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1. Introduction

In this paper, we develop a universal way of obtaining Gaussian upper bounds of the heat
kernel on Riemannian manifolds. By the word ”Gaussian” we mean those estimates which
contain a Gaussian exponential factor similar to one which enters the explicit formula for
the heat kernel of the conventional Laplace operator in IRn :

p(x, y, t) =
1

(4πt)n/2
exp

−|x − y|2
4t


The history of the heat kernel Gaussian estimates started with the works of Nash [25]

and Aronson [2] where the double-sided Gaussian estimates were obtained for the heat
kernel of a uniformly parabolic equation in IRn in a divergence form (see also [15] for
improvement of the original Nash’s argument and [26] for a consistent account of the
Aronson’s results and related topics). In particular, the Aronson’s upper bound for the
case of time-independent coefficients which is of interest for us reads as follows:

p(x, y, t) ≤ const
tn/2

exp

−|x − y|2
Ct


where C is a large enough constant.

In a series of works of Gushin [21], [22] he extended the Gaussian upper bounds to
parabolic equations in unbounded domains in IRn with the Neumann boundary condition.

As far as Riemannian manifolds are concerned, the heat kernel Gaussian upper bound
first appeared in the work of Cheng, Li and Yau [7] for the case of complete manifolds
of a bounded sectional curvature, which was extended soon by a different method in [6]
to manifolds with bounded geometry. The most advanced and sharp results under the
curvature assumptions were obtained by Li and Yau [24] by using their famous gradient
estimates.

Given a Riemannian manifold M, one considers the associated Laplace operator ∆, its
(minimal) heat kernel p(x, y, t), and expects to have a Gaussian upper bound as follows

p(x, y, t) ≤ const
f(t)

exp
− r2

Ct

 (1.1)

where r = dist(x, y) is a geodesic distance between x, y, and f(t) is some increasing func-
tion. In the works, cited above, such estimate was shown to be true on certain manifolds
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subject to curvature restrictions, with the constant C arbitrarily close to the ideal value
4.

The next crucial step was done by B.Davies who developed in a series of his works
[9], [10], [11], [12] a powerful abstract method which enabled him to deduce the heat
kernel Gaussian upper bounds from the log-Sobolev inequality. This method is robust in
contrast to those based on Riemannian curvature. For example, it is invariant under a
quasi-isometric transformation of the metric.

An alternative robust method based on a Faber-Krahn type inequalities was introduced
by the author in [17] (see also [18], [19]). In particular, it was shown in [17] that any
complete manifolds admits the estimate

p(x, y, t) ≤ ϕ(x, t)ϕ(y, t) exp
− r2

Ct


(where the function ϕ(x, t) is expressed in geometric terms) which suggests that the Gaus-
sian exponential factor has a non-geometric nature.

The common achievement of the the upper bound works is understanding that the
Gaussian upper bound (1.1) is virtually equivalent to a (logically) weaker on-diagonal
bound

p(x, y, t) ≤ const
f(t)

(1.2)

(which does not take into account the distance between x, y). Indeed, let first f(t) = tn/2,
where n = dimM. Then the fact that (1.2) is true for all x, y ∈ M and for all t > 0 is
equivalent to each of the following functional inequalities
1◦ a proper Sobolev inequality as proved by Varopoulos [28];
2◦ a Nash type inequality by Carlen, Kusuoka, Stroock [3];
3◦ a log-Sobolev inequality by Davies [9];
4◦ a Faber-Krahn type inequality by [17] and by Carron [4].

On the other hand, each of these functional inequalities implies also the Gaussian upper
bound (1.1) with the same function f(t). See [5] for a more geometric approach based on
modified isoperimetric constants. See [23], [13] for the setting of graphs, [8], [29], [30] for
Lie groups, and [1] for symmetric spaces.

The fact that an on-diagonal upper bound implies a Gaussian one was extended to more
general class of functions f(t) (including those of superpolynomial growth) by Davies [12]
and by the author [17], again by using a bridging functional inequality.

