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Abstract. In this paper we give various equivalent characterizations of upper
estimates of heat kernels of regular, conservative and local Dirichlet forms on
doubling spaces, from both the analytic and probabilistic points of view. The first
part of this paper uses purely analytic arguemtn, while the second part focuses on
the probabilistic aspects where the exit time plays an important role.
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1. Introduction

Let (M,d) be a locally compact separable metric space and µ be a Radon measure
on M with full support. Let (E ,F) be a local regular Dirichlet form in L2 (M,µ),
∆ be its generator and Pt = et∆, t ≥ 0, be the associated heat semigroup. A family
{pt}t>0 of non-negative µ × µ-measurable functions on M ×M is called the heat
kernel of the form (E ,F) if pt is the integral kernel of the operator Pt, that is, for
any t > 0 and for any f ∈ L2(M,µ),

Ptf (x) =

∫

M

pt (x, y) f (y) dµ (y) (1.1)

for µ-almost all x ∈M .
The purpose of this paper is to prove the existence of the heat kernel and to obtain

certain upper estimates for it under appropriate assumptions. For any x ∈ M and
r > 0, set

B (x, r) = {y ∈M : d (x, y) < r} and V (x, r) = µ (B (x, r)) .

We assume throughout that 0 < V (x, r) <∞. Fix a parameter β > 1 and consider
the following condition, which in general may be true or not.

(UEβ) : The upper estimate : the heat kernel exists and satisfies the inequality

pt (x, y) ≤
C

V (x, t1/β)
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

,

for some constants C, c > 0, for all t > 0 and µ-almost all x, y ∈M .

This form of (UEβ) is motivated by the following two classes of examples.
1. Let M be a Riemannian manifold, d be the geodesic distance, µ be the Rie-

mannian volume, and E be the canonical energy form given by

E (f) =

∫

M

|∇f |2 dµ,

and F = W 1,2
0 (M,µ) (that is, F is the closure of C∞0 (M) in W 1,2 (M,µ)). In this

setting, the heat kernel pt (x, y) always exists and is a smooth function in (t, x, y).
There is a vast literature devoted to upper and lower bounds of the heat kernel in
connection with the geometry of M . See, for example, [8], [11], [18], [19], [20], [32],
[34], [35], [36]. IfM = Rn with the standard Euclidean structure then V (x, r) = cnr

n

and

pt (x, y) =
1

(4πt)n/2
exp

(

−
d (x, y)2

4t

)

,

so that (UE2) obviously holds. Furthermore, if M is geodesically complete and the
Ricci curvature of M is non-negative then the heat kernel also satisfies (UE2) (see
[30], [16], [33]).

2. Let M be one of the fractal spaces described, for example, in [1]. Typically,
d is an extrinsic distance from the ambient Euclidean space, and µ is a Hausdorff
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measure. On most of the basic fractal spaces, one has V (x, r) ' rα where α =
dimHM . The energy form (E ,F) is constructed in a certain (highly non-trivial)
way using the self-similarity of the fractal. On large classes of fractals, it was proved
that the heat kernel exists and is a continuous function of (t, x, y). Furthermore, on
such fractals the heat kernel admits the upper estimate (UEβ) with some β > 2 (as
well as a matching lower estimate). See, for example, [1], [2], [3], [5], [25], [27], [29].

In the both cases, the Dirichlet form gives rise to the associated diffusion process
{Xt}t≥0 on M , whose transition density with respect to measure µ is exactly the
heat kernel pt (x, y). With some restrictions, such process exists also in the general
case and can be used to set up reasonable conditions for heat kernel estimates.

The main purpose of this paper is to prove new equivalent conditions for the
estimate (UEβ) (including the existence of the heat kernel) in various terms, both
analytic and probabilistic, which will be explained in details in the next Section.

In the case of a Riemannian manifold, the necessary and sufficient condition for
(UE2) in terms of a certain Faber-Krahn inequality was proved in [17]. In the
case of a general underlying space, Kigami [28] proved the necessary and sufficient
conditions for (UEβ) in terms of a Nash type inequality and a mean exit time estimate
(which involves the associated diffusion {Xt}), although under the additional a priori
assumptions that the heat kernel exists, is a continuous function of (t, x, y), satisfies
the estimate supx pt (x, x) <∞ for all t > 0, and infx V (x, r) > 0 for some r > 0.

Let us briefly list our new results.
1. We prove that, under mild general assumptions, the upper bound (UEβ) is

equivalent to the following estimate:

pt (x, y) ≤
1

V (x, t1/β)
Φ

(
d(x, y)

t1/β

)

, (1.2)

where Φ (s) is a monotone decreasing function, that decays fast enough as s→∞.
The fact that (1.2) implies (UEβ) can be regarded as a self-improvement phenome-
non.

2. We prove that (UEβ) is equivalent to the conjunction of the Faber-Krahn
inequality and some tail estimate of the heat kernel or that of the exit time.

3. We prove that (UEβ) is equivalent to a certain isoperimetric inequality for the
mean exit time and the fact that this inequality is optimal for balls up to a constant
factor.

4. We develop new techniques for comparison heat semigroups and heat kernels
in different domains (cf. Theorem 4.6) that are used for obtaining heat kernel upper
bounds.

The analytic conditions for (UEβ) are proved in Theorem 2.1, the probabilistic
conditions – in Theorem 2.2. Let us emphasize that the proofs are completely
analytic except for the cases where the probabilistic assumptions enter explicitly
the statement.

An important feature of this paper is the level of generality, which distinguishes
it from the previous ones and which is reflected in the following:

1. We make no a priori assumptions about the existence or regularity of the heat
kernel.

2. We make no specific assumption on the distance function d (x, y) (as being
geodesic or satisfying the chain condition).
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3. We do not assume that the metric balls are relatively compact (but do assume
the local compactness of (M,d) and finiteness of the volumes of balls).

We hope that this level of generality will facilitate the applications of the above
mentioned results1. At the same time, this setting poses certain technical challenges
and makes the proofs noticeably longer and more elaborate than one would desire.

