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Abstract. In this survey we discuss heat kernel estimates of self-similar type on metric spaces
with doubling measures. We characterize the tail functions from heat kernel estimates in both
non-local and local cases. In the local case we also specify the domain of the energy form as a
certain Besov space, and identify the walk dimension in terms of the critical Besov exponent.
The techniques used include self-improvement of heat kernel upper bound and the maximum
principle for weak solutions. All proofs are completely analytic.
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1. Introduction

The heat kernel is an important tools in modern analysis, which appears to be useful for applications
in mathematical physics, geometry, probability, fractal analysis, graphs, function spaces and in
other fields. There has been a vast literature devoted to various aspects of heat kernels (see, for
example, a collection [29]). It is not feasible to give a full-scale panorama of this subject here. In
this article, we consider heat kernels on abstract metric measure spaces and focus on the following
questions:

• Assuming that heat kernel satisfies certain estimates of self-similar type, what are the conse-
quences for the underlying metric measure structure?

• Developing of the self-improvement techniques for heat kernel upper bounds of subgaussian
types.

Useful auxiliary tools that we develop here include the family of Besov function spaces and
the maximum principle for weak solution for abstract heat equation.

Some of these questions have been discussed in various settings, for example, in [1, 4, 10, 12,
14, 18, 32, 33, 35, 36, 37, 38, 39] for the Euclidean spaces or Riemannian manifolds, in [5, 7, 25]
for torus or infinite graphs, in [9, 27, 41] for metric spaces, in [2, 3, 6, 26] for certain classes of
fractals. The contents of this paper are based on the work [20], [21], [22] and [24]. Similar questions
were discussed in the survey [19] when the underlying measure is Ahlfors-regular, while the main
emphasis in the present survey is on the case of doubling measures.

Notation. The sign � below means that the ratio of the two sides is bounded from above
and below by positive constants. Besides, c is a positive constant, whose value may vary in the
upper and lower bounds. The letters C,C ′, c, c′ will always refer to positive constants, whose value
is unimportant and may change at each occurrence.

2. What is a heat kernel

We give the definition of a heat kernel on a metric measure space, followed by some well-known
examples on Riemannian manifolds and on a certain class of fractals.

2.1. The notion of a heat kernel

Let (M,d) be a locally compact separable metric space and let μ be a Radon measure on M with
full support. The triple (M,d, μ) is termed a metric measure space. In the sequel, the norm in the
real Banach space Lp := Lp (M,μ) is defined as usual by

‖f‖p :=

(∫

M

|f(x)|p dμ(x)

)1/p

, 1 ≤ p < ∞,

and
‖f‖∞ := esup

x∈M
|f(x)|,

where esup is the essential supremum. The inner product of f, g ∈ L2 is denoted by (f, g).

Definition 2.1. A family {pt}t>0 of functions pt(x, y) on M × M is called a heat kernel if for any
t > 0 it satisfies the following five conditions:

1. Measurability: the pt(∙, ∙) is μ × μ measurable in M × M .
2. Markovian property: pt (x, y) ≥ 0 for μ-almost all x, y ∈ M , and

∫

M

pt(x, y)dμ(y) ≤ 1, (2.1)

for μ-almost all x ∈ M .
3. Symmetry: pt(x, y) = pt(y, x) for μ-almost all x, y ∈ M .
4. Semigroup property: for any s > 0 and for μ-almost all x, y ∈ M ,

pt+s(x, y) =
∫

M

pt(x, z)ps(z, y)dμ(z). (2.2)
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5. Approximation of identity : for any f ∈ L2,
∫

M

pt (x, y) f (y) dμ (y)
L2

→ f (x) as t → 0 + .

We say that a heat kernel pt is stochastically complete if equality takes place in (2.1), that is,
for any t > 0, ∫

M

pt(x, y)dμ(y) = 1 for μ-almost all x ∈ M .

Typically a heat kernel is associated with a Markov process
(
{Xt}t≥0 , {Px}x∈M

)
on M , so that

pt (x, y) is the transition density of Xt, that is,

Px (Xt ∈ A) =
∫

A

pt (x, y) dμ (y)

for any Borel set A ⊂ M (see Fig. 1).

Xt

x

A

Figure 1. Markov process Xt hits the set A

Here are some examples of heat kernels.

Example 2.2. The best known example of a heat kernel is the Gauss-Weierstrass function in Rn:

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

. (2.3)

It satisfies all the conditions of Definition 2.1 provided μ is the Lebesgue measure. This heat kernel
is the transition density of the canonical Brownian motion in Rn.

Example 2.3. The following function in Rn

pt(x, y) =
Cn

tn

(

1 +
|x − y|2

t2

)−n+1
2

(2.4)

(where Cn = Γ
(

n+1
2

)
/π(n+1)/2) is known on the one hand as the Poisson kernel, and on the

other hand as the density of the Cauchy distribution. It is not difficult to verify that it also
satisfies Definition 2.1 (also with respect to the Lebesgue measure) and, hence, is a heat kernel.
The associated Markov process is the symmetric stable process of index 1.

More examples will be mentioned in the next section.

2.2. Heat semigroup and Dirichlet forms

The heat kernel is an integral kernel of a heat semigroup in L2. A heat semigroup corresponds
uniquely to a Dirichlet form in L2.

A Dirichlet form (E ,F) in L2 is a bilinear form E : F × F → R defined on a dense subspace
F of L2, which satisfies in addition the following properties:

• Positivity : E (f) := E (f, f) ≥ 0 for any f ∈ F .
• Closedness : the space F is a Hilbert space with respect to the following inner product:

E(f, g) + (f, g) .



4 Grigor’yan, Hu and Lau

• The Markov property : if f ∈ F then the function

g := min {1, max{f, 0})}

also belongs to F and E (g) ≤ E (f). Here we have used the shorthand E (f) := E (f, f).

Any Dirichlet form has the generator L, which is a non-positive definite self-adjoint operator
on L2 with domain D ⊂ F such that

E (f, g) = (−Lf, g)

for all f ∈ D and g ∈ F . The generator determines the heat semigroup {Pt}t≥0 defined by Pt = etL.
The heat semigroup satisfies the following properties:

• {Pt}t≥0 is contractive in L2, that is ‖Ptf‖2 ≤ ‖f‖2 for all f ∈ L2 and t > 0.
• {Pt}t≥0 is strongly continuous, that is, for every f ∈ L2,

Ptf
L2

−→ f as t → 0 + .

• {Pt}t≥0 is symmetric, that is,

(Ptf, g) = (f, Ptg) for all f, g ∈ L2.

• {Pt}t≥0 is Markovian, that is, for any t > 0,

if f ≥ 0 then Ptf ≥ 0, and if f ≤ 1 then Ptf ≤ 1.

Here and below the inequalities between L2-functions are understood μ-almost everywhere in
M .

The form (E ,F) can be recovered from the heat semigroup as follows. For any t > 0, define
a quadratic form Et on L2 as follows

Et (f) :=
1
t

(f − Ptf, f) . (2.5)

It is easy to show that Et (f) is non-negative and is increasing as t is decreasing. In particular, it
has the limit as t → 0. It turns out that the limit is finite if and only if f ∈ F , and, moreover,

lim
t→0+

Et (f) = E (f)

(cf. [9]). Extend Et to a bilinear form as follows

Et(f, g) :=
1
t

(f − Ptf, g) .

Then, for all f, g ∈ F ,
lim

t→0+
Et (f, g) = E (f, g) .

The Markovian property of the heat semigroup implies that the operator Pt preserves the
inequalities between functions, which allows to use monotone limits to extend Pt from L2 to L∞

and, in fact, to any Lq, 1 ≤ q ≤ ∞. Moreover, the extended operator Pt is a contraction on any
Lq (cf. [15, p.33]).

Recall some more terminology from the theory of the Dirichlet form (cf. [15]). The form
(E ,F) is called conservative if Pt1 = 1 for every t > 0. The form (E ,F) is called local if E(f, g) = 0
for any couple f, g ∈ F with disjoint compact supports. The form (E ,F) is called strongly local
if E(f, g) = 0 for any couple f, g ∈ F with compact supports, such that f ≡ const in an open
neighborhood of supp g.

The form (E ,F) is called regular if F ∩ C0 (M) is dense both in F and in C0 (M), where
C0(M) is the space of all continuous functions with compact support in M , endowed with the
sup-norm. For a non-empty open Ω ⊂ M , let F(Ω) be the closure of F ∩ C0(Ω) in the norm of F .
It is known that if (E ,F) is regular, then (E ,F(Ω)) is also a regular Dirichlet form in L2(Ω, μ).

Assume that the heat semigroup {Pt} of a Dirichlet form (E ,F) in L2 admits an integral
kernel pt, that is, for all t > 0 and x ∈ M , the function pt (x, ∙) belongs to L2, and the following
identity holds:

Ptf (x) =
∫

M

pt (x, y) f (y) dμ (y) , (2.6)
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for all f ∈ L2 and μ-a.a. x ∈ M . Then the function pt is indeed a heat kernel, as we will show
below. For this reason, we also call pt the heat kernel of the Dirichlet form (E ,F) or of the heat
semigroup {Pt}.

Observe that if the heat kernel pt of (E ,F) exists, then by (2.5) and (2.6),

Et(f) =
1
2t

∫

M

∫

M

(f(y) − f(x))2 pt(x, y)dμ(y)dμ(x) (2.7)

+
1
t

∫

M

(1 − Pt1(x)) f(x)2 dμ(x) (2.8)

for any t > 0 and f ∈ L2.

Proposition 2.4. ([21]) If pt is the integral kernel of the heat semigroup {Pt}, then pt is a heat
kernel.

Proof. We will verify that pt satisfies all the conditions in Definition 2.1. Let t > 0 be fixed until
stated otherwise.

(1) Setting pt,x = pt(x, ∙), we see from (2.6) that, for any f ∈ L2,

Ptf(x) = (pt,x, f) for μ-almost all x ∈ M ,

whence it follows that the function x 7→ (pt,x, f) is μ-measurable in x. Let {ϕk}
∞
k=1 be an orthonor-

mal basis of L2. Using the identity

pt (x, y) = pt,x (y) =
∞∑

k=1

(pt,x, ϕk) ϕk (y) ,

we conclude that pt (x, y) is jointly measurable in x, y ∈ M , because so are the functions (pt,x, ϕk) ϕk (y).
(2) By the Markovian property of Pt, for any non-negative function f ∈ L2, there is a null

set Nf ⊂ M such that
Ptf (x) ≥ 0 for all x ∈ M \ Nf .

