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Abstract. We prove a mean value inequality for subharmonic functions of a regular Dirichlet
form in a doubling metric measure space, assuming that the Dirichlet form satisfies the Faber-
Krahn inequality, the tail estimate of jump measure outside balls, as well as the generalized
capacity condition. We also prove the equivalence between different forms of the generalized
capacity condition.

Contents

1. Introduction 1
2. Main results 4
3. Examples of (FK) 10
4. Examples of (Gcap) and (ABB) 12
5. Energy measure 14
6. Relations between (Gcap) and (ABB) 19
7. Self-improvement of (ABB) 21
8. Energy of product 27
9. Subharmonic functions 28
10. Mean value inequality 31
11. Lemma of Growth 36
12. Mean exit time 38
13. Survival estimate and (GU) 42
14. A full circle of equivalences 44
15. Appendix 45
References 47

1. Introduction

The classical mean value theorem for harmonic functions says the following: if u is a harmonic
function in an open domain Ω ⊂ Rn then, for any ball B(x0, r) b Ω,

u(x0) = −
∫

B(x0,r)
u dx.

(Here and in the sequel, the notation A b U means that A is compact and A ⊂ U). This theorem
implies all other essential properties of harmonic functions including convergence theorems and
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2 A. GRIGOR’YAN, E. HU, AND J. HU

the Harnack inequality. J. Moser proved in [43] the Harnack inequality for solutions of the
equation Lu = 0 where

Lu =
n∑

i,j=1

∂xi

(
aij(x)∂xju

)
(1.1)

is a uniformly elliptic operator with measurable coefficients. One of the main ingredients of
Moser’s proof was the mean value inequality :

esup
B(x0, 1

2
r)

|u| ≤ C

(

−
∫

B(x0,r)
u2dx

)1/2

that he proved by means of an ingenious iteration argument that is nowadays referred to as
Moser’s iteration.

The mean value and Harnack inequalities play also an important role in Analysis on metric
measure spaces where the operator L is replaced by the generator of a Dirichlet form. For
example, for the operator (1.1) the corresponding Dirichlet form is

E(f, f) =
∫

Rn

n∑

i,j=1

aij∂xiu ∂xju dx. (1.2)

This Dirichlet form is local as it is determined by differential operators. However, of high
interest are also non-local Dirichlet forms whose generators are integral operators. For example,
the following Dirichlet form of jump type

E(f, f) = C(n, β)
∫∫

Rn×Rn

(f(x) − f(y))2

|x − y|n+β
dxdy (1.3)

has the generator Δβ/2 provided 0 < β < 2 where Δ is the positive definite Laplace operator
and C(n, β) is a positive constant depending only on n and β.

Our purpose is to develop Analysis on a general metric measure space (M,d, μ) with a Dirichlet
form (E ,F) that is defined axiomatically in the spirit of [18] and can contain a local part E(L)

as well as a jump part

E (J)(f, f) =
∫∫

M×M
(f(x) − f(y))2J(x, y)dμ(x)dμ(y), (1.4)

where J is a jump kernel. A major motivation is to include fractal spaces where the existence
of self-similar local regular Dirichlet forms and associated diffusions was proved in [3], [9], [20],
[33], [34], [35], etc. There has been a number of works devoted to the mean value and Harnack
inequalities as well as to heat kernel bounds. Various results in the case of local Dirichlet forms
were obtained in [1], [4], [5], [7], [8], [27], [28], [30], [31], etc, while the jump type Dirichlet forms
were considered in [6], [10], [12], [14], [15], [16], [23], [24], [25], [29], etc.

All the works in this area have encountered one major difficulty that was not present in similar
research in Rn or on manifolds: a priori absence of suitable cutoff functions. Given a pair of
concentric balls B(x,R) and B(x,R + r) in Rn, a bump function φ of this pair is equal to 1 on
the interior ball, vanishes outside the exterior ball and is linear in radius in the annulus between
the balls so that

|∇φ| ≤
1
r
. (1.5)

It follows that, for any measurable function u,
∫

Rn

u2|∇φ|2 dx ≤
1
r2

∫

Rn

u2 dx, (1.6)

and this simple inequality is frequently used (in particular, in Moser’s argument). Perhaps, in
Analysis in Rn nobody would give a significance to (1.6) but when working on general metric
measure spaces, one quickly realizes helplessness without such a function φ. More precisely,
although a bump function can be still defined as above by using the distance function, but an
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analogue of (1.5) does not have to be true as the gradient is determined by the Dirichlet form,
and the latter does not have to be related in any way to the distance function.

For applications one needs an analogue of (1.6), and the existence of such function φ was
obtained in a tricky way in [1] and [4] assuming that the heat kernel of (E ,F) satisfies a certain
sub-Gaussian upper bounds. This analogue of (1.6) was referred to in [1] and [4] as a cutoff
Sobolev inequality. Different versions of this condition were used in [24] and [30] under the name
generalized capacity estimate.

In the present paper we consider two versions of the generalized capacity estimate: a weak
version shortly denoted by (Gcap) which claims the existence of a test function φ specific to u,
and a strong version denoted by (GU) which claims the existence of a universal test function φ
that serves all functions u (like in Rn).

One of the main results of this paper is the equivalence (Gcap) ⇔ (GU) that we prove under
some other hypotheses about space and energy (Theorem 2.11).

Another main result is the mean value inequality for subharmonic functions in the general
setting, assuming (Gcap) and some other hypotheses (Theorem 2.10). It is worth mentioning
that the proof of the implication (Gcap) ⇒ (GU) in Theorem 2.11 is done by using the mean
value inequality of Theorem 2.10.

The “other hypotheses” mentioned above include the Faber-Krahn inequality (FK) and a tail
estimate of the jump kernel J denoted by (TJ). They are explained in details below. Here we
only mention that (FK) refers to the spectral properties of the generator of E , while (TJ) is an
upper bound in terms of x and r of the integral

∫

M\B(x,r)
J(x, y)dμ(y),

that is called the tail of the jump kernel. As far as we know, these hypotheses are weakest
possible among all considered in the literature as they do not require pointwise estimates of
J(x, y).

The results of this paper will be used in subsequent research for obtaining heat kernel estimates
under weakest possible hypotheses about the jump kernel, and we plan to address these problems
in forthcoming papers.

In conclusion of this introduction, let us mention that creation of tools for a direct derivation
of (Gcap) remains one of the most important open problems in this area.

Structure of the paper. In Section 2 we give all necessary definitions and state the main results.
In Sections 3 and 4 we give examples of the Faber-Krahn inequality and the generalized capacity
condition, respectively.

In Section 5, we recall some properties of energy measures. In Sections 6 and 7 we discuss one
more condition (ABB) that serves as a bridge between (Gcap) and the energy product property
that is proved in Section 8.

In Section 9 we prove some elementary properties of subharmonic functions. The mean value
inequality for subharmonic functions (Theorem 2.10) is proved in Section 10 as Theorem 10.1.

In Section 11 we prove a so called Lemma of Growth that is used then in Section 12 to obtain
estimates of the mean exit time from balls, which in turn implies a survival estimate in Section
13; the latter yields then (GU). Finally, Theorem 2.11 is proved in Section 14 as Theorem 14.1
that contains all the results of this paper.

In Appendix we prove some auxiliary results.

Notation. Letters c, C,C ′, C1, C2, etc. are used to denote universal positive numbers, whose
values may change at any occurrence but depend only on the constants in the hypotheses. In
the double integral

∫∫
U×V F (x, y)dj(x, y), the variable x is taken in U and y in V . Moreover,

we may write
∫∫

U×V F (x, y)dj(x, y) shortly as
∫∫

U×V F (x, y)dj. For a measurable function u on
M , the notation supp(u) means the support of u, that is, the complement of the maximal open
set where u = 0 a.e..
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2. Main results

Metric measure space with energy. Let (M,d) be a locally compact separable metric space and
let μ be a Radon measure on M with full support. The triple (M,d, μ) is referred to as a metric
measure space. Let (E ,F) be a regular symmetric Dirichlet form in L2 := L2(M,μ). In this
paper we always assume that the Dirichlet form (E ,F) has no killing part, which means that

E(u, v) = E (L)(u, v) + E(J)(u, v) (2.1)

where E (L) is the local part (or diffusion part) and E (J) is the jump part associated with a unique
Radon measure j defined on M × M \ diag:

E (J)(u, v) =
∫∫

M×M\diag
(u(x) − u(y))(v(x) − v(y))dj(x, y), (2.2)

For simplicity, we set j = 0 on diag and will drop diag in expression M ×M \diag in (2.2) when
no confusion arises.

Denote by diam M the diameter of the metric space (M,d) and fix throughout the paper a
value R ∈ (0, diamM ]. Note that R can be finite or infinite when M is unbounded.

In order to state our main results, let us introduce some notations and hypotheses. Denote
metric balls in (M,d) by

B(x, r) := {y ∈ M : d(y, x) < r}

and set
V (x, r) := μ(B(x, r)).

We say that a measure μ satisfies the volume doubling condition (VD) (or μ is a doubling
measure) if there exists a constant C ≥ 1 such that, for all x ∈ M and all r > 0,

V (x, 2r) ≤ CV (x, r). (2.3)

Condition (VD) implies that 0 < V (x, r) < ∞ for all r > 0. We set V (x, 0) = 0 for all x ∈ M .
If μ is a doubling measure, then the space (M,d, μ) is called a doubling space.

It is known that (VD) implies (and hence, is equivalent to) the following condition: there
exists a positive number α such that, for all x, y ∈ M and all 0 < r ≤ R < ∞,

V (x,R)
V (y, r)

≤ C

(
d(x, y) + R

r

)α

,

where constant C can be taken the same as in (VD).

Scaling function and generalized capacity. Let us fix another function W (x, r) also defined for
all x ∈ M and r > 0. We refer to W as a scaling function as it will be used for describing
connection of the energy E to the metric measure structure and, consequently, the space/time
scaling for the Hunt process associated to (E ,F). For example, if M = Rn with the Euclidean
distance and Lebesgue measure and if E is the classical Dirichlet integral

E(u, v) =
∫

Rn

|∇u|2dx

then W (x, r) = r2. On typical fractal spaces with appropriate local Dirichlet form we have

W (x, r) = rβ (2.4)

where β > 2 is the walk dimension. On the other hand, if E is the following jump type Dirichlet
form in Rn

E(u, u) =
∫∫

Rn×Rn

(u(x) − u(y))2

|x − y|n+β
dxdy

then W has also the form (2.4) although this time 0 < β < 2.
In general, let us impose the following restriction on function W :

(1) for any x ∈ M , the function r 7→ W (x, r) is strictly increasing, W (x, 0) = 0 and
W (x,∞) = ∞;
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(2) there exist positive numbers C, β such that, for all 0 < r ≤ R < ∞ and for all x, y ∈ M
with d(x, y) ≤ R,

W (x,R)
W (y, r)

≤ C

(
R

r

)β

. (2.5)

Let us give an example of the jump process on Rn whose the space/time scaling can be
described by a function W that actually depends on the space variable x.

Example 2.1. On Rn, for 0 < ε < β < 2, set

W (x, r) =

(
|x| + r

r

)ε

rβ , x ∈ Rn, r > 0.

It is easy to prove that W (x, ∙) is strictly increasing for any fixed x ∈ Rn, and for any 0 < r <
R < ∞ and x, y ∈ Rn with |x − y| ≤ R,

1
2ε

(
R

r

)β−ε

≤
W (x,R)
W (y, r)

≤ 2ε

(
R

r

)β

.

In particular, (2.5) is satisfied. Consider the jump kernel J satisfying

J(x, y) '
1

|x − y|nW (x, |x − y|)
,

and denote the energy form associated with the above jump kernel J as in (1.4) by E(W ). (Here
and in the sequel the notation ' means that the ratio of the functions on its both sides is
bounded from above and below by two positive constants respectively.)

Since W (x, r) ≥ rβ for all x ∈ Rn and r > 0, it is easy to see that

E (W )(f, f) ≤ cE(f, f) < ∞, f ∈ C∞
0 (Rn),

where E is the Dirichlet form (defined in (1.3)) with generator Δβ/2, c > 0 is a universal constant,
and C∞

0 (Rn) is the collection of smooth functions on Rn with compact supports. Hence, the
form E (W ) can be extended to a regular Dirichlet form, say (E (W ),F), on L2(Rn), where

F := the closure of C∞
0 (Rn) with respect to the norm

√
E(W )

1 (∙, ∙),

and E (W )
1 (u, v) = E(W )(u, v)+ (u, v)L2 . In this case, the space/time scaling for the jump process

associated to (E(W ),F) can be described by the function W .

One can construct more examples of functions W, similar to that in Example 2.1, on an
abstract metric space (M,d). For example, let 0 < ε < β and

W (x, r) =

(
d(o, x) + r

r

)ε

φ(r), x ∈ M, r > 0,

where o ∈ M is a fixed point and φ : R+ 7→ R+ satisfies the following condition: for all 0 < r < R,

φ(R)
φ(r)

≤ C

(
R

r

)β

.

For convenience, for any metric ball B := B(x, r), we write

W (B) := W (x, r).

Note that in some metric spaces a ball as a subset of M may have different centers and radii,
that is, it may be possible that B(x1, r1) = B(x2, r2) whereas x1 6= x2 or r1 6= r2. To avoid
ambiguities in the notation W (B) and other similar notations, we always identify a ball as a
pair of center and radius rather than as a subset of M .

Let us define the notion of κ-cutoff function where κ ≥ 1 is a fixed real. Let U ⊂ M be an
open set and A be a Borel subset of U . A κ-cutoff function of the pair (A,U) is any function
φ ∈ F such that
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• 0 ≤ φ ≤ κ μ-a.e. in M ;
• φ ≥ 1 μ-a.e. in A;
• φ = 0 μ-a.e. in U c.

We denote by κ-cutoff(A,U) the collection of all κ-cutoff functions of the pair (A,U). Any
1-cutoff function for κ = 1 will be simply referred to as a cutoff function. Clearly, φ ∈ F is a
cutoff function of (A,U) if and only if 0 ≤ φ ≤ 1, φ|A = 1 and φ|Uc = 0. Set also

cutoff(A,U) := 1- cutoff(A,U).

Note that for every κ ≥ 1,
cutoff(A,U) ⊂ κ- cutoff(A,U),

and that
φ ∈ κ- cutoff(A,U) ⇒ 1 ∧ φ ∈ cutoff(A,U). (2.6)

It is known that, for a regular Dirichlet form (E ,F), the class cutoff(A,U) is not empty for any
nonempty precompact set A b U (recall that A b U means that A is compact and A ⊂ U).

Let F ′ be a linear spaced defined by

F ′ := {u + a : u ∈ F , a ∈ R},

that is, F ′ is obtained from F by adding all constants. Since (E ,F) has no killing part, the
bilinear form E can be extended to functions from F ′ as follows:

E(u + a, v + b) = E(u, v)

for all u, v ∈ F and a, b ∈ R.
For any u ∈ F ′ ∩ L∞ and for any κ ≥ 1, define the generalized capacity of a pair (A,U) as

follows:
cap(κ)

u (A,U) := inf
{
E(u2φ, φ) : φ ∈ κ- cutoff(A,U)

}

(the function u2φ belongs to F by Proposition 15.1(ii)). If u ≡ 1 then replacing φ by 1 ∧ φ, we
obtain the usual capacity

cap(1)
1 (A,U) = cap(A,U) := inf {E(φ, φ) : φ ∈ cutoff(A,U)} . (2.7)

The following definition plays a central role in this paper.

Definition 2.2. We say that (E ,F) satisfies the generalized capacity condition (Gcap) if there
exist numbers κ ≥ 1, C > 0 such that, for all u ∈ F ′ ∩ L∞ and any pair of concentric balls
B0 := B(x0, R), B := B(x0, R + r) with x0 ∈ M and 0 < R < R + r < R,

cap(κ)
u (B0, B) ≤ sup

x∈B

C

W (x, r)

∫

B
u2dμ. (2.8)

In other words, (Gcap) is satisfied if for all B0, B as above and for any u ∈ F ′ ∩ L∞, there
exists some φ ∈ κ-cutoff(B0, B) (as on Fig. 1) such that

E(u2φ, φ) ≤ sup
x∈B

C

W (x, r)

∫

B
u2dμ. (2.9)

Let us emphasize that the function φ in (2.9) may depend on u, B0, B but the constants κ, C
are independent of u,B0, B.

