INTEGRAL MAXIMUM PRINCIPLE AND ITS APPLICATIONS

Alexander Grigor'yan

Abstract

The integral maximum principle for the heat equation on a Riemannian manifold is improved and applied to obtain estimates of double integrals of the heat kernel.

1. Introduction and main results

In the present paper we develop a general approach to some estimates of solutions to heat equation bases on so-called integral maximum principle. Suppose that M is a smooth connected complete non-compact Riemannian manifold and consider some precompact subregion $\Omega \subset M$. Suppose also that $u(x, t)$ is a (weak) solution to Dirichlet mixed boundary value problem in a cylinder $\Omega \times(0, T)$:

$$
\begin{equation*}
u_{t}-\Delta u=0,\left.\quad u\right|_{\partial \Omega \times(0, T)}=0 \tag{1.1}
\end{equation*}
$$

As it follows from the maximum principle, the function

$$
\sup _{x \in \Omega}|u(x, t)|
$$

is decreasing in t. Moreover, it is also well-known, the following integral

$$
\int_{\Omega} u^{2}(x, t) d x
$$

is a decreasing function of t too. This fact can be regarded as an integral version of the usual maximum principle.

There is a further development of this idea which has been applied in a series of works to obtain heat kernel estimates (see, for example, [1] , [3] , [7] , [5]) and consists of the fact that some weighted integral of u^{2} decreases in t. Namely, this is applicable to the integral

$$
\begin{equation*}
I(t)=\int_{\Omega} u^{2}(x, t) e^{\xi} d x \tag{1.2}
\end{equation*}
$$

provided the function $\xi(x, t)$ is locally Lipschitz and satisfies the relation

$$
\begin{equation*}
\xi_{t}+\frac{1}{2}|\nabla \xi|^{2} \leq 0 \tag{1.3}
\end{equation*}
$$

The simplest non-trivial examples of such functions ξ are as follows:

$$
\xi=\frac{d(x)^{2}}{2 t}
$$

$d(x)$ being a locally Lipschitz function such that $|\nabla d(x)| \leq 1$ (for instance, a distance function from a set) and

$$
\xi=\alpha d(x)-\frac{\alpha^{2}}{2} t
$$

α being an arbitrary constant.
The following improvement of the maximum principle is proved in Section 2 below.
Grigor'yan A., Integral maximum principle and its applications, Proc. Roy. Soc. Edinburgh, 124A (1994) 353-362.

Theorem 1 (Integral maximum principle) Suppose that $u(x, t)$ is a (weak) solution to the mixed problem (1.1) and a locally Lipschitz function ξ satisfies the relation (1.3) in $\Omega \times(0, T)$, then the function

$$
I(t) \exp \left(2 \lambda_{1}(\Omega) t\right)
$$

is decreasing in $t \in(0, T)$ where $I(t)$ is defined by (1.2) and $\lambda_{1}(\Omega)$ is the first Dirichlet eigenvalue of Ω.
B.Davies [4] proved the following universal integral bound for the heat kernel $p(x, y, t)$ being the smallest positive fundamental solution to the heat equation (for details of the definition of the heat kernel see [2]). Let A and B be two Borel sets in M with finite volumes and let the distance $R=\operatorname{dist}(A, B)$ be positive, then

$$
\begin{equation*}
\int_{A} \int_{B} p(x, y, t) d x d y \leq \sqrt{\mu A \mu B} \exp \left(-\frac{R^{2}}{4 t}\right) \tag{1.4}
\end{equation*}
$$

This estimate is of much importance due to its generality: no a priori geometric assumption are needed for (1.4) to be valid. It turns out that Davies's estimate can be deduced with ease from the integral maximum principle. Moreover, Theorem 1 implies the improved version of (1.4) :
Theorem 2 Let A, B be two Borel subsets in M of a finite volume and $R=\operatorname{dist}(A, B)$, then

$$
\begin{equation*}
\int_{A} \int_{B} p(x, y, t) d x d y \leq \sqrt{\mu A \mu B} \exp \left(-\frac{R^{2}}{4 t}-\lambda_{1}(M) t\right) \tag{1.5}
\end{equation*}
$$

Here $\lambda_{1}(M)$ is by definition the bottom of the spectrum of the Laplacian in $L^{2}(M)$ that is called the spectral radius and coincides with $\inf \lambda_{1}(\Omega)$ over all precompact subregions Ω.