Let S be a countable family of non-negative functions, which is dense in the cone of all non-negative
functions in L2, and set

N =
⋃

f∈S

Nf

so that N is a null set. Then Ptf (x) ≥ 0 for all x ∈ M \ N and for all f ∈ S. If f is any
other non-negative function in L2, then f is an L2-limit of a sequence {fk} ⊂ S, whence, for any
x ∈ M \ N ,

(pt,x, f) = lim
k→∞

(pt,x, fk) = lim
k→∞

Ptfk (x) ≥ 0.

Therefore, for any x ∈ M \ N , we have that pt,x ≥ 0 μ-a.e. in M , which proves that pt (x, y) ≥ 0
for μ-a.a. x, y ∈ M .

Let K ⊂ M be compact. Then the indicator function 1K belongs to L2 and is bounded by 1,
whence ∫

K

pt (x, y) dμ (y) = Pt1K (x) ≤ 1

for μ-a.a. x ∈ M . Choosing an increasing sequence of compact sets {Kn}
∞
n=1 that exhausts M , we

obtain that ∫

M

pt (x, y) dμ (y) = lim
n→∞

∫

Kn

pt (x, y) dμ ≤ 1

for μ-a.a. x ∈ M .
Consequently, for any compact set K ⊂ M , we obtain by Fubini’s theorem

∫

K×M

pt (x, y) dμ(y)dμ(x) =
∫

K

(∫

M

pt (x, y) dμ (y)

)

dμ (x)

≤
∫

K

dμ (x) = μ (K) < ∞,

which implies that pt (x, y) ∈ L1
loc (M × M).



6 Grigor’yan, Hu and Lau

(3) For all f, g ∈ L2, we have, again by Fubini’s theorem,

(Ptf, g) =
∫

M×M

pt (x, y) f (y) g (x) dμ(y)dμ (x) . (2.9)

On the other hand, by the symmetry of Pt,

(Ptf, g) = (f, Ptg) =
∫

M

Ptg (y) f (y) dμ (y)

=
∫

M×M

pt (y, x) f (y) g (x) dμ(y)dμ(x). (2.10)

Comparing (2.9) and (2.10), we obtain pt (x, y) = pt (y, x) for μ-almost all x, y ∈ M .
(4) Using the semigroup identity Pt+s = Pt (Ps) and Fubini’s theorem, we obtain that, for

any f ∈ L2 and for μ-a.a. x ∈ M ,

Pt+sf (x) = Pt (Psf) (x)

=
∫

M

pt (x, z)

(∫

M

ps (z, y) f (y) dμ (y)

)

dμ (z)

=
∫

M

(∫

M

pt(x, z)ps(z, y)dμ(z)

)

f (y) dμ (y) ,

whence, for any g ∈ L2,

(Pt+sf, g) =
∫

M×M

(∫

M

pt(x, z)ps(z, y)dμ(z)

)

f (y) g (x) dμ(y)dμ(x).

Comparing with

(Pt+sf, g) =
∫

M×M

pt+s (x, y) f (y) g (x) dμ(y)dμ (x) ,

we obtain (2.2).

(5) Finally, the approximation of identity property follows immediately from (2.6) and Ptf
L2

→
f as t → 0. �

Corollary 2.5. If pt and qt are two integral kernels of a heat semigroup {Pt}, then, for any t > 0,

pt (x, y) = qt (x, y) for μ-a.a. x, y ∈ M. (2.11)

Proof. Similarly to (2.9), we have

(Ptf, g) =
∫

M×M

qt (x, y) f (y) g (x) dμ(y)dμ (x) .

Comparing with (2.9), we obtain (2.11). �

Remark 2.6. Of course, not every heat semigroup possesses a heat kernel. The existence for the
heat kernel and results related to these on-diagonal upper bounds can be found in [4, Theorem
2.1], [2, Propositions 4.13, 4.14], [8], [9], [11], [13], [14, Lemma 2.1.2], [17], [21], [23], [31], [40], [41],
[42], [43].

2.3. Examples

Example 2.7. Let M be a connected Riemannian manifold, d be the geodesic distance, and μ be
the Riemannian measure. The Laplace-Beltrami operator Δ on M can be made into a self-adjoint
operator in L2 (M,μ) by appropriately defining its domain. Then Δ generates the heat semigroup
Pt = etΔ, which is associated with the local Dirichlet form (E ,F) where

E (f) =
∫

M

|∇f |2 dμ, F = W 1,2
0 (M) .

The corresponding Markov process is a Brownian motion on M .
It is known that this {Pt} always has a smooth integral kernel pt (x, y), which is called the

heat kernel of M . Although the explicit expression of pt(x, y) can not be given in general, there
are many important classes of manifolds where pt (x, y) admits certain upper and/or lower bounds.
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For example, as it was proved in [32], if M is geodesically complete and its Ricci curvature is
non-negative, then

pt(x, y) �
1

V
(
x,

√
t
) exp

(

−c
d(x, y)2

t

)

, x, y ∈ M, t > 0, (2.12)

where V (x, r) = μ (B(x, r)) is the volume of the geodesic ball

B(x, r) = {y ∈ M : d(y, x) < r}.

Example 2.8. If Δ is a self-adjoint Laplace operator as above then the operator L = − (−Δ)β/2

(where 0 < β < 2) generates on M a Markov process with jumps. In particular, if M = Rn then
this is the symmetric stable process of index β, and the corresponding heat kernel admits the
following estimate

pt (x, y) �
1

tn/β

(

1 +
|x − y|β

t

)−n+β
β

.

A particular case β = 1 was already mentioned in Example 2.3.

Example 2.9. Let M be the Sierpinski gasket1 in Rn (see Fig. 2).

Figure 2. Sierpinski gasket in R2

It is known that the Hausdorff dimension of M is equal to α := log(n+1)/ log 2. Let μ be the
α-dimensional Hausdorff measure on M , which clearly possesses the same self-similarity properties
as the set M itself. It is possible to construct also a self-similar local Dirichlet form on M which
possesses a continuous heat kernel, that is the transition density of a natural Brownian motion on
M ; moreover, the heat kernel admits the following estimate

pt(x, y) �
1

tα/β
exp

(

−c

(
d(x, y)
t1/β

)β/(β−1)
)

, (2.13)

where β = log(n + 3)/ log 2 is the walk dimension (see [6], [16], [30]). Similar results hold also for
a large family of fractal sets, including p.c.f. fractals and the Sierpinski carpet in Rn (see [30] and
[3]), but with different values of α and β.

3. Auxiliary material on metric measure spaces

Fix a metric measure space (M,d, μ) and define its volume function V (x, r) by

V (x, r) := μ (B (x, r))

where x ∈ M and r > 0.

1For the background of fractal sets including the notion of the Sierpinski gasket, see [2].
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3.1. Besov spaces

Here we introduce function spaces W β/2,p on M . Choose parameters 1 ≤ p < ∞, β > 0 and define
the functional Eβ,p (u) for all functions u ∈ Lp as follows:

Eβ,p(u) = sup
0<r≤1

r−pβ/2

∫

M

[
1

V (x, r)

∫

B(x,r)

|u(y) − u(x)|p dμ(y)

]

dμ(x). (3.1)

For simplicity, if p = 2, denote it by

Eβ(u) := Eβ,2(u).

The Besov space W β/2,p is defined by

W β/2,p := {u ∈ Lp : Eβ,p(u) < ∞} (3.2)

with the norm
‖u‖W β/2,p := ‖u‖p + Eβ,p(u)1/p.

For Ahlfors regular2 measures μ, the Besov space W β/2,p was introduced in [28, 34, 22]
although using different notation.

It is not difficult to verify that for any 1 ≤ p < ∞ and β > 0, the space W β/2,p is a Banach
space. Note that the space W β/2,p decreases as β increases; it may happen that this space becomes
trivial for large enough β. For example, W β/2,2 (Rn) = {0} for β > 2.

Define the critical Besov exponent β∗ by

β∗ := sup
{

β > 0 : W β/2,2 is dense in L2 (M,μ)
}

. (3.3)

Lemma 3.1. We have β∗ ≥ 2.

Proof. It suffices to show that W 1,2 is dense in L2 = L2 (M,μ). Let u be a Lipschitz function with
a bounded support A and let Ar be the closed r-neighborhood of A. If L is the Lipschitz constant
of u, then

E2 (u) = sup
0<r≤1

r−2

∫

Ar

1
V (x, r)

∫

B(x,r)

|u(y) − u(x)|2 dμ(y)dμ(x)

≤ sup
0<r≤1

r−2

∫

Ar

L2r2dμ(x)

≤ L2μ (A1) .

It follows that E2(u) < ∞ and hence u ∈ W 1,2. We are left to show that the class Lip of all
Lipschitz functions with bounded supports is dense in L2. Indeed, let now A be any bounded
closed subset of M . For any positive integer n, consider the function on M

fn (x) = (1 − nd (x,A))+ ,

which is Lipschitz and is supported in A1/n. Clearly, fn → 1A in L2 as n → ∞, whence it follows
that 1A ∈ Lip, where the bar means the closure in L2. Since the linear combinations of the indicator
functions of bounded closed sets form a dense subset in L2, it follows that Lip = L2, which was to
be proved. �

3.2. Doubling condition and reverse doubling condition

The measure μ on M is said to be doubling if there is a constant CD ≥ 1 such that

V (x, 2r) ≤ CDV (x, r) (3.4)

for all x ∈ M and r > 0.

Proposition 3.2. If (3.4) holds on M , then there exists α > 0 depending only on the doubling
constant CD such that

V (x,R)
V (y, r)

≤ CD

(
d(x, y) + R

r

)α

for all x, y ∈ M and 0 < r ≤ R. (VD)

2A measure μ on a metric space (M, d) is said to be Ahlfors-regular if there exist α, c > 0 such that V (x, r) � rα

for all balls B(x, r) in M with r ∈ (0, 1).
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Hence, the inequality of Proposition 3.2 can be used as an alternative definition of the doubling
property of μ and will be referred to as (V D) (volume doubling). The advantage of this definition
is that it introduces a parameter α that will frequently be used.