Figure 1. A function φ ∈ κ-cutoff(B0, B)
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If the scaling function W (x, r) is independent of the space variable x, say, W (x, r) = W (r),
then the inequality (2.9) becomes simpler

E(u2φ, φ) ≤
C

W (r)

∫

B
u2dμ.

Setting in (2.8) u ≡ 1 and using (2.6), we obtain

cap(B0, B) ≤ sup
x∈B

C

W (x, r)
μ(B). (2.10)

In particular, it follows from (2.10) and (2.5) that

cap(1
2B,B) ≤

C

W (B)
μ(B). (2.11)

Definition 2.3. We say that (E ,F) satisfies the capacity condition (Cap≤) if there exists a
constant C > 0, such that (2.11) holds for all balls B of radius R < R.

The above argument shows that

(Gcap) ⇒ (Cap≤). (2.12)

Unlike (Gcap), the condition (Cap≤) can be effectively verified in many examples. We conjecture
that in most (or even all) results about heat kernel estimates (Gcap) can be replaced by (Cap≤).

Now let us introduce a stronger condition (GU) that has a full title the generalized capacity
condition with universal cutoff function.

Definition 2.4. We say that (E ,F) satisfies the condition (GU) if there exist two numbers
κ ≥ 1, C > 0 such that, for any pair two concentric balls B0 := B(x0, R), B := B(x0, R + r)
with x0 ∈ M and 0 < R < R + r < R, there exists some φ ∈ κ-cutoff(B0, B) such that (2.9) is
satisfied for all u ∈ F ′ ∩ L∞.

Hence, in contrast to (Gcap), the test function φ in (2.9) is now independent of u, that is,
universal (but, of course, φ depends on the balls). Clearly, (GU) ⇒ (Gcap).

One of the results of this paper is that, under some mild assumptions, the opposite implication
(Gcap) ⇒ (GU) is also true (see Theorem 2.11 below).

Faber-Krahn inequality. For a non-empty open set U ⊂ M , denote by C0(U) the space of all
continuous functions with compact supports in U . Let F(U) be a vector space defined by

F(U) = the closure of F ∩ C0(U) with respect to the norm
√

E1(∙, ∙),

where Eλ(u, v) := E(u, v) + λ(u, v)L2 for u, v ∈ F and λ > 0. By the theory of Dirichlet form,
(E ,F(U)) is a regular Dirichlet form on L2(U, μ) (see, for example, [19, Theorem 4.4.3]).

Let LU be the (positive definite) generator of the Dirichlet form (E ,F(U)). Denote by λ1(U)
the bottom of the spectrum of LU in L2(U, μ). It is known that

λ1(U) = inf
u∈F(U)\{0}

E(u, u)
‖u‖2

2

. (2.13)

Definition 2.5. We say that (E ,F) satisfies the Faber-Krahn inequality, shortly (FK), if there
exist σ ∈ (0, 1] and C, ν > 0 such that, for any ball B = B(x,R) with R < σR and for any
non-empty open set U ⊂ B,

λ1(U) ≥
C−1

W (B)

(
μ(B)
μ(U)

)ν

. (2.14)

Sometimes we use notation (FKν) for (FK) in order to emphasize the exponent ν. Note that
the value of ν can always be reduced without violating (2.14).
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Remark 2.6. It is easy to see that (FK) and (VD) imply the following lower bound of capacity
for any ball B of radius R < σR

cap(1
2B,B) ≥ C−1 μ(B)

W (B)
. (2.15)

Indeed, for any φ ∈ cutoff(U,B) we have by (2.13) and (2.14) with U = B

E(φ, φ) ≥ λ1(B)‖φ‖2
2 ≥

C−1

W (B)
μ(1

2B),

whence (2.15) follows. This observation shows that, in some sense, the hypotheses (FK) and
(Gcap) are complementary to each other. Nevertheless, they both are related to upper bounds
of the heat kernel (see Sections 3 and 4).

Further results about deep relationships between eigenvalues and capacities can be found in
[22], [37], [38], [39], [40], [41].

Tail estimate. We introduce here the condition (TJ) that provides a tail estimate of the jump
measure in the exterior of balls.

Let B(M) be the sigma-algebra of Borel sets of M . Recall that a transition kernel J :
M × B(M) 7→ R+ is a map satisfying the following two properties:

• for every fixed x in M , the map E 7→ J(x,E) is a measure on B(M);
• for every fixed E in B(M), the map x 7→ J(x,E) is a non-negative measurable function

on M .

Definition 2.7. We say that condition (TJ) is satisfied if there exists a transition kernel J(x,E)
on M × B(M) such that

dj(x, y) = J(x, dy)dμ(x) in M × M,

and, for any point x in M and any R > 0,

J(x,B(x,R)c) =
∫

B(x,R)c

J(x, dy) ≤
C

W (x,R)
, (2.16)

where C ∈ [0,∞) is a constant independent of x,R.

If B(x,R)c is empty, the inequality (2.16) is automatically true. If W (x,R) = Rβ for any x
in M and R > 0 then the inequality (2.16) becomes

J(x,B(x,R)c) ≤
C

Rβ
for all x in M and R > 0.

The latter condition was introduced and studied in [10] in the setting of ultra-metric spaces.

Andres-Barlow-Bass condition. The local part E (L) of the Dirichlet form (E ,F) determines for
any u ∈ F ′ an energy measure Γ(L)(u) that, in particular, satisfies the identity

E (L)(u, u) =
∫

M
dΓ(L)(u)

(see Section 5 for details). For example, for the Dirichlet form (1.2), we have

dΓ(L)(u)(x) =
n∑

i,j=1

aij(x)∂xiu ∂xju dx.

The jump part E (J) also gives rise to an energy measure as follows. For any open set Ω ⊂ M

and any u ∈ F ′, define a measure Γ(J)
Ω (u) by

dΓ(J)
Ω (u)(x) =

∫

y∈Ω
(u(x) − u(y))2dj(x, y),
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which means that, for any non-negative measurable function v,
∫

M
vdΓ(J)

Ω (u) =
∫

x∈M

∫

y∈Ω
v(x)(u(x) − u(y))2dj(x, y).

In particular, we have

E (J)(u, u) =
∫

M
dΓ(J)

M (u).

Define a measure ΓΩ(u) by

dΓΩ(u) = dΓ(L)(u) + dΓ(J)
Ω (u). (2.17)

Definition 2.8. We say that condition (ABB) is satisfied if there exist constants C1 ≥ 0,
C2 > 0 such that, for any u ∈ F ′ ∩ L∞ and for any three concentric balls B0 := B(x0, R),
B := B(x0, R + r) and Ω := B(x0, R

′) with 0 < R < R + r < R′ < R, there exists some
φ ∈ cutoff(B0, B) such that

∫

Ω
u2dΓΩ(φ) ≤ C1

∫

B
φ2dΓB(u) + sup

x∈Ω

C2

W (x, r)

∫

Ω
u2dμ.

In Section 6 we will give a refined version of (ABB) tracing the value of C1. The condition
(ABB) is named after Andres, Barlow and Bass, who first introduced it in [1], [4] for local
Dirichlet forms under the name cut-off Sobolev inequality. For jump type Dirichlet forms it was
introduced and used in [10], [14], [15], [16], [24].

As (Gcap), the condition (ABB) is also meant to be a replacement of (1.6) in Analysis on
metric measure spaces. Although the definition of (ABB) is more complicated than that of
(Gcap), condition (ABB) is easier in applications. In fact, we prove in this paper that, under
standing hypotheses (VD), (FK) and (TJ), the following equivalence holds:

(Gcap) ⇔ (ABB) + (Cap≤) (2.18)

(see Theorem 2.11 below).

Subharmonic functions.

Definition 2.9. Let Ω be an open subset of M . We say that a function u ∈ F is subharmonic
in Ω if, for any 0 ≤ ϕ ∈ F(Ω),

E(u, ϕ) ≤ 0.

For any ball B = B(x, r) and a positive number λ, denote λB := B(x, λr). Here is out first
main result: the mean value inequality for subharmonic functions.

Theorem 2.10. Let (E ,F) be a regular Dirichlet form in L2 without killing part and with
jump measure j. Assume that conditions (VD), (Gcap), (FK) and (TJ) hold. Let a function
u ∈ F ∩L∞ be non-negative and subharmonic in a ball B := B(x0, R) with 0 < R < σR. Then,
for any ε > 0,

esup
1
2
B

u ≤ C(1 + ε−
1
2ν )

(
1

μ(B)

∫

B
u2dμ

)1/2

+ εK‖u+‖L∞(( 1
2
B)c), (2.19)

where the constant C depends only on the constants in the hypotheses (but does not depend on
ε), the constants ν and σ come from (FK), and

K =

{
1 if the measure j 6≡ 0,

0 if the measure j ≡ 0.

In the case when the Dirichlet form (E ,F) is strongly local (that is, when K = 0) the mean
value inequality ((2.19) with ε = 1) for subharmonic functions was proved in [30, Theorem 6.3]
although in the case when the scaling function W is independent of x and R = ∞. The mean
value inequality was one of the main ingredients for the proof of the Harnack inequality for
harmonic functions in [30, Theorem 1.1].
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Our contribution in Theorem 2.10 is therefore threefold:

(1) the mean value inequality is proved for the first time for general Dirichlet forms contain-
ing jump part;

(2) the scaling function W (x, r) is of general form allowing dependence on x;
(3) the result is localized in space: if (FK) holds for balls with restricted radii then the mean

value inequality is also satisfied for balls with restricted radii.

We mention that mean value inequalities in different shapes are also obtained in [17] for
fractional Laplacian on Rn and in [13] for symmetric jump processes on general metric measure
spaces. In both papers, the pointwise upper bounds of jump kernel are fully used, while, in
Theorem 2.10, we only use the tail estimate of the jump measure (TJ) (which does not require
the existence of the jump kernel, and then it is much weaker than the pointwise upper bound
of jump kernel). However, under the stronger condition, it is proved in [17] that the essential
supremum of a harmonic function u over a smaller ball can be bounded from above by the Lp

(p > 1) average of u over a larger ball plus the tail of u outside some ball. Similar result is
obtained in [13] but for p ∈ [1, 2].

Moreover, we prove here the following theorem clarifying the relationships between aforemen-
tioned conditions.

Theorem 2.11. Let (E ,F) be a regular Dirichlet form without killing part. Assume that (VD),
(FK) and (TJ) hold true. Then we have the following equivalences:

(Gcap) ⇔ (ABB) + (Cap≤)

⇔ mean value inequality (2.19) + (Cap≤)

⇔ (GU).

Of course, Theorem 2.10 is contained in Theorem 2.11, but it is interesting to observe that
the proof of the implication

(Gcap) ⇒ (GU)

goes through the mean value inequality! In Section 14 we state and prove even more general
Theorem 14.1 containing Theorem 2.11.

3. Examples of (FK)

Example 3.1. Let (M,d, μ) be a complete Riemannian manifold of dimension n and E be the
Dirichlet integral

E(u, u) =
∫

M
|∇u|2dμ,

where u ∈ F = W 1,2(M). The generator of (E ,F) is the Laplace-Beltrami operator Δ, and, for
a precompact open set U , λ1(U) is the bottom eigenvalue of Δ in U with the Dirichlet boundary
condition.

If M = Rn then, by a theorem of Faber and Krahn,

λ1(U) ≥ λ1(U
∗)

where U∗ is a ball of the same volume as U . Let ρ be the radius of U∗. Since

λ1(U
∗) =

c′

ρ2

and

μ(U) = μ(U∗) = c′′ρn,

where c′, c′′ are positive constants depending on n, it follows that

λ1(U) ≥ cμ(U)−2/n.
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If U ⊂ B = B(x, r) then it follows that

λ1(U) ≥
c

r2

(
μ(B)
μ(U)

)2/n

, (3.1)

that is, (FK) is satisfied with the scaling function W (x, r) = r2 and ν = 2/n.
It is known that if M has non-negative Ricci curvature then it also satisfies (3.1), that is,

(FK) holds with W (x, r) = r2, too (see [21]).

Example 3.2. Let (M,d, μ) be α-regular, that is, for all x ∈ M and r > 0,

V (x, r) ' rα

for some α > 0. If the jump kernel of (E ,F) satisfies the lower bound

J(x, y) ≥
c

d(x, y)α+β

with some c, β > 0, then (FK) holds with the scaling function W (x, r) = rβ (see [24, Lemma
3.5]).

Example 3.3. Let (M,d, μ) satisfy not only (VD) but also the reverse volume doubling : for all
R ≥ r > 0 and x ∈ M ,

V (x,R)
V (x, r)

≥ C−1

(
R

r

)α′

,

for some constants C,α′ > 0. Assume also that the scaling function W satisfies a similar
condition: for all R ≥ r > 0 and x, y ∈ M with d(x, y) ≤ R,

W (x,R)
W (y, r)

≥ C−1

(
R

r

)β′

,

for some constants C, β′ > 0. Let the jump kernel of (E ,F) satisfy the following lower bound:
for all distinct x, y ∈ M ,

J(x, y) ≥
c

V (x, y)W (x, y)
,

where V (x, y) = V (x, r) with r = d(x, y) and similarly W (x, y) = W (x, r). Then it was proved
in [26] that (E ,F) satisfies (FK) with the scaling function W (x, r).

Let L be the (positive definite) generator of (E ,F). Denote by {Pt} the associated semigroup
in L2, that is, Pt = e−tL, and by pt(x, y) the integral kernel of the operator Pt should it exists.
The function pt(x, y) is called the heat kernel of (E ,F).

Example 3.4. Let now (M,d, μ) satisfy (VD). Assume that the heat kernel pt(x, y) of (E ,F)
satisfies for all t > 0 and for almost all x, y ∈ M the following inequality:

pt(x, y) ≤
C

√
V (x, t1/β)V (y, t1/β)

, (3.2)

for some β > 0. For example, if M is α-regular then (3.2) becomes

pt(x, y) ≤
C

tα/β
,

and this estimate is known to be satisfied for self-similar local Dirichlet forms on many fractal
spaces. It was proved in [27, Proof of Theorem 2.1] that (3.2) implies (FK) with the scaling
function W (x, r) = rβ .
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4. Examples of (Gcap) and (ABB)

Here we give some examples of spaces and Dirichlet forms satisfying (Gcap) and (ABB).

Example 4.1. Let (M,d) be an ultra-metric space, that is, d satisfies the ultra-metric triangle
inequality

d(x, y) ≤ max(d(x, z), d(y, z)).

For example, for a prime p, a field Qp of p-adic numbers with p-adic distance is an ultra-metric
space. An ultra-metric space has remarkable metric properties. For example, any point x inside
a ball B(x0, ρ) is also its center, that is, B(x, ρ) = B(x0, ρ) (see [11] for details).

Let (E ,F) be a regular Dirichlet form of jump type (in fact, an ultra-metric space cannot
carry a local Dirichlet form). We claim that in this case

(TJ) ⇒ (Gcap).

Indeed, given two concentric B0 = B(x0, R) and B = B(x0, R + r), it suffices to find a function
φ ∈ F such that

0 ≤ φ ≤ 1, φ|B0 = 1, φ|Bc = 0

and

E(u2φ, φ) ≤ sup
x∈B

C

W (x, r)

∫

B
u2dμ (4.1)

for any u ∈ F ′ ∩ L∞. A key observation is that, on ultra-metric space, the indicator functions
of balls belong to F so that we take

φ = 1B .

(see [10] for details). With this φ we have

E(u2φ, φ) =
∫∫

M×M

(
u2ϕ(x) − u2ϕ(y)

)
(ϕ(x) − ϕ(y)) J(x, dy)dμ(x)

= 2
∫

x∈B

∫

y∈Bc

(
u2ϕ(x) − u2ϕ(y)

)
(ϕ(x) − ϕ(y)) J(x, dy)dμ(x)

= 2
∫

x∈B

∫

y∈B(x0,R+r)c

u2(x)J(x, dy)dμ(x)

= 2
∫

B
u2(x)

(∫

B(x,R+r)c

J(x, dy)

)

dμ(x)

≤ C

∫

B

u2(x)
W (x,R + r)

dμ(x)

≤ C

∫

B

u2(x)
W (x, r)

dμ(x),

which implies (4.1).
Since (TJ) is assumed as hypothesis in most of our results, in the case of ultra-metric space,

in these results, the condition (Gcap) can be dropped from the list of hypotheses.