If the spectral radius of a manifold is positive then the estimate of theorem 2 gives the sharp speed of decay of heat kernel as $t \rightarrow \infty$ because as it is known

$$
\lim _{t \rightarrow \infty} \frac{\log p(x, y, t)}{t}=-\lambda_{1}(M)
$$

Takeda [8] proved by a probabilistic method another kind of double integral estimate of heat kernel. Let A be an arbitrary compact of a positive volume on M and let us denote by A^{R} the open R-neighbourhood of A where $R>0$. Let X_{t} be Brownian motion on manifold M governed by heat equation (1.1) . We shall consider the un-normalised law \mathbf{P}_{A} of X_{t} under the condition that the initial point X_{0} is uniformly distributed in A, where "un-normalised" means that the maximum value of \mathbf{P}_{A} is equal to μA rather than to 1 . Takeda's inequality for this setting estimates the probability $P(R, T)$ for X_{t} to exit A^{R} by a time T starting at a point of A that is the function

$$
P(R, T) \equiv \mathbf{P}_{A}\left(\exists t \leq T: X_{t} \notin A^{R} \mid X_{0} \in A\right)
$$

The following sharpened version of Takeda's inequality is due to T.Lyons [6]

$$
\begin{equation*}
P(R, T) \leq 16 \mu A^{R} \int_{R}^{\infty} \frac{1}{(4 \pi T)^{\frac{1}{2}}} \exp \left(-\frac{\eta^{2}}{4 T}\right) d \eta \tag{1.6}
\end{equation*}
$$

In Section 3 we obtain by means of the integral maximum principle an analytic proof of a similar inequality which however doesn't cover (1.6) but sometimes is sharper.

Theorem 3 Let $u(x, t)$ be a smooth subsolution to the heat equation in the cylinder $A^{R} \times[0, T]$ (where $A \subset M$ is a compact and R, T are arbitrary positive numbers) i.e.

$$
u_{t}-\Delta u \leq 0
$$

and suppose that

$$
\begin{equation*}
0 \leq u(x, t) \leq 1 \quad \text { and } \quad u(x, 0)=0 \quad \forall x \in A^{R}, t \in[0, T] \tag{1.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{A} u^{2}(x, T) d x \leq \mu\left(A^{R} \backslash A\right) \max \left(\frac{R^{2}}{2 T}, \frac{2 T}{R^{2}}\right) \exp \left(-\frac{R^{2}}{2 T}+1\right) \tag{1.8}
\end{equation*}
$$

To explain connection of this theorem with inequality (1.6) we first mention that the following function

$$
u(x, t) \equiv \mathbf{P}\left(\exists \tau \leq t: X_{\tau} \notin A^{R} \mid X_{0}=x\right)
$$

(where \mathbf{P} denotes a probability measure) satisfies the heat equation in the cylinder in question and the conditions (1.7). Thus, Theorem 3 is applicable to this function. Noting that the function $P(R, T)$ is equal to $\int_{A} u(x, T) d x$ and applying Cauchy-Schwarz inequality we get from (1.8)

$$
\begin{equation*}
P(R, T) \leq \sqrt{\mu(A) \mu\left(A^{R} \backslash A\right)} \max \left(\frac{R}{\sqrt{2 T}}, \frac{\sqrt{2 T}}{R}\right) \exp \left(-\frac{R^{2}}{4 T}+\frac{1}{2}\right) \tag{1.9}
\end{equation*}
$$