The structure of the paper is as follows. In Section 2 we introduce the necessary
background material and state the main Theorems 2.1 and 2.2, providing also further
comments of technical and historical nature.

In Section 3 we state and prove some basic properties of the heat semigroup.
In Section 4 we introduce one of the main tools of this paper - comparison esti-

mates of heat semigroups in different domains (Theorem 4.6). The proofs here are
based on the weak parabolic maximum principle of [21].

In Section 5 we prove Theorem 2.1. The major ingredients of the proof are
Lemmas 5.5, 5.6 (based on Theorem 4.6) and Theorems 5.7, 5.8. In Section 6 we
prove Theorem 2.2.

We should mention that a first version of this paper under the title “Heat kernel
upper bounds on fractal spaces” was circulated in a preprint form by the first-named
author since 2003. The preprint contained part of the present results in a more
restricted setting. All references to that preprint should be replaced by references
to the present paper.

Acknowledgments. The authors thank Martin Barlow, Thierry Coulhon, Jun
Kigami, Takashi Kumagai, Laurent Saloff-Coste, and Andras Telcs for useful dis-
cussions on the subject.

2. Statement of the main results

2.1. Metric measure space. Unless otherwise stated, here and in the rest of this
paper (M,d) is a locally compact separable metric space and µ is a Radon measure
on M with full support. As usual, the norm in the real Banach space Lp := Lp (M,µ)
is defined by

‖f‖p :=

(∫

M

|f(x)|p dµ(x)

)1/p

, 1 ≤ p <∞,

and ‖f‖∞ := esupx∈M |f(x)|, where esup is the essential supremum. The inner
product of functions f, g ∈ L2 is denoted by (f, g).

As above, let B (x, r) denote the metric ball in (M,d) and set V (x, r) = µ (B (x, r)) .
The fact that µ has a full support is equivalent to having V (x, r) > 0 for all x ∈M
and r > 0. We assume in addition that V (x, r) <∞. If a ball B (x, r) is precompact
then the finiteness of V (x, r) follows from the hypothesis that µ is Radon. However,
in general we do not assume that all balls are precompact, but instead we take a
much milder hypothesis of the finiteness of volumes of balls.

Consider the following conditions that in general may be true or not.

(V D) : Volume doubling property. there is a constant CD ≥ 1 such that

V (x, 2r) ≤ CDV (x, r) . (2.1)

1For example, without the requirement of the relative compactness of the balls, one can remove
from the space M a closed set of measure 0 without violating all other hypotheses.
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for all x ∈M and r > 0.

It is known that (V D) implies the following: there exists α > 0 such that

V (x,R)

V (y, r)
≤ CD

(
d(x, y) + R

r

)α
(2.2)

for all x, y ∈M and 0 < r ≤ R (see Proposition 5.1 below).

(RVD) : Reverse volume doubling property : there exist positive constants α′ and c
such that

V (x,R)

V (x, r)
≥ c

(
R

r

)α′

for all x ∈M and 0 < r ≤ R.

It is known that (V D) implies (RVD) provided M is connected and unbounded
(see Corollary 5.3 below).

2.2. The Dirichlet forms. A Dirichlet form (E ,F) in L2 (M,µ) is a bilinear form
E : F × F → R defined on a dense subspace F of L2 (M,µ), which satisfies in
addition the following properties:

(1) Positivity: E (f) := E (f, f) ≥ 0.
(2) Closedness: F is a Hilbert space with respect to the following inner product:

E1(f, g) := E(f, g) + (f, g) .

(3) The Markov property: if f ∈ F then also f̃ := (f ∧ 1)+ belongs to F and

E(f̃) ≤ E (f) .

Here we use the notation a+ := max {a, 0}.
Recall some further definitions and results from the theory of Dirichlet forms

(cf. [15]). Any Dirichlet form has a generator ∆, which is a non-positive definite
self-adjoint operator on L2 (M,µ) with domain D ⊂ F such that

E (f, g) = (−∆f, g)

for all f ∈ D and g ∈ F . The generator determines the heat semigroup {Pt}t≥0

defined by Pt = et∆.
It is known that the heat semigroup satisfies the following properties:

• {Pt}t≥0 is contractive in L2, that is ‖Ptf‖2 ≤ ‖f‖2 for all f ∈ L2 and t > 0.
• {Pt}t≥0 is strongly continuous, that is, for every f ∈ L2,

Ptf
L2

−→ f as t→ 0 + .

• {Pt}t≥0 is symmetric, that is,

(Ptf, g) = (f, Ptg) for all f, g ∈ L2.

• {Pt}t≥0 is Markovian, that is, for any t > 0,

if f ≥ 0 then Ptf ≥ 0, and if f ≤ 1 then Ptf ≤ 1.

Here and below the identities and inequalities between L2-functions
are understood µ-almost everywhere in M .
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The form E (f) can be recovered from the heat semigroup as follows. For any
f ∈ L2 (M,µ), the function

t 7→
1

t
(f − Ptf, f)

is increasing as t is decreasing. In particular, it has a limit as t → 0. It turns out
that the limit is finite if and only if f ∈ F , and

lim
t→0+

1

t
(f − Ptf, f) = E (f) . (2.3)

The Markovian property of the heat semigroup implies that the operator Pt pre-
serves the inequalities between functions, which allows to use monotone limits to
extend Pt from L2 to L∞ and, in fact, to any Lq, 1 ≤ q ≤ ∞. Moreover, the extended
operator Pt is a contraction on any Lq and preserves positivity (cf. [15, p.33]).

The form (E ,F) is called conservative if Pt1 = 1 for every t > 0.
The form (E ,F) is called local if E(f, g) = 0 for any couple f, g ∈ F with disjoint

compact supports. The form (E ,F) is called strongly local if E(f, g) = 0 for any cou-
ple f, g ∈ F with compact supports, such that f ≡ const in an open neighborhood
of supp g.