Proof. If x = y, then R ≤ 2nr where

n =

[

log2

R

r

]

≤ log2

R

r
+ 1,

whence, it follows from (3.4) that

V (x,R)
V (x, r)

≤
V (x, 2nr)
V (x, r)

≤ (CD)n ≤ (CD)log2
R
r +1 = CD

(
R

r

)log2 CD

. (3.5)

If x 6= y, then B (x,R) ⊂ B (y,R + r0) where r0 = d (x, y). By (3.5),

V (x,R)
V (y, r)

≤
V (y,R + r0)

V (y, r)
≤ CD

(
R + r0

r

)log2 CD

,

which finishes the proof. �

The measure μ satisfies a reverse volume doubling condition if there exist positive constants
α′ and c such that

V (x,R)
V (x, r)

≥ c

(
R

r

)α′

for all x ∈ M and 0 < r ≤ R. (RVD)

Proposition 3.3. If (M,d) is connected and μ satisfies (3.4), then there exist positive constants α′

and c such that (RVD) holds, provided B (x,R)c is non-empty.

Proof. The condition B (x,R)c 6= ∅ implies that

B (x, ρ′) \ B (x, ρ) 6= ∅ (3.6)

for all 0 < ρ < R and ρ′ > ρ. Indeed, otherwise M splits into disjoint union of two open sets:
B (x, ρ) and B (x, ρ)

c
. Since M is connected, the set B (x, ρ)

c
must be empty, which contradicts

the non-emptiness of B (x,R)c.
If 0 < ρ ≤ R/2, then we have by (3.6)

B

(

x,
5
3
ρ

)

\ B

(

x,
4
3
ρ

)

6= ∅.

Let y be a point in this annulus. It follows from (VD) that

V (x, ρ) ≤ CV (y, ρ/3)

for some constant C > 0, whence

V (x, 2ρ) ≥ V (x, ρ) + V (y, ρ/3) ≥ (1 + ε) V (x, ρ) , (3.7)

where ε = C−1.
For any 0 < r ≤ R, we have that 2nr ≤ R where

n :=

[

log2

R

r

]

≥ log2

R

r
− 1.

For any 0 ≤ k ≤ n − 1, we have 2kr ≤ R/2, and whence by (3.7),

V
(
x, 2k+1r

)
≥ (1 + ε) V (x, 2kr).

Iterating this inequality, we obtain

V (x,R)
V (x, r)

≥
V (x, 2nr)
V (x, r)

≥ (1 + ε)n

≥ (1 + ε)log2
R
r −1 = (1 + ε)−1

(
R

r

)log2(1+ε)

,

thus proving (RVD). �
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Remark 3.4. As one can see from the argument after (3.7), the measure μ is reverse doubling
whenever the following inequality holds

V (x,Cr) ≥ (1 + ε) V (x, r) (3.8)

for some C > 1, ε > 0 and all x ∈ M , r > 0.

Corollary 3.5. Assume that (M,d) is connected and μ satisfies (VD). Then

μ (M) = ∞ ⇔ diam(M) = ∞ ⇔ (RVD).

Proof. If μ (M) = ∞, then diam(M) = ∞; indeed, otherwise M would be a ball of a finite radius
and its measure would be finite by (VD). If diam(M) = ∞, then Bc (x,R) 6= ∅ for any ball B (x,R),
and (RVD) holds by Proposition 3.3. Finally, (RVD) implies μ (M) = ∞ by letting R → ∞ in
(RVD). �

4. Consequences of heat kernel estimates

We give here some consequences of the heat kernel estimates

1

V
(
x, t1/β

)Φ1

(
d(x, y)
t1/β

)

≤ pt (x, y) ≤
1

V
(
x, t1/β

)Φ2

(
d(x, y)
t1/β

)

,

for all t > 0 and μ-almost all x, y ∈ M . Functions Φ1 (s) and Φ2 (s) are always assumed to be
non-negative and monotone decreasing on [0, +∞), the constant β is positive.

We prove that

• The lower estimate of the heat kernel implies that
– the measure μ is doubling;
– the space F is embedded in W β/2,2;
– the lower tail function Φ1 (s) is controlled from above by a negative power of s.

• The upper estimate of the heat kernel implies that
– the space W β/2,2 is embedded in F ;
– if the Dirichlet form is non-local then the upper tail function Φ2 (s) is controlled from

below by a negative power of s (for large s).

4.1. Consequences of lower bound

Let pt be a heat kernel on a metric measure space (M,d, μ). Consider the lower estimate of pt of
the form:

pt (x, y) ≥
1

V
(
x, t1/β

)Φ1

(
d(x, y)
t1/β

)

(4.1)

for all t > 0 and μ-almost all x, y ∈ M .

Lemma 4.1. Assume that the heat kernel pt satisfies the lower bound (4.1). If Φ1(s0) > 0 for some
s0 > 1, then μ is doubling.

Proof. Fix r, t > 0 and consider the following integral
∫

B(x,r)

pt(x, y)dμ(y) :=
∫

M

pt(x, y)1B(x,r)(y) dμ(y).

The right-hand side is understood as follows: the function

F (x, y) := pt(x, y)1B(x,r)(y)

is measurable jointly in x, y so that, by Fubini’s theorem, the integral
∫

M

pt(x, y)1B(x,r)(y) dμ(y)

is well-defined for μ-almost all x ∈ M and is a measurable function of x. Choose any pointwise
version of pt(x, y) as a function of x, y. By Fubini’s theorem, there is a subset M0 ∈ M of full
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measure such that, for any x ∈ M0, the function pt(x, y) is measurable in y and the inequalities
(4.1) and (2.1) hold for μ-a.a. y ∈ M . It follows that, for all x ∈ M0,

∫

B(x,r)

pt(x, y)dμ(y) ≤ 1 (4.2)

whence
1

V (x, r)
≥ einf

y∈B(x,r)
pt(x, y).

On the other hand, we have by (4.1)

einf
y∈B(x,r)

pt(x, y) ≥
1

V (x, t1/β)
Φ1

( r

t1/β

)
,

which together with the previous estimate gives

V (x, r)

V
(
x, t1/β

) ≤
1

Φ1

(
r/t1/β

) .

Setting here t = (r/s0)
β we obtain

V (x, r)
V (x, r/s0)

≤
1

Φ1 (s0)
. (4.3)

Since s0 > 1 and Φ1 (s0) > 0, (4.3) implies that measure μ is doubling. �

Lemma 4.2. Assume that the heat kernel pt satisfies the lower bound (4.1) with Φ1(s0) > 0 for
some s0 ≥ 1. Then, there is a constant c > 0 such that for all u ∈ L2 (M),

E(u) ≥ cEβ(u). (4.4)

Consequently, the space F embeds into W β/2,2.

Proof. Let t, r > 0. It follows from (2.7) and the lower bound (4.1) that

E(u) ≥ Et(u) ≥
1
2t

∫

M

∫

B(x,r)

(u(y) − u(x))2 pt(x, y)dμ(y)dμ(x)

≥
1
2t

Φ1

( r

t1/β

)∫

M

(
1

V (x, t1/β)

∫

B(x,r)

(u(y) − u(x))2 dμ(y)

)

dμ(x),

where we have used the monotonicity of Φ1. Choosing t = (r/s0)
β and noticing that V (x, r/s0) ≤

V (x, r) by s0 ≥ 1, we obtain

E(u) ≥
sβ
0

2rβ
Φ1 (s0)

∫

M

(
1

V (x, r)

∫

B(x,r)

(u(y) − u(x))2 dμ(y)

)

dμ(x),

whence, by taking supremum in r,

E(u) ≥
1
2
sβ
0Φ1(s0)Eβ(u),

thus proving (4.4). �

Finally, we give another consequences of the lower bound (4.1) of the heat kernel.

Lemma 4.3. Assume that the heat kernel pt satisfies the lower bound (4.1). If μ satisfies the reverse
doubling property (RVD), then there is c > 0 such that

Φ1(s) ≤ c(1 + s)−(α′+β) for all s > 0, (4.5)

where α′ is the same as in (RVD).
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Figure 3. Sets A and B

Proof. Following [24], let u ∈ L2 be a non-constant function. Choose a ball B(x0, R) where u is
non-constant and let a > b be two real values such that the sets

A = {x ∈ B(x0, R) : u(x) ≥ a} and B = {x ∈ B(x0, R) : u(x) ≤ b}

both have positive measure (see Fig. 3).
It follows from (2.7) that

E(u) ≥
1
2t

∫

M

∫

M

(u(y) − u(x))2 pt(x, y)dμ(y)dμ(x)

≥
1
2t

∫

A

∫

B

(a − b)2
1

V (x, t1/β)
Φ1

(
2R

t1/β

)

dμ(y)dμ(x)

=
(a − b)2

2t
Φ1

(
2R

t1/β

)

μ(B)
∫

A

1
V (x, t1/β)

dμ(x).

For x ∈ A, we have that B(x,R) ⊂ B(x0, 3R), and hence, for small enough t > 0,

1
V (x, t1/β)

=
1

V (x,R)
∙

V (x,R)
V (x, t1/β)

≥
1

V (x0, 3R)
∙ c

(
R

t1/β

)α′

,

where we have used the reverse doubling property (RVD). Therefore, for small t > 0,

E(u) ≥
c′(a − b)2

V (x0, 3R)Rβ
μ(A)μ(B)

(
2R

t1/β

)α′+β

Φ1

(
2R

t1/β

)

.

If (4.5) fails, then there exists a sequence {sk} with sk → ∞ as k → ∞ such that

sα′+β
k Φ1(sk) → ∞ as k → ∞.

Choose tk such that sk = 2R/t
1/β
k . Then

(
2R

t
1/β
k

)α′+β

Φ1

(
2R

t
1/β
k

)

= sα′+β
k Φ1(sk) → ∞

as k → ∞, and hence E(u) = ∞. Hence, we see that F consists only of constants. Since F is dense
in L2, it follows that L2 also consists of constants only. Hence, there is a point x ∈ M with a
positive mass, that is, μ ({x}) > 0. Then (2.1) implies that, for all t > 0,

pt(x, x) ≤
1

μ({x})
. (4.6)

However, by (RVD), we have V (x, r) → 0 as r → 0, which together with (4.1) implies that
pt(x, x) → ∞ as t → 0, thus contradicting (4.6). �



Heat kernels on metric measure spaces 13

Remark 4.4. The last argument in the above proof can be stated as follows. If (RVD) is satisfied
and (4.1) holds with a function Φ1 such that Φ1 (0) > 0, then μ ({x}) = 0 for all x ∈ M . This
simple observation will also be used below.