At the same time, there is a direct way of deducing a Gaussian upper bound from an on-
diagonal one which appeared first in the work of Ushakov [27] for the case of a polynomial
function f(t) and for the parabolic equation in the Euclidean space. This method was
adapted later for manifolds in [16] but still within a polynomial setting.

The main purpose of the present paper is to extend this method to a wider class of the
functions f(t) including sub- and superpolynomially growing functions. The main result
is the following theorem.

Theorem 1.1 Let x, y be two points on an arbitrary smooth connected Riemannian
manifold M, and let us have for all t ∈ (0, T ) (where T may be equal to ∞ or be a positive
number)

p(x, x, t) ≤ 1
f(t)

(1.3)
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and

p(y, y, t) ≤ 1
g(t)

(1.4)

where f, g are regular in some sense functions (seeSection 2 below for the definition). Then
for any C > 4, for some δ = δ(C) > 0, and all t ∈ (0, T )

p(x, y, t) ≤ const√
f(δt)g(δt)

exp
− r2

Ct

 (1.5)

where r = dist(x, y).
Let us emphasize the fact that unlike the functional-theoretic methods cited above, this
theorem assumes the on-diagonal upper bounds only at two points x, y rather than at
any point. The regularity condition is wide enough to include such functions as loga t, tb,
exp tc and their combinations.

Needless to say that Theorem 1.1 recovers all Gaussian upper bounds obtained previ-
ously, and provides a simple way to produce such bounds automatically whenever one has
proved a (much simpler) on-diagonal estimate.

2. Integral Estimates of Solutions

Let M denote any smooth connected Riemannian manifold (not necessarily complete),
and let Ω be a pre-compact region on M with a smooth boundary. We allow M to have a
boundary. If this is the case, then part of the boundary of Ω may be located on ∂M. In
fact, Ω will be treated as a compact manifold with a boundary.

We consider a function u(x, t) defined on Ω × (0, +∞) which is smooth enough and
satisfies the following conditions:




u(ut − ∆u) ≤ 0

u
∂u

∂ν

∣∣∣∣
x∈∂Ω,t>0

≤ 0

u|x�∈K,t=0 = 0

(2.1)

where ν is the outward normal vector field on the boundary ∂Ω, K is a compact in Ω (the
initial condition is understood in the sense that u(x, t) → 0 as t → 0+ locally uniformly
in x ∈ Ω \ K).

For example, u may be a solution to the Dirichlet or Neumann problem for the heat
equation in Ω × (0, +∞) (with an initial condition having a support on K) or a positive
subsolution, or a negative supersolution.

We will consider two integrals of u :

I(t) =
∫

Ω

u2(x, t)dx

ED(t) =
∫

Ω

u2(x, t) exp
dist2(x, K)

Dt

 dx

where D is a positive number. Of course, we have always

I(t) ≤ E(t).

The main result to be proved here is that to some extend there is a reverse inequality. But
before we are able to state that, we have to introduce a technical regularity hypothesis on
a function of a single variable.
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Definition We say that a function f(t) defined for t ∈ (0,∞) is regular if

1◦ it is positive;

2◦ it is monotonically increasing;

3◦ there are numbers A ≥ 1 and γ > 1 such that for all 0 < t1 < t2 the following
inequality holds:

f(γt1)
f(t1)

≤ A
f(γt2)
f(t2)

. (2.2)

Examples. 1. Let the function f(t) be of at most polynomial growth in the sense that
for all t > 0 and some γ > 1

f(γt) ≤ Af(t). (2.3)

Then (2.2) is obviously true. Indeed, we have

f(γt1)
f(t1)

≤ A ≤ A
f(γt2)
f(t2)

(2.4)

because f(γt2) ≥ f(t2). Examples of the functions satisfying (2.3) are: f(t) = tn, f(t) =
logn(1 + t) (where n > 0) etc.

2. Let f(t) be of at least polynomial growth in the sense that for some γ > 1 the
quotient

f(γt)
f(t)

(2.5)

is increasing in t. Then (2.2) holds again at this time with A = 1 because by monotonicity
of (2.5)

f(γt1)
f(t1)

≤ f(γt2)
f(t2)

(2.6)

Examples of such functions are: f(t) = tn, f(t) = etn

etc.
3. Let us combine the two situations above: suppose that there is some T > 0 such that

for all t < T the inequality (2.3) holds while for t > T the ratio (2.5) is increasing. Then
f(t) is regular again. Indeed, in order to check (2.2) , let us consider two cases: t1 < T
and t1 ≥ T. In the first case, we have again (2.4) , while in the second case we repeat (2.6)
.