Example 4.2. Let a metric measure space satisfy the following hypothesis: for all balls B(x, r),

μ(B(x, r)) ≤ Crα

for some C,α > 0. Let (E ,F) be of pure jump type and be given by (1.4) with a jump kernel
J(x, y). Assume also that, for some β > 0, the jump kernel satisfies the upper bound

J(x, y) ≤
C

d(x, y)α+β
. (4.2)

Then it is easy to verify that (TJ) is satisfied with the scale function W (x, r) = rβ .
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We claim that if β < 2 then (ABB) and (Gcap) also hold with the same scaling function.
Indeed, let φ be a bump function of the pair of balls B0 = B(x0, R) and B = B(x0, R + r) (see
Fig. 2) so that

|φ(x) − φ(y)| ≤
d(x, y)

r
. (4.3)

Figure 2. A bump function φ ∈ cutoff(B0, B)

Using (4.3) and β < 2, a computation in [24, Corollary 2.12] yields that, for any x ∈ M ,
∫

M
(φ(x) − φ(y))2J(x, y)dμ(y) ≤

C

rβ
, (4.4)

which implies that, for any open set Ω ⊃ B,
∫

Ω
u2dΓΩ(φ) =

∫

Ω

∫

Ω
u2(x)(φ(x) − φ(y))2J(x, y)dμ(x)dμ(y)

≤
C

rβ

∫

Ω
u2(x)dμ(x),

whence (ABB) follows with W (x, r) = rβ and C1 = 0.
Let us verify (Cap≤). We have clearly

E(φ, φ) =
∫

M

∫

M
(φ(x) − φ(y))2J(x, y)dμ(y)

=
∫

B

∫

M
(φ(x) − φ(y))2J(x, y)dμ(y) +

∫

Bc

∫

M
(φ(x) − φ(y))2J(x, y)dμ(y)

and
∫

Bc

∫

M
(φ(x) − φ(y))2J(x, y)dμ(y) =

∫

Bc

∫

B
(φ(x) − φ(y))2J(x, y)dμ(y)

≤
∫

M

∫

B
(φ(x) − φ(y))2J(x, y)dμ(y).

Hence, by the symmetry and (4.4),

E(φ, φ) ≤ 2
∫

B

∫

M
(φ(x) − φ(y))2J(x, y)dμ(y) ≤

C

rβ
μ(B),

which proves (Cap≤) with W (x, r) = rβ . By (2.18) we conclude that (Gcap) also holds with the
same scaling function.

Note that on most fractal spaces there exist regular jump type Dirichlet forms with jump
kernels

J(x, y) '
1

d(x, y)α+β

where β ≥ 2. For this jump kernel there is no obvious cutoff function φ to ensure even (Cap≤).
Besides, in our main results J(x, y) does not have to satisfy the upper bound (4.2), and the
Dirichlet form may have also a local part.

Therefore, for the time being, (Gcap) and/or (ABB) should be accepted as hypotheses, leaving
to the future the development of methods for proving them.
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Example 4.3. Let (M,d, μ) be α-regular and (E ,F) be a jump type conservative Dirichlet form.
Assume that its heat kernel satisfies the following stable-like upper estimate for some β > 0:

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)
t1/β

)−(α+β)

.

Then (Gcap) is satisfied with the scaling function W (x, r) = rβ by a result of [29, Theorem
2.3]. A more general result of this type in the setting of doubling spaces was proved in [14,
Proposition 3.5].

Example 4.4. Let (M,d, μ) satisfy (VD). Assume that (E ,F) is strongly local and conservative.
Assume also that the heat kernel pt(x, y) of (E ,F) exists and satisfies for all t > 0 and for almost
all x, y ∈ M the following sub-Gaussian upper bounds:

pt(x, y) ≤
C

V (x, t1/β)
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

, (4.5)

with some β > 1. Then (Gcap) is satisfied with the scaling function W (x, r) = rβ by results
of [1, Theorem 1.12] and [30, Theorem 1.3]. Note that (4.5) holds on many fractal spaces with
β > 2 (cf. [2]).

5. Energy measure

In this section we collect some elementary properties on energy measures, which will be used
later on. Everywhere here and below, (E ,F) is any regular Dirichlet form in L2 without killing
part, that is, of the form (2.1). Set

Floc := {u : ∀ U bM, there exists v ∈ F so that v = u μ-a.e. on U} .

Since (E ,F) is regular, the constant function 1 belongs to Floc, so that

F ′ ⊂ Floc.

It is known that, for any u ∈ Floc∩L∞, there exists a unique Radon measure Γ(L)(u) := Γ(L)(u, u)
such that, for any test function f ∈ F ∩ C0(M),

∫

M
fdΓ(L)(u) = E (L)(uf, u) −

1
2
E(L)(u2, f).

Moreover, for any u ∈ Floc ∩ L∞, we have

E (L)(u, u) =
∫

M
dΓ(L)(u, u)

(see, for example, [19, Eq. (3.2.20), Lemma 3.2.3, and the first two paragraphs on p.130]).
The energy measures satisfy the following properties, for all u, v, w ∈ Floc ∩ L∞:

• the product rule ([19, Lemma 3.2.5, and the second paragraph on p.130]):

dΓ(L)(uv,w) = udΓ(L)(v, w) + vdΓ(L)(u,w); (5.1)

• the chain rule ([19, Theorem 3.2.2, and the second paragraph on p.130]):

dΓ(L)(Φ(u), v) = Φ′(u)dΓ(L)(v, w) (5.2)

for any Φ ∈ C1(R) (one does not need to assume Φ(0) = 0);
• the strong locality : if u1 ∈ Floc is constant in an open subset Ω of M and u2 ∈ Floc is

arbitrary, then
1ΩdΓ(L)(u1, u2) = 0 on M (5.3)

(cf. [19, Corollary 3.2.1 on p.128], or [42, Eq. (3.8) on p.387]), and

dΓ(L)(u+, v) = 1{u>0}dΓ(L)(u, v) on M, (5.4)

where u+ = u ∨ 0 (cf. [42, formula (3.14) on p.390]);
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• the Cauchy-Schwarz inequality : for any f ∈ L2(M, Γ(L)(u)), g ∈ L2(M, Γ(L)(v))
∫

|fg|dΓ(L)(u, v) ≤

(∫
f2dΓ(L)(u)

)1/2(∫
g2dΓ(L)(v)

)1/2

(5.5)

(cf. [42, on p. 390]).

Moreover, for any u ∈ Floc ∩ L∞, we have

dΓ(L)(|u|) = dΓ(L)(u), (5.6)

since dΓ(L)(u+, u−) = 0 by using (5.4), (5.3), which gives that

dΓ(L)(|u|) = dΓ(L)(u+ + u−, u+ + u−)

= dΓ(L)(u+) + 2dΓ(L)(u+, u−) + dΓ(L)(u−)

= dΓ(L)(u+) + dΓ(L)(u−)

= dΓ(L)(u+ − u−, u+ − u−)

= dΓ(L)(u).

Recall that for an open subset Ω of M and u ∈ F ′, the measure ΓΩ(u) is defined in (2.17), that
is,

dΓΩ(u)(x) := dΓ(L)(u)(x) +
∫

M
1Ω(y)(u(x) − u(y))2dj(x, y).

Here the measure j vanishes on {x = y} as a convention stated at the beginning of Section 2.
Clearly, for any three open sets A,B, Ω with A ⊂ B, for any u ∈ F ′ and for any measurable
function f ≥ 0, the following inequalities hold:

∫

Ω
fdΓA(u) ≤

∫

Ω
fdΓB(u), (5.7)

and ∫

Ω
fdΓB(u ∧ 1) ≤

∫

Ω
fdΓB(u). (5.8)

Proposition 5.1. For any open set Ω ⊂ M and for any two functions u ∈ F ′∩L∞, φ ∈ F ∩L∞

with supp(φ) ⊂ Ω, we have
∫

Ω
u2dΓΩ(φ) ≤ 4

∫

Ω
φ2dΓΩ(u) + 2E(u2φ, φ). (5.9)

A similar result was obtained in [32] but for u ∈ F ∩ L∞ (instead of u ∈ F ′ ∩ L∞ as here).
We sketch the proof for the reader’s convenience.

Proof. Since u ∈ F ′ ∩ L∞ and φ ∈ F ∩ L∞, we have by Proposition 15.1

u2 ∈ F ′ ∩ L∞ and u2φ ∈ F ∩ L∞.

We first show that
∫

Ω
u2dΓ(L)(φ) ≤ 2E (L)(u2φ, φ) + 4

∫

Ω
φ2dΓ(L)(u). (5.10)

Indeed, without loss of generality, we may assume that u, φ stand for their quasi continuous
version (see Definition 15.2 and [19, Thorem 2.1.3, p. 71]). Since Γ(L)(φ) charges no set of zero
capacity (by [19, Lemma 3.2.4, p. 127]), by Proposition 15.3 in Appendix, we have

∫

M
u2dΓ(L)(φ) ≤ ‖u‖2

∞

∫

M
dΓ(L)(φ) = ‖u‖2

∞E(L)(φ) ≤ ‖u‖2
∞E(φ) < ∞,
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which implies that u ∈ L2(M,dΓ(L)(φ)). In a similar way, we have φ ∈ L2(M,dΓ(L)(u)). Thus,
using the chain rule (5.1) and the product rule (5.2) of dΓ(L)(∙) and using the Cauchy-Schwarz
inequality (5.5), we have

∫

M
u2dΓ(L)(φ) =

∫

M
dΓ(L)(u2φ, φ) − 2

∫

M
uφdΓ(L)(u, φ)

≤ E (L)(u2φ, φ) +
1
2

∫

M
u2dΓ(L)(φ) + 2

∫

M
φ2dΓ(L)(u),

which yields that, for any u ∈ F ′ ∩ L∞, φ ∈ F ∩ L∞

∫

M
u2dΓ(L)(φ) ≤ 2E (L)(u2φ, φ) + 4

∫

M
φ2dΓ(L)(u). (5.11)

Since φ is supported in Ω, we see by (5.3) that dΓ(L)(φ) = 0 outside Ω, and the two integrals in
(5.11) are actually taken over Ω, thus proving (5.10).

We next show that∫∫

Ω×Ω
u2(x)(φ(x) − φ(y))2dj ≤ 2E(J)(u2φ, φ) + 4

∫∫

Ω×Ω
φ2(x)(u(x) − u(y))2dj. (5.12)

Indeed, note that
1
2
(u2(x) + u2(y))(φ(x) − φ(y))2 ≤ 2(φ(x) − φ(y))(u2(x)φ(x) − u2(y)φ(y))

+ 2(φ2(x) + φ2(y))(u(x) − u(y))2,

see for example [24, the inequality on lines 3-4 on p. 447] with f = u, and g = φ. Integrating
over Ω × Ω against dj and using the symmetry of j, we have

∫∫

Ω×Ω
u2(x)(φ(x) − φ(y))2dj ≤ 2

∫∫

Ω×Ω
(φ(x) − φ(y))(u2(x)φ(x) − u2(y)φ(y))dj

+ 4
∫∫

Ω×Ω
φ2(x)(u(x) − u(y))2dj. (5.13)

On the other hand, using the fact that supp(φ) ⊂ Ω, we have
∫∫

Ω×Ω
(φ(x) − φ(y))(u2(x)φ(x) − u2(y)φ(y))dj

=

(∫∫

M×M
−
∫∫

Ω×Ωc

−
∫∫

Ωc×Ω
−
∫∫

Ωc×Ωc

)

∙ ∙ ∙

= E (J)(u2φ, φ) −
∫∫

Ω×Ωc

φ2(x)u2(x)dj −
∫∫

Ωc×Ω
φ2(y)u2(y)dj

≤ E (J)(u2φ, φ).

Plugging this into (5.13), we obtain (5.12).
Finally, combining (5.10), (5.12), we conclude by definitions (2.1) and (2.17) that

∫

Ω
u2dΓΩ(φ) =

∫

Ω
u2dΓ(L)(φ) +

∫∫

Ω×Ω
u2(x)(φ(x) − φ(y))2dj

≤ 2E (L)(u2φ, φ) + 4
∫

Ω
φ2dΓ(L)(u)

+ 2E (J)(u2φ, φ) + 4
∫∫

Ω×Ω
φ2(x)(u(x) − u(y))2dj

= 2E(u2φ, φ) + 4
∫

Ω
φ2dΓΩ(u),

thus proving (5.9). The proof is complete. �

Next, we need the following inequality.
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Proposition 5.2. For any open subset Ω ⊂ M and for any two functions u ∈ F ′ ∩ L∞,
φ ∈ F ∩ L∞ with supp(φ) ⊂ Ω, we have

∫

Ω
φ2dΓΩ(u) ≤ 2E(u, uφ2) + 4

∫

Ω
u2dΓΩ(φ) + 4

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj. (5.14)

Proof. By definition (2.1), we have

E(u, uφ2) = E (L)(u, uφ2) + E (J)(u, uφ2). (5.15)

For the local part E (L)(u, uφ2), interchanging u and φ in (5.11) (at this stage the assumption
supp(φ) ⊂ Ω has not yet been used) and then using (5.3) and supp(φ) ⊂ Ω, we obtain

∫

Ω
φ2dΓ(L)(u) =

∫

M
φ2dΓ(L)(u) ≤ 2E(L)(u, uφ2) + 4

∫

Ω
u2dΓ(L)(φ). (5.16)

For the jump part E (J)(u, uφ2), we have by (2.2) and the fact that supp(φ) ⊂ Ω

E(J)(u, uφ2) =
∫∫

M×M
(u(x) − u(y))(u(x)φ2(x) − u(y)φ2(y))dj

=

(∫∫

Ω×Ω
+
∫∫

Ωc×M
+
∫∫

Ω×Ωc

)

F (x, y)dj

=
∫∫

Ω×Ω
F (x, y)dj −

∫∫

Ωc×M
(u(x) − u(y))u(y)φ2(y)dj

+
∫∫

Ω×Ωc

(u(x) − u(y))u(x)φ2(x)dj,

≥
∫∫

Ω×Ω
F (x, y)dj −

∫∫

Ωc×M
u(x)u(y)φ2(y)dj −

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj, (5.17)

where F is defined by

F (x, y) := (u(x) − u(y))(u(x)φ2(x) − u(y)φ2(y)).

Since φ is supported in Ω,
∫∫

Ωc×M
u(x)u(y)φ2(y)dj =

∫∫

Ωc×Ω
u(x)u(y)φ2(y)dj

=
∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj

by using the symmetry of j. It follows from (5.17) that
∫∫

Ω×Ω
F (x, y)dj ≤ E (J)(u, uφ2) + 2

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj. (5.18)

On the other hand, by using a general result in [24, Lemma 2.2] with E = Ω, f = φ, g = u and
noting that φ|Ωc = 0, we obtain
∫∫

Ω×Ω
(u(x) − u(y))2φ2(x)dj ≤ 2

∫∫

Ω×Ω
F (x, y)dj + 4

∫∫

Ω×Ω
u2(x)(φ(x) − φ(y))2dj (5.19)

(see also [24, Eq. (3.22) on p.473]). Combining (5.18) and (5.19), we obtain
∫∫

Ω×Ω
(u(x) − u(y))2φ2(x)dj ≤ 2E(J)(u, uφ2) + 4

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj

+ 4
∫∫

Ω×Ω
u2(x)(φ(x) − φ(y))2dj. (5.20)

Finally, it follows from (5.15), (5.16), (5.20) that
∫

Ω
φ2dΓΩ(u) =

∫

Ω
φ2dΓ(L)(u) +

∫∫

Ω×Ω
(u(x) − u(y))2φ2(x)dj
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≤ 2E (L)(u, uφ2) + 4
∫

Ω
u2dΓ(L)(φ)

+ 2E (J)(u, uφ2) + 4
∫∫

Ω×Ω
u2(x)(φ(x) − φ(y))2dj + 4

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj

= 2E(u, uφ2) + 4
∫

Ω
u2dΓΩ(φ) + 4

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj,

thus proving (5.14). �

Proposition 5.3. For any u ∈ F ′ ∩ L∞ and any φ ∈ F ∩ L∞, we have

E(uφ) = E(u, uφ2) +
∫

M
u2dΓ(L)(φ) +

∫∫

M×M
u(x)u(y)(φ(x) − φ(y))2dj. (5.21)

Proof. Since u ∈ F ′ ∩ L∞ and φ ∈ F ∩ L∞, we see by Proposition 15.1 that u2 ∈ F ′ ∩ L∞, and

uφ, uφ2 ∈ F ∩ L∞.