The Dirichlet form is called regular if F ∩ C0 (M) is dense both in F and in
C0 (M), where C0(M) is the space of all continuous functions with compact support
in M , endowed with sup-norm.

For a non-empty open Ω ⊂M , let F(Ω) be the closure of F ∩C0(Ω) in the norm
of F . It is known that if (E ,F) is regular, then (E ,F(Ω)) is also a regular Dirichlet
form in L2(Ω, µ). Denote by PΩ

t the heat semigroup of (E ,F(Ω)). It is known that
if {Ωi}

∞
i=1 is an increasing sequence of open subsets of M and Ω =

⋃∞
i=1 Ωi then, for

any t > 0 and any 0 ≤ f ∈ L2 (Ω), the sequence PΩi
t f increases and converges to

PΩ
t f as i→∞ almost everywhere (see [15], [21, L.4.17]).

2.3. Analytic conditions (Theorem 2.1). For any set A ⊂ M , write Ac for
M \ A. Fix a ball B = B (x, r) on M . In what follows we frequently consider
expressions like Pt1B and Pt1Bc . By definition, these functions are from L2 (M,µ)
so that they are defined almost everywhere rather than pointwise. In particular,
the values Pt1B (x) and Pt1Bc (x) are not well-defined where x is the center of B.
However, in the presence of the heat kernel, one can give meaning to these functions
for almost all x as follows. Fix t > 0, choose a pointwise version pt (x, y) of the heat
kernel and consider the integral

∫

Bc(x,r)

pt (x, y) dµ (y) . (2.4)

Since the function y 7→ pt (x, y) is measurable for almost all x, this integral is also
defined for almost all x ∈M . We claim that, for any other pointwise version p̃t (x, y)
of the heat kernel, the following identity holds for almost all x ∈M :

∫

Bc(x,r)

pt (x, y) dµ (y) =

∫

Bc(x,r)

p̃t (x, y) dµ (y) . (2.5)
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That is, the expression (2.4) is well-defined for almost all x ∈ M . Indeed, observe
that ∫

Bc(x,r)

pt (x, y) dµ (y) =

∫

M

pt (x, y) 1Bc(x,r) (y) dµ (y) (2.6)

and that the following identity

pt (x, y) 1Bc(x,r) (y) = p̃t (x, y) 1Bc(x,r) (y) (2.7)

holds for almost all (x, y) ∈M×M . Since the both functions in (2.7) are measurable
in (x, y) ∈M ×M , we obtain by Fubini’s theorem that, for almost all x ∈M ,

∫

M

pt (x, y) 1Bc(x,r) (y) dµ (y) =

∫

M

p̃t (x, y) 1Bc(x,r) (y) dµ (y) ,

whence (2.5) follows.
Fix a constant β > 1 and consider the following conditions.

(Texp) : (The exponential tail estimate) The heat kernel pt exists and satisfies the
estimate

∫

B(x,r)c
pt(x, y) dµ(y) ≤ C exp

(

−c
( r

t1/β

) β
β−1

)

, (2.8)

for some constants C, c > 0, all t > 0, r > 0 and µ-almost all x ∈ M . It is
easy to show that (2.8) is equivalent to the following inequality: for any ball
B = B (x0, r) and t > 0,

Pt1Bc (x) ≤ C exp

(

−c
( r

t1/β

) β
β−1

)

for µ-almost all x ∈
1

4
B

(see [21, Remark 3.3]).
(Tβ) : (The tail estimate) There exist 0 < ε < 1

2
and C > 0 such that, for all t > 0

and all balls B = B(x0, r) with r ≥ Ct1/β,

Pt1Bc(x) ≤ ε for µ-almost all x ∈
1

4
B. (2.9)

(Sβ) : (The survival estimate) There exist 0 < ε < 1 and C > 0 such that, for all
t > 0 and all balls B = B(x0, r) with r ≥ Ct1/β,

1− PB
t 1B(x) ≤ ε for µ-almost all x ∈

1

4
B. (2.10)

(FKβ) : (The Faber-Krahn inequality) There exist positive constants ν, c such that,
for all balls B ⊂M of radius r and for all non-empty open sets Ω ⊂ B,

λmin (Ω) ≥
c

rβ

(
µ (B)

µ (Ω)

)ν
, (2.11)

where λmin (Ω) is the bottom of the spectrum of the (positive definite) gen-
erator of (E ,F (Ω)) , that is,

λmin (Ω) = inf
f∈F(Ω)\{0}

E (f)

‖f‖2
2

. (2.12)

Note that since µ (B) ≥ µ (Ω), the value of ν in (2.11) can be chosen to be arbitrarily
small. We will frequently assume that ν < 1.
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(ΦUEβ) : (Upper estimate with Φ-term) The heat kernel pt (x, y) exists and admits the
following estimate

pt (x, y) ≤
C

V (x, t1/β)
Φ

(
d (x, y)

t1/β

)

, (2.13)

for some constant C, all t > 0 and µ-almost all x, y ∈ M , where Φ is a
decreasing positive function on [0,+∞) such that

∫ ∞

0

sα−1Φ (s) ds <∞, (2.14)

and α is the same exponent as in (2.2).

Clearly, (UEβ) is a particular case of (ΦUEβ). Observe also that (ΦUEβ) implies
the following estimate (cf. Section 5.5):

(DUEβ) : (On-diagonal upper bound) The heat kernel pt exists and satisfies the estimate

pt (x, y) ≤
C

√
V (x, t1/β)V (y, t1/β)

, (2.15)

for some constant C, all t > 0 and µ-almost all x, y ∈M .

In the case of a continuous heat kernel, (2.15) is equivalent to the estimate

pt (x, x) ≤
C

V (x, t1/β)
,

which explains the term “on-diagonal”. Now we can state our first main result.

Theorem 2.1. Let (M,d, µ) be a metric measure space and let µ satisfy (V D) and
(RVD). Let (E ,F) be a regular, local, conservative Dirichlet form in L2(M,µ).
Then, the following conditions are equivalent:

(UEβ) ⇔ (ΦUEβ)

⇔ (FKβ) + (Sβ)⇔ (FKβ) + (Tβ)

⇔ (DUEβ) + (Sβ)⇔ (DUEβ) + (Tβ)

⇔ (DUEβ) + (Texp) .