An example of a function which fits this case is:

f(t) =
{

c1t
n , t < T

c2e
tm

, t > T

where n > 0, m > 0, and the constants c1,2 are chosen to ensure continuity (and, therefore,
also monotonicity) of f(t).

Now we can state our main technical result.
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Theorem 2.1 Let us suppose that u(x, t) satisfies (2.1) , and for any t > 0 we have

I(t) ≤ 1
f(t)

(2.7)

where the function f(t) is regular as above. Then for any D > 2 and for all t > 0

ED(t) ≤ 4A

f(δt)

where δ = δ(D, γ) > 0.

Proof of the theorem. The proof will consist of three steps. In the first step, we will
estimate the integral

IR(t) =
∫

Ω\B(K,R)

u2(x, t)dx

where B(K, R) is the open R−neighbourhood of the set K. In the second step, we will
estimate ED(t) for large D applying the upper bounds for IR(t), and, finally, in the third
step, we will finish the proof for all D > 2.

STEP 1. Let us prove the following key lemma. The statement of this kind seems to
have appeared for the first time in the paper of Ushakov [27] for the case of a polynomial
function f(t) and in the Euclidean space. We modified his approach and made it work for
a more general function f(t).

Lemma 2.2 Under the hypotheses of Theorem 2.1, there exists D0 = D0(γ) > 2 such
that

IR(t) ≤ 2A

f(t/γ)
exp

− R2

D0t


for all R > 0 and t > 0 (where the constants A, γ are those from the regularity hypothesis
(2.2) ).

Proof of lemma 2.2. The idea of the proof is to compare the quantities IR(t) and Iρ(τ)
for ρ < R, τ < t in the following way:

IR(t) ≤ Iρ(τ) +
1

f(τ)
exp

−(R − ρ)2

2(t − τ)

 . (2.8)

After we have shown (2.8) ,we will arrange sequences {Rk}, {tk} (where k = 0, 1, 2, ...)
which start with R and t respectively and are decreasing so that Rk → R/2 and tk → 0
as k → ∞. Applying (2.8) to the consecutive pairs (Rk, tk) and (Rk+1, tk+1) and summing
up all those inequalities, we obtain an upper bound for IR(t) in terms of a series which
can be dealt with by taking specific sequences Rk, tk.

We will finish this argument later but first we turn to the proof of (2.8) . We apply the
integral maximum principle, which states the following.
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Proposition 2.3 If u(x, t) is smooth enough in Ω × (0, T ) and satisfies the conditions


u(ut − ∆u) ≤ 0

u
∂u

∂ν

∣∣∣∣
x∈∂Ω,t∈(0,T )

≤ 0
(2.9)

then the integral ∫
Ω

u2(x, t)eξ(x,t)dx (2.10)

is a decreasing function of t ∈ (0, T ) provided the function ξ(x, t) is Lipschitz in Ω× (0, T )
and satisfies the inequality

ξt +
1
2
|∇ξ|2 ≤ 0. (2.11)

This property of solutions to the heat equation is well known and goes back to the famous
Aronson’s paper [2]. Thereafter, it was proved for different settings in various works (see,
for example, [7], [26], [18]). The actual proof is very simple and consists of taking the time
derivative of the integral (2.10) and of applying integration by parts:

d

dt

∫
Ω

u2eξ =
∫

Ω

ξtu
2eξ +

∫
Ω

2uute
ξ

≤
∫

Ω

ξtu
2eξ +

∫
Ω

2u∆ueξ

≤
∫

Ω

ξtu
2eξ +

∫
∂Ω

2u
∂u

∂ν
eξ − 2

∫
Ω

(∇(ueξ),∇u)

≤ −1
2

∫
Ω

|∇ξ|2 u2eξ − 2
∫

Ω

u(∇ξ,∇u)eξ − 2
∫

Ω

|∇u|2 eξ

= −1
2

∫
Ω

(u∇ξ + 2∇u)2eξ ≤ 0.