Compare this inequality to that of (1.6). It is easy to check that for all R, T the following estimate is valid

$$
\int_{R}^{\infty} \exp \left(-\frac{\eta^{2}}{4 T}\right) d \eta \leq \frac{2 T}{R} \exp \left(-\frac{R^{2}}{4 T}\right)
$$

and, moreover, the ratio of the left and the right sides here tends to 1 as $\frac{R^{2}}{T} \rightarrow \infty$.
Therefore, (1.6) implies that

$$
\begin{equation*}
P(R, T) \leq \frac{16}{\sqrt{\pi}} \mu\left(A^{R}\right) \frac{\sqrt{T}}{R} \exp \left(-\frac{R^{2}}{4 T}\right) \tag{1.10}
\end{equation*}
$$

and for large $\frac{R^{2}}{T}$ this inequality is only a bit weaker than (1.6). On the other hand for $\frac{R^{2}}{2 T} \geq 1$ (1.9) implies

$$
\begin{equation*}
P(R, T) \leq \sqrt{\frac{e}{2}} \sqrt{\mu(A) \mu\left(A^{R} \backslash A\right)} \frac{R}{\sqrt{T}} \exp \left(-\frac{R^{2}}{4 T}\right) \tag{1.11}
\end{equation*}
$$

or, applying $\sqrt{a b} \leq(a+b) / 2$,

$$
\begin{equation*}
P(R, T) \leq \sqrt{\frac{e}{8}} \mu\left(A^{R}\right) \frac{R}{\sqrt{T}} \exp \left(-\frac{R^{2}}{4 T}\right) \tag{1.12}
\end{equation*}
$$

Obviously, (1.10) is better for large $\frac{R^{2}}{T}$, but for intermediate values of $\frac{R^{2}}{T}$ (1.11) and (1.12) may give a sharper estimate, than (1.10) and (1.6) especially when the volume $\mu\left(A^{R} \backslash A\right)$ is small.

The inequalities (1.6) and (1.9) imply some estimates of heat kernel. It is obvious from a probabilistic point of view that $P(R, t)$ is an upper bound of the following integral of heat kernel

$$
\int_{A} \int_{M \backslash A^{R}} p(x, y, t) d y d x .
$$

This can be explained from analytic point of view too. Indeed, applying theorem 3 to the function

$$
v(x, t)=\int_{M \backslash A^{R}} p(x, y, t) d y
$$

we obtain as above

$$
\begin{gathered}
\int_{A} \int_{M \backslash A^{R}} p(x, y, t) d y d x=\int_{A} v(x, t) d x \\
\leq \sqrt{\mu(A) \mu\left(A^{R} \backslash A\right)} \max \left(\frac{R}{\sqrt{2 T}}, \frac{\sqrt{2 T}}{R}\right) \exp \left(-\frac{R^{2}}{4 T}+\frac{1}{2}\right) .
\end{gathered}
$$

2. Proof of theorems 1 and 2

To prove Theorem 1 consider a time derivative $I^{\prime}(t)$ of the function

$$
\begin{equation*}
I(t)=\int_{\Omega} u^{2}(x, t) e^{\xi(x, t)} d x \tag{2.1}
\end{equation*}
$$

Applying the equation (1.1) and the boundary condition (in a weak sense if the boundary of Ω is not smooth) we have

$$
I^{\prime}(t)=\int_{\Omega} \xi_{t} e^{\xi} u^{2}+\int_{\Omega} 2 u e^{\xi} u_{t}=\int_{\Omega} \xi_{t} e^{\xi} u^{2}-\int_{\Omega}\left(\nabla\left(2 u e^{\xi}\right), \nabla u\right)
$$

(here we are applying inequality (1.3))

$$
\begin{gathered}
\leq-\frac{1}{2} \int_{\Omega}|\nabla \xi|^{2} e^{\xi} u^{2}-2 \int_{\Omega}(\nabla u, \nabla \xi) u e^{\xi}-2 \int_{\Omega}|\nabla u|^{2} e^{\xi} \\
=-\frac{1}{2} \int_{\Omega} e^{\xi}\left(|\nabla \xi|^{2} u^{2}+4(\nabla u, \nabla \xi) u+4|\nabla u|^{2}\right)=-\frac{1}{2} \int_{\Omega} e^{\xi}(u \nabla \xi+2 \nabla u)^{2}
\end{gathered}
$$