Let us make some comments on the statement.
1. The following two equivalences

(UEβ)⇔ (ΦUEβ)

and
(UEβ)⇔ (FKβ) + (Sβ)⇔ (FKβ) + (Tβ)

are new and have not been previously known in any setting except for the case
when (M,d, µ) is a Riemannian manifold and β = 2 (in the latter case, one has
(UE2)⇔ (DUE2)⇔ (FK2) so that the conditions (Sβ) and (Tβ) can be omitted –
cf. [17]).

2. The equivalences

(UEβ)⇔ (DUEβ) + (Sβ)⇔ (DUEβ) + (Tβ)⇔ (DUEβ) + (Texp) (2.16)

were proved in [21, Theorems 3.1, 3.4, 310] under an additional hypothesis that
all metric balls in (M,d) are precompact. We have been able here to drop this
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hypothesis thanks to the comparison estimates of Section 4.3 (cf. Proposition 4.7
and Remark 4.8). Note also that the implication (Tβ) ⇒ (Sβ) is the only place
where the conservativeness of (E ,F) is used.

3. The implication (ΦUEβ) ⇒ (UEβ) in Theorem 2.1 may fail, if the Dirichlet
form (E ,F) is not local. Indeed, let M = Rn and µ be the Lebesgue measure. For

every 0 < β < 2, the heat kernel pt generated by (−∆)β/2, where ∆ is the Laplace
operator, admits the estimate

pt(x, y) '
1

tn/β

(

1 +
d (x, y)

t1/β

)−(n+β)

.

The corresponding Dirichlet form is non-local. It is clear that (ΦUEβ) holds with

Φ (s) = (1 + s)−(n+β), whereas (UEβ) is not true.
4. In order to prove the implication

(FKβ) + (Sβ)⇒ (DUEβ) , (2.17)

we use the locality of (E ,F), although it is not clear whether the locality is really
essential or just technical. Note for comparison that if the volume doubling (V D)
is replaced by a stronger condition

V (x, r) ' rα for all x ∈M and all r > 0,

then one can easily prove the implication

(FKβ)⇒ (DUEβ)

without assuming the locality of (E ,F) (see Lemma 5.5 as well as the argument in
[7], [17]).

5. The reverse volume doubling (RVD) is used only to prove the implication

(DUEβ)⇒ (FKβ) .

Without (RVD) this implication does not hold in general. Indeed, let M be a
compact Riemannian manifolds, for example, Sn. Then (DUE2) holds while for the
ball B = M we have λmin (B) = 0 so that (FK2) fails. Note also that (RVD) follows
from (V D) provided M is connected and unbounded (see Corollary 5.3). Of course,
in this case (RVD) can be dropped from the hypotheses of Theorem 2.1.

6. We regard the following implication as a central and most interesting part of
Theorem 2.1:

(FKβ) + (Tβ)⇒ (UEβ) . (2.18)

The proof of (2.18) uses the following ingredients:

(i) Lemma 5.5: (FKβ) implies on-diagonal upper bound (5.48) for the heat
kernels in balls.

(ii) Theorem 5.8: (Tβ)⇔ (Sβ)⇔ (Texp) .
(iii) Lemma 5.6: (5.48) and (Sβ) imply (DUEβ) .
(iv) (DUEβ) + (Texp)⇒ (UEβ)

The proof of Lemma 5.5 follows [17]: one first obtains a Nash type inequality in
balls (Lemma 5.4) and then uses Nash’s argument to estimate the heat kernels in
balls.

The idea of Theorem 5.8 in the setting of fractals goes back to Barlow [1] using a
probabilistic approach. In the general setting but still assuming that the metric balls
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are precompact, Theorem 5.8 was proved by the authors in [21]. Here we have been
able to drop this assumption at the expense of using a quite involved Proposition
4.7. Also, we have simplified other parts of the proof by using the argument of
Hebisch and Saloff-Coste [26] (cf. Theorem 5.7).

The idea of Lemma 5.6 goes back to Kigami [28] who introduced the method called
now Kigami’s iterations. We had to overcome significant difficulties to adapt this
method to the present setting, due to the lack of a priori continuity and boundedness
of the heat kernel. For that we use a new comparison estimate for the heat kernels
in different domains (Theorem 4.6).

Finally, the proof of the implication (DUEβ)+(Texp)⇒ (UEβ) uses a new compu-
tational argument. For the full proof of Theorem 2.1 we refer the reader to Section
5.5.

2.4. Probabilistic conditions (Theorem 2.2). For any regular Dirichlet form
(E ,F), there is an associated Hunt process2. Denote by Xt, t ≥ 0, the trajectories of
a process and by Px, x ∈M, the probability measure in the space of trajectories em-
anating from the point x. Denote by Ex the expectation of the probability measure
Px. Then the relation between the Dirichlet form and the associated Hunt process
is given by the following identity:

Ptf(x) = Exf(Xt), (2.19)

which holds for any bounded Borel function f , for every t > 0, and for µ-almost
all x ∈ M (note that Ptf is a function from L∞ and, hence, is defined up to a
set of measure zero, whereas Exf(Xt) is defined pointwise for all x ∈ M). By [15,
Theorem 7.2.1, p.302], such a process always exists but, in general, is not unique.
Let us fix one of such processes once and for all. Note that if (E ,F) is local, then
the Hunt process Xt is a diffusion, that is, the sample path t 7→ Xt is continuous
almost surely.

We say that the process {Xt} is stochastically complete if

Px (Xt ∈M) ≡ 1 for all t > 0 and x ∈M.

If the process is not stochastically complete then the state space M is added an
ideal point ∞, which is called a cemetery and which is assigned a complimentary
probability to ensure that Px has the total mass 1. Applying (2.19) with f ≡ 1, we
obtain that {Xt} is stochastically complete if and only if (E ,F) is conservative.