��
Let us note that we have used here at full strength the hypotheses (2.9) and (2.11) on

the functions u and ξ respectively. Moreover, this is the only place where we need (2.9) and
(2.11) . In the proof of Theorem 2.1 which follows, we will apply the two first conditions
from (2.1) (”the equation” and ”the boundary condition”) only via Proposition 2.3. On
the contrary, we will use the initial condition of (2.1) explicitly.

We will be applying (2.11) with different functions ξ. Let us note that any function of
the form

ξ(x, t) =
d(x)

D(t − s)

fits (2.11) provided d(x) is a distance function to some subset of M, D ≥ 2, and the point
s does not belong to (0, T ) (to ensure no singularities).

In order to prove (2.8) , we choose some s, T such that s > T > t, and put d(x) to be
the distance to the exterior of the set B(K, R), i.e.

d(x) =
{

R − dist(x, K) , x ∈ B(K, R)
0 , x 	∈ B(K, R)

.
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By the integral maximum principle, we have∫
Ω

u2(x, t) exp
− d(x)2

2(s − t)

 ≤
∫

Ω

u2(x, τ) exp
− d(x)2

2(s − τ)


Now we replace the left hand side integral by a less value IR(t) because d(x) vanishes off
the set B(K, R). Then, we split the right hand side integral into two parts: over interior
of B(K, ρ) and over its exterior. In the first part, the exponential weight is bounded from
above by

exp
−(R − ρ)2

2(s − τ)


since the distance from any point of B(K, ρ) to the exterior of B(K, R) is at least R − ρ.
In the second part, we replace the exponential weight simply by the larger 1, obtaining,
thus, Iρ(τ). Therefore, we have

IR(t) ≤ exp
−(R − ρ)2

2(s − τ)

∫
B(K,ρ)

u2(x, τ)dx + Iρ(τ).

Finally, we apply the hypothesis (2.7) in the form∫
B(K,ρ)

u2(x, τ)dx ≤ 1
f(τ)

and let s → t+ whence (2.8) follows.
Given R and t, we consider the sequences {Rk} and {tk}, k = 0, 1, 2, ... such that

1◦ {Rk} and {tk} are decreasing in k;
2◦ R0 = R and Rk → 1

2
R as k → ∞;

3◦ t0 = t and tk → 0 as k → ∞.

Applying (2.8) for the consecutive pairs (Rk, tk) and (Rk+1, tk+1) we obtain

IRk
(tk) ≤ IRk+1(tk+1) +

1
f(tk+1)

exp
−(Rk − Rk+1)2

2(tk − tk+1)

 (2.12)

Let us note that IRk
(tk) → 0 as k → ∞. Indeed,

lim
k→∞

IRk
(tk) =

∫
Ω\B(K, 1

2R)

u2(x, 0)dx = 0

because of the initial condition (2.1) for the function u.
Hence, we can sum up the inequalities (2.12) over all k = 0, 1, 2, ... and obtain

IR(t) ≤
∞∑

k=0

1
f(tk+1)

exp
−(Rk − Rk+1)2

2(tk − tk+1)

 . (2.13)

Let us specify the sequences Rk, tk in the following way: we take

Rk = (
1
2

+
1

k + 2
)R
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and
tk = t/γk.

Since

Rk − Rk+1 ≥ R

(k + 3)2

and

tk − tk+1 =
(γ − 1)t

γk+1

we can expand (2.13) as follows

IR(t) ≤
∞∑

k=0

1
f(tk+1)

exp
− γk+1

(k + 3)4(γ − 1)
R2

2t

 .