By the product and chain rules ((5.1) and (5.2)), we have

E(L)(uφ) =
∫

M
dΓ(L)(uφ)

=
∫

M
φ2dΓ(L)(u) + 2

∫

M
uφdΓ(L)(u, φ) +

∫

M
u2dΓ(L)(φ),

while

E (L)(u, uφ2) =
∫

M
dΓ(L)(u, uφ2)

=
∫

M
φ2dΓ(L)(u) + 2

∫

M
uφdΓ(L)(u, φ).

Thus,

E (L)(uφ) = E (L)(u, uφ2) +
∫

M
u2dΓ(L)(φ). (5.22)

On the other hand, for the jump part we claim that

E(J)(uφ) = E (J)(u, uφ2) +
∫∫

M×M
u(x)u(y)(φ(x) − φ(y))2dj. (5.23)

Indeed, by a direct computation, we have for any points x, y ∈ M ,

(u(x)φ(x) − u(y)φ(y))2 = (u(x) − u(y))
(
u(x)φ2(x) − u(y)φ2(y)

)
+ u(x)u(y)(φ(x) − φ(y))2.

Integrating this against measure j over M × M and using definition (2.2), we obtain (5.23).
Therefore, it follows from (5.22), (5.23) that

E(uφ) = E(L)(uφ) + E (J)(uφ)

= E (L)(u, uφ2) +
∫

M
u2dΓ(L)(φ) + E (J)(u, uφ2) +

∫∫

M×M
u(x)u(y)(φ(x) − φ(y))2dj

= E(u, uφ2) +
∫

M
u2dΓ(L)(φ) +

∫∫

M×M
u(x)u(y)(φ(x) − φ(y))2dj,

thus proving (5.21). The proof is complete. �

Proposition 5.4. Let Ω be a measurable subset of M . Then, for any u ∈ F ′ ∩L∞ and for any
φ ∈ F ∩ L∞ with supp(φ) ⊂ Ω, we have

E(uφ) ≤ E(u, uφ2) +
∫

Ω
u2dΓΩ(φ) + 2

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj. (5.24)
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Proof. We will use (5.21) to derive (5.24). To do this, note that φ vanishes outside Ω. Then by
the symmetry of dj,

∫∫

M×M
u(x)u(y)(φ(x) − φ(y))2dj =

(∫∫

Ω×Ω
+
∫∫

Ω×Ωc

+
∫

Ωc×Ω
+
∫

Ωc×Ωc

)

∙ ∙ ∙

=
∫∫

Ω×Ω
u(x)u(y)(φ(x) − φ(y))2dj

+ 2
∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj.

From this and using the fact that
∫

u2dΓ(L)(φ) =
∫

Ω
u2dΓ(L)(φ),

we conclude from (5.21) that

E(uφ) = E(u, uφ2) +
∫

M
u2dΓ(L)(φ) +

∫∫

M×M
u(x)u(y)(φ(x) − φ(y))2dj

= E(u, uφ2) +
∫

Ω
u2dΓ(L)(φ) +

∫∫

Ω×Ω
u(x)u(y)(φ(x) − φ(y))2dj

+ 2
∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj

≤ E(u, uφ2) +
∫

Ω
u2dΓ(L)(φ) +

1
2

∫∫

Ω×Ω
(u(x)2 + u(y)2)(φ(x) − φ(y))2dj

+ 2
∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj

= E(u, uφ2) +
∫

Ω
u2dΓΩ(φ) + 2

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj,

thus proving (5.24). �

6. Relations between (Gcap) and (ABB)

In this section we do not use condition (VD). Let us repeat the definition of (ABB) by paying
more attention to constant coefficients.

Definition 6.1. Given ζ ≥ 0, we say that condition (ABBζ) is satisfied if there exists C > 0 such
that, for any u ∈ F ′ ∩L∞ and for any three concentric balls B0 := B(x0, R), B := B(x0, R + r)
and Ω := B(x0, R

′) with 0 < R < R + r < R′ < R, there exists some φ ∈ cutoff(B0, B) such
that ∫

Ω
u2dΓΩ(φ) ≤ ζ

∫

B
φ2dΓB(u) + sup

x∈Ω

C

W (x, r)

∫

Ω
u2dμ,

where dΓΩ is defined by (2.17).

Note that condition (ABB) holds if and only if condition (ABBζ) holds for some ζ ≥ 0.

Lemma 6.2. We have
(Gcap) + (TJ) ⇒ (ABB4κ2),

where κ is the constant from condition (Gcap).

Proof. Fix a function u ∈ F ′ ∩ L∞. Let B0 := B(x0, R), B := B(x0, R + r) and Ω := B(x0, R
′)

be any three concentric balls with 0 < R < R + r < R′ < R. We will show that there exists
some φ ∈ cutoff(B0, B) such that

∫

Ω
u2dΓΩ(φ) ≤ 4κ2

∫

B
φ2dΓB(u) + inf

x∈Ω

C

W (x, r)

∫

Ω
u2dμ (6.1)
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for a constant C > 0 independent of u,B0, B, Ω, which will exactly mean that (ABBζ) holds
with ζ = 4κ2.

Set B̃ := B(x0, R + r/2). By (Gcap), there exists a function φ̃ in κ- cutoff(B0, B̃) such that

E(u2φ̃, φ̃) ≤ sup
x∈B̃

C

W (x, r/2)

∫

B̃
u2dμ ≤ sup

x∈Ω

C

W (x, r/2)

∫

Ω
u2dμ.

Applying (5.9), we obtain
∫

B
u2dΓB(φ̃) ≤4

∫

B
φ̃

2
dΓB(u) + 2E(u2φ̃, φ̃)

≤4
∫

B
φ̃

2
dΓB(u) + sup

x∈Ω

2C

W (x, r/2)

∫

Ω
u2dμ.

Define the function φ by
φ := 1 ∧ φ̃ ∈ cutoff(B0, B̃).

Note that φ̃ ≤ κφ in M . Using (5.8) and the previous inequality, we obtain
∫

B
u2dΓB(φ) ≤

∫

B
u2dΓB(φ̃) ≤ 4

∫

B
φ̃

2
dΓB(u) + sup

x∈Ω

2C

W (x, r/2)

∫

Ω
u2dμ

≤ 4κ2

∫

B
φ2dΓB(u) + sup

x∈Ω

2C

W (x, r/2)

∫

Ω
u2dμ. (6.2)

On the other hand, as φ is supported in B̃ ⊂ B ⊂ Ω, we have
∫∫

Ω×Ω
u2(x)(φ(x) − φ(y))2dj =

(∫∫

B×B
+
∫∫

B×(Ω\B)
+
∫∫

(Ω\B)×B
+
∫∫

(Ω\B)×(Ω\B)

)

∙ ∙ ∙

=
∫∫

B×B
u2(x)(φ(x) − φ(y))2dj +

∫∫

B̃×(Ω\B)
u2(x)φ2(x)dj

+
∫∫

(Ω\B)×B̃
u2(x)φ2(y)dj. (6.3)

Let us estimate the last two integrals in (6.3). Indeed, observe that dist(B̃, Ω \B) ≥ r/2 so that
Ω \ B ⊂ B(x, r/2)c for any x ∈ B̃. Hence, we have (TJ) and by (2.5) that

esup
x∈B̃

∫

Ω\B
J(x, dy) ≤ esup

x∈B̃

∫

B(x,r/2)c

J(x, dy) ≤ sup
x∈B̃

C ′

W (x, r/2)
≤ sup

x∈Ω

C ′

W (x, r/2)
.

From this and using 0 ≤ φ ≤ 1 and that B̃ ⊂ Ω, we obtain
∫∫

B̃×(Ω\B)
u2(x)φ2(x)dj =

∫∫

B̃×(Ω\B)
u2(x)φ2(x)J(x, dy)dμ(x)

≤
∫

B̃
u2(x)φ2(x)

(

sup
x∈B̃

∫

Ω\B
J(x, dy)

)

dμ(x)

≤ sup
x∈Ω

C ′

W (x, r/2)

∫

Ω
u2(x)dμ(x). (6.4)

Similarly, we have
∫∫

(Ω\B)×B̃
u2(x)φ2(y)dj =

∫∫

(Ω\B)×B̃
u2(x)φ2(y)J(x, dy)dμ(x)

≤
∫∫

Ω\B
u2(x)

(

esup
x∈Ω\B

∫

B(x,r/2)c

J(x, dy)

)

dμ(x)

≤ sup
x∈Ω

C ′

W (x, r/2)

∫

Ω
u2(x)dμ(x). (6.5)
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Therefore, substituting (6.4), (6.5) into (6.3), we obtain
∫∫

Ω×Ω
u2(x)(φ(x) − φ(y))2dj ≤

∫∫

B×B
u2(x)(φ(x) − φ(y))2dj + sup

x∈Ω

2C ′

W (x, r/2)

∫

Ω
u2dμ.

From this and using (5.3) and the fact that supp(φ) ⊂ B̃ ⊂ B, we obtain
∫

Ω
u2dΓΩ(φ) =

∫

Ω
u2dΓ(L)(φ) +

∫∫

Ω×Ω
u2(x)(φ(x) − φ(y))2dj

≤
∫

B
u2dΓ(L)(φ) +

∫∫

B×B
u2(x)(φ(x) − φ(y))2dj + sup

x∈Ω

2C ′

W (x, r/2)

∫

Ω
u2dμ

=
∫

B
u2dΓB(φ) + sup

x∈Ω

2C ′

W (x, r/2)

∫

Ω
u2dμ. (6.6)

Finally, substituting (6.2) into (6.6), we conclude that,
∫

Ω
u2dΓΩ(φ) ≤

∫

B
u2dΓB(φ) + sup

x∈Ω

2C ′

W (x, r/2)

∫

Ω
u2dμ

≤ 4κ2

∫

B
φ2dΓB(u) + sup

x∈Ω

2C

W (x, r/2)

∫

Ω
u2dμ + sup

x∈Ω

2C ′

W (x, r/2)

∫

Ω
u2dμ

≤ 4κ2

∫

B
φ2dΓB(u) + sup

x∈Ω

C ′′

W (x, r/2)

∫

Ω
u2dμ.

On the other hand, by (2.5), we have that

W (x, r)
W (x, r/2)

≤ C, x ∈ M.

Finally, combining the above two inequalities, we obtain (6.1). �

7. Self-improvement of (ABB)

In the next lemma we show how (ABB) self-improves. The self-improvement property of
(ABB) was first observed and proved in [1] for local Dirichlet forms, while for jump type Dirichlet
form it was done in [14] and [24].

Lemma 7.1. Assume that every metric ball of any radius R < R has finite measure. Then

(ABB) + (TJ) ⇒ (ABB1/8).

Proof. Let u ∈ F ′ ∩ L∞ and let B0, B, Ω be any three concentric balls given by

B0 := B(x0, R), B := B(x0, R + r), Ω := B(x0, R
′)

with 0 < R < R + r < R′ < R. We will show that there exists some φ ∈ cutoff(B0, B) such that
∫

Ω
u2dΓΩ(φ) ≤

1
8

∫

B
φ2dΓB(u) + sup

x∈Ω

C

W (x, r)

∫

Ω
u2dμ (7.1)

for a universal constant C > 0 independent of B0, B, Ω, u.
The idea of constructing such a cutoff function φ is as follows (which was motivated by [1, the

proof of Lemma 5.1]): first dividing the ball B into infinitely many concentric balls {Bn}∞n=0,
then choosing φn to be a cutoff function for the triple (Bn, Bn+1, Ω) by using condition (ABB),
and finally letting

φ :=
∞∑

n=1

anφn, (7.2)

which is the desired cutoff function by choosing suitable {an} ⊂ R+. The proof here is motivated
by that in [24, Lemma 2.9, pages 452-460] for the pure jump-type (non-local) Dirichlet form.
The proof is quite technical.
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If u ≡ 0 in Ω, then (7.1) holds for any φ ∈ cutoff(B0, B). Fix u ∈ F ′ ∩L∞ with ‖u‖L2(Ω) > 0.
Set uε := |u| + ε, where

ε :=

(

−
∫

Ω
u2dμ

)1/2

> 0. (7.3)

Clearly, uε ∈ F ′ ∩ L∞.
Let q > 1 be a number to be chosen later. Define the sequences {rn}∞n=0 and {sn}∞n=1 by

rn =
(
1 − q−n

)
r, sn = rn − rn−1 = (q − 1)q−nr.

Set Bn := B(x0, R + rn) and Un := Bn+1 \ Bn. Obviously, rn ↑ r, Bn ↑ B as n → +∞, and
∪∞

n=1Un = B \ B1.
Applying (ABB) to the function uε and to each triple (Bn, Bn+1, Ω), we obtain that there

exist some constants ζ, C > 0 and some φn ∈ cutoff(Bn, Bn+1) such that
∫

Ω
u2

εdΓΩ(φn) ≤ ζ

∫

Bn+1

φ2
ndΓBn+1(uε) + sup

x∈Ω

C

W (x, sn+1)

∫

Ω
u2

εdμ. (7.4)

Note that φn may depend on uε, but if it does not, the proof would be simpler, as we will see
below. Since

u2
ε = (|u| + ε)2 ≤ 2(u2 + ε2),

and since by definition (2.17) and equality (5.6)
∫

Bn+1

φ2
ndΓBn+1(uε) =

∫

Bn+1

φ2
ndΓ(L)(uε) +

∫∫

Bn+1×Bn+1

φ2
n(x) (uε(x) − uε(y))2 dj

=
∫

Bn+1

φ2
ndΓ(L)(|u|) +

∫∫

Bn+1×Bn+1

φ2
n(x) (|u|(x) − |u|(y))2 dj

≤
∫

Bn+1

φ2
ndΓ(L)(u) +

∫∫

Bn+1×Bn+1

φ2
n(x)(u(x) − u(y))2dj

=
∫

Bn+1

φ2
ndΓBn+1(u),

it follows from (7.4), (7.3) and the fact that 0 ≤ φn ≤ 1 in M , that
∫

Ω
u2

εdΓΩ(φn) ≤ ζ

∫

Bn+1

φ2
ndΓBn+1(u) + sup

x∈Ω

C

W (x, sn+1)

∫

Ω
2(u2 + ε2)dμ

≤ ζ

∫

Bn+1

dΓBn+1(u) + sup
x∈Ω

4C

W (x, sn+1)

∫

Ω
u2dμ. (7.5)

Let {an}∞n=1 and {bn}∞n=0 be two sequences of positive numbers given by

bn = q−βn, an = bn−1 − bn =
(
qβ − 1

)
q−βn,

where β is the constant in (2.5). Clearly,
∞∑

n=1

an = b0 = 1.

Let φ be defined by (7.2) with this choice of {an}. We will prove the following two properties:

(i) φ ∈ F (this will imply that φ ∈ cutoff(B0, B));
(ii) if q is close enough to 1, then φ satisfies (7.1) (this will prove condition (ABB1/8)).