For any open set Ω ⊂M , define the first exit time τΩ as follows:

τΩ = inf {t > 0 : Xt /∈ Ω} , (2.20)

where Xt /∈ Ω means that either Xt ∈M \ Ω, or Xt =∞.
A Borel set N ⊂M is called invisible if µ (N) = 0 and

Px (Xt ∈ N or Xt− ∈ N for some t > 0) = 0 for all x ∈M \N.

For a fixed parameter β > 1, consider the following conditions.

2Loosely speaking, a Hunt process is a strong Markov process whose sample paths are right
continuous and have left limit almost surely – see [6], [14], [15] for a detailed definition.
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(Pβ) : The exit probability estimate. There exist an invisible set N ⊂ M and con-
stants ε ∈ (0, 1), δ > 0 such that, for all x ∈M \N and r > 0,

Px
(
τB(x,r) ≤ δrβ

)
≤ ε. (2.21)

Some equivalent conditions to (Pβ) are proved in Section 6.4. In particular, if
{Xt} is stochastically complete, then (Pβ)⇔ (Sβ)⇔ (Tβ).

(Eβ) : The mean exit time estimate. There exist an invisible set N ⊂ M and
positive constants C, c such that, for all x ∈M \N and r > 0,

crβ ≤ Ex
(
τB(x,r)

)
≤ Crβ. (2.22)

For example, one has Ex
(
τB(x,r)

)
= cr2 in Rn, and so (Eβ) holds with β = 2.

The condition (E2) is satisfied also for any complete non-compact manifold of non-
negative Ricci curvature. For fractal spaces, one usually obtains (Eβ) with β > 2.
It is true that

(Eβ)⇒ (Pβ) and (Pβ)⇒ (Eβ ≥) ,

where (Eβ ≥) stands for the lower bound in (2.22) (see Section 6.4).

(EΩβ) : Isoperimetric inequality for the mean exit time. There exist an invisible set
N ⊂M and positive constants C, ν such that, for any ball B in M of radius
r and for any non-empty open set Ω ⊂ B,

sup
x∈Ω\N

Ex (τΩ) ≤ Crβ
(
µ (Ω)

µ (B)

)ν
. (2.23)

For example, it is known that for any bounded open set Ω ⊂ Rn,

sup
x∈Ω

Ex (τΩ) ≤ sup
x∈Ω∗

Ex (τΩ∗)

where Ω∗ is a ball of the same volume as Ω. If its radius is r, then

sup
x∈Ω∗

Ex (τΩ∗) = cnr
2 = Cµ (Ω∗)

2/n = Cµ (Ω)2/n
,

whence (2.23) follows with β = 2, ν = 2/n, and N = ∅. Hence, (EΩ2) holds in Rn.
It follows from a result in [16] that (EΩ2) holds also on any complete non-compact
Riemannian manifold of non-negative Ricci curvature.

Theorem 2.2. Let (M,d, µ) be a metric measure space, and let µ satisfy (V D) and
(RVD). Let (E ,F) be a regular, local, conservative Dirichlet form in L2 (M,µ).
Then the following equivalences hold:

(UEβ) ⇔ (DUEβ) + (Pβ)⇔ (DUEβ) + (Eβ)

⇔ (FKβ) + (Pβ)⇔ (FKβ) + (Eβ)

⇔ (EΩβ) + (Pβ)⇔ (EΩβ) + (Eβ) .

Theorem 2.2 will be proved in Section 6.4. Let us give some comments on the
statement.

1. We consider the equivalence

(UEβ)⇔ (EΩβ) + (Eβ) (2.24)
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as the most interesting part of Theorem 2.2. Let a ball B = B (x, r) be centered at
a point x ∈M \N . Taking in (2.23) Ω = B, we obtain ExτB(x,r) ≤ Crβ, which gives
the upper bound in condition (Eβ) that is,

(EΩβ)⇒ (Eβ ≤) . (2.25)

Hence, the equivalence (2.24) can be also stated as follows:

(UEβ)⇔ (EΩβ) + (Eβ ≥) , (2.26)

where (Eβ ≥) stands for the lower bound in (Eβ). Condition (EΩβ) can be consid-
ered as an isoperimetric inequality for the mean exit time ExτΩ. From this point of
view, the condition (Eβ ≥) means that the upper bound for ExτΩ in (2.23) is sharp
(up to a constant multiple) and is attained when Ω is a ball and x is its center.
Hence, we can shortly state (2.26) as follows:

The heat kernel upper estimate (UEβ) is equivalent to the fact that the isoperi-
metric inequality (EΩβ) for the mean exit time holds, and it is sharp for balls (up
to a constant multiple).

2. The importance of the condition (Eβ) for heat kernel estimates was revealed
by Barlow [1, Theorem 3.11]. He proved, in particular, that

(DUEβ) + (Eβ)⇒ (DUEβ) + (Pβ)⇒ (UEβ)

although in a more restricted setting of a regular volume growth and a continuous
heat kernel. In our proof of Theorem 2.2 we use the implication (Eβ)⇒ (Pβ) from
[1]. Barlow [1, Lemma 3.9] also showed that (Eβ) follows from two-sided estimates
of the heat kernel.

3. Kigami [28] was the first to prove that (UEβ) ⇒ (Eβ) although in a more
restricted setting than ours. We give here a different proof that goes through a
sequence of implications:

(UEβ)⇒ (Sβ)⇒ (Pβ)⇒ (Eβ ≥)

and (UEβ)⇒ (EΩβ)⇒ (Eβ ≤) .
4. Note that the hypothesis of conservativeness is used only in the proof of the

implication (Pβ)⇒ (Eβ ≥) via Theorem 5.8. Without the stochastic completeness,
the implication

(UEβ)⇒ (Eβ ≥)

is not true. Indeed, let M = R with the Euclidean distance, µ be the Lebesgue
measure, and let {Xt} be the diffusion process generated by the operator H =

− d2

dx2 + q (x) where q is a positive smooth function on R. The associated Dirichlet
form (E ,F) is given by F = W 1

0 (R) and

E (f, g) =

∫

R
(f ′g′ + qfg) dµ.