Let us estimate f(tk+1) as follows. According to the property of the function f(·) to be
regular, we have the following sequence of inequalities:

f(tk)
f(tk+1)

≤ A
f(t0)
f(t1)

f(tk−1)
f(tk)

≤ A
f(t0)
f(t1)

...

f(t0)
f(t1)

≤ A
f(t0)
f(t1)

Multiplying all them we derive

f(t0)
f(tk+1)

≤
A

f(t0)
f(t1)

k+1

whence we get

IR(t) ≤ 1
f(t)

∞∑
k=0

exp
(k + 1) logA

f(t0)
f(t1)

− γk+1

(k + 3)4(γ − 1)
R2

2t

 . (2.14)

The main idea of the proof is that the numerator γk+1 grows in k much faster than
the denominator (k + 3)4 whenever γ > 1. In particular, there exists a positive number
m = m(γ) such that

γk+1

(k + 3)4(γ − 1)
≥ m(k + 2)

for any k ≥ 0. We can just take

m = inf
k≥0

γk+1

(k + 3)4(k + 2)(γ − 1)
.
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Let us denote for simplicity L = log A f(t0)
f(t1)

and rewrite the inequality (2.14) as follows

IR(t) ≤ 1
f(t)

∞∑
k=0

exp
(k + 1)L − m(k + 2)

R2

2t


=

1
f(t)

exp
−m

R2

2t

 ∞∑
k=0

exp
−(k + 1)(m

R2

2t
− L)


We have either

m
R2

2t
− L ≥ log 2

or

m
R2

2t
− L < log 2.

In the former case, we obtain obviously

IR(t) ≤ 1
f(t)

exp
−m

R2

2t

 ∞∑
k=0

2−(k+1) =
1

f(t)
exp

−m
R2

2t

 (2.15)

while in the latter case we estimate IR(t) in a different way:

IR(t) ≤ I(t) ≤ 1
f(t)

≤ 1
f(t)

exp
L + log 2 − m

R2

2t


=

2
f(t)

A
f(t)

f(t/γ)
exp

−m
R2

2t


=

2A

f(t/γ)
exp

−m
R2

2t


Combining this together with (2.15) , we obtain finally for both cases:

IR(t) ≤ 2A

f(t/γ)
exp

−m
R2

2t


��

STEP 2. The purpose of this part of the proof is to show that for D > D1 ≡ 5D0 and
for all t > 0 we have

ED(t) ≤ 4A

f(t/γ)
. (2.16)

To that end, we split the integral

ED(t) =
∫

Ω

u2(x, t) exp
r2(x)

Dt

 dx
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(where r(x) ≡ dist(x, K)) into a series

ED(t) =
∫
{r(x)≤R}

u2(x, t) exp
r2(x)

Dt

 dx

+
∞∑

k=0

∫
{2kR≤r(x)≤2k+1R}

u2(x, t) exp
r2(x)

Dt

 dx

(2.17)

where R > 0 is an arbitrary number.
The first integral on the right hand side (2.17) is bounded from above by

exp
R2

Dt

∫
Ω

u2(x, t)dx ≤ 1
f(t)

exp
R2

Dt

 . (2.18)

The k-th term in the sum (2.17) is estimated from above by using Lemma 2.2 as

≤ exp
4k+1R2

Dt

∫
Ω\B(K,2kR)

u2(x, t)dx

≤ 2A

f(t/γ)
exp

4k+1R2

Dt
− 4kR2

D0t


≤ 2A

f(t/γ)
exp

−4kR2

Dt


(2.19)

where we have used D0 ≤ D/5.
Combining (2.18) and (2.19) , we obtain

ED(t) ≤ 1
f(t)

exp
R2

Dt

 +
2A

f(t/γ)

∞∑
k=0

exp
−4kR2

Dt

 (2.20)

We can choose R here arbitrarily. Let us define R to satisfy the identity R2/Dt = log 2
and deduce from (2.20) :

ED(t) ≤ 2
f(t)

+
2A

f(t/γ)

∞∑
k=0

2−4k ≤ 2 + 2A

f(t/γ)

whence (2.16) follows since A ≥ 1.