To verify (i), consider the partial sums of the series (7.2):

ΦN :=
N∑

n=1

anφn, N > 0.
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Clearly, ΦN ↑ φ pointwise as N → ∞. We will also show that the sequence {ΦN}∞N=1 converges
to φ in E1-norm. For this, it suffices to show that {ΦN} is a Cauchy sequence in F :

‖ΦN+k − ΦN‖2
E1

= E(ΦN+k − ΦN ) + ‖ΦN+k − ΦN‖2
2 → 0

as N, k → ∞.
Indeed, note that every metric ball of radius smaller than R has finite measure, and observe

that

‖φn‖L2 ≤ μ(B)1/2 < ∞. (7.6)

Since ε2 ≤ u2
ε in M and
∫

Bn+1

dΓBn+1(u) =
∫

Bn+1

dΓ(L)(u) +
∫∫

Bn+1×Bn+1

(u(x) − u(y))2dj

≤
∫

M
dΓ(L)(u) +

∫∫

M×M
(u(x) − u(y))2dj = E(u),

we have by (7.5) and (2.5),
∫

Ω
dΓΩ(φn) ≤ ζε−2

∫

Bn+1

dΓBn+1(u) + sup
x∈Ω

4Cε−2

W (x, sn+1)

∫

Ω
u2dμ

≤ ζε−2E(u) + sup
x∈Ω

C ′‖u‖2
L2(Ω)

W (x, r)

(
r

sn+1

)β

≤ Cqβn

for some positive constant C independent of n. From this and using the fact that φn is supported
in B ⊂ Ω, we see that

E(φn, φn) = E (L)(φn, φn) + E (J)(φn, φn)

=
∫

M
dΓ(L)(φn) +

∫∫

M×M
(φn(x) − φn(y))2 dj

=
∫

Ω
dΓΩ(φn) + 2

∫∫

B×Ωc

φ2
n(x)dj ≤ Cqβn + 2

∫∫

B×Ωc

φ2
n(x)dj. (7.7)

Since d(B, Ωc) ≥ R′ − (R + r) := r0 > 0 so that Ωc ⊂ B(x, r0)c for any x in B and since
0 ≤ φn ≤ 1 in M , we have by condition (TJ), (2.5) and (7.6) that

∫∫

B×Ωc

φ2
n(x)dj =

∫

B
φ2

n(x)dμ(x)
∫

Ωc

J(x, dy)

≤
∫

B
φ2

n(x)

(

esup
x∈B

∫

B(x,r0)c

J(x, dy)

)

dμ(x)

≤

(

esup
x∈B

C

W (x, r0)

)∫

B
φ2

n(x)dμ(x) ≤
C ′μ(B)

W (x0, R′)

(
R′

r0

)β

< ∞ (7.8)

uniformly in n. It follows from (7.7), (7.8) that

E(φn, φn) ≤ Cqβn, (7.9)

where the constant C depends on all variables in question except on n. Since an = (qβ −1)q−βn,
we obtain from (7.6), (7.9) that for any k ≥ 1

‖ΦN+k − ΦN‖1/2
E1

= ‖
N+k∑

n=N+1

anφn‖
1/2
E1

≤
N+k∑

n=N+1

an‖φn‖
1/2
E1

=
N+k∑

n=N+1

an

(
‖φn‖

2
L2 + E(φn, φn)

)1/2
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≤
N+k∑

n=N+1

an

(
μ(B) + Cqβn

)1/2

≤ C
(
qβ − 1

) ∞∑

n=N+1

q−βn/2,

thus showing that property (i) is true.
To verify (ii), let us prove the following inequality

∫

Ω
u2dΓΩ(ΦN ) ≤

1
8

∫

B
φ2dΓB(u) + sup

x∈Ω

C

W (x, r)

∫

Ω
u2dμ. (7.10)

In this case, inequality (7.1) will follow from (7.10) by letting N → ∞ and by using the fact
that E1(ΦN − φ) → 0 that was already proved above.

To this end, note that by the bilinearity of dΓΩ

dΓΩ(ΦN ) = dΓΩ

(
N∑

n=1

anφn,
N∑

m=1

amφm

)

=
N∑

n=1

a2
ndΓΩ(φn) + 2

N−1∑

n=1

anan+1dΓΩ(φn, φn+1) + 2
N−2∑

m=1

N∑

n=m+2

anamdΓΩ(φn, φm),

and, hence

SN (u) :=
∫

Ω
u2dΓΩ(ΦN )

=
N∑

n=1

a2
n

∫

Ω
u2dΓΩ(φn) + 2

N−1∑

n=1

anan+1

∫

Ω
u2dΓΩ(φn, φn+1)

+ 2
N−2∑

m=1

N∑

n=m+2

anam

∫

Ω
u2dΓΩ(φn, φm). (7.11)

We will estimate the second term on the right-hand side of (7.11).
Indeed, notice that dΓ(L)(φn, φm) = 0 for any n > m by using (5.3), since φn = 1 in supp(φm).

Thus by definition (2.17)

dΓΩ(φn, φm) = dΓ(L)(φn, φm) +
∫∫

Ω×Ω
(φn(x) − φn(y)) (φm(x) − φm(y))dj

=
∫∫

Ω×Ω
(φn(x) − φn(y)) (φm(x) − φm(y))dj for any n > m. (7.12)

From this, we have by using the elementary inequality 2ab ≤ a2 + b2

2
N−1∑

n=1

anan+1

∫

Ω
u2dΓΩ(φn, φn+1)

= 2
N−1∑

n=1

anan+1

∫∫

Ω×Ω
u2(x)(φn(x) − φn(y))

(
φn+1(x) − φn+1(y)

)
dj

≤
N−1∑

n=1

a2
n

∫∫

Ω×Ω
u2(x)(φn(x) − φn(y))2dj

+
N−1∑

n=1

a2
n+1

∫∫

Ω×Ω
u2(x)(φn+1(x) − φn+1(y))2dj
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≤ 2
N∑

n=1

a2
n

∫∫

Ω×Ω
u2(x)(φn(x) − φn(y))2dj ≤ 2

N∑

n=1

a2
n

∫

Ω
u2dΓΩ(φn). (7.13)

Therefore, plugging (7.13) into (7.11), we obtain that, using (7.12),

SN (u) ≤ 3
N∑

n=1

a2
n

∫

Ω
u2dΓΩ(φn) + 2

N−2∑

m=1

N∑

n=m+2

anam

∫

Ω
u2dΓΩ(φn, φm)

= 3
N∑

n=1

a2
n

∫

Ω
u2dΓΩ(φn)

︸ ︷︷ ︸
I1

+ 2
N−2∑

m=1

N∑

n=m+2

anam

∫∫

Ω×Ω
u2(x)(φm(x) − φm(y)) (φn(x) − φn(y)) dj

︸ ︷︷ ︸
I2

= 3I1 + 2I2. (7.14)

We will estimate each term I1, I2. To estimate the term I1, we will use condition (ABB), whilst
to the term I2 we will use condition (TJ).

To do this, for the term I1, we have by (7.5),

I1 =
N∑

n=1

a2
n

∫

Ω
u2dΓΩ(φn)

≤ ζ
∞∑

n=1

a2
n

∫

Bn+1

dΓBn+1(u) + 4C
∞∑

n=1

sup
x∈Ω

a2
n

W (x, sn+1)

∫

Ω
u2dμ

= ζ
∞∑

n=1

a2
n

∫

B1

dΓBn+1(u)

︸ ︷︷ ︸
I11

+ ζ
∞∑

n=1

a2
n

∫

Bn+1\B1

dΓBn+1(u)

︸ ︷︷ ︸
I12

+ 4C
∞∑

n=1

sup
x∈Ω

a2
n

W (x, sn+1)

∫

Ω
u2dμ

︸ ︷︷ ︸
I13

= ζI11 + ζI12 + 4CI13. (7.15)

We will estimate each term I11, I12, I13.
Indeed, since φ = 1 on B1 and

∞∑

n=1

a2
n =

qβ − 1
qβ + 1

,

we obtain by (5.7) that

I11 =
∞∑

n=1

a2
n

∫

B1

dΓBn+1(u) =
∞∑

n=1

a2
n

∫

B1

φ2dΓBn+1(u)

≤
∞∑

n=1

a2
n

∫

B1

φ2dΓB(u) =
qβ − 1
qβ + 1

∫

B1

φ2dΓB(u). (7.16)

For I12, using the facts that am ≤ (qβ − 1)φ in Um = Bm+1 \ Bm (cf. [24, formula (2.17) on
p.458]) and an = q−(n−m)βam, we have that

I12 =
∞∑

n=1

a2
n

∫

Bn+1\B1

dΓBn+1(u) ≤
∞∑

n=1

a2
n

∫

Bn+1\B1

dΓB(u)
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=
∞∑

n=1

a2
n

n∑

m=1

∫

Um

dΓB(u) =
∞∑

n=1

n∑

m=1

q−2(n−m)β

∫

Um

a2
mdΓB(u)

≤
∞∑

n=1

n∑

m=1

q−2(n−m)β

∫

Um

(qβ − 1)2φ2dΓB(u)

=
∞∑

m=1

∞∑

n=m

q−2(n−m)β

∫

Um

(qβ − 1)2φ2dΓB(u)

≤
q2β(qβ − 1)

qβ + 1

∫

B\B1

φ2dΓB(u). (7.17)

For I13, since by (2.5),
W (x, r)

W (x, sn+1)
≤ C

(
r

sn+1

)β

, x ∈ M,

we have that, using an =
(
qβ − 1

)
q−βn and sn+1 = (q − 1)q−(n+1)r,

I13 =
∞∑

n=1

sup
x∈Ω

a2
n

W (x, sn+1)

∫

Ω
u2dμ

≤ sup
x∈Ω

C

W (x, r)

∞∑

n=1

a2
n

(
r

sn+1

)β ∫

Ω
u2dμ

= sup
x∈Ω

C

W (x, r)

∞∑

n=1

(qβ − 1)2q−2βn

(q − 1)βq−β(n+1)

∫

Ω
u2dμ

= sup
x∈Ω

C

W (x, r)
qβ(qβ − 1)

(q − 1)β

∫

Ω
u2dμ. (7.18)

Therefore, plugging (7.16), (7.17), and (7.18) into (7.15), we conclude

I1 ≤ ζI11 + ζI12 + 4CI13 ≤
ζ(1 + q2β)(qβ − 1)

qβ + 1

∫

B
φ2dΓB(u) + sup

x∈Ω

C(q)
W (x, r)

∫

Ω
u2dμ. (7.19)

For the term I2, we repeat the same argument in [24, formula (2.20), p.459]. The only
difference is to use condition (TJ) here rather than the pointwise upper bound of the jump
kernel therein. In fact, for any m ≥ 1, n ≥ m + 2

(φm(x) − φm(y))(φn(x) − φn(y)) = φm(x)(1 − φn(y)) + φm(y)(1 − φn(x))

since φnφm ≡ φm in M by using φn = 1 in supp(φm). Thus,

I2 =
N−2∑

m=1

N∑

n=m+2

anam

∫∫

Ω×Ω
u2(x)(φm(x) − φm(y))(φn(x) − φn(y))dj

≤
∞∑

m=1

∞∑

n=m+2

aman

∫∫

Ω×Ω
u2(x)φm(x)(1 − φn(y))dj

︸ ︷︷ ︸
I21

+
∞∑

m=1

∞∑

n=m+2

aman

∫∫

Ω×Ω
u2(x)φm(y)(1 − φn(x))dj

︸ ︷︷ ︸
I22

. (7.20)

To estimate I21, noting that d(Bm+1, B
c
n) ≥ sm+2 for any n ≥ m+2, we have by condition (TJ)

and (2.5) that

esup
x∈Bm+1

∫∫

Ω\Bn

J(x, dy) ≤ esup
x∈Bm+1

∫

B(x,sm+2)c

J(x, dy)
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≤ sup
x∈Bm+1

C

W (x, sm+2)
≤ sup

x∈Ω

C

W (x, r)

(
r

sm+2

)β

,

and hence
∫∫

Bm+1×(Ω\Bn)
u2(x)dj ≤ esup

x∈Bm+1

∫∫

Ω\Bn

J(x, dy)
∫

Bm+1

u2(x)dμ(x)

≤ sup
x∈Ω

C

W (x, r)

(
r

sm+2

)β ∫

Ω
u2dμ.

Therefore, using the fact that φm is supported in Bm+1 and 1 − φn supported in Bc
n, we have

I21 =
∞∑

m=1

∞∑

n=m+2

aman

∫∫

Ω×Ω
u2(x)φm(x)(1 − φn(y))dj

≤
∞∑

m=1

∞∑

n=m+2

aman

∫∫

Bm+1×(Ω\Bn)
u2(x)dj

≤ sup
x∈Ω

C

W (x, r)

∞∑

m=1

am

(
r

sm+2

)β ∞∑

n=m+2

an

∫

Ω
u2dμ

= sup
x∈Ω

C(q)
W (x, r)

∫

Ω
u2dμ. (7.21)

For I22, we run the same argument as above and obtain

I22 =
∞∑

m=1

∞∑

n=m+2

aman

∫∫

Ω×Ω
u2(x)φm(y)(1 − φn(x))dj

≤
∞∑

m=1

∞∑

n=m+2

aman

∫∫

(Ω\Bn)×Bm+1

u2(x)dj

≤
∞∑

m=1

∞∑

n=m+2

aman

∫

Ω
sup
x∈Ω

Cu2(x)
W (x, sm+2)

dμ(x) ≤ sup
x∈Ω

C(q)
W (x, r)

∫

Ω
u2dμ. (7.22)

Therefore, plugging (7.21) and (7.22) into (7.20), we obtain that

I2 ≤ I21 + I22 ≤ sup
x∈Ω

C(q)
W (x, r)

∫

Ω
u2dμ. (7.23)

Finally, substituting (7.23) and (7.19) into (7.14), and choosing q > 1 close enough to 1, we
obtain

SN (u) ≤ 3I1 + 2I2

≤
3ζ(1 + q2β)(qβ − 1)

qβ + 1

∫

B
φ2dΓB(u) + sup

x∈Ω

C(q)
W (x, r)

∫

Ω
u2dμ + sup

x∈Ω

C(q)
W (x, r)

∫

Ω
u2dμ

≤
1
8

∫

B
φ2dΓB(u) + sup

x∈Ω

C(q)
W (x, r)

∫

Ω
u2dμ,

thus showing (7.10). �

8. Energy of product

Let us introduce a condition (EP), that is called the energy of product.

Definition 8.1 (Condition (EP)). We say that the condition (EP) is satisfied if there exists
a constant C > 0 such that, for any three concentric balls B0 := B(x0, R), B := B(x0, R + r)
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and Ω := B(x0, R
′) with 0 < R < R + r < R′ < R, and for any u ∈ F ′ ∩ L∞, there exists

φ ∈ cutoff(B0, B) such that

E(uφ) := E(uφ, uφ) ≤
3
2
E(u, uφ2) + sup

x∈Ω

C

W (x, r)

∫

Ω
u2dμ + 3

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj. (8.1)

We remark that the coefficients “ 3
2” and “3” appearing in (8.1) are unimportant. Condition

(EP) will play an important role in deriving the mean value inequality, as we will see in Section
10 below.

Lemma 8.2. We have
(ABB1/8) ⇒ (EP). (8.2)

Consequently, if every metric ball of radius smaller than R has finite measure, then we have the
following implications:

(Gcap) + (TJ) ⇒ (ABB) + (TJ) ⇒ (ABB1/8) ⇒ (EP). (8.3)

Proof. Let B0 := B(x0, R), B := B(x0, R + r) and Ω := B(x0, R
′) be any three concentric balls

with 0 < R < R + r < R′ < R as before. For u ∈ F ′ ∩L∞, we have by condition (ABB1/8) that
there exists some φ ∈ cutoff(B0, B) such that

∫

Ω
u2dΓΩ(φ) ≤

1
8

∫

B
φ2dΓB(u) + sup

x∈Ω

C

W (x, r)

∫

Ω
u2dμ

≤
1
8

∫

Ω
φ2dΓΩ(u) + sup

x∈Ω

C

W (x, r)

∫

Ω
u2dμ.

From this and using (5.14), we obtain
∫

Ω
u2dΓΩ(φ) ≤

1
8

(

2E(u, uφ2) + 4
∫

Ω
u2dΓΩ(φ) + 4

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj

)

+ sup
x∈Ω

C

W (x, r)

∫

Ω
u2dμ

=
1
4
E(u, uφ2) +

1
2

∫

Ω
u2dΓΩ(φ) +

1
2

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj + sup
x∈Ω

C

W (x, r)

∫

Ω
u2dμ.

Rearranging the above inequality, we have
∫

Ω
u2dΓΩ(φ) ≤

1
2
E(u, uφ2) +

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj + sup
x∈Ω

2C

W (x, r)

∫

Ω
u2dμ.