4.2. Consequences of upper bound

Consider the upper estimate of pt of the form:

pt (x, y) ≤
1

V
(
x, t1/β

)Φ2

(
d(x, y)
t1/β

)

(4.7)

for all t > 0 and μ-almost all x, y ∈ M .

Lemma 4.5. Assume that μ satisfies both (VD) and (RVD), and that the heat kernel pt is stochas-
tically complete and satisfies the upper bound (4.7) with

∫ ∞

0

sα+β−1Φ2(s)ds < ∞, (4.8)

where α is the same as in (VD). Then, there is a constant c > 0 such that for all u ∈ L2 (M),

E(u) ≤ CEβ(u). (4.9)

Consequently, the space W β/2,2 embeds into F .

Proof. Fix t ∈ (0, 1) and let n be the smallest negative integer such that 2n+1 ≥ t1/β . Since pt is
stochastically complete, we have that for any t > 0,

Et (u) =
1
2t

∫

M

∫

M

(u(x) − u(y))2pt(x, y)dμ(y)dμ(x) = A0(t) + A1(t) + A2 (t) (4.10)

where

A0(t) : =
1
2t

∫

M

∫

B(x,1)c

(u(x) − u(y))2pt(x, y)dμ(y)dμ(x), (4.11)

A1(t) : =
1
2t

∫

M

∫

B(x,1)\B(x,2n)

(u(x) − u(y))2pt(x, y)dμ(y)dμ(x), (4.12)

A2(t) : =
1
2t

∫

M

∫

B(x,2n)

(u(x) − u(y))2pt(x, y)dμ(y)dμ(x). (4.13)

Observing that by (VD)

V (x, 2k+1)
V (x, t1/β)

≤ C

(
2k+1

t1/β

)α

for all k ≥ n, (4.14)

and using (4.7), we obtain

∫

B(x,1)c

pt(x, y)dμ(y) ≤
∞∑

k=0

∫

B(x,2k+1)\B(x,2k)

1
V (x, t1/β)

Φ2

(
2k

t1/β

)

dμ(y)

≤ C

∞∑

k=0

V (x, 2k+1)
V (x, t1/β)

Φ2

(
2k

t1/β

)

≤ C ′
∞∑

k=0

(
2k

t1/β

)α

Φ2

(
2k

t1/β

)

≤ C ′
∫ ∞

1
2 t−1/β

sα−1Φ2(s)ds (4.15)

≤ ct

∫ ∞

1
2 t−1/β

sα+β−1Φ2(s)ds. (4.16)
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Applying the elementary inequality (a − b)2 ≤ 2(a2 + b2), we obtain from (4.11)

A0(t) ≤
1
t

∫

M

∫

B(x,1)c

(u(x)2 + u(y)2)pt(x, y)dμ(y)dμ(x)

=
2
t

∫

M

u(x)2
(∫

B(x,1)c

pt(x, y)dμ(y)

)

dμ(x)

≤ 2c‖u‖2
2

∫ ∞

1
2 t−1/β

sα+β−1Φ2(s)ds

= o(1)‖u‖2
2 as t → 0, (4.17)

where we have used (4.8). It follows that

lim
t→0+

A0(t) = 0. (4.18)

By (4.7) and (4.14), we obtain that, for 0 > k ≥ n,

∫

B(x,2k+1)\B(x,2k)

(u(x) − u(y))2pt(x, y)dμ(y)

≤
1

V (x, t1/β)
Φ2

(
2k

t1/β

)∫

B(x,2k+1)\B(x,2k)

(u(x) − u(y))2dμ(y)

≤ c

(
2k+1

t1/β

)α

Φ2

(
2k

t1/β

)
1

V (x, 2k+1)

∫

B(x,2k+1)

(u(x) − u(y))2dμ(y).

By the definition (3.1) of Eβ , for all k < 0,

∫

M

1
V (x, 2k+1)

∫

B(x,2k+1)

(u(x) − u(y))2dμ(y)dμ (x) ≤
(
2k+1

)β
Eβ (u) . (4.19)

Therefore, we obtain

A1 (t) =
1
2t

∑

n≤k<0

∫

M

∫

B(x,2k+1)\B(x,2k)

(u(x) − u(y))2pt(x, y)dμ(y)dμ(x)

≤
1
2t

∑

n≤k<0

c

(
2k+1

t1/β

)α

Φ2

(
2k

t1/β

)

×
∫

M

1
V (x, 2k+1)

∫

B(x,2k+1)

(u(x) − u(y))2dμ(y)dμ (x) (4.20)

≤ c
∑

n≤k<0

(
2k+1

t1/β

)α+β

Φ2

(
2k

t1/β

)

Eβ(u)

≤ cEβ(u)
∫ ∞

0

sα+β−1Φ2(s)ds, (4.21)

where the latter integral converges due to (4.8).

For k < n, we have 2k+1 < t1/β whence by (RVD)

V (x, 2k+1)
V (x, t1/β)

≤ c

(
2k+1

t1/β

)α′

. (4.22)
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Similarly to the estimate of A1, we obtain

A2 (t) =
1
2t

∑

k<n

∫

M

∫

B(x,2k+1)\B(x,2k)

(u(x) − u(y))2pt(x, y)dμ(y)dμ(x)

≤ c
∑

k<n

(
2k+1

t1/β

)α′+β

Φ2

(
2k

t1/β

)

Eβ(u)

≤ cEβ(u)
∫ 2

0

sα′+β−1Φ2(s)ds, (4.23)

where the latter integral converges at 0 due to α′ +β > 0. It follows from (4.10), (4.18), (4.21) and
(4.23) that

E(u) = lim
t→0+

Et (u) = lim
t→0+

(A0 (t) + A1 (t) + A2 (t)) ≤ CEβ(u),

which finishes the proof. �

Lemma 4.6. Assume that μ satisfies (VD) and that the heat kernel pt satisfies the upper bound
(4.7). Then, either (E ,F) is local, or there is c > 0 such that

Φ2(s) ≥ c(1 + s)−(α+β) for all s > 0. (4.24)

Proof. Let u, v ∈ F be functions with disjoint compact supports A = supp u and B = supp v (see
Fig. 4).

A BR

Figure 4. Functions u and v

Noticing that (u, v) = 0, we obtain, for any t > 0,

Et(u, v) =
1
t

(u, v − Ptv)

= −
1
t

(u, Ptv)

= −
1
t

∫

A

u(x)

(∫

B

v(y)pt(x, y)dμ(y)

)

dμ(x).

Setting R = d(A,B) > 0 and using (4.7), we obtain

|Et(u, v)| ≤
1
t
Φ2

(
R

t1/β

)

‖v‖1

∫

A

|u(x)|
V (x, t1/β)

dμ(x). (4.25)

Choose any fixed point x0 ∈ A and let diam(A) = r. Then, using (VD), we see that, for all x ∈ A
and small t > 0,

1
V (x, t1/β)

=
1

V (x0, r)
V (x0, r)

V (x, t1/β)

≤
c

V (x0, r)

(
d(x0, x) + r

t1/β

)α

≤
c

V (x0, r)

(
2r

t1/β

)α

.

Therefore, by (4.25),

|Et(u, v)| ≤
1
t
Φ2

(
R

t1/β

)

‖v‖1
c

V (x0, r)

(
2r

t1/β

)α

‖u‖1

=
c(2r)α

V (x0, r)Rα+β
‖u‖1‖v‖1

(
R

t1/β

)α+β

Φ2

(
R

t1/β

)

.
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If (4.24) fails, then there exists a sequence {sk} such that sk → ∞ as k → ∞, and

sα+β
k Φ2(sk) → 0.

Letting tk > 0 such that sk = R/t
1/β
k , we obtain that

|Etk
(u, v)| → 0 as k → ∞,

showing that E(u, v) = 0. Hence, the (E ,F) is local, which was to be proved. �

4.3. Walk dimension

Here we obtain certain consequence of a two-sided estimate

1

V
(
x, t1/β

)Φ1

(
d(x, y)
t1/β

)

≤ pt (x, y) ≤
1

V
(
x, t1/β

)Φ2

(
d(x, y)
t1/β

)

. (4.26)

The parameter β from (4.26) is called the walk dimension of the associated Markov process.

Theorem 4.7. Assume that μ satisfies both (VD) and (RVD). Let the heat kernel pt (x, y) be stochas-
tically complete and satisfy (4.26) where Φ1 (s0) > 0 for some s0 ≥ 1 and

∫ ∞

0

sα+β+εΦ2(s)
ds

s
< ∞ (4.27)

for some ε > 0. Then β = β∗ where β∗ is the critical Besov exponent defined in (3.3).

Remark 4.8. Assuming in addition that Φ1 (s0) > 0 for some s0 > 1 allows to drop (VD) from
the hypothesis, thanks to Lemma 4.1. If one assumes on top of that, that the metric space (M,d)
is connected and has infinite diameter then (RVD) follows from (VD) by Corollary 3.5. Hence, in
this case (RVD) can be dropped from the assumptions as well.

Proof. By Lemma 4.2, we have the inclusion F ⊂ W β/2,2. Since F is always dense in L2, we
conclude that W β/2,2 is dense in L2, whence β∗ ≥ β.

To prove the opposite inequality, it suffices to verify that, for any β′ > β, the space W β′/2,2 is
not dense in L2. We can assume that β′ − β is sufficiently small so that the condition (4.27) holds
with ε = β′ − β.

Let us show that u ∈ W β′/2,2 implies E (u) = 0. We use again the decomposition

Et (u) = A0(t) + A1(t) + A2 (t)

where Ai(t) are defined in (4.11)–(4.13). As in the proof of Lemma 4.5, we have

lim
t→0

A0 (t) = 0.

Let us estimate A1(t) similarly to the proof of Lemma 4.5 (and using the same notation), but use
Eβ′ instead of Eβ . Indeed, using instead of (4.19) the inequality

∫

M

1
V (x, 2k+1)

∫

B(x,2k+1)

(u(x) − u(y))2dμ(y)dμ (x) ≤
(
2k+1

)β′

Eβ′ (u) , (4.28)

we obtain from (4.20) that

A1(t) ≤ ct
β′

β −1
∑

n≤k<0

(
2k+1

t1/β

)α+β′

Φ2

(
2k

t1/β

)

Eβ′(u)

≤ ct
β′

β −1Eβ′(u)
∫ ∞

0

sα+β′−1Φ2(s)ds (4.29)

where the integral converges due to (4.27). In the same way, one obtains

A2 (t) ≤ ct
β′

β −1Eβ′(u)
∫ 2

0

sα′+β′−1Φ2(s)ds.