Remark. By taking another (more optimal) value for R, namely,

R2 = Dt log(1 +
√

2A)

we could replace the coefficient 2 + 2A in the formula above by a better value 1 + 2
√

2A.
STEP 3. Now we will finish the proof of Theorem 2.1. In view of the previous step, it

suffices to consider the case 2 < D < D1. The integral maximum principle (Proposition
2.3) implies that for any s > 0 the integral

∫
Ω

u2(x, t) exp
 r2(x)

2(t + s)

 dx
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is decreasing in t ∈ (0,∞) (where r(x) = dist(x, K)). Therefore, for any τ ∈ (0, t)∫
Ω

u2(x, t) exp
 r2(x)

2(t + s)

 dx ≤
∫

Ω

u2(x, τ) exp
 r2(x)

2(τ + s)

 dx. (2.21)

Given t > 0 and D, 2 < D < D1, let us find suitable values of s, τ so that the left hand
side of (2.21) is equal to ED(t) while the right hand side is to be equal to ED1(τ). To that
end, we must solve simultaneously the equations{

2(t + s) = Dt

2(τ + s) = D1τ

which yields s = D−2
2 t and τ = D−2

D1−2 t < t. Therefore, for this value of τ, we have

ED(t) ≤ ED1(τ),

and applying the inequality

ED1(τ) ≤ 4A

f(τ/γ)
known from the previous step of the proof, we get finally

ED(t) ≤ 4A

f( D−2
D1−2 t/γ)

.

Thus, we have proved Theorem 2.1 with

δ = δ(D, γ) = γ−1 min
1,

D − 2
D1 − 2

 .

��

3. Pointwise Estimates of the Heat Kernel

On any smooth connected Riemannian manifold M, we define the heat kernel p(x, y, t)
as the smallest positive fundamental solution to the heat equation. It exists, it is unique,
and it can be constructed as follows. Let us take an increasing sequence of pre-compact
regions Ωk ⊂ M, k = 1, 2, 3, ... which exhausts M, and in each Ωk construct the Green
function pk(x, y, t) to the Dirichlet problem for the heat equation. Then, on one hand, we
have by the maximum principle

0 ≤ pk ≤ pk+1

while on the other hand ∫
Ωk

pk(x, y, t)dx ≤ 1.

These two properties ensure that there is a limit

p(x, y, t) ≡ lim
k→∞

pk(x, y, t)

which is, by definition, the (minimal) heat kernel (see [14] for detailed justification of this
construction).

If the manifold M has a boundary, then the exhausting regions Ωk will necessarily have
for large k a part of their boundary on ∂M, so one can put a boundary condition (normally
Dirichlet or Neumann one) on ∂M to be satisfied by all pk and, therefore, by p(x, y, t).

Our main result is the following theorem.
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Theorem 3.1 Let x, y be two points on an arbitrary manifold M, and let us have for
all t > 0

p(x, x, t) ≤ 1
f(t)

(3.1)

and

p(y, y, t) ≤ 1
g(t)

(3.2)

where f, g are regular functions in the sense of the previous section. Then for any C > 4
and all t > 0

p(x, y, t) ≤ 4A√
f(δt)g(δt)

exp
−r2(x, y)

Ct

 (3.3)

where r(x, y) = dist(x, y), δ = δ(C, γ), and A, γ are the constants from (2.2) .

Remark. The theorem is applicable also if the inequalities (3.1) and (3.2) hold only on a
bounded time interval (0, T ) as stated in Theorem 1.1 in the Introduction (with an obvious
modification of the notion of regularity for a bounded interval). Indeed, the on-diagonal
heat kernel p(x, x, t) is known to a decreasing function of t. Therefore, if we extend the
functions f(t) and g(t) beyond the point T as constants then (3.1) and (3.2) will be valid
for all t > 0. Moreover, it is evident that the extended functions will preserve regularity, so
that we can apply Theorem 3.1 and obtain that (3.3) holds, in particular, for all t ∈ (0, T ).
Proof of Theorem 3.1. Let us apply the following universal inequality which is true
always:

p(x, y, t) ≤
√

ED(x, t/2), ED(y, t/2) exp
−r2(x, y)

2Dt

 (3.4)

where D is a positive constant and

ED(z, t) ≡
∫

M

p2(z, ζ, t) exp
r2(z, ζ)

Dt

 dζ.