From this and using (5.24), we conclude that

E(uφ) ≤ E(u, uφ2) +
∫

Ω
u2dΓΩ(φ) + 2

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj

≤ E(u, uφ2) +
1
2
E(u, uφ2) +

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj

+ sup
x∈Ω

2C

W (x, r)

∫

Ω
u2dμ + 2

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj

=
3
2
E(u, uφ2) + sup

x∈Ω

2C

W (x, r)

∫

Ω
u2dμ + 3

∫∫

Ω×Ωc

u(x)u(y)φ2(x)dj,

thus proving condition (EP). This proves the implication (8.2).
Finally, the implications in (8.3) follow directly from Lemmas 6.2 and 7.1. The proof is

complete. �

9. Subharmonic functions

In this section we will prove a simple property of subharmonic functions stated in Lemma 9.3
below. We start with the following observation.
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Proposition 9.1. Assume that a function F ∈ C2(R) satisfies

sup
R

|F ′| < ∞, F ′′ ≥ 0, sup
R

F ′′ < ∞.

Then, for all u, ϕ ∈ F ′ ∩ L∞, both functions F (u) and F ′(u)ϕ belong to the space F ′ ∩ L∞.
Moreover, if in addition ϕ ≥ 0 on M , then

E(F (u), ϕ) ≤ E(u, F ′(u)ϕ). (9.1)

Proof. Since F is Lipschitz in R, we see by Proposition 15.1(i) that F (u) ∈ F ′. Since u ∈ L∞,
we have also F (u) ∈ L∞ and, hence,

F (u) ∈ F ′ ∩ L∞.

Similarly, we obtain
F ′(u) ∈ F ′ ∩ L∞.

Since ϕ ∈ F ′ ∩ L∞, it follows from Proposition 15.1(ii) that

F ′(u)ϕ ∈ F ′ ∩ L∞.

Let us verify (9.1) assuming that ϕ ≥ 0. Indeed, by the chain and product rules ((5.2) and
(5.1)), and by the fact that F ′′ ≥ 0, we obtain

E (L)(F (u), ϕ) =
∫

M
dΓ(L)(F (u), ϕ) =

∫

M
F ′(u)dΓ(L)(u, ϕ)

=
∫

M
dΓ(L)(u, F ′(u)ϕ) −

∫

M
F ′′(u)ϕdΓ(L)(u)

≤
∫

M
dΓ(L)(u, F ′(u)ϕ) = E(L)(u, F ′(u)ϕ). (9.2)

On the other hand, the condition F ′′ ≥ 0 implies that, for all X,Y, a, b ∈ R+,

(F (X) − F (Y ))(a − b) ≤ (X − Y )(F ′(X)a − F ′(Y )b)

(see for example [24, Eq. (3.3), p. 464]). Substituting here X = u(x), Y = u(y), a = φ(x),
b = φ(y), we obtain

E (J)(F (u), φ) =
∫∫

M×M
(F (u(x)) − F (u(y)))(φ(x) − φ(y))dj

≤
∫∫

M×M
(u(x) − u(y))(F ′(u(x))φ(x) − F ′(u(y))φ(y))dj

= E (J)(u, F ′(u)φ),

that is,
E (J)(F (u), ϕ) ≤ E (J)(u, F ′(u)ϕ).

Therefore, it follows from (9.2) and the above inequality that

E(F (u), ϕ) = E (L)(F (u), ϕ) + E(J)(F (u), ϕ)

≤ E (L)(u, F ′(u)ϕ) + E (J)(u, F ′(u)ϕ)

= E(u, F ′(u)ϕ),

thus proving (9.1). �

Let us extend Definition 2.9 of subharmonic functions to the space F ′.

Definition 9.2. Let Ω be an open subset of M . We say that a function u ∈ F ′ is subharmonic
(resp. superharmonic) in Ω if, for any 0 ≤ ϕ ∈ F(Ω),

E(u, ϕ) ≤ 0 (resp. E(u, ϕ) ≥ 0).

A function u ∈ F ′ is called harmonic in Ω if it is both subharmonic and superharmonic in Ω.
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Lemma 9.3. If u ∈ F ′ ∩L∞ is subharmonic in a non-empty open set Ω ⊂ M , then u+ belongs
to F ′ ∩ L∞ and is also subharmonic in Ω.

Proof. Clearly, u+ ∈ F ′. Fix a function 0 ≤ φ ∈ F(Ω) and prove that E(u+, φ) ≤ 0. Since each
function in F can be approximated by a sequence of functions in F ∩L∞ in the norm of F (see
for example [19, Thoerem 1.4.2(iii)]), we may assume in addition that φ ∈ L∞. Let {Fk}∞k=1 be
a sequence of C2-functions on R satisfying for all n ≥ 1 the conditions

Fn|(−∞,0] = 0, 0 ≤ F ′
n ≤ 1, F ′′

n ≥ 0, sup
R

F ′′
n < ∞,

and
Fn(t)⇒ t+ uniformly in R as n → ∞. (9.3)

Such a sequence can be constructed as follows: first fix any function 0 ≤ f ∈ C0[0, 1] with
∫ 1

0
f(t)dt = 0,

then set for any n ≥ 1
fn(t) = nf(nt) ∈ C0[0, 1

n ],

and determine Fn from the equation F ′′
n = fn, that is,

F ′
n(t) =

∫ t

0
fndt and Fn(t) =

∫ t

0
F ′

ndt

(see Fig. 3). Then Fn(t) = 0 for all t ≤ 0 and F ′
n(t) → 1 as n → ∞ for any t > 0 whence (9.3)

Figure 3. Functions F ′
n and F ′′

n

follows.
By Proposition 9.1, the functions Fn(u) and F ′

n(u)φ belong to F ′ ∩ L∞ and

E(Fn(u), φ) ≤ E(u, F ′
n(u)φ).

Moreover, by Proposition 15.1(i), (iii) we have also

F ′
n(u)φ ∈ F(Ω) ∩ L∞

Since u is subharmonic in Ω and F ′
n(u)φ ≥ 0, we have,

E(u, F ′
n(u)φ) ≤ 0,

which implies
E(Fn(u), φ) ≤ 0.

Hence, it suffices to verify that

E(u+, φ) = lim
n→∞

E(Fn(u), φ). (9.4)

Since u ∈ F ′, there exists w ∈ F and a ∈ R such that u = w + a. Consider the functions

wn = Fn(u) − Fn (a)

and observe that by (9.3) there is a pointwise convergence

wn → u+ − a+ as n → ∞.
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Denote
L := sup

n
sup
R

F ′
n < ∞.

Since
|wn| = |Fn(u) − Fn(a)| ≤ L|u − a| = L|w| ∈ L2,

we conclude by the dominated convergence theorem that

wn
L2

→ u+ − a+ as n → ∞. (9.5)

On the other hand, since
1
L

wn =
Fn(w + a) − Fn(a)

L
is a normal contraction of w, we obtain that, for any n,

E(wn, wn) ≤ L2E(w,w). (9.6)

By (9.5), (9.6) and Proposition 15.5, we conclude that

lim
n→∞

E(Fn(u), φ) = lim
n→∞

E(wn, φ) = E(u+ − a+, φ) = E(u+, φ),

which is exactly (9.4). �

10. Mean value inequality

In this section, we prove the mean value inequality for subharmonic functions.

Theorem 10.1. Assume that conditions (EP), (VD), (FK), and (TJ) hold. Let u ∈ F ′ ∩ L∞

be non-negative, subharmonic in a ball B := B(x0, R) with 0 < R < σR. Then the mean value
inequality (2.19) holds, that is, for any ε > 0,

esup
1
2
B

u ≤ C(1 + ε−
1
2ν )

(
1

μ(B)

∫

B
u2dμ

)1/2

+ εK‖u+‖L∞(( 1
2
B)c), (10.1)

where the constant C depends only on the constants in the hypotheses (but does not depend on
ε), the constants ν and σ come from (FK), and

K =

{
1 if the measure j 6≡ 0,

0 if the measure j ≡ 0.
(10.2)

Consequently, we have the following implication:

(VD) + (Gcap) + (FK) + (TJ) ⇒ (2.19).

To prove Theorem 10.1, we need the following lemma. Fix a point x0 ∈ M , some numbers
0 < r2 < r1 and consider two balls Bi := B(x0, ri), i = 1, 2, so that B2 ⊂ B1. Fix also some
numbers 0 < b1 < b2, a measurable function u and set

ai :=
∫

Bi

(u − bi)
2
+dμ, i = 1, 2 (10.3)

(see Fig. 4). Clearly, we have a2 ≤ a1. In the next lemma we show that a2 can be controlled by
a1+ν

1 for some ν > 0 when u is a subharmonic function.

Lemma 10.2. Let the jump measure j be given by

dj(x, y) = J(x, dy)dμ(x),

where J(∙, ∙) is a kernel on M × B(M). Assume that conditions (FKν) and (EP) hold.
Let u ∈ F ′ ∩L∞ be subharmonic in B(x0, r1) with r1 < σR, where σ comes from (FKν), and

let a1, a2 be defined by (10.3) for 0 < r2 < r1. Then

a2 ≤
CW (B1)

(b2 − b1)2νμ(B1)ν

(

sup
x∈B1

1
W (x, r1 − r2)

+
A

b2 − b1

)

a1+ν
1 , (10.4)
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where the constant C > 0 depends only on the constants in hypotheses, and A is given by

A := esup
x∈B(x0, 1

2
(r1+r2))

∫

Bc
1

u+(y)J(x, dy).

Proof. In this proof, for any function in F , we always use its quasi-continuous version (cf.
Definition 15.2 or [19, Theorem 2.1.3 on p.71]).

Denote
U := B(x0,

1
2(r1 + r2)) and E := {u > b2} ∩ U.

By the outer regularity of μ, for any ε > 0, there is an open set V such that

E ⊂ V ⊂ B1

and
μ(V ) ≤ μ(E) + ε (10.5)

(see Fig. 4).

Figure 4. Sets E and V

Consider the function
v := (u − b2)+.

It follows from Lemma 9.3 that v ∈ F ′ ∩ L∞ and that v is subharmonic in B1. By Proposition
15.1(ii),

φv ∈ F ∩ L∞ for any φ ∈ F ∩ L∞.

Fix a function φ ∈ cutoff(B2, U). Then

a2 =
∫

B2

(u − b2)
2
+dμ =

∫

B2

φ2v2dμ ≤
∫

M
φ2v2dμ. (10.6)

Note that, for any w ∈ F and any open subset Ω of M , we have w ∈ F(Ω) if and only if w̃ = 0
q.e. in Ωc, where w̃ is a quasi-continuous version of w and q.e. means quasi-everywhere (cf. [19,
Corollary 2.3.1 on p.98]). Since v = 0 on {u ≤ b2} and φ = 0 q.e. on U c, we see that

φv = 0 q.e. on Ec = {u ≤ b2} ∪ U c.

Since φv ∈ F and φv = 0 q.e. in V c ⊂ Ec, we conclude that

φv ∈ F(V ). (10.7)

By the definition (2.13) of λ1(V ) and by (10.6), we have

λ1(V ) ≤
E(φv, φv)
‖φv‖2

L2

≤
E(φv, φv)

a2
,

and, hence,

a2 ≤
E(φv, φv)

λ1(V )
.

On the other hand, by (FKν) and (10.7),

1
λ1(V )

≤ CW (B1)

(
μ(V )
μ(B1)

)ν

.
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Using also (10.5), we obtain

a2 ≤ CW (B1)

(
μ(V )
μ(B1)

)ν

E(φv, φv)

≤ CW (B1)

(
μ(E) + ε

μ(B1)

)ν

E(φv, φv). (10.8)

Now let us estimate E(φv, φv) from above. By Proposition 15.1(iii) and using (10.7), we see
that

0 ≤ vφ2 = vφ ∙ φ ∈ F(V ) ⊂ F(B1).

Since v is subharmonic in B1, we have

E(v, vφ2) ≤ 0. (10.9)

Applying (EP) to the triple B2, U , B1 and to the function v, we conclude that there exists
φ ∈ cutoff(B2, U) such that

E(φv, φv) ≤
3
2
E(v, vφ2) + sup

x∈B1

C

W (x, r)

∫

B1

v2dμ + 3
∫∫

B1×Bc
1

v(x)v(y)φ2(x)J(x, dy),

where r := (r2 − r1)/2. Using (10.9) and the fact that φ = 0 outside U , we obtain that

E(vφ, vφ) ≤ sup
x∈B1

C

W (x, r)

∫

B1

v2dμ + 3
∫

U
v(x)dμ(x) ∙ esup

x∈U

∫

Bc
1

v(y)J(x, dy). (10.10)

Note that if u ≥ b2 then

(u − b1)
2 ≥ (u − b1)(b2 − b1) ≥ (u − b2)(b2 − b1),

which implies that, for all values of u,

v = (u − b2)+ ≤
(u − b1)2+
b2 − b1

.

Hence, we obtain from (10.10)

E(vφ, vφ) ≤ sup
x∈B1

C

W (x, r)

∫

B1

(u − b1)
2
+dμ + 3

∫

B1

(u − b1)2+
b2 − b1

dμ ∙ esup
x∈U

∫

Bc
1

u+(y)J(x, dy)

=

(

sup
x∈B1

C

W (x, r)
+

3A

b2 − b1

)

a1. (10.11)

Next, let us estimate μ(E) from above as follows:

μ(E) =
∫

U∩{u>b2}
dμ

≤
∫

U∩{u>b2}

(u − b1)2+
(b2 − b1)2

dμ

≤
1

(b2 − b1)2

∫

B1

(u − b1)
2
+dμ

=
a1

(b2 − b1)2
.

Substituting the last inequality and (10.11) into (10.8) and letting ε → 0, we obtain

a2 ≤ CW (B1)

(
μ(E)
μ(B1)

)ν

E(φv, φv)

≤ CW (B1)

(
a1

(b2 − b1)2μ(B1)

)ν (

sup
x∈B1

C

W (x, r)
+

3A

b2 − b1

)

a1,

which together with (2.5) implies (10.4). �
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Proof of Theorem 10.1. Let a ball B(x0, R) and a subharmonic function u be as in the statement.
Fix also some ρ > 0 to be determined later. Let {Rk}∞k=0, {ρk}

∞
k=0 be two sequences of positive

numbers defined for any k ≥ 0 by

Rk = (2−1 + 2−k−1)R and ρk = (1 − 2−k)ρ.

Then {Rk} is decreasing with R0 = R, Rk ↓ 1
2R, and

Rk−1 − Rk = 2−k−1R < Rk, (10.12)

while {ρk} is increasing with ρ0 = 0, ρk ↑ ρ, and

ρk − ρk−1 = 2−kρ. (10.13)

Set also for all k ≥ 0

Bk = B(x0, Rk) and ak =
∫

Bk

(u − ρk)
2
+dμ,

so that
B(x0, R) = B0 ⊃ Bk−1 ⊃ Bk ⊃ B∞ := B(x0,

1
2R)

(see Fig. 5).

Figure 5. Sequence of balls {Bk}

Applying the inequality (10.4) of Lemma 10.2 for the pair of balls Bk ⊂ Bk−1 and for

b1 = ρk−1, b2 = ρk,

we obtain, for all k ≥ 1,

ak ≤
CW (Bk−1)

(ρk − ρk−1)2νμ(Bk−1)ν

(

sup
x∈Bk−1

1
W (x,Rk−1 − Rk)

+
Ak

ρk − ρk−1

)

a1+ν
k−1, (10.14)

where

Ak = esup
x∈B(x0, 1

2
(Rk+Rk−1))

∫

Bc
k−1

u+(y)J(x, dy).

Let us estimate every term on the right hand side of (10.14). Note that Bc
k−1 ⊂ Bc

∞, and, for
all x ∈ B(x0,

1
2(Rk + Rk−1)), we have

B(x, 2−k−2R) = B(x, 1
2(Rk−1 − Rk)) ⊂ B(x0, Rk−1) = Bk−1.

Using this, (TJ) and (2.5), we obtain

Ak ≤ ‖u+‖L∞(Bc
∞) sup

x∈B(x0, 1
2
(Rk+Rk−1)

∫

B(x,2−k−2R)c

J(x, dy)

= ‖u+‖L∞(Bc
∞) sup

x∈B(x0, 1
2
(Rk+Rk−1)

CK

W (x, 2−k−2R)

≤
CK2βk

W (B0)
‖u+‖L∞(Bc

∞),
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where the constant K is defined in (10.2).
By (VD) we have

μ(Bk−1) ≥ μ(B∞) ≥ cμ(B0).