On the other hand

$$
\begin{gathered}
\nabla\left(e^{\frac{\xi}{2}} u\right)=\frac{1}{2} e^{\frac{\xi}{2}}(u \nabla \xi+2 \nabla u), \\
\left|\nabla\left(e^{\frac{\xi}{2}} u\right)\right|^{2}=\frac{1}{4} e^{\xi}(u \nabla \xi+2 \nabla u)^{2}
\end{gathered}
$$

which implies the inequality

$$
\begin{equation*}
I^{\prime}(t) \leq-2 \int_{\Omega}\left|\nabla\left(e^{\frac{\xi}{2}} u\right)\right|^{2} \tag{2.2}
\end{equation*}
$$

We are left to notice that the function $v=e^{\xi / 2} u$ as any other function vanishing on the boundary $\partial \Omega$ satisfies the relation

$$
\int_{\Omega}|\nabla v|^{2} \geq \lambda_{1}(\Omega) \int_{\Omega} v^{2}
$$

Substituting into (2.2) we obtain a differential inequality

$$
I^{\prime}(t) \leq-2 \lambda_{1}(\Omega) I(t)
$$

whence the decreasing of $I(t) e^{2 \lambda_{1}(\Omega) t}$ follows.
Remark. One may replace u^{2} in the statement of Theorem 1 by another power or function of the solution. Let $f(z)$ be a smooth function on $(0,+\infty)$ such that

$$
f(z)>0, \quad f(z)^{\prime}>0, \quad f(z)^{\prime \prime}>0
$$

and

$$
\kappa=\inf _{z>0} \frac{f^{\prime \prime} f}{f^{\prime 2}}>0
$$

Suppose also that the function ξ satisfies the relation

$$
\xi_{t}+\frac{|\nabla \xi|^{2}}{4 \kappa} \leq 0
$$

Then the interal

$$
I_{f}(t)=\int_{\Omega} f(u(x, t)) e^{\xi} d x
$$

is a decreasing function of t.
For example, if $f(z)=z^{p}, p>1$ then $\kappa=\frac{p-1}{p}$. Of course it would be interesting to specify a speed of decay of $I_{f}(t)$ as was done for $I(t)$ but the spectral radius seems not to suit this purpose.
Proof of theorem 2. It suffices to prove the theorem for the case when A and B are bounded sets. Indeed, if we have proved that, a general case will be reduced to that as follows. Consider a bounded region Ω then, by the hypothesis, we have the inequality

$$
\int_{A \cap \Omega} \int_{B \cap \Omega} p(x, y, t) d x d y \leq \sqrt{\mu A \mu B} \exp \left(-\frac{R^{2}}{4 t}-\lambda_{1}(M) t\right)
$$

Letting $\Omega \rightarrow M$ we obtain (1.5).
To prove theorem 2 for bounded sets A, B let us consider the distance function $d(x)$ from set A and put $\xi(x, t)=\alpha d(x)-\frac{\alpha^{2}}{2} t$ where constant $\alpha>0$ is to be chosen below. Since $|\nabla d| \leq 1$ it follows that ξ satisfies the relation (1.3). Let Ω be a large region containing both sets A, B and $p_{\Omega}(x, y, t)$ be a heat kernel in region Ω (with a vanishing Dirichlet boundary condition). Let us apply theorem 1 in region Ω to the function

$$
u(x, t)=\int_{A} p_{\Omega}(x, y, t) d y
$$

being a solution to Dirichlet mixed value problem in Ω with an initial value $u(x, 0)=\mathbf{1}_{A}$. We have by theorem 1 that for any $t>0 \quad I(t) \leq \exp \left(-2 \lambda_{1}(\Omega) t\right) I(0)$. Note that

$$
I(0)=\int_{\Omega} \mathbf{1}_{A}^{2} \exp (\alpha d(x)) d x=\int_{A} \exp (\alpha d(x)) d x=\mu A
$$

for $\left.d(x)\right|_{A}=0$. Therefore, we obtain

$$
\int_{\Omega} u^{2}(x, t) \exp \left(\alpha d(x)-\frac{\alpha^{2}}{2} t\right) d x \leq \exp \left(-2 \lambda_{1}(\Omega) t\right) \mu A
$$