Since q > 0, the heat kernel of this process satisfies the upper bound (UE2). Clearly,
the stochastic completeness fails because of the killing term. Let us verify that
(E2 ≥) also fails, for example, in the case q (x) = x2. Indeed, in this case the heat
kernel of {Xt} is given by the explicit expression

pt(x, y) =
1

(2π sinh 2t)1/2
exp

(

−
(x− y)2

2 sinh 2t
−

1

2
x2 tanh t−

1

2
y2 tanh t

)
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(see for example [10]). In particular, noticing that 1
sinh 2t

+ tanh t ≥ 1, we obtain

pt (0, x) ≤
1

(2π sinh 2t)1/2
exp

(

−
1

2
x2

)

whence ∫ ∞

0

∫

R
pt (0, x) dx dt <∞.

By (6.7), the function r 7→ E0

(
τB(0,r)

)
is bounded, which makes the lower bound

E0

(
τB(0,r)

)
≥ cr2 impossible.

5. The reverse volume doubling property (RVD) is only used to prove the impli-
cation

(UEβ)⇒ (Eβ ≤) ,

which is not true without (RVD); in this case, (UEβ) ⇒ (EΩβ) is not true either.
Indeed, let M be any compact Riemannian manifold with non-negative Ricci curva-
ture (for example, just a sphere). Clearly, M satisfies all the hypotheses3 of Theorem
2.2 with β = 2, except for (RVD), because µ (M) <∞. However, condition (Eβ ≤)
fails because the exit time from balls with large radii is ∞.

3. Basics of heat semigroups

In this section, we prove some basic facts about the heat semigroups and heat
kernels. One of the most important results is the existence of the heat kernel under
the assumption that the heat semigroup is ultracontractive (see Lemma 3.7). It is
traditionally deduced from the following abstract result.

Proposition 3.1. If K : L1 (M) → L∞ (M) is a bounded linear operator then it
has a measurable integral kernel k (x, y), that is,

Kf (x) =

∫

M

k (x, y) f (y) dµ (y) (3.1)

for all f ∈ L1 (M) and almost all x ∈M . Moreover,

esup
x,y
|k (x, y)| = ‖K‖1→∞ . (3.2)

A short proof of this result can be found in [12, T.2.2.7] although under an addi-
tional hypothesis that requires the existence of a certain partition of the space M
into disjoint subsets similar to the partition of Rn into dyadic cubes. It is not clear
whether such a partition exists in our setting.

A more general setting, that requires only the separability of L1 (M) , was consid-
ered in [13, Ch.VI, Sect.8, Th.6 and Cor.7]. However, the latter states the existence
of a so called vector-valued kernel, that is, of a mapping k : M → L∞ (M) that
associates with any y ∈M a function ky ∈ L∞, such that, for all f, g ∈ L1,

(Kf, g) =

∫

M

(ky, g) f (y) dµ (y)

and esupy ‖ky‖∞ = ‖K‖. If the function ky (x) has a jointly measurable in x, y
version k (x, y) then one obtains (3.1) and (3.2). However, the existence of a jointly

3For example, (UE2) holds by [30].
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measurable realization of ky (x) requires an additional argument and is not at all
automatic. Since the question of a joint measurability of the heat kernel has been
invariably neglected in the literature, we have decided to include a complete proof
of the existence and the measurability of the heat kernel for ultracontractive semi-
groups. A key ingredient of the proof is Lemma 3.3 that is an L2-version of Propo-
sition 3.1. Proposition 3.1 can be then deduced from Lemma 3.3, but we skip the
details of that because we need only Lemma 3.3.

3.1. Bounded operators L2 → L∞. We say that a couple (X,µ) is a measure
space if X is an arbitrary set and µ is a complete σ-finite measure on X. Let (X,µ)
and (Y, ν) be two measure spaces. In this section, we assume in addition that the
space L2 (Y ) is separable.

Let any x ∈ X be associated with a function kx ∈ L2 (Y ) . Define the following
operator K for all f ∈ L2 (Y ):

Kf (x) = (kx, f) :=

∫

Y

kxfdν (3.3)

so that Kf is a function on X.

Lemma 3.2. If, for any non-negative f ∈ L2 (Y ), Kf (x) ≥ 0 for almost all x ∈ X
then, for almost all x ∈ X, we have kx ≥ 0 almost everywhere on Y.

Proof. For any non-negative function f ∈ L2 (Y ), there is a null set Nf ⊂ X such
that

Kf (x) ≥ 0 for all x ∈ X \ Nf .

Let S be a countable family of non-negative functions on L2 (Y ) that is dense in the
cone of all non-negative functions in L2 (Y ), and set

N =
⋃

f∈S

Nf

so that N is a null set in X. Then, for any f ∈ S and all x ∈ X \ N , we have
Kf (x) ≥ 0. If f is any other non-negative function in L2 (Y ), then f is an L2-limit
of a sequence {fk} ⊂ S, whence, for any x ∈ X \ N ,

(kx, f) = lim
k→∞

(kx, fk) = lim
k→∞

Kfk (x) ≥ 0.

Therefore, for any x ∈ X \ N , we have that kx (y) ≥ 0 for almost all y ∈ Y , which
finishes the proof. �

Lemma 3.3. Let K : L2 (Y )→ L∞ (X) be a bounded linear operator, with the norm
bounded by c, that is, for any f ∈ L2 (Y ),

esup
X

|Kf | ≤ c ‖f‖2 . (3.4)

Then there exists a mapping kx : X → L2 (Y ) (that is, kx ∈ L2 (Y ) for any x ∈ X)
such that, for all f ∈ L2 (Y ),

Kf (x) = (kx, f) for almost all x ∈ X.

Moreover, for all x ∈ X,

‖kx‖L2(Y ) ≤ c.
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Furthermore, there is a function k (x, y) that is jointly measurable in (x, y) ∈M×M
such that, for almost all x ∈ X, k (x, ·) = kx almost everywhere on Y .