Putting together all the estimates, we obtain

Et (u) ≤ A0(t) + Ct
β′

β −1Eβ′(u) → 0 as t → 0,
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whence
E (u) = lim

t→0
Et (u) = 0.

Since Et (u) ≤ E (u), this implies back that Et (u) ≡ 0 for all t > 0.
On the other hand, it follows from (2.7) and the lower bound in (4.26) that

Et (u) ≥
1
2t

∫ ∫

{d(x,y)≤s0t1/β}

(u(y) − u(x))2 pt(x, y)dμ(y)dμ(x)

≥
Φ1(s0)

2t

∫ ∫

{d(x,y)≤s0t1/β}

(u(x) − u(y))2

V
(
x, t1/β

) dμ(y)dμ(x),

which yields u(x) = u(y) for μ-almost all x, y such that d(x, y) ≤ s0t
1/β . Since t is arbitrary, we

conclude that u is a constant function.
Hence, we have shown that the space W β′/2,2 consists of constants. However, it follows from

Remark 4.4 that the constant functions are not dense in L2, which finishes the proof. �

4.4. Consequence of two-sided estimates (non-local case)

Lemmas 4.3 and 4.6 of the previous subsections imply immediately the following.

Theorem 4.9. Assume that the metric measure space (M,d, μ) satisfies (VD) and (RVD). Let {pt}
be a heat kernel on M such that, for all t > 0 and almost all x, y ∈ M ,

C ′
1

V
(
x, t1/β

)Φ

(

C1
d (x, y)
t1/β

)

≤ pt (x, y) ≤
C ′

2

V
(
x, t1/β

)Φ

(

C2
d (x, y)
t1/β

)

(4.30)

where C1, C
′
1, C2, C

′
2 are positive constants. Then either the associated Dirichlet form E is local or

c1 (1 + s)−(α+β) ≤ Φ(s) ≤ c2 (1 + s)−(α′+β) (4.31)

for all s > 0 and some c1, c2 > 0, where α and α′ are the exponents from (VD) and (RVD),
respectively.

5. A maximum principle and its applications

5.1. Weak differentiation

Let H be a Hilbert space over R and I be an interval in R. We say that a function u : I → H is
weakly differentiable at t ∈ I if for any ϕ ∈ H, the function (u (∙) , ϕ) is differentiable at t (where
the outer brackets stand for the inner product in H), that is, the limit

lim
ε→0

(
u (t + ε) − u (t)

ε
, ϕ

)

exists. In this case it follows from the principle of uniform boundedness that there is w ∈ H such
that

lim
ε→0

(
u (t + ε) − u (t)

ε
, ϕ

)

= (w,ϕ)

for all ϕ ∈ H. We refer to the vector w as the weak derivative of the function u at t and write
w = u′ (t). Of course, we have the weak convergence

u (t + ε) − u (t)
ε

⇀ u′ (t) as ε → 0.

In the next statement, we collect the necessary elementary properties of weak differentiation.

Lemma 5.1. (i) If u is weakly differentiable at t then u is strongly (that is, in the norm of H)
continuous at t.

(ii) (The product rule) If functions u : I → H and v : I → H are weakly differentiable at t,
then the inner product (u, v) is also differentiable at t and

(u, v)′ = (u′, v) + (u, v′) .
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(iii) (The chain rule) Let ( M,μ) be a measure space and set H = L2 ( M,μ). Let u : I →
L2 ( M,μ) be weakly differentiable at t ∈ I. Let Φ be a smooth real-valued function on R such that

Φ(0) = 0, sup
R

|Φ′| < ∞, sup
R

|Φ′′| < ∞. (5.1)

Then the function Φ(u) : I → L2 ( M,μ) is also weakly differentiable at t and

Φ(u)′ = Φ′ (u) u′.

Proof. To shorten the notation, we write ut for u (t).
(i) It suffices to verify that, for any sequence {εk} → 0, we have

‖ut+εk
− ut‖ → 0 as k → ∞. (5.2)

The sequence
ut+εk

−ut

εk
converges weakly, whence it follows that it is weakly bounded and, hence,

also strongly bounded. The latter clearly implies (5.2).
(ii) Let {εk} be as above. We have the identity

(ut+εk
, vt+εk

) − (ut, vt)
εk

=

(
ut+εk

− ut

εk
, vt

)

+

(

ut,
vt+εk

− vt

εk

)

+

(
ut+εk

− ut

εk
, vt+εk

− vt

)

.

By the definition of the weak derivative, the first two terms in the right hand side converge to
(u′

t, vt) and (ut, v
′
t) respectively. By part (i), the sequence

ut+εk
−ut

εk
is bounded in norm, whereas

‖vt+εk
− vt‖ → 0 as k → ∞; hence, the third term goes to 0, and we obtain the desired.

(iii) By (5.1) the function Φ admits the estimate |Φ(r)| ≤ C |r| for all r ∈ R, which implies
that the function Φ (ut) belongs to L2 ( M,μ) for any t ∈ I. By the mean value theorem, for any
r, s ∈ R, there exists ξr,s ∈ (0, 1) such that

Φ (r + s) − Φ(r) = Φ′
(
r + ξr,s (r − s)

)
s.

We have then
Φ (ut+εk

) − Φ(ut)
εk

= Φ′ (ut + ξk (ut+εk
− ut))

ut+εk
− ut

εk
,

where we write for simplicity ξk := ξut,ut+εk
−ut

. Rewrite this in the form

Φ (ut+εk
) − Φ(ut)
εk

= Ak + Bk,

where

Ak = (Φ′ (ut + ξk (ut+εk
− ut)) − Φ′ (ut))

ut+εk
− ut

εk

and

Bk = Φ′ (ut)
ut+εk

− ut

εk
.

Since
‖ (Φ′ (ut + ξk (ut+εk

− ut)) − Φ′ (ut)) ‖L2 ≤ sup |Φ′′| ‖ut+εk
− ut‖L2 −→

k→∞
0

and the norm
∥
∥
∥

ut+εk
−ut

εk

∥
∥
∥

L2
is uniformly bounded, we obtain that ‖Ak‖L1 −→ 0 as k → ∞. Since

‖(Φ′ (ut + ξk (ut+εk
− ut)) − Φ′ (ut))‖L∞ ≤ 2 sup |Φ′| < ∞,

we see that the norm ‖Ak‖L2 is uniformly bounded. It follows that Ak → 0 weakly in L2.
We are left to verify that Bk → Φ′ (ut) u′

t weakly in L2. Indeed, for any ϕ ∈ L2 ( M,μ), we
have that

(Bk, ϕ) =

(
ut+εk

− ut

εk
, Φ′ (ut) ϕ

)

→ (u′
t, Φ

′ (ut) ϕ) = (Φ′ (ut) u′
t, ϕ) ,

where we have used the fact that Φ′ (ut) is bounded and, hence, Φ′ (ut) ϕ ∈ L2 ( M,μ). �
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5.2. Maximum principle for weak solutions

As before, let (E ,F) be a regular Dirichlet form in L2 (M,μ). Consider a path u : I → F . We say
that u is a weak subsolution of the heat equation in an open set Ω ⊂ M if u is weakly differentiable
in the space L2 (Ω) at any t ∈ I and, for any non-negative ϕ ∈ F (Ω),

(u′, ϕ) + E (u, ϕ) ≤ 0. (5.3)

Similarly one defines the notions of weak supersolution and weak solution.
A similar definition was introduced in [20] but with the difference that the time derivative

u′ was understood in the sense of the norm convergence in L2 (Ω). Let us refer to the solutions
defined in [20] as semi-weak solutions. Clearly, any semi-weak solution is also a weak solution.

It is easy to see that, for any f ∈ L2 (M), the function Ptf is a weak solution in (0,∞) × Ω
for any open Ω ⊂ M (cf. [20, Example 4.10]).

Proposition 5.2 (parabolic maximum principle). Let u be a weak subsolution of the heat equation
in (0, T )×Ω, where T ∈ (0, +∞] and Ω is an open subset of M . Assume in addition that u satisfies
the following boundary and initial conditions:

• u+(t, ∙) ∈ F(Ω) for any t ∈ (0, T );

• u+ (t, ∙)
L2(Ω)
−→ 0 as t → 0.

Then u(t, x) ≤ 0 for any t ∈ (0, T ) and μ-almost all x ∈ Ω.

Remark 5.3. For semi-weak solutions the maximum principle was proved in [20].

Remark 5.4. It was shown in [20, Lemma 4.4] that the condition u+ ∈ F (Ω) is equivalent to the
following: u ∈ F and u ≤ v for some v ∈ F(Ω). We will use this result to verify the boundary
condition of the parabolic maximum principle.

Proof. Let Φ be a smooth function on R that satisfies the following conditions for some constant
C:

(i) Φ (r) = 0 for all r ≤ 0;
(ii) 0 < Φ′ (r) ≤ C for all r > 0.
(iii) |Φ′′ (r)| ≤ C for all r > 0.

Then Φ (u) = Φ (u+) ∈ F (Ω) so that we can set ϕ = Φ(u) in (5.3) and obtain

(u′, Φ(u)) + E (u, Φ(u)) ≤ 0.

Since Φ is increasing and Lipschitz, we conclude by [20, Lemma 4.3] that E (u, Φ(u)) ≥ 0, whence
it follows that

(u′, Φ(u)) ≤ 0. (5.4)

Since Φ satisfies the conditions (5.1), we conclude by Lemma 5.1, that the function t 7→ Φ(u) is
weakly differentiable in the space L2 (Ω) and

Φ (u)′ = Φ′ (u) u′,

and (u, Φ(u)) is differentiable in t and

(u, Φ(u))′ = (u′, Φ(u)) +
(
u, Φ(u)′

)

= (u′, Φ(u)) + (u, Φ′ (u) u′)

= (u′, Φ(u)) + (u′, Φ′ (u) u) .

Set Ψ (r) = Φ′ (r) r so that

(u, Φ(u))′ = (u′, Φ(u)) + (u′, Ψ(u)) .