Reducing the domain of integration to B and taking into account that $\left.d(x)\right|_{B} \geq \operatorname{dist}(A, B)=$ R we have

$$
\int_{B} u^{2}(x, t) d x \leq \exp \left(-\alpha R+\frac{\alpha^{2}}{2} t-2 \lambda_{1}(\Omega) t\right) \mu A .
$$

Finally, applying Cauchy-Schwarz inequality

$$
\begin{gathered}
\int_{B} \int_{A} p_{\Omega}(x, y, t) d y d x=\int_{B} u(x, t) d x \leq\left(\int_{B} u^{2}(x, t) d x\right)^{\frac{1}{2}} \sqrt{\mu B} \\
\leq \exp \left(-\frac{\alpha}{2} R+\frac{\alpha^{2}}{4} t-\lambda_{1}(\Omega) t\right) \sqrt{\mu A \mu B}
\end{gathered}
$$

Taking here the optimal value $\alpha=\frac{R}{t}$ we obtain

$$
\int_{B} \int_{A} p_{\Omega}(x, y, t) d y d x \leq \exp \left(-\frac{R^{2}}{4 t}-\lambda_{1}(\Omega) t\right) \sqrt{\mu A \mu B}
$$

We are left to let here $\Omega \rightarrow M$ and to mention that $\lambda_{1}(\Omega) \geq \lambda_{1}(M)$ and $p_{\Omega} \rightarrow p$ locally uniformly.

3. Proof of theorem 3

The proof of theorem 3 doesn't use theorem 1 directly. We shall apply the idea behind the proof of integral maximum principle in another situation. The proof will be split into three steps.

STEP 1. Let us denote by $d(x)$ the distance from x to the set A and consider a cut-off function $\varphi(x)$ such that

$$
\left.\varphi\right|_{A}=1, \quad \operatorname{supp} \varphi \subset A^{R},
$$

then the function $\eta \equiv(1-\delta) \xi$ satisfies the following inequality:

$$
\begin{equation*}
\int_{A^{R}} u^{2} e^{\eta(x, T)} \varphi^{2}(x) d x \leq \frac{2}{\delta} \int_{0}^{T} \int_{A^{R} \backslash A}|\nabla \varphi|^{2} e^{\eta(x, t)} d x d t \tag{3.1}
\end{equation*}
$$

where $\delta \in(0,1)$ is arbitrary.

Proof. We have

$$
\begin{gathered}
\frac{d}{d t} \int_{A^{R}} u^{2} e^{\eta(x, t)} \varphi^{2}=2 \int_{A^{R}} u u_{t} e^{\eta} \varphi^{2}+\int_{A^{R}} u^{2} \eta_{t} e^{\eta} \varphi^{2} \\
\leq 2 \int_{A^{R}} u \Delta u e^{\eta} \varphi^{2}+\int_{A^{R}} u^{2} \eta_{t} e^{\eta} \varphi^{2} \\
=-2 \int_{A^{R}}|\nabla u|^{2} e^{\eta} \varphi^{2}-2 \int_{A^{R}} u(\nabla u, \nabla \eta) e^{\eta} \varphi^{2}-4 \int_{A^{R}} u e^{\eta}(\nabla u, \nabla \varphi) \varphi+\int_{A^{R}} u^{2} \eta_{t} e^{\eta} \varphi^{2} .
\end{gathered}
$$

Applying the inequality

$$
-2 u(\nabla u, \nabla \varphi) \varphi \leq \delta^{-1} u^{2}|\nabla \varphi|^{2}+\delta \varphi^{2}|\nabla u|^{2}
$$

we get

$$
\begin{gathered}
\frac{d}{d t} \int_{A^{R}} u^{2} e^{\eta} \varphi^{2} \leq \frac{2}{\delta} \int_{A^{R}} u^{2}|\nabla \varphi|^{2} e^{\eta} \\
-2 \int_{A^{R}} e^{\eta} \varphi^{2}\left((1-\delta)|\nabla u|^{2}-u|\nabla u||\nabla \eta|-\frac{1}{2} \eta_{t} u^{2}\right) .
\end{gathered}
$$