Consequently, we see that, for any f ∈ L2 (Y ) and almost all x ∈ X,

Kf (x) =

∫

M

k (x, y) f (y) dν (y) .

Proof. For any f ∈ L2 (Y ), Kf is an element of L∞ (X) and, hence, is defined for
µ-almost all x ∈ X. We would like to choose a pointwise realization of Kf(x) while
keeping the linearity of the mapping f → Kf (x). Denote by L∞ (X) the set of all
bounded measurable functions on X defined pointwise. Then L∞ (X) is a Banach
space with the sup-norm (in contrast to L∞ (X) where the norm is the essential
supremum).

We claim that there exists a linear operator K : L2 (Y )→ L∞ (X) such that, for
any f ∈ L2 (Y ),

Kf (x) = Kf (x) for almost all x ∈ X, (3.5)

and
sup |Kf | ≤ c ‖f‖2 . (3.6)

For any measurable function ϕ on X, which is defined pointwise, consider the fol-
lowing set

N (ϕ) := {x ∈ X : |ϕ(x)| > esup |ϕ|} ,

which has µ-measure 0 by the definition of the essential supremum. Modifying ϕ by
setting it to be 0 on N (ϕ) (or on any null set containing N (ϕ)), one achieves that
sup |ϕ| = esup |ϕ|. We use this idea to construct an operator K : L2 (Y )→ L∞ (X)
as follows. Let {vj}

∞
j=1 be an orthonormal basis in L2 (Y ), and let V be the set of

all finite linear combinations of functions vj with rational coefficients. First define
Kvj to be any pointwise realization of Kvj, then extend K to the whole space V by
linearity. Hence, (3.5) holds for all f ∈ V . Since the set V is countable and each
set N (Kf) has measure 0, the union N0 of all sets N (Kf) over all f ∈ V has also
measure 0. Now we modify the definition of Kf for every f ∈ V by setting Kf to be
zero on N0 (and not changing it outside N0). Clearly, the linearity of K and (3.5)
are preserved, but we acquire in addition that

sup |Kf | = esup |Kf | for all f ∈ V ,

which together with (3.4) implies

sup |Kf | ≤ c‖f‖2 for all f ∈ V .

Hence, K is a bounded linear mapping from (V , ‖ · ‖2) to L∞ (X). Since V is dense
in L2 (Y ), K uniquely extends to a bounded linear mapping from L2 (Y ) to L∞ (X),
which then satisfies (3.5) and (3.6).

Now fix x ∈M and observe that by (3.6)

|Kf (x)| ≤ c ‖f‖2 , (3.7)

that is, the mapping f 7→ Kf(x) is a bounded linear functional in L2 (Y ). By the
Riesz representation theorem, there exists a function kx ∈ L2 (Y ) such that, for any
f ∈ L2 (Y ),

Kf(x) = (kx, f) . (3.8)
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It follows from (3.7) and (3.8) that

‖kx‖2 ≤ c for all x ∈ X. (3.9)

We are left to prove the existence of a jointly measurable in x, y version of kx (y).
Note that the mapping x 7→ kx is weakly measurable as a mapping from X to
L2 (Y ) because for any f ∈ L2 (Y ), the function (kx, f) = Kf (x) is measurable
in x. Since L2 (Y ) is separable, by Pettis’s measurability theorem (see [37, Ch.V,
Sect.4]) the mapping x 7→ kx is strongly measurable. Since the norms ‖kx‖2 are
uniformly bounded by (3.9), by a Bochner theorem (see [37, Ch.V, Sect.5]) the
mapping x 7→ kx is Bochner integrable on subsets of X of finite measure. Finally,
by [13, Ch.III, Sect.11, Th.17], any Bochner integrable mapping admits a jointly
measurable version. �

3.2. A norm estimate of a bilinear functional. Let (X,µ) and (Y, ν) be two
measure spaces and ϕ : X × Y → R be a measurable function on X × Y (the
measure on X × Y is µ × ν). By a rectangle in X × Y we mean any set R of
the form R = A × B where A ⊂ X and B ⊂ Y are measurable sets with finite
measures. We write ϕ ∈ L1

rec (X × Y ) if ϕ is integrable on any rectangle. For
example, L1

rec (X × Y ) contains all Lp (X × Y ), 1 ≤ p ≤ ∞.
Let us use the notation

Φ (f, g) :=

∫

X×Y
ϕ (x, y) f (x) g (y) d (µ× ν) , (3.10)

for those functions f and g for which the integral makes sense. Also, we use notation
a− = max {−a, 0} .

Lemma 3.4. Assume that ϕ is a measurable function on X × Y and

ϕ− ∈ L
1
rec (X × Y ) (3.11)

Then
sup

f∈TX ,g∈TY
Φ (f, g) = esup

X×Y
ϕ (3.12)

where TX is the set of test functions of the form 1
µ(A)

1A for an arbitrary measurable

subset A of X with 0 < µ (A) <∞, and TY is defined similarly.

The proof of this lemma can be found in Appendix at the end of the paper. If
ϕ ∈ L∞ (X × Y ) then (3.12) is well known. However, it is important for us that
ϕ is not assumed a priori bounded because Lemma 3.4 can be used to prove the
boundedness (and upper bounds) of ϕ using upper bounds of the functional Φ.

Note that, for any function f ∈ TX , we have ‖f‖1 = 1. Observe also that, due to
the hypothesis (3.11), the integral (3.10) is well defined for all f ∈ TX and g ∈ TY
and takes values in (−∞,+∞]. It is obvious that if

f, g ≥ 0, ‖f‖1 = ‖g‖1 = 1, and Φ (f, g) is well defined, (3.13)

then Φ (f, g) ≤ esupϕ. Therefore, for any class of test functions f and g, satisfying
(3.13), we have

sup
f,g

Φ (f, g) ≤ esupϕ.