Assume for a moment that function Ψ also satisfies the above properties (i)-(iii). Applying (5.4)
to Ψ, we obtain from the previous line

(u, Φ(u))′ ≤ 0,

that is, the function t 7→ (u, Φ(u)) is decreasing in t. By the properties (i)-(ii), we have Φ (r) ≤ Cr
for r > 0, which implies

(u, Φ(u)) = (u+, Φ(u+)) ≤ C‖u+‖
2 → 0 as t → 0.
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Hence, the function t 7→ (u+, Φ(u+)) is non-negative, decreasing and goes to 0 as t → 0, which
implies that this function is identical 0. It follows that u+ = 0, which was to be proved.

We are left to specify the choice of Φ so that the function Ψ (r) = Φ′ (r) r is also in the class
(i)-(iii). Let us construct Φ from its derivative Φ′ that can be chosen to satisfy the following:

• Φ′ (r) = 0 for r ≤ 0;
• Φ′ (r) = 1 for r ≥ 1;
• Φ′′ (r) > 0 for r ∈ (0, 1).

(see Fig. 5).

0

Φ(r)

r1

Figure 5. Function Φ (r)

Clearly, Φ satisfies (i)-(iii) . It follows from the identity

Ψ′ (r) = Φ′′ (r) r + Φ′ (r)

that Ψ′ (r) is bounded and Ψ′ (r) > 0 for r > 0. Finally, we have

Ψ′′ (r) = Φ′′′ (r) r + 2Φ′′ (r)

whence it follows that Ψ′′ (r) = 0 for large enough r and, hence, Ψ′′ is bounded. We conclude that
Ψ satisfies (i)-(iii), which finishes the proof. �

5.3. Some applications of the maximum principle

Recall that if (E ,F) is a regular Dirichlet form in L2 (M,μ) then, for any open set Ω, (E ,F (Ω)) is
also a regular Dirichlet form in L2 (Ω, μ). Denote by PΩ

t the heat semigroup of (E ,F(Ω)).

Lemma 5.5. Assume that (E ,F) is a regular and local Dirichlet form. Let u (t, x) be a weak sub-
solution of the heat equation in (0,∞) × U , where U is an open subset of M . Assume further, for
any t > 0, u (t, ∙) is bounded in M and is non-negative in U . If

u (t, ∙)
L2(U)
−→ 0 as t → 0 (5.5)

then the following inequality holds for all t > 0 and almost all x ∈ U :

u (t, x) ≤
(
1 − PU

t 1U (x)
)

sup
0<s≤t

‖u (s, ∙) ‖L∞(U). (5.6)

Proof. We first assume that U is precompact. Choose an open set W such that W b U. Fix a real
T > 0 and set

m := sup
0<s≤T

‖u (s, ∙)‖L∞(U) . (5.7)

We show that, for all 0 < t ≤ T and μ-almost all x ∈ W ,

u (t, x) ≤ m
(
1 − PW

t 1W (x)
)
. (5.8)
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Let ζ and η be cut-off functions3 of the couples (W,U) and (U,M), respectively. Consider the
function

w := ζu − m
[
η − PW

t 1W

]
. (5.9)

Then (5.8) will follow if we prove that w ≤ 0 in (0, T ] × W .
Claim 1. The w is a weak subsolution of the heat equation in (0,∞) × W .
Clearly, PW

t 1W is a weak solution of the heat equation in (0,∞) × W . Let us show that so
is ζu. Indeed, the product ζu belongs to F because both ζ and u are in L∞ ∩ F . For any test
function ψ ∈ F(W ), we have, using ζψ ≡ ψ,

(
∂ (ζu)

∂t
, ψ

)

=

(

ζ
∂

∂t
u, ψ

)

=

(
∂

∂t
u, ψ

)

= −E (u, ψ) = −E (ζu, ψ) + E ((ζ − 1)u, ψ)

= −E (ζu, ψ) ,

where we have used also that (ζ − 1) u = 0 in W and, hence,

E ((ζ − 1)u, ψ) = 0,

by the locality of (E ,F). Thus, ζu is a weak solution in (0,∞) × W .
Finally, the function η (x) considered as a function of (t, x), is a weak supersolution of the

heat equation in (0,∞) × W , since for any non-negative ψ ∈ F(W )

E(η, ψ) = lim
t→0

t−1 (η − Ptη, ψ) = lim
t→0

t−1 (1 − Ptη, ψ) ≥ 0,

whence it follows that w is a weak subsolution.
Claim 2. For every t ∈ (0, T ], we have (w (t, ∙))+ ∈ F(W ).
By Remark 5.4, it suffices to prove that in (0, T ] × M

w (t, ∙) ≤ mPW
t 1W , (5.10)

because mP W
t 1W ∈ F (W ). In M \ U , inequality (5.10) holds trivially because

ζ = 0 = PW
t 1W in M \ U

and, hence, w = −mη ≤ 0. To prove (5.10) in U , observe that η = 1 in U and 0 ≤ u ≤ m in
(0, T ] × U , whence

w = ζu − m + mPW
t 1W ≤ u − m + mP W

t 1W ≤ mP W
t 1W ,

which was to be proved.
Claim 3. The function w satisfies the initial condition

w (t, ∙)
L2(W )
−→ 0 as t → 0. (5.11)

Noticing that η = 1 in W , we see that

η − PW
t 1W = 1W − PW

t 1W
L2(W )
−→ 0 as t → 0.

Combining with (5.5), we obtain (5.11).
By the parabolic maximum principle (cf. Prop. 5.2), we obtain from Claims 1-3 that w ≤ 0

in (0, T ] × W , thus proving (5.8).
Finally, let U be an arbitrary open subset of M . Let {Wi}

∞
i=1 and {Ui}

∞
i=1 be two increasing

sequences of precompact open sets, both of which exhaust U , and such that Wi b Ui for all i. For
each i, we have by (5.8) with t = T that in Wi

u ≤
[
1 − PWi

t 1Wi

]
sup

0<s≤t
‖u (s, ∙)‖L∞(Ui)

. (5.12)

Replacing by the monotonicity in the right hand side Ui by U , and noticing that

PWi
t 1Wi

a.e.
−→ PU

t 1U as i → ∞,

3A cut-off function for the couple (W, U) is a function ζ ∈ F ∩ C0(M) such that 0 ≤ ζ ≤ 1 in M , ζ = 1 on an

open neighborhood of W , and supp ζ ⊂ U . If (E ,F) is a regular Dirichlet form then a cut-off function exists for any

couple (W, U) provided U is open and W is a compact subset of U (cf. [15, p.27]).
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we obtain (5.6) by letting i → ∞ in (5.12). �

Corollary 5.6. Assume that (E ,F) is regular and strongly local. Let U ⊂ Ω be two open subsets of
M . Then the following inequality holds for all t > 0 and μ-almost all x ∈ U :

1 − PΩ
t 1Ω(x) ≤

(
1 − PU

t 1U (x)
)

sup
0<s≤t

∥
∥1 − PΩ

s 1Ω

∥
∥

L∞(U)
. (5.13)

Proof. Approximating U by precompact open subsets, it suffices to prove the claim in the case
when U b Ω. Let ϕ be a cut-off function of the couple (U, Ω). Then we can replace the term
1 − PΩ

t 1Ω(x) in the both sides of (5.13) by the function

u (t, x) = ϕ (x) − PΩ
t 1Ω(x).

Clearly, for any t > 0, the function u (t, ∙) is bounded in M , non-negative in U , and satisfies
the initial condition (5.5). Let us verify that u (t, x) is a weak solution of the heat equation in
(0,∞) × U . It suffices to show that the function ϕ (x) as a function of (t, x) is a weak solution in
(0,∞)×U . Indeed, since ϕ is constant in a neighborhood of U , the strong locality of (E ,F) yields
that E(ϕ,ψ) = 0 for any ψ ∈ F(U), which finishes the proof. �

6. Upper bounds in the local case

6.1. Exponential tail

Following [21], we give an analytical approach of how to obtain the exponential tail of the heat
kernel upper bound on the doubling space. This is a modification of the argument of [27]. For an
alternative approach see [20] (and [25] for the case of infinite graphs).

The following is a key technical lemma.

Lemma 6.1. Let (E ,F) be a regular, strongly local Dirichlet form in L2(M,μ). Let ρ : [0,∞) →
[0,∞) be an increasing function. Assume that there exist ε ∈ (0, 1

2 ) and δ > 0 such that, for any
ball B ⊂ M of radius r and any positive t such that ρ (t) ≤ δr,

Pt1Bc ≤ ε in
1
4
B. (6.1)

Then, for any t > 0 and any ball B of radius r > 0,

Pt1Bc ≤ C exp
(
−c′t Ψ

(cr

t

))
in

1
4
B, (6.2)

where C, c, c′ > 0 are constants depending on ε, δ, and function Ψ is defined by

Ψ(s) := sup
λ>0

{
s

ρ(1/λ)
− λ

}

(6.3)

for all s ≥ 0.

Remark 6.2. Letting λ → 0 in (6.3), one sees that Ψ (s) ≥ 0 for all s ≥ 0. It is also obvious from
(6.3) that Ψ (s) is increasing in s.

Remark 6.3. If ρ(t) = t1/β for β > 1, then

Ψ(s) = sup
λ>0

{
sλ1/β − λ

}
= cβsβ/(β−1)

for all s ≥ 0, where cβ > 0 depends only on β (the supremum is attained for λ = (s/β)
β

β−1 ). The
estimate (6.2) becomes

Pt1Bc ≤ C exp

(

−c

(
rβ

t

) 1
β−1
)

in
1
4
B.
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Remark 6.4. If the heat semigroup Pt possesses the heat kernel pt (x, y) then the condition (6.1)
can be equivalently stated as follows: If ρ (t) ≤ δr then, for almost all x ∈ M ,

∫

B(x,r)c

pt (x, y) dμ (y) ≤ ε. (6.4)

Indeed, for any ball B (x0, r) and for almost all x ∈ B (x0, r/4), we have

Pt1B(x0,r)c (x) =
∫

B(x0,r)c

pt (x, y) dμ (y) ≤
∫

B(x,r/2)c

pt (x, y) dμ (y) ,

so that (6.4) implies (6.1) (although with a different value of δ). Conversely, for almost all x ∈
B (x0, r/2),

∫

B(x,r)c

pt (x, y) dμ (y) ≤
∫

B(x0,r/2)c

pt (x, y) dμ (y) = Pt1B(x0,r/2)c (x) ,

so that (6.1) implies (6.4), for almost all x ∈ B (x0, r/8). Covering M by a countable family of
balls of radius r/8, we obtain that (6.4) holds for almost all x ∈ M .