This inequality was proved in [17] but the proof is very short so that we can reproduce it
here for the sake of completeness. Indeed, we have by the semigroup property of the heat
kernel and by the triangle inequality r2(x, y) ≤ 2(r2(x, z) + r2(y, z)) :

p(x, y, t) =
∫

M

p(x, z, t/2)p(z, y, t/2)dz

≤
∫

M

p(x, z, t/2) exp
r2(x, z)

Dt

 p(z, y, t/2) exp
r2(y, z)

Dt

 exp
−r2(x, y)

2Dt

 dz

≤ exp
−r2(x, y)

2Dt


×
∫

M

p2(x, z, t/2) exp
r2(x, z)

Dt/2

 dz


1
2
∫

M

p2(y, z, t/2) exp
r2(y, z)

Dt/2

 dz


1
2

= exp
−r2(x, y)

2Dt

ED(x, t/2)ED(y, t/2)
1

2

what was to be proved.
The rest of the proof of Theorem 3.1 follows from the next theorem.
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Theorem 3.2 Let x be a point on an arbitrary manifold M, and let us have for all t > 0

p(x, x, t) ≤ 1
f(t)

(3.5)

where f(t) is a regular function. Then for any D > 2 and all t > 0

ED(x, t) ≤ 4A

f(2δt)
(3.6)

where δ = δ(D, γ), and A, γ are the constants from (2.2) .

To finish the proof of Theorem 3.1 we are left to notice that (3.1) , (3.2) imply (3.6)
and a similar inequality for the point y, which together with (3.4) imply (3.3) (we have to
replace in the final result 2D by C).
Proof of Theorem 3.2. Let us consider one of the sets Ωk containing the point x. Since
pk ≤ p then the inequality (3.5) is valid for pk, too. It is sufficient to show that (3.6) holds
for the integral

ED,k(x, t) ≡
∫

Ωk

p2
k(x, z, t) exp

r2(x, z)
Dt

 dz

since thereafter we could pass to the limit as k → ∞ and establish the same upper bound
for ED(x, t).

Let us apply Theorem 2.1 to estimate ED,k(x, t). Indeed, the function u(z, t) ≡ pk(x, z, t)
satisfies the conditions (2.1) with the single-point compact K = {x}, and we have for this
function

I(t) =
∫

Ω

u2(z, t)dz =
∫

Ω

pk(x, z, t)pk(z, x, t)dz = pk(x, x, 2t) ≤ 1
f(2t).

Therefore, by Theorem 2.1 we have for any D > 2

ED,k(x, t) =
∫

Ω

u2(z, t) exp
r2(x, z)

Dt

 dz ≤ 4A

f(2δt)

what was to be proved. ��
Theorem 3.2 may have other applications. For example, in conjunction with the result

of [20] it can give upper bounds of derivatives of the heat kernel. Indeed, as proved in [20],
any upper bound for ED(x, t)

ED(x, t) ≤ 1
h(t)

(which is supposed to be true for some x and all t > 0) implies

E
(1)
D (x, t) ≡

∫
M

|∇zp|2 (x, z, t) exp
r2(x, z)

Dt

 dz ≤ constD

h(1)(t)

and

E
(2)
D (x, t) ≡

∫
M

|∆zp|2 (x, z, t) exp
r2(x, z)

Dt

 dz ≤ constD

h(2)(t)
(3.7)
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where

h(1)(t) =
∫ t

0

h(s)ds

h(2)(t) =
∫ t

0

h(1)(s)ds

and D > 2.
Another result of [20] is an inequality similar to (3.4)

∣∣∣∣∂p

∂t

∣∣∣∣ (x, y, t) ≤
√

E
(2)
D (x, t/2), ED(y, t/2) exp

−r2(x, y)
2Dt

 . (3.8)

Combinig together the inequalities (3.8) , (3.7) and (3.6) , we obtain the following
statement.

Corollary 3.3 Under hypotheses of Theorem 3.1 we have in addition to (3.3) also

∣∣∣∣∂p

∂t

∣∣∣∣ (x, y, t) ≤ constA,C,γ√
f (2)(δt)g(δt)

exp
−r2(x, y)

Ct

 .

provided C > 4.

Similar estimates can be proved also for the higher order time derivatives of the heat kernel.
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