The expression in brackets on the right hand side of this inequality is equal to

$$
(1-\delta) X^{2}-|\nabla \eta| X Y-\frac{1}{2} \eta_{t} Y^{2}
$$

where $X=|\nabla u|, \quad Y=u$. This quadratic polynomial of X, Y is non-negative if its discriminant is non-positive, i.e.

$$
|\nabla \eta|^{2}+2(1-\delta) \eta_{t} \leq 0
$$

which is true due to (1.3). Recalling that $0 \leq u \leq 1$ we have

$$
\frac{d}{d t} \int_{A^{R}} u^{2} e^{\eta} \varphi^{2} \leq \frac{2}{\delta} \int_{A^{R}} u^{2}|\nabla \varphi|^{2} e^{\eta} \leq \frac{2}{\delta} \int_{A^{R}}|\nabla \varphi|^{2} e^{\eta}
$$

Integrating this inequality with respect to t and taking into account that $|\nabla \varphi|=0$ outside $A^{R} \backslash A$ we obtain (3.1).

STEP 2. Let us prove the following estimate

$$
\begin{equation*}
\int_{A} u^{2}(x, T) d x \leq \frac{2 \delta^{-1} \mu\left(A^{R} \backslash A\right)}{\left(\int_{0}^{R}\left(\int_{0}^{T} \exp ((1-\delta)(\zeta(\rho, \tau)-\zeta(0, T))) d \tau\right)^{-\frac{1}{2}} d \rho\right)^{2}} \tag{3.2}
\end{equation*}
$$

$\zeta(\rho, \tau)$ being a Lipschitz function in $[0, R] \times[0, T]$ satisfying in the following relation

$$
\begin{equation*}
\zeta_{\tau}+\frac{1}{2} \zeta_{\rho}^{2} \leq 0 \tag{3.3}
\end{equation*}
$$

Let us consider the function

$$
\xi(x, t)=\zeta(d(x), t)
$$

and apply (3.1) (note, that this function satisfies the condition (1.3)). Since for all $x \in A$ $\xi(x, T)=\zeta(0, T) \equiv$ const we can get from (3.1)

$$
\begin{equation*}
\int_{A} u^{2}(x, T) d x \leq \frac{2}{\delta} \int_{0}^{T} \int_{A^{R} \backslash A}|\nabla \varphi|^{2} e^{(1-\delta)(\xi(x, t)-\zeta(0, T))} d x d t \tag{3.4}
\end{equation*}
$$

Let us introduce a function

$$
\omega(r) \equiv \int_{0}^{T} e^{(1-\delta)(\zeta(r, t)-\zeta(0, T))} d t
$$

and suppose that φ depends on $d(x)$ only (i.e. we denote further by φ a function on $(0, R)$), then we can rewrite (3.4) as follows

$$
\int_{A} u^{2}(x, T) d x \leq \frac{2}{\delta} \int_{0}^{R} \varphi^{\prime}(r)^{2} \omega(r) d V(r)
$$

where

$$
V(r) \equiv \mu\left(A^{r} \backslash A\right) .
$$

Optimizing the last integral over all Lipschitz functions φ on $(0, R)$ under conditions $\varphi(0)=$ 1, $\varphi(R)=0$ we obtain

$$
\begin{equation*}
\int_{A} u^{2}(x, T) d x \leq \frac{2}{\delta}\left(\int_{0}^{R} \frac{d r}{V^{\prime}(r) \omega(r)}\right)^{-1} \tag{3.5}
\end{equation*}
$$

Since

$$
\int_{0}^{R} V^{\prime}(r) d r \int_{0}^{R} \frac{d r}{V^{\prime}(r) \omega(r)} \geq\left(\int_{0}^{R} \frac{d r}{\sqrt{\omega(r)}}\right)^{2}
$$

we get from (3.5) an inequality

$$
\int_{A} u^{2}(x, T) d x \leq \frac{2}{\delta} V(R)\left(\int_{0}^{R} \frac{d r}{\sqrt{\omega(r)}}\right)^{-2}
$$

which implies (3.2).
STEP 3. Here we shall complete the proof choosing a suitable function ζ. If we take in (3.2) $\zeta \equiv 0$ and $\delta=1$ we obtain a more or less trivial estimate

$$
\begin{equation*}
\int_{A} u^{2}(x, T) d x \leq \mu\left(A^{R} \backslash A\right) \frac{2 T}{R^{2}} \tag{3.6}
\end{equation*}
$$