In the same way, the condition (6.2) is equivalent to the following: For all λ, t, r > 0 and for
almost all x ∈ M , ∫

B(x,r)c

pt (x, y) dμ (y) ≤ C exp
(
−c′t Ψ

(cr

t

))
. (6.5)

Hence, Lemma 6.1 in the presence of the heat kernel can be stated as follows: If (6.4) holds for
some ε ∈ (0, 1/2), δ > 0 and all r, t > 0 such that ρ (t) ≤ δr then (6.5) holds for all r, t > 0.

Proof of Lemma 6.1. Let us first show that the hypothesis (6.1) implies that there exist ε ∈ (0, 1)
and δ > 0 such that, for any ball B of radius r > 0 and for any positive t such that ρ (t) ≤ δr,

PB
t 1B ≥ 1 − ε in

1
4
B. (6.6)

Indeed, applying [21, Proposition 4.7] we obtain that, for all t and almost everywhere in M ,

P B
t 1 1

2 B ≥ Pt1 1
2 B − sup

0<s≤t

∥
∥
∥Ps1 1

2 B

∥
∥
∥

L∞(( 3
4 B)c)

. (6.7)

For any x ∈ 1
4B, we have that B(x, r/4) ⊂ 1

2B (see Fig. 6).

x0

y

1/4 B

B=B(x0,r)

1/2 B

x

3/4 B

B(y, 1/4 r)

B(x, 1/4 r)

B(y,1/16 r)

B(x,1/16 r)

Figure 6. Illustration to the proof of (6.1)⇒(6.6)
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Using the identity Pt1 = 1 we obtain, for any x ∈ 1
4B,

Pt1 1
2 B = 1 − Pt1( 1

2 B)c ≥ 1 − Pt1B(x,r/4)c .

Applying (6.1) for the ball B (x, r/4), we obtain

Pt1B(x,r/4)c ≤ ε in B (x, r/16) ,

provided t satisfies

ρ (t) ≤ δ
r

4
. (6.8)

It follows that, for any x ∈ 1
4B,

Pt1 1
2 B ≥ 1 − ε in B (x, r/16) ,

whence

Pt1 1
2 B ≥ 1 − ε in

1
4
B. (6.9)

On the other hand, for any y ∈
(

3
4B
)c

, we have 1
2B ⊂ B (y, r/4)c (see Fig. 6), whence

Ps1 1
2 B ≤ Ps1B(y,r/4)c .

Applying (6.1) for the ball B (y, r/4) at time s, we obtain if (6.8) holds then, for all 0 < s ≤ t,

Ps1B(y,r/4)c ≤ ε in B (y, r/16) .

It follows that, for any y ∈
(

3
4B
)c

,

Ps1 1
2 B ≤ ε in B (y, r/16) ,

whence

Ps1 1
2 B ≤ ε in

(
3
4
B

)c

. (6.10)

Combining (6.7), (6.9) and (6.10), we obtain that, under condition (6.8),

PB
t 1B ≥ PB

t 1 1
2 B ≥ 1 − 2ε in

1
4
B, (6.11)

which is equivalent to (6.6).
Now we show that (6.6) implies (6.2). The proof will be split into 5 steps.
Step 1. Assuming that

ρ (t) ≤ δr (6.12)

and that B is a ball of radius r, rewrite (6.6) in the form

1 − PB
t 1B ≤ ε in

1
4
B. (6.13)

For any positive integer k, set Bk = kB and we will prove that

1 − PBk
t 1Bk

≤ εk in
1
4
B. (6.14)

Since M is separable, there is a countable dense set of points in Bk. Let {bj} be a sequence of balls
of radii r centered at those points. Clearly, bj ⊂ Bk+1 and the family

{
1
4bj

}
covers Bk (see Fig. 7).

Due to (6.12), inequality (6.6) is valid for any ball bj , that is, for all 0 < s ≤ t,

PBk+1
s 1Bk+1 ≥ P bj

s 1bj ≥ 1 − ε in
1
4
bj .

It follows that
PBk+1

s 1Bk+1 ≥ 1 − ε in Bk.

Applying the inequality (5.13) of Corollary 5.6 with Ω = Bk+1 and U = Bk, we obtain that the
following inequality holds in Bk:

1 − P
Bk+1
t 1Bk+1 ≤

(
1 − PBk

t 1Bk

)
sup

0<s≤t

∥
∥1 − PBk+1

s 1Bk+1

∥
∥

L∞(Bk)

≤ ε
(
1 − PBk

t 1Bk

)
.

Iterating in k and using (6.13), we obtain (6.14).
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Bk

Bk+1

bj

1/4bj

r

Figure 7. Balls {Bk} and {bj}

It follows from (6.14) that

Pt1Bc
k
≤ 1 − Pt1Bk

≤ 1 − PBk
t 1Bk

≤ εk in
1
4
B. (6.15)

Although (6.15) has been proved for any integer k ≥ 1, it is trivially true also for k = 0, if we
define B0 := ∅.

Step 2. Fix t > 0, x ∈ M and consider the function

Et,x = exp

(

c
d(x, ∙)
ρ(t)

)

, (6.16)

where the constant c > 0 is to be determined later on. Set

r = δ−1ρ (t) ,

and we will prove that

Pt (Et,x) ≤ C in B (x, r/4) , (6.17)

where C is a constant depending on ε, δ. Set as before Bk = B (x, kr) , k ≥ 1, and B0 = ∅. Using
(6.16) and (6.15), we obtain that in B (x, r/4),

Pt (Et,x) =
∞∑

k=0

Pt

(
1Bk+1\Bk

Et,x

)

≤
∞∑

k=0

‖Et,x‖L∞(Bk+1)Pt

(
1Bk+1\Bk

)

≤
∞∑

k=0

exp

(

c
(k + 1) r

ρ(t)

)

Pt

(
1Bc

k

)

≤
∞∑

k=0

exp
(
c(k + 1)δ−1

)
εk.

Choosing c < δ log 1
ε we obtain that this series converges, which proves (6.17).

Step 3. Let us prove that, for all t > 0 and x ∈ M ,

PtEt,x ≤ C1Et,x, (6.18)



26 Grigor’yan, Hu and Lau

for some constant C1 = C (ε, δ). Observe first that, for all y, z ∈ M , we have by the triangle
inequality

Et,x(y) = exp

(

c
d(x, y)
ρ(t)

)

≤ exp

(

c
d(x, z)
ρ(t)

)

exp

(

c
d(z, y)
ρ(t)

)

= Et,x(z)Et,z(y),

which can also be written in the form of a function inequality:

Et,x ≤ Et,x (z) Et,z.

It follows that
Pt (Et,x) ≤ Et,x (z) Pt (Et,z) . (6.19)

By the previous step, we have
Pt (Et,z) ≤ C in B (z, r) , (6.20)

where r = 1
4δ−1ρ (t). For all y ∈ B (z, r), we have

Et,z (y) ≤ exp

(
cr

ρ (t)

)

= exp
(
cδ−1/4

)
=: C ′,

whence
Et,x (z) ≤ Et,x (y) Et,z (y) ≤ C ′Et,x (y) .

Letting y vary, we can write
Et,x (z) ≤ C ′Et,x in B (z, r) .

Combining this with (6.19) and (6.20), we obtain

Pt (Et,x) ≤ CC ′Et,x in B (z, r) .

Since z is arbitrary, covering M by a countable sequence of balls like B (z, r), we obtain that (6.18)
holds on M with C1 = CC ′.

Step 4. Let us prove that, for all t > 0, x ∈ M , and for any positive integer k,

Pkt (Et,x) ≤ Ck
1 in

1
4
B, (6.21)

where B =
(
x, δ−1ρ (t)

)
. Indeed, by (6.18)

Pkt (Et,x) = P(k−1)tPt (Et,x) ≤ C1P(k−1)tEt,x

which implies by iteration that
Pkt (Et,x) ≤ Ck−1

1 PtEt,x.

Combining with (6.17) and noticing that C ≤ C1, we obtain (6.21).
Step 5. Fix a ball B = B (x0, r) and observe that (6.2) is equivalent to the following: for all

t, λ > 0,

Pt1Bc ≤ C exp

(

c′λt −
cr

ρ(1/λ)

)

in
1
2
B, (6.22)

where C, c, c′ > 0 are constants depending on ε, δ. In what follows, we fix also t and λ.
Observe first that, for any x ∈ 1

2B,

Pt1Bc ≤ Pt1B(x,r/2)c .

Hence, it suffices to prove that, for any x ∈ 1
2B,

Pt1B(x,r/2)c ≤ C exp

(

c′λt −
cr

ρ(1/λ)

)

(6.23)

in a (small) ball around x. Covering then 1
2B by a countable family of such balls, we then obtain

(6.22).
Changing t to t/k in (6.21), we obtain that

Pt

(
Et/k,x

)
≤ Ck

1 in B (x, σk)
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where σk = 1
4δ−1ρ (t/k). Since

Et/k,x ≥ exp

(

c
r

ρ (t/k)

)

in B (x, r)c

and, hence,

1B(x,r)c ≤ exp

(

−
cr

ρ(t/k)

)

Et/k,x,

we obtain that the following inequality holds in B (x, σk)

Pt1B(x,r)c ≤ exp

(

−
cr

ρ(t/k)

)

Pt

(
Et/k,x

)
≤ exp

(

c′k −
cr

ρ(t/k)

)

where c′ = log C1. Given λ > 0, choose an integer k ≥ 1 such that

k − 1
t

< λ ≤
k

t
.

Then we obtain the following inequality in B (x, σk)

Pt1B(x,r)c ≤ exp

(

c′ (λt + 1) −
cr

ρ (1/λ)

)

, (6.24)

which finishes the proof. �

6.2. Consequences of two-sided estimates (local case)

Now we are able to specify the local case in the statement of Theorem 4.9.
Given two points x, y ∈ M , a chain connecting x and y is any finite sequence {xk}

n
k=0 of

points in M such that x0 = x, xn = y. We say that a metric space satisfies the chain condition if
there is a constant C > 0 such that for any positive integer n and for all x, y ∈ M there is a chain
{xk}

n
k=0 connecting x and y, such that

d (xk, xk+1) ≤ C
d (x, y)

n
for all k = 0, 1, ..., n − 1. (6.25)

For example, the geodesic distance on any length space satisfies the chain condition. On the other
hand, the combinatorial distance on a graph does not satisfy it.