Hence, substituting into (10.14) the above two inequalities as well as using (10.13) and (2.5), we
obtain

ak ≤
CW (B0)

(2−kρ)2νμ(B0)ν

((
R

Rk−1 − Rk

)β 1
W (B0)

+
K2βk

W (B0)

‖u+‖L∞(Bc
∞)

2−kρ

)

a1+ν
k−1

=
C22kνW (B0)
ρ2νμ(B0)ν

(
2(k+1)β

W (B0)
+

K2(β+1)k

W (B0)

‖u+‖L∞(Bc
∞)

ρ

)

a1+ν
k−1

≤
C

ρ2νμ(B0)ν

(

1 +
K‖u+‖L∞(Bc

∞)

ρ

)

2(2ν+β+1)ka1+ν
k−1.

Setting

D :=
C

ρ2νμ(B0)ν

(

1 +
K‖u+ L∞(Bc

∞)
ρ

)

and λ := 2(2ν+β+1),

we obtain, for all k ≥ 1,
ak ≤ Dλka1+ν

k−1.

Then Proposition 15.4 from Appendix yields, for all k ≥ 1,

ak ≤ D− 1
ν

(
D

1
ν λ

1+ν

ν2 a0

)(1+ν)k

.

Hence, if

D
1
ν λ

1+ν

ν2 a0 ≤ 1
2 , (10.15)

then ak → 0 as k → ∞ and, hence,
∫

B∞

(u − ρ)2+dμ = lim
k→∞

ak = 0. (10.16)

The inequality (10.15) is equivalent to

D ≤ (1
2λ− 1+ν

ν2 a−1
0 )ν =: ca−ν

0

where c = (1
2λ− 1+ν

ν2 )ν , that is, to

C

ρ2νμ(B0)ν

(

1 +
K‖u+‖L∞(Bc

∞)

ρ

)

≤ ca−ν
0 . (10.17)

Given ε > 0, (10.17) can be achieved if ρ satisfies the following conditions:

ρ ≥ εK‖u+‖L∞(Bc
∞) and

C(1 + ε−1)
ρ2νμ(B0)ν

≤ ca−ν
0 .

Clearly, the both inequalities here are satisfied for

ρ :=

(
C
(
1 + ε−1

)

c

) 1
2ν ( a0

μ(B0)

) 1
2

+ εK‖u+‖L∞(Bc
∞).

Choosing ρ as here we obtain by (10.16) that

esup
B∞

u ≤ ρ,

which is equivalent to (10.1). �

The next statement provides a multiplicative form of the mean value inequality (2.19).
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Corollary 10.3. Under the hypotheses of Theorem 10.1, we have also

esup
1
2
B

u ≤ CSθ max{S, T}1−θ, (10.18)

where θ := 2ν
1+2ν and

S :=

(
1

μ(B)

∫

B
u2dμ

)1/2

and T := K‖u+‖L∞(( 1
2
B)c).

In particular, we have

(VD) + (FKν) + (Gcap) + (TJ) ⇒ (10.18).

Proof. Applying (2.19), we have

esup
1
2
B

u ≤ C(1 + ε−
1
2ν )S + εT.

Let us choose ε to satisfy the equation

Cε−
1
2ν S = εT,

that is,

ε =

(
CS

T

) 2ν
1+2ν

=

(
CS

T

)θ

.

Then we obtain

esup
1
2
B

u ≤ CS + 2εT = CS + 2

(
CS

T

)θ

T ≤ C ′Sθ max{S1−θ, T 1−θ},

thus proving (10.18). �

11. Lemma of Growth

Definition 11.1. We say that condition (LG) (Lemma of Growth) holds if there exist some
numbers ε0, σ, η ∈ (0, 1) such that, for any ball B := B(x0, R) with 0 < R < σR and for any
function u ∈ F ′ ∩ L∞ that is superharmonic in B and is non-negative in M , the following is
true: if, for some a > 0,

μ(B ∩ {u < a})
μ(B)

≤ ε0, (11.1)

then
einf
1
2
B

u ≥ ηa. (11.2)

(see Fig. 6).

Figure 6. Illustration to Definition 11.1

We mention that all constants ε0, σ, η in (LG) must be independent of a,B, u. The following
statement is the main result of this section.
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Lemma 11.2 (Lemma of growth). If the mean value inequality (10.18) holds, then also (LG)
is also satisfied. Consequently, we have

(VD) + (Gcap) + (FK) + (TJ) ⇒ (LG).

Proof. The idea is to use the fact that the function 1
u+ε is subharmonic for ε > 0 and to apply

the mean value inequality (10.18) to this function.
Let us fix a constant ε > 0 to be specified later on and choose a function F ∈ C2(R) such

that

F (t) =
1

t + ε
for all t ≥ −

ε

2
and

sup
R

|F ′| < ∞, inf
R

F ′′ ≥ 0, sup
R

F ′′ < ∞.

(see Fig. 7).

Figure 7. Function F (t)

Let us prove that F (u) is subharmonic in B. By Proposition 9.1, F (u) ∈ F ′ ∩ L∞. We need
to verify that, for any 0 ≤ φ ∈ F(B) ∩ L∞,

E(F (u), φ) ≤ 0. (11.3)

By Proposition 9.1 we have also that F ′(u)φ ∈ F ′ ∩ L∞ and

E(F (u), φ) ≤ E(u, F ′(u)φ). (11.4)

By Proposition 15.1(i), (iii) we have F ′(u) ∈ F ′ ∩ L∞ and

F ′(u)φ ∈ F(B).

Since u is superharmonic in B and F ′(u) ≤ 0 (because u ≥ 0), we obtain

E(u, F ′(u)φ) ≤ 0,

which together with (11.4) yields (11.3).
Applying the mean value inequality (10.18) to subharmonic function F (u), we obtain

esup
1
2
B

F (u) = esup
1
2
B

(u + ε)−1 ≤ CSθ
ε max (Sε, Tε)

1−θ ,

where

Sε =

(

−
∫

B
F (u)2dμ

)1/2

=

(

−
∫

B
(u + ε)−2dμ

)1/2

,

Tε = ‖F (u)‖L∞(( 1
2
B)c) = ‖(u + ε)−1‖L∞(( 1

2
B)c).

Hence, it follows that

einf
1
2
B

u ≥
C−1

Sθ
ε max (Sε, Tε)

1−θ
− ε. (11.5)

Since Sε ≤ ε−1 and Tε ≤ ε−1, we have

max (Sε, Tε)
1−θ ≤ ε−(1−θ). (11.6)
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On the other hand, by the hypothesis (11.1), we have

S2
ε = −

∫

B
(u + ε)−2dμ

=
1

μ(B)

(∫

B∩u<a}
+
∫

B∩{u≥a}

)

(u + ε)−2dμ

≤
1
ε2

μ(B ∩ {u < a})
μ(B)

+ (a + ε)−2

≤
ε0

ε2
+ (a + ε)−2.

Now let us choose ε so that
ε0

ε2
= (a + ε)−2,

that is,

ε :=
a

ε
−1/2
0 − 1

> 0. (11.7)

With this choice of ε, we have

S2
ε ≤

2ε0

ε2
. (11.8)

Therefore, plugging (11.8), (11.6) into (11.5) and using (11.7), we obtain

einf
1
2
B

u ≥
C−1

(
2ε0
ε2

)θ/2
ε−(1−θ)

− ε

=

(
C−1

(2ε0)θ/2
− 1

)

ε

=

(
C−1

(2ε0)θ/2
− 1

)
a

ε
−1/2
0 − 1

= ηa,

where η is defined by

η =

(
C−1

(2ε0)θ/2
− 1

)
1

ε
−1/2
0 − 1

> 0,

assuming that ε0 > 0 is sufficiently small. �

12. Mean exit time

In this section we will obtain upper and lower estimates of mean exit time from a metric ball.
Our approach is as follows: the upper estimate of the mean exit time follows directly from the
Faber-Krahn inequality, while the lower bound follows from the Lemma of Growth, which is the
most difficult part of this argument.

For any open set Ω ⊂ M , let {PΩ
t } be the heat semigroup of the Dirichlet form (E ,F(Ω)).

For any f ∈ L2(Ω), the function t 7→ PΩ
t f is continuous as a mapping from [0,∞) to L2(Ω),

which allows to integrate PΩ
t f in t as an L2-valued function. Define the Green operator GΩ by

GΩf :=
∫ ∞

0
PΩ

t f dt

for any 0 ≤ f ∈ L2(Ω). The function GΩf takes values in [0,∞]. The monotonicity of GΩf in
f allows us to extend this operator to any non-negative f ∈ L2

loc(Ω), in particular, to f ≡ 1.
For any non-empty subset Ω of M , denote

EΩ := GΩ1 =
∫ ∞

0
PΩ

t 1Ωdt. (12.1)
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The function EΩ is called the mean exit time from the set Ω. The value EΩ(x) has the following
probabilistic meaning: it is the expectation of the exit time from Ω of the Hunt process Xt,
associated with (E ,F), that starts at x (see Fig. 8).

Figure 8. The probabilistic meaning: EΩ(x) = ExτΩ where τΩ = inf{t ≥ 0 :
Xt /∈ Ω}

Next, we introduce conditions (E≤), (E≥) and (E).

Definition 12.1. We say that condition (E≤) holds, if there exist constants δ, C > 0 such that,
for all balls B ⊂ M of radius < δR,

esup
B

EB ≤ CW (B). (12.2)

We say that condition (E≥) holds, if there exists a constant C > 0 such that, for all balls B ⊂ M
of radius < R,

einf
1
4
B

EB ≥ C−1W (B). (12.3)

We say that condition (E) holds if both conditions (E≤) and (E≥) are satisfied.

The following gives upper bound of EB on any ball B by using the Faber-Krahn inequality
only.

Lemma 12.2. We have
(FK) ⇒ (E≤).

Proof. Let B := B(x0, R) with R < σR where σ ∈ (0, 1) is the constant form condition (FK).
We are to prove that

esup
B

EB ≤ CW (B) (12.4)

for constant some C > 0. This inequality was proved in [30, Theorem 9.4, p.1542] assuming
that R = ∞ and W (x0, R) = W (R). However, the same argument not only works for a general
W (x0, R) when R = ∞, but also allows to obtain (12.4) for balls of radius R < σR when R < ∞.
Hence, (E≤) holds true with δ := σ. �

In order to obtain a lower bound of the mean exit time, we use the following statement.

Proposition 12.3. Let a function u ∈ F ′ ∩ L∞ be non-negative in an open set B ⊂ M and
φ ∈ F ∩ L∞ be such that φ = 0 in Bc. Fix any λ > 0 and set uλ := u + λ. Then φ2

uλ
∈ F ∩ L∞

and

E(u,
φ2

uλ
) ≤ 3E(φ, φ). (12.5)

Proof. Let us first show that φ2

uλ
∈ F ∩ L∞. Indeed, as u is non-negative in B and φ = 0 in Bc,

the function φ2

uλ
is well defined and φ2

uλ
= F (u)φ2 on M , where F is a function on R given by

F (t) :=
1

|t| + λ
.

Since this function is Lipschitz (with Lipschitz constant λ−2) and u ∈ F ′ ∩ L∞, we obtain by
Proposition 15.1(i)

F (u) ∈ F ′.
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Since φ ∈ F ∩ L∞, we have
φ2 ∈ F ∩ L∞,

(see [19, Theorem 1.4.2(ii), p.28]). Since also F (u) ∈ L∞, it follows from Proposition 15.1(ii)
that

F (u)φ2 ∈ F ∩ L∞.

Let us now prove (12.5). Indeed, it follows from [24, Lemma 3.7, p. 469] that

E(J)(u,
φ2

uλ
) ≤ 3E (J)(φ, φ), (12.6)

On the other hand, by using the product and chain rules ((5.1) and (5.2)) as well as the Cauchy-
Schwarz inequality, we obtain

E (L)(u,
φ2

uλ
) =

∫

M
dΓ(L)(u,

φ2

uλ
)

=
∫

2φ

uλ
dΓ(L)(u, φ) −

∫
φ2

u2
λ

dΓ(L)(u, uλ)

≤
1
2

∫
φ2

u2
λ

dΓ(L)(u, u) + 2
∫

dΓ(L)(φ) −
∫

φ2

u2
λ

dΓ(L)(u, u)

= −
1
2

∫
φ2

u2
λ

dΓ(L)(u) + 2E(L)(φ, φ)

≤ 2E (L)(φ, φ).

From this and (12.6), we conclude that

E(u,
φ2

uλ
) = E (L)(u,

φ2

uλ
) + E (J)(u,

φ2

uλ
)

≤ 2E (L)(φ, φ) + 3E(J)(φ, φ) ≤ 3E(φ, φ),

thus proving (12.5). �

Let us recall the capacity condition (Cap≤) from Definition 2.3: it is satisfied if there exists
a constant C > 0 such that for all balls B of radius R < R

cap(1
2B,B) ≤ C

μ(B)
W (B)

, (12.7)

where the capacity cap(A,U) is defined by (2.7). By (2.12), the condition (Cap≤) follows from
(Gcap).

Lemma 12.4. We have
(VD) + (LG) + (Cap≤) ⇒ (E≥).

Proof. Let B := B(x0, R) with 0 < R < R. Denote

u := EB .

Note that u is harmonic in B and is non-negative in M . We need to show that there exists a
constant C > 0 such that

einf
1
4
B

u ≥ C−1W (B). (12.8)

Let us first assume that 0 < R < σR, where constant σ comes from condition (LG). For any
a > 0 we have

μ(
1
2
B ∩ {u < a}) ≤ a

∫

1
2
B

1
u

dμ = aμ(
1
2
B)−
∫

1
2
B

1
u

dμ
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where we use the fact that u ≥ 0 in M . Choose a number a such that

a−
∫

1
2
B

1
u

dμ = ε0,

where ε0 > 0 is the constant from Lemma of Growth (LG). It follows that

μ(1
2B ∩ {u < a})

μ(1
2B)

≤ a−
∫

1
2
B

1
u

dμ = ε0

so that (11.1) is satisfied, with B being replaced by 1
2B. Applying Lemma 11.2, we obtain

einf
1
4
B

u ≥ ηa = ηε0

(

−
∫

1
2
B

1
u

dμ

)−1

. (12.9)

By (Cap≤) there is a cutoff function φ of the pair ( 1
2B,B) such that

E(φ, φ) ≤ 2cap(
1
2
B,B) ≤ 2C

μ(B)
W (B)

. (12.10)

For any λ > 0 set
uλ := u + λ.

We have by (12.5) and (12.10) that

E(u,
φ2

uλ
) ≤ 3E(φ, φ) ≤ 6C

μ(B)
W (B)

. (12.11)

On the other hand, since φ2

uλ
∈ F(B) ∩ L∞ and φ = 1 in 1

2B, we see that

E(u,
φ2

uλ
) = (1,

φ2

uλ
) =

∫

B

φ2

uλ
dμ ≥

∫

1
2
B

1
uλ

dμ.

From this and using (12.11), it follows that
∫

1
2
B

1
uλ

dμ ≤ 6C
μ(B)
W (B)

,

which yields as λ → 0 that ∫

1
2
B

1
u

dμ ≤ 6C
μ(B)
W (B)

.

Therefore, combining (12.9) with the above inequality, we obtain

einf
1
4
B

u ≥ ηε0

(

−
∫

1
2
B

1
u

dμ

)−1

≥ ηε0
W (B)

6C
=: c0W (B). (12.12)

Now we extend the inequality (12.12) that was proved for balls B of radius < σR to all balls
B of radius R < R. Indeed, assume that R < ∞ and R ∈ [σR,R). Then there exists an at
most countable sequence of balls {Bi} that covers B and such that each ball Bi = B(xi, r) has
a center xi ∈ 1

4B and the radius r = 1
8σR. Applying (12.12) to balls 4Bi of radius 4r < σR and

then using (2.5), we obtain

einf
Bi

E4Bi ≥ c0W (4Bi) ≥ c0C
′
(

4r

R

)β

W (B) ≥ C−1W (B).