Applying (3.2) to a function $\zeta(\rho, \tau)=-\alpha \rho-\frac{1}{2} \alpha^{2} \tau$ with $\alpha=\frac{R}{T}$ we get after integrating

$$
\begin{equation*}
\int_{A} u^{2}(x, T) d x \leq \frac{1-\delta}{\delta} \frac{\mu\left(A^{R} \backslash A\right)}{e^{(1-\delta) \frac{R^{2}}{2 T}}-1} . \tag{3.7}
\end{equation*}
$$

If $\frac{R^{2}}{2 T} \geq 1$ then one can take $\delta=\frac{2 T}{R^{2}}$ and (3.7) gives the following

$$
\int_{A} u^{2}(x, T) d x \leq\left(\frac{R^{2}}{2 T}-1\right) \frac{\mu\left(A^{R} \backslash A\right)}{\exp \left(\frac{R^{2}}{2 T}-1\right)-1}
$$

or, applying the inequality

$$
\frac{X-1}{e^{X-1}-1} \leq \frac{X}{e^{X-1}}
$$

which is valid for all $X \geq 1$, we finally get that for $\frac{R^{2}}{2 T} \geq 1$

$$
\begin{equation*}
\int_{A} u^{2}(x, T) d x \leq \mu\left(A^{R} \backslash A\right) \frac{R^{2}}{2 T} \exp \left(-\frac{R^{2}}{2 T}+1\right) \tag{3.8}
\end{equation*}
$$

The desired estimate (1.8) follows from (3.8) and (3.6) immediately.
Remark. One could expect that the spectral radius may be put into the estimate of theorem 3 like in theorems 1, 2 but this is not so. Indeed, the integral

$$
\int_{A} u^{2}(x, T) d x
$$

may tend to μA as $T \rightarrow \infty$ if u has a boundary value equal to 1 (on the contrary to the case of theorem 1 where a solution under consideration vanishes on a boundary). Hence, any upper bound of this integral cannot contain a term $\exp \left(-\lambda_{1}(M) T\right)$ vanishing as $T \rightarrow \infty$.

Acknowledgement. I would like to thank T.Lyons for fruitful discussions of the questions touched upon in this paper. I would thank him again for inviting me to Edinburgh University with support from an EEC project where this work was done.

REFERENCES

[1] Aronson D.G., Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4), 22 (1968) 607-694. Addendum 25 (1971) 221-228.
[2] Chavel I., "Eigenvalues in Riemannian geometry" Academic Press, New York, 1984.
[3] Cheng S.Y., Li P., Yau S.-T., On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math., 103 (1981) no.5, 1021-1063.
[4] Davies E.B., Heat kernel bounds, conservation of probability and the Feller property, J. d'Analyse Math. , 58 (1992) 99-119.
[5] Grigor'yan A.A., On the fundamental solution of the heat equation on an arbitrary Riemannian manifol, (in Russian) Mat. Zametki, 41 (1987) no.3, 687-692. Engl. transl. Math. Notes, 41 (1987) no.5-6, 386-389.
[6] Lyons T., Random thoughts on reversible potential theory, in: "Summer School in Potential Theory, Joensuu 1990" , edited by Ilpo Laine, University of Joensuu. Publications in Sciences 26, ISBN 951-696-837-6., 71-114.
[7] Porper F.O., Eidel'man S.D., Two-side estimates of fundamental solutions of second-order parabolic equations and some applications, (in Russian) Uspechi Mat. Nauk, 39 (1984) no.3, 101-156. Engl. transl. Russian Math. Surveys, 39 (1984) no.3, 119-178.
[8] Takeda M., On a martingale method for symmetric diffusion process and its applications, Osaka J. Math, 26 (1989) 605-623.

