o, ρ
2),

∫ ρ
2

0

σ(B(x, t))
μ(B(x, t))

tdt ≤ Crq−1 = CR (ρ)−(q−1) .

Using (6.2), we conclude that
∫ ρ

2

0

σ(B(x, t))
μ(B(x, t))

tdt ≤ CR (ρ/2)−(q−1) .

Renaming ρ/2 by r we obtain (1.5). �

Proof of Theorem 1.1. The necessity of conditions (1.4) and (1.5) follows from Theorem
1.3.

Let us prove that (1.4) and (1.5) are sufficient for the existence of a positive solution
of (1.2). It follows from (GLY) and Lemma 6.1 that G satisfies (3G). Hence, by Theorem
1.6, it suffices to verify the conditions (1.20) and (1.21).

Indeed, by (1.4), the right hand side of (6.6) is finite, which together with (GLY) implies
(1.20).

Let us now verify (1.21), assuming that (GLY), (VD),(1.4) and (1.5) are satisfied. Using
(GLY) and arguing as in the proof of Theorem 1.3, we obtain, for all x ∈ M , r > 0 and ρ

such that (cr)−1 = R (ρ):
∫

{y∈M :G(o,y)>r−1}
G(x, y)dσ(y) ≤ C

∫

B(o,ρ)
R (d (x, y)) dσ(y)

=
∫ ρ

0

σ(B(o, ρ) ∩ B(x, t))
μ(B(x, t))

tdt

≤
∫ ρ

0

σ(B(x, t))
μ(B(x, t))

tdt,

Estimating the right hand side by (1.5), we obtain
∫

{y∈M :G(o,y)>r−1}
G(x, y)dσ(y) ≤ C

(∫ ∞

ρ

tdt

μ(B(o, t))

)1−q

= CR (ρ)1−q = Crq−1,

which is exactly (1.21). �
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For the proof of Corollary 1.2 we will need the following lemma.

Lemma 6.2. Let s ∈ (0, 1), an let φ : (0, +∞) → (0, +∞) be a non-increasing function.
Then there exists a positive constant C = C(s) such that, for all r > 0,

(∫ ∞

r
φ(t) t dt

)s

≤ C

∫ ∞

r
φ(t)s t2s−1 dt + Cr2s φ(r)s. (6.9)

Proof. We have
(∫ ∞

r
φ(t) t dt

)s

= s

∫ ∞

r

(∫ t

r
φ(τ) τ dτ

)s−1

φ(t) t dt

≤ s

∫ ∞

r

(∫ t

r
τ dτ

)s−1

φ(t)s t dt

= s 21−s

∫ ∞

r

(
t2 − r2

)s−1
φ(t)s t dt

= s 21−s (I1 + I2),

where

I1 =
∫ ∞

2r

(
t2 − r2

)s−1
φ(t)s t dt, I2 =

∫ 2r

r

(
t2 − r2

)s−1
φ(t)st dt.

Clearly, for t > 2r,
(
t2 − r2

)s−1
≤

(
4
3

)1−s

t2(s−1),

whence

I1 ≤

(
4
3

)1−s ∫ ∞

2r
φ(t)s t2s−1 dt.

On the other hand, the change ξ = t2 − r2 yields
∫ 2r

r

(
t2 − r2

)s−1
t dt =

1
2

∫ 3r2

0
ξs−1dξ =

3s

2s
r2s,

whence

I2 ≤ φ(r)s

∫ 2r

r

(
t2 − r2

)s−1
t dt =

3s

2s
r2sφ(r)s.

Combining the estimates of I1 and I2 we deduce (6.9). �

Proof of Corollary 1.2. We need to show that the condition
∫ +∞

r0

[∫ +∞

r

tdt

μ(B(o, t))

]q−1

rdr < ∞, (6.10)

is equivalent to a simpler condition
∫ +∞

r0

r2q−1dr

[μ(B(o, r))]q−1
< ∞. (6.11)

Indeed, the implication (6.10)⇒(6.11) follows trivially by reducing the domain [r,∞) of
integration in (6.10) to [r, 2r] .

The converse implication follows from the following inequality that holds for any non-
increasing function φ ≥ 0 and any s > 0:

∫ +∞

a

(∫ +∞

r
φ(t) t dt

)s

rdr ≤ C(s)
∫ +∞

a
φ(t)st2s+1dt. (6.12)
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Indeed, applying (6.12) with s = q − 1, a = r0, and φ(t) = 1
μ(B(o,t)) , we see that (6.11)

yields (6.10).
In the case s ≥ 1, inequality (6.12) holds for all non-negative measurable functions

φ, and is known as Hardy’s inequality (see, for instance, [17, Sec. 1.3.1]). In the case
0 < s < 1, (6.12) for non-increasing functions φ follows from Lemma 6.2 by integrating
both sides of (6.9) with respect to rdr, which yields

∫ ∞

a

(∫ ∞

r
φ(t) t dt

)s

rdr

≤ C

∫ +∞

a

(∫ ∞

r
φ(t)s t2s−1 dt

)

rdr + C

∫ +∞

a
φ(r)sr2s+1dr

= C

∫ +∞

a

(∫ t

0
rdr

)

φ(t)s t2s−1 dt + C

∫ +∞

a
φ(r)sr2s+1dr

= C

∫ +∞

a
φ(t)s t2s+1 dt.

�
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