Observing that

d(x0, xi) + 4r <
1
4
R +

1
2
σR < R,

we obtain that 4Bi ⊂ B whence it follows that

einf
Bi

EB ≥ einf
Bi

E4Bi ≥ C−1W (B).
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Since 1
4B is covered by {Bi}, we obtain (12.8). �

Combining Lemmas 12.2 and 12.4, we obtain the following.

Corollary 12.5. We have

(VD) + (FK) + (LG) + (Cap≤) ⇒ (E).

13. Survival estimate and (GU)

We introduce condition (S), called the survival estimate.

Definition 13.1. We say that condition (S) holds if there exist two small constants ε, δ ∈ (0, 1)
such that, for all balls B of radius < R,

einf
1
4
B

PB
t 1B ≥ ε for all 0 < t ≤ δW (B) (13.1)

The value PB
t 1B(x) has the following probabilistic meaning: it is equal to the probability

that the process Xt started at x stays inside B until time t; equivalently, assuming the killing
conditions in Bc, this means the probability of survival up to time t.

Let us define also the following modification of (S).

Definition 13.2. We say that condition (S+) holds if there exist two small constants ε, c in
(0, 1) such that for all balls B of radius < R and for all t > 0,

einf
1
4
B

PB
t 1B ≥ ε −

ct

W (B)
for all t > 0. (13.2)

Let us emphasize that in the condition (S+) there is no restriction on the range of time t
unlike that in (S).

Remark 13.3. By a standard covering arguments (see, for example, the second part in the
proof of Lemma 12.4) and (2.5), one can extend (13.1) to all balls of radius < C0R with any
C0 ≥ 1 by adjusting the value of δ accordingly. The same observation is valid also for (S+).

Proposition 13.4. We have
(E) ⇒ (S+) ⇒ (S).

Proof. Let B be a ball with radius R < δR, where δ ∈ (0, 1] is the constant from condition (E≤).
Note that the following inequality is true in general: for all t > 0 and μ-almost all x ∈ B,

PB
t 1B(x) ≥

(EB(x) − t)+
‖EB‖∞

where the function EB is defined by (12.1) (see for example [10, formula (10.3)]). From this and
(E) we have

einf
1
4
B

PB
t 1B(x) ≥ einf

1
4
B

(EB(x) − t)+
CW (B)

≥
C−1W (B) − t

CW (B)
= C−2 −

C−1t

CW (B)
,

thus showing that (13.2) holds with ε = C−2 ∈ (0, 1) and c = C−1 ∈ (0, 1). Moreover, using a
standard covering arguments (see, for example, the second part in the proof of Lemma 12.4) and
(2.5), one can extend (13.2) to all balls of radius < R. Hence, we have proved the implication
(E) ⇒ (S+).

Finally, the implication (S+) ⇒ (S) is trivial. �

The following result is an analogue of [24, Lemma 2.8, p. 451], which in turn was motivated
by the argument in [1, Lemma 5.4]. However, the present proof has required some modifications
due to the dependence of W (x, r) on space variable x.

Lemma 13.5. If every metric ball of radius smaller than R has finite measure then

(S) ⇒ (GU).
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Proof. We will prove that there exists a number κ ≥ 1 such that, for any pair of balls B0 :=
B(x0, R), B := B(x0, R + r) with x0 ∈ M and 0 < R < R + r < R, there exists a function
φ ∈ κ-cutoff(B0, B) such that, for all u ∈ F ′ ∩ L∞,

E(u2φ, φ) ≤
κ2

infx∈B0 W (x, r)

∫

B
u2φdμ, (13.3)

which will settle (GU) since B0 ⊂ B. Fix λ > 0 to be determined later, and consider the function

GB
λ 1B :=

∫ ∞

0
e−λtPB

t 1Bdt.

Note that GB
λ 1B ∈ F(B) by [19, Theorem 4.4.1]. For any 0 ≤ f ∈ L2(B), we have

(GB
λ 1B , f) =

∫ ∞

0
e−λt

(
PB

t 1B , f
)
dt

≤
∫ ∞

0
e−λtdt ∙ ‖f‖1

= λ−1‖f‖1,

which implies that
GB

λ 1B ≤ λ−1, μ-a.e. on B.

Let us establish a lower bound of GB
λ 1B in B0. Fix a point x ∈ B0 and consider a ball B̃ :=

B(x, r) ⊂ B. By condition (S), we have, for any 0 ≤ f ∈ L2(1
4B̃),

(GB
λ 1B , f) =

∫ ∞

0
e−λt

(
PB

t 1B , f
)
dt

≥
∫ δW (x,r)

0
e−λt

(
P B̃

t 1
B̃

, f
)

dt

≥
∫ δW (x,r)

0
e−λtdt ∙ ε‖f‖1

= λ−1
(
1 − e−λδW (x,r))

)
ε‖f‖1

≥ λ−1
(
1 − e−λδ infx∈B0

W (x,r)
)

ε‖f‖1,

where the constants ε, δ are those from (S). Moreover, since B0 can be covered by a family of
countable balls like 1

4B̃ and f is arbitrary, we obtain that

GB
λ 1B ≥ λ−1

(
1 − e−λδ infx∈B0

W (x,r)
)

ε μ-a.e. on B0.

Setting λ := (infx∈B0 W (x, r))−1 and κ := (1 − e−δ)−1ε−1, we see that

GB
λ 1B

{
≤ infx∈B0 W (x, r), μ-a.e. on B,

≥ κ−1 infx∈B0 W (x, r), μ-a.e. on B0.

Define the function

φ :=
κGB

λ 1B

infx∈B0 W (x, r)
and observe that it satisfies φ ∈ F(B), 0 ≤ φ ≤ κ, φ|B0 ≥ 1 and φ|Bc = 0. That is, φ ∈ κ-
cutoff(B0, B).

Let us prove that φ satisfied (13.3). By Proposition 15.1(iii), we have u2φ ∈ F(B) for any
u ∈ F ′ ∩ L∞. Using the notation

Eλ(w, v) := E(w, v) + λ(w, v)

for w, v ∈ F and applying the identity

Eλ(w,GB
λ v) = (w, v)
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for w ∈ F(B) and v ∈ L2(B) (see [19, Theorem 4.4.1]), we obtain that

E(u2φ, φ) ≤ Eλ(u2φ, φ)

=
κ

infx∈B0 W (x, r)
Eλ(u2φ,GB

λ 1B)

=
κ

infx∈B0 W (x, r)
(u2φ, 1B)

=
κ

infx∈B0 W (x, r)

∫

B
u2φdμ

≤
κ2

infx∈B0 W (x, r)

∫

B
u2dμ,

which finishes the proof. �

14. A full circle of equivalences

Finally, we can prove Theorem 2.11 that, in fact, is contained in the next Theorem 14.1 that
combines together all the results of this paper.

Theorem 14.1. Let (E ,F) be a regular Dirichlet form without killing part. Assume that (VD),
(FK) and (TJ) are satisfied. Then we have the following equivalences:

(Gcap) ⇔ (ABB) + (Cap≤)

⇔ (ABB1/8) + (Cap≤)

⇔ (EP) + (Cap≤)

⇔ mean value inequality (2.19) + (Cap≤)

⇔ (LG) + (Cap≤)

⇔ (E)

⇔ (S+) ⇔ (S)

⇔ (GU).

Proof. To prove the implications in the direction of “⇒”, we use the following implications:

(Gcap) + (TJ) ⇒ (ABB) (Lemma 6.2)

(Gcap) ⇒ (Cap≤) (cf. (2.12))

(ABB) + (TJ) ⇒ (ABB1/8) (Lemma 7.1)

(ABB1/8) ⇒ (EP) (Lemma 8.2)

(EP) + (VD) + (FK) + (TJ) ⇒ mean value inequality (2.19) (Theorem 10.1)

mean value inequality (2.19) ⇒ (LG) (Corollary 10.3 and Lemma 11.2)

(LG) + (Cap≤) + (VD) + (FK) ⇒ (E) (Corollary 12.5)

(E) ⇒ (S+) ⇒ (S) (Proposition 13.4)

(S) + (VD) ⇒ (GU) (Lemma 13.5).

Finally, the reverse implication
(Gcap) ⇐ (GU)

is trivial. Combining all the above implications, we complete the circle and the proof. �

Corollary 14.2. Let (E ,F) be a regular Dirichlet form without killing part. Assume that (VD),
(Gcap), (FK) and (TJ) are satisfied. Then, the cutoff function in the conditions (ABB), (ABBζ),
(EP) can be universal, that is, the cutoff function can be independent of the function u in the
above conditions.
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Proof. Under the conditions (VD), (FK) and (TJ), we have (Gcap) ⇔ (GU) by Theorem 14.1.
Note that the cutoff function φ in (GU) is universal. Using (GU) instead of (Gcap) in the proofs
of (ABB), (ABBζ), and (EP), we obtain universal φ also in these conditions. �

15. Appendix

In this appendix, we collect some facts that have used in this paper.

Proposition 15.1. Let (E ,F) be a regular Dirichlet form in L2. Then the following statements
are true.

(i) If u ∈ F ′ and F : R 7→ R is a Lipschitz function, then F (u) ∈ F ′.
(ii) If u ∈ F ′ ∩ L∞ and v ∈ F ∩ L∞ then uv ∈ F ∩ L∞

(iii) Let Ω be an open subset of M . If u ∈ F ′ ∩ L∞ and v ∈ F(Ω) ∩ L∞, then uv ∈ F(Ω).

Proof. We repeat the arguments of [24, Proposition A.2 in Appendix] with minor modifications.
Since u ∈ F ′, we have u = w + a ∈ F ′, where w ∈ F and a ∈ R.

(i) Denote by L the Lipschitz constant of F and consider the function

f(t) =
F (t) − F (a)

L
.

Since f(w) is a normal contraction of w, we obtain by [19, formula (E .4)′′, p. 5] that f(w) ∈ F .
It follows that

F (u) = Lf(u) + F (a) ∈ F ′.

(ii) Clearly, we have w ∈ F∩L∞ which implies by [19, Theorem 1.4.2, p. 28] that vw ∈ F∩L∞.
Consequently,

uv = vw + av ∈ F ∩ L∞.

(iii) Let ṽ and w̃ be quasi-continuous modifications of v and w, respectively. Then ṽw̃ is a
quasi-continuous modification of vw. Since v ∈ F(Ω), we obtain

ṽ w̃ = 0 q.e. in Ωc.

It follows that vw ∈ F(Ω) and
uv = vw + av ∈ F(Ω).

�

Recall the notion of a regular E-nest (cf. [19, Section2.1, p. 66-69]). For an open set U ⊂ M ,
define 1-capacity of U by

Cap1(U) := inf
{
E(u) + ‖u‖2

2 : u ∈ F and u ≥ 1 μ-almost everywhere on U
}

(15.1)

(noting that Cap1(U) = ∞ if the set {u ∈ F : u ≥ 1 μ-a.e. on U} is empty). An increasing
sequence of closed subsets {Fk}∞k=1 of M is called an E-nest of M if

lim
k→∞

Cap1(M \ Fk) = 0.

An E-nest {Fk} is said to be regular with respect to μ if for each k,

μ(U(x) ∩ Fk) > 0 for any x ∈ Fk and any open neighborhood U(x) of x.

For an E-nest {Fk}∞k=1, let

C({Fk}) := {u is a function on M : u|Fk
is continuous for each k} .

Definition 15.2. A function u : M 7→ R ∪ {∞} is said to be quasi-continuous if and only if
u ∈ C({Fk}) for some E-nest {Fk}∞k=1.

Proposition 15.3. Let {Fk} be a μ-regular E-nest and u ∈ C({Fk}). Then for any open set
U ⊂ M

sup
U∩F

u = esup
U

u

where F :=
⋃

k≥1

Fk.
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Proof. Note that μ(F c) = 0 since Cap1(F
c) = 0 where the 1-capacity Cap1 is defined in (15.1).

Hence,
M0 := esup

U
u = esup

U∩F
u ≤ sup

U∩F
u.

Let us prove that supU∩F u ≤ M0. Indeed, by definition of M0, there is a measurable set
E ⊂ U ∩ F with μ(E) = 0 such that

M0 = esup
U∩F

u = sup
(U∩F )\E

u

It suffices to show that
u(x) ≤ M0 for any x ∈ E,

since if so, then

sup
U∩F

u =
(

sup
(U∩F )\E

u
)
∨
(

sup
E

u
)
≤ M0.

To do this, suppose that there was a point x ∈ E ⊂ U ∩ F such that u(x) > M0. Then there
would exist an integer k ≥ 1 such that

x ∈ U ∩ Fk.

Since u|Fk
is continuous, one can find an open neighborhood U(x) of x such that

u(y) > M0 for every y ∈ U(x) ∩ Fk.

Without loss of generality, we assume that U(x) ⊂ U . Since {Fk} is μ-regular, we have

μ(U(x) ∩ Fk) > 0,

which implies, together with the fact that U(x) ∩ Fk ⊂ U ∩ F , that

esup
U∩F

u > M0 = esup
U∩F

u,

leading to a contradiction. The proof is complete. �

The following iteration is elementary.

Proposition 15.4. Let {ak}∞k=0 be a sequence of non-negative numbers such that

ak ≤ Dλka1+ν
k−1 for k = 1, 2, ∙ ∙ ∙ (15.2)

for some constants D, ν > 0 and λ ≥ 1. Then for any k ≥ 0,

ak ≤ D− 1
ν

(
D

1
ν λ

1+ν

ν2 a0

)(1+ν)k

. (15.3)

Proof. Setting q := 1 + ν, we obtain by iterating (15.2)

ak ≤ Dλkaq
k−1 ≤ (Dλk)

(
Dλk−1aq

k−2

)q
≤ ∙ ∙ ∙

≤ (D1+q+∙∙∙+qk−1
)(λk+(k−1)q+∙∙∙+qk−1

)aqk

0

= D
qk−1
q−1 λ

qk+1−(k+1)q+k

(q−1)2 aqk

0

≤ D
qk−1
q−1 λ

qk+1

(q−1)2 aqk

0

where we have used the elementary fact that

k + (k − 1)q + ∙ ∙ ∙ + qk−1 =
qk+1 − (k + 1)q + k

(q − 1)2
≤

qk+1

(q − 1)2
.

Therefore,

ak ≤ D
−1
q−1

(
D

1
q−1 λ

q

(q−1)2 a0

)qk

,

thus proving (15.3). The proof is complete. �

The following was proved in [36, Lemma 2.12].
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Proposition 15.5. Let (E ,F) be a Dirichlet form in L2. If

fn
L2

→ f and sup
n

E(fn) < ∞,

then f ∈ F . Besides, there exists a subsequence, still denoted by {fn}, such that fn
E
⇀ f weakly,

that is,
E(fn, ϕ) → E(f, ϕ) as n → ∞

for any ϕ ∈ F . Moreover, there exists a subsequence {fnk
} such that its Cesaro mean 1

n

∑n
k=1 fnk

converges to f in E1-norm. Finally, we have

E(f, f) ≤ lim inf
n→∞

E(fn, fn).
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motion on Sierpiński carpets, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 655–701. MR 2639315

6. Martin T. Barlow, Alexander Grigor’yan, and Takashi Kumagai, Heat kernel upper bounds for jump processes
and the first exit time, J. Reine Angew. Math. 626 (2009), 135–157. MR 2492992

7. , On the equivalence of parabolic Harnack inequalities and heat kernel estimates , J. Math. Soc. Japan
64 (2012), no. 4, 1091–1146. MR 2998918

8. Martin T. Barlow and Mathav Murugan, Stability of elliptic Harnack inequality, Ann. of Math. (2) 187 (2018),
no. 3, 777–823.

9. Martin T. Barlow and Edwin A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related
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MR 1747869



48 A. GRIGOR’YAN, E. HU, AND J. HU

23. Alexander Grigor’yan, Eryan Hu, and Jiaxin Hu, Lower estimates of heat kernels for non-local Dirichlet forms
on metric measure spaces, J. Funct. Anal. 272 (2017), no. 8, 3311–3346. MR 3614171

24. , Two-sided estimates of heat kernels of jump type Dirichlet forms, Adv. Math. 330 (2018), 433–515.
MR 3787551

25. , The pointwise existence and properties of heat kernel, Advances in Analysis and Geometry 3 (2021),
27–70.
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