Theorem 6.5. Assume that the metric measure space (M,d, μ) satisfies the chain condition and
that μ satisfies (VD) and (RVD). Let (E ,F) be a regular, local and conservative Dirichlet form,
and let {pt} be the associated heat kernel such that, for all t > 0 and almost all x, y ∈ M ,

C ′
1

V
(
x, t1/β

)Φ

(

C1
d (x, y)
t1/β

)

≤ pt (x, y) ≤
C ′

2

V
(
x, t1/β

)Φ

(

C2
d (x, y)
t1/β

)

(6.26)

where C1, C
′
1, C2, C

′
2 are positive constants, α, α′ are the exponents from (VD) and (RVD), respec-

tively, and β > α − α′. Then β ≥ 2 and the following inequality holds:

c′1 exp
(
−c1s

β/(β−1)
)
≤ Φ(s) ≤ c′2 exp

(
−c2s

β/(β−1)
)

(6.27)

for some positive constants c1, c
′
1, c2, c

′
2 and all s > 0.

Proof. Let us first observe that the locality and the conservativeness imply the strong locality.
Indeed, by [15, Lemma 4.5.2., p. 159 and Lemma , p. 161], we have the following identity

lim
t→0

1
t

∫

M

(1 − Pt1) u2 dμ =
∫

M

ũ2dk

for any u ∈ F where k is the killing measure of (E ,F) and ũ is a quasi-continuous version of u.
Since Pt1 = 1, it follows that k = 0. Therefore, by the Beurling-Deny formula [15, Theorem 3.2.1,
p.108], (E ,F) is strongly local. This will allow us to apply later Lemma 6.1.

We split the further proof into five steps.
Step 1. By Lemma 4.3 and the lower bound of pt, we obtain

Φ(s) ≤ c(1 + s)−(α′+β) for all s > 0.
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Therefore, using the upper bound of pt, we obtain (similar to (4.15)) that
∫

B(x,r)c

pt(x, y)dμ(y) ≤ c

∫ ∞

1
2 r/t1/β

sα−1Φ(s)ds

≤ c′
∫ ∞

1
2 r/t1/β

sα−α′−β−1ds.

Due to the condition β > α−α′, the integral in the right hand side converges and, hence, the right
hand side can be made arbitrarily small provided rt−1/β is large enough. We conclude by Lemma
6.1 (cf. Remark 6.4) with ρ(t) = t1/β that, for all r, t > 0 and for almost all x ∈ M ,

∫

B(x,r)c

pt (x, y) dμ (y) ≤ C exp
(
−c′t Ψ

(cr

t

))
, (6.28)

where
Ψ(s) := sup

λ>0

{
sλ1/β − λ

}
. (6.29)

Step 2. Let us prove that β > 1. If β < 1 then it follows from (6.29) that Ψ ≡ ∞. Substituting
into (6.28) and letting r → 0, we obtain that, for almost all x ∈ M ,

∫

M\{x}
pt (x, y) dμ (y) = 0.

It follows from the stochastic completeness that there is a point x ∈ M of a positive measure,
which contradicts Remark 4.4.

Assume now that β = 1. Then by (6.29)

Φ (s) =

{
0, 0 ≤ s ≤ 1
∞, s > 1,

which implies that, for all t < cr and for almost all x ∈ M ,
∫

B(x,r)c

pt (x, y) dμ (y) = 0,

that is, pt (x, y) = 0 for all t < cd (x, y) and almost all x, y ∈ M . Together with (6.26), this yields
the following bounds of the heat kernel for all t > 0 and almost all x, y ∈ M :

C−1

V
(
x, t1/β

)Φ

(
d (x, y)
t1/β

)

≤ pt (x, y) ≤
C

V
(
x, t1/β

) Φ̃

(
d (x, y)
t1/β

)

(6.30)

where

Φ̃ (s) =

{
Φ(s) , s ≤ c−1

0, s > c−1.

Clearly, the functions Φ and Φ̃ satisfy the hypotheses of Theorem 4.7. We conclude by Theorem
4.7 that β = β∗ whereas by Lemma 3.1 β∗ ≥ 2, which contradicts to β = 1.

Step 3. Using that β > 1, let us show that the heat kernel satisfies the following upper bound

pt(x, y) ≤
C

V (x, t1/β)
exp

(

−c

(
d (x, y)
t1/β

)β/(β−1)
)

. (6.31)

Setting in (6.29) λ = (s/β)
β

β−1 we obtain as in Remark 6.3

Ψ (s) = cβsβ/(β−1)

so that (6.28) becomes
∫

B(x,r)c

pt (x, y) dμ (y) ≤ C exp

(

−c
( r

t1/β

)β/(β−1)
)

. (6.32)

On the other hand, by the upper bound in (6.26), we have, for all t > 0 and almost all x, y ∈ M ,

pt (x, y) ≤
C

V
(
x, t1/β

) . (6.33)
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Setting r = 1
2d (x, y), we obtain from (6.32) and (6.33) that

p2t(x, y) =
∫

M

pt(x, z)pt(z, y) dμ(z)

≤
∫

B(x,r)c

pt(x, z)pt(z, y) dμ(z) +
∫

B(y,r)c

pt(x, z)pt(z, y) dμ(z) (6.34)

≤
C

V
(
y, t1/β

)
∫

B(x,r)c

pt(x, z) dμ(z)

+
C

V
(
x, t1/β

)
∫

B(y,r)c

pt(y, z) dμ(z)

≤

(
C

V
(
y, t1/β

) +
C

V
(
x, t1/β

)

)

exp

(

−c
( r

t1/β

)β/(β−1)
)

. (6.35)

By (VD) we have

V
(
x, t1/β

)

V
(
y, t1/β

) ≤ C

(
d (x, y) + t1/β

t1/β

)α

= C
(
1 +

r

t1/β

)α

.

Absorbing the polynomial function of r/t1/β into the exponential term in (6.35), we obtain (6.31).
Step 4. Now we can prove that β ≥ 2. Indeed, we have the estimate (6.30) where this time

Φ̃(s) = exp
(
−csβ/(β−1)

)
.

Since the estimate (6.30) satisfies the hypotheses Theorem 4.7, we obtain β ≥ 2 by the same
argument as in Step 2.

Step 5. The lower bound in (6.30) implies that, for all t > 0 and almost all x, y ∈ M , such
that d (x, y) ≤ s0t

1/β ,

pt (x, y) ≥
c

V (x, t1/β)
. (6.36)

Let us show that this implies the following lower bound

pt(x, y) ≥
c

V (x, t1/β)
exp

(

−C

(
d (x, y)
t1/β

)β/(β−1)
)

, (6.37)

for all t > 0 and almost all x, y ∈ M . Iterating the semigroup identity, we obtain for any positive
integer n and real r > 0

pt(x, y) =
∫

M

...

∫

M

p t
n
(x, z1)p t

n
(z1, z2)...p t

n
(zn−1, y)dμ(zn−1)...dμ(z1)

≥
∫

B(x1,r)

...

∫

B(xn−1,r)

p t
n
(x, z1)p t

n
(z1, z2)...p t

n
(zn−1, y)dμ(zn−1)...dμ(z1), (6.38)

where {xi}
n
i=0 is a chain connecting x and y that satisfies (6.25) (see Fig. 8).

Denote for simplicity z0 = x and zn = y. Setting

r =
d(x, y)

n
(6.39)

and noticing that zi ∈ B(xi, r), 0 ≤ i ≤ n − 1, we obtain by the triangle inequality and (6.25)

d(zi, zi+1) ≤ d(xi, xi+1) + 2r ≤ C ′ d(x, y)
n

where C ′ = C + 2. Next, we would like to use (6.36) to estimate pt/n (zi, zi+1) from below. For
that, the following condition must be satisfied:

d (zi, zi+1) ≤ s0

(
t

n

)1/β

,
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x=x0

x1
x2 y=xn

xn-1

Figure 8. Chain {xi}

which will follow from

C ′ d(x, y)
n

≤ s0

(
t

n

)1/β

.

Absorbing the constants C ′ and s0 into one, we see that the latter condition is equivalent to

n ≥ c

(
d (x, y)
t1/β

) β
β−1

. (6.40)

If d(x, y) ≤ s0t
1/β then (6.37) follows immediately from (6.36). Assume in the sequel that d(x, y) >

s0t
1/β and choose n to be the least positive integer satisfying (6.40), that is

n �

(
d (x, y)
t1/β

) β
β−1

(6.41)

This and (6.39) clearly imply that

r �

(
t

n

)1/β

. (6.42)

Then we have by (6.36) and (VD)

p t
n
(zi, zi+1) ≥

c

V
(
zi, (t/n)1/β

) ≥
c

V (zi, r)
. (6.43)

Since by (VD)
V (zi, r)
V (xi, r)

≤ C

(
d(zi, xi) + r

r

)α

≤ C2α,

it follows from (6.43) that

p t
n
(zi, zi+1) ≥

c

V (xi, r)
.

Using (6.38), (6.42), (VD), (RVD), and (6.41), we obtain

pt(x, y) ≥
∫

B(x1,r)

...

∫

B(xn−1,r)

cndμ(zn−1)...dμ(z1)
V (x, r) V (x1, r) ...V (xn−1, r)

=
cn

V (x, r)
≥ c′

cn

V
(
x, (t/n)1/β

)

=
c′

V
(
x, t1/β

)
cnV

(
x, t1/β

)

V
(
x, (t/n)1/β

) ≥ c′
cnnα′/β

V
(
x, t1/β

)

≥
c′

V
(
x, t1/β

) exp (−Cn)

≥
c′

V
(
x, t1/β

) exp



−C

(
d (x, y)β

t

) 1
β−1



 .
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Comparing (6.26) with (6.31) and (6.37), we obtain (6.27). �

Corollary 6.6. Under the hypotheses of Theorem 6.5, we have E (u) � Eβ (u) for all u ∈ L2 (M).
Consequently, F = W β/2,2.

Proof. Indeed, by Lemma 4.2 we have E (u) ≥ cEβ (u). Using the upper bound (6.31) and Lemma
(4.5), we obtain E (u) ≤ CEβ (u), which finishes the proof. �
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