Hence, the main point of Lemma 3.4 is to ensure the opposite inequality. Once it
is established for some classes of test functions f, g, these classes can be enlarged
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arbitrarily with the only restrictions that they satisfy (3.13). For example, if ϕ ≥ 0
then (3.12) holds provided TX is a class of non-negative functions f with ‖f‖1 = 1,
and TY is defined similarly.

Let us restate Lemma 3.4 in terms of the operator Φ that is defined by

Φg (x) =

∫

Y

ϕ (x, y) g (y) dν (y) ,

for all g ∈ TY .

Corollary 3.5. Let ϕ be a measurable function on X × Y that satisfies (3.11).
Assume that, for some a ∈ R and for all g ∈ TY ,

Φg (x) ≤ a for almost all x ∈ X.

Then ϕ (x, y) ≤ a for almost all (x, y) ∈ X × Y.

Proof. Indeed, for any f ∈ TX , we have Φ (f, g) ≤ a whence esupϕ ≤ a by (3.12).
�

3.3. The notion of a heat kernel. We are back in the setting of a locally compact
separable metric space M with a Radon measure µ with full support. Note that
L2 (M) is separable so that the results of Section 3.1 apply.

Let pt (x, y) be a function of (t, x, y) ∈ R+ ×M ×M. We say that pt (x, y) is a
heat kernel if it satisfies the following properties:

(i) Measurability: for any t > 0, pt(x, y) is µ×µ-measurable in (x, y) ∈M ×M .
(ii) The Markovian properties: for any t > 0, pt (x, y) ≥ 0 for µ-almost all

x, y ∈M , and ∫

M

pt(x, y)dµ(y) ≤ 1, (3.14)

for µ-almost all x ∈M .
(iii) Symmetry: for any t > 0, pt(x, y) = pt(y, x) for µ-almost all x, y ∈M .
(iv) The semigroup property: for all t, s > 0,

pt+s(x, y) =

∫

M

pt(x, z)ps(z, y)dµ(z) (3.15)

for µ-almost all x, y ∈M .
(v) The approximation of identity: for any f ∈ L2,

∫

M

pt (x, y) f (y) dµ (y)
L2

→ f (x) as t→ 0 + . (3.16)

Note that a heat kernel is effectively defined for any t > 0 and for almost all
x, y ∈ M since changing it at a null-set in M ×M does not affect the properties
(i)-(v).

Let {Pt}t≥0 be the heat semigroup in L2 associated with a Dirichlet form (E ,F) .
A a function pt (x, y) on R+ ×M ×M is called the integral kernel of Pt if pt (x, y)
is non-negative, measurable in (x, y) ∈ M ×M for any t > 0, and the following
identity holds

Ptf (x) =

∫

M

pt (x, y) f (y) dµ (y) (3.17)

for all f ∈ L2, t > 0, and µ-a.a. x ∈M .
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Lemma 3.6. (a) If pt (x, y) and qt (x, t) are two integral kernels of Pt then, for any
t > 0,

pt (x, y) = qt (x, y) (3.18)

for almost all (x, y) ∈M ×M.
(b) If pt (x, y) is the integral kernel of Pt then pt (x, y) is a heat kernel.

Hence, the integral kernel of Pt will be referred to as the heat kernel of Pt.

Proof. (a) Note that pt ∈ L1
rec (M ×M) because for any measurable set A ⊂ M of

finite measure,
∫

A

pt (x, y) dµ (y) = Pt1A (x) ≤ 1 (3.19)

for almost all x ∈M . For all non-negative f, g ∈ L2, we have by Fubini’s theorem4,

(Ptf, g) =

∫

M×M
pt (x, y) f (y) g (x) dµ(y)dµ (x) . (3.20)

Using a similar identity for qt (x, y), we obtain that
∫

M×M
(qt (x, y)− pt (x, y)) f (y) g (x) dµ(y)dµ (x) = 0.

By Lemma 3.4 we conclude that

esup
x,y

(qt (x, y)− pt (x, y)) = 0

that is qt ≤ pt almost everywhere. In the same way, we have pt ≤ qt whence the
identity pt = qt follows.

(b) Applying (3.19) to A = An where {An} is an exhaustive sequence of subsets
of M with finite measures, we obtain (3.14). Let f, g be two non-negative functions
from L2. Using the symmetry of Pt, we obtain

(Ptf, g) = (f, Ptg) =

∫

M

Ptg (y) f (y) dµ (y)

=

∫

M×M
pt (y, x) f (y) g (x) dµ(y)dµ(x). (3.21)

Comparing (3.20) and (3.21) and arguing as in part (a), we obtain pt (x, y) = pt (y, x)
for almost all x, y.

4For the future applications, observe that the identity (3.20) holds not only for non-negative
f, g ∈ L2 but for all f, g ∈ L2. Indeed, if f, g are signed functions from L2 then applying (3.20) to
|f | and |g|, we obtain that the function pt (x, y) f (y) g (x) is integrable on M ×M , which allows
to use Fubini’s theorem and to conclude that

∫

M×M
pt (x, y) f (y) g (x) dµ (y) dµ (x) =

∫

M

(∫

M

pt (x, y) f (y) dµ (y)

)

g (x) dµ (x)

= (Ptf, g) .
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Using the semigroup identity Pt+s = Pt (Ps) and Fubini’s theorem, we obtain that,
for any non-negative f ∈ L2 and for µ-a.a. x ∈M ,

Pt+sf (x) = Pt (Psf) (x)

=

∫

M

pt (x, z)

(∫

M

ps (z, y) f (y) dµ (y)

)

dµ (z)

=

∫

M

(∫

M

pt(x, z)ps(z, y)dµ(z)

)

f (y) dµ (y) .

Hence, for any non-negative g ∈ L2,

(Pt+sf, g) =

∫

M×M

(∫

M

pt(x, z)ps(z, y)dµ(z)

)

f (y) g (x) dµ(y)dµ(x).

Comparing with

(Pt+sf, g) =

∫

M×M
pt+s (x, y) f (y) g (x) dµ(y)dµ (x) ,

and using again Lemma 3.4, we obtain (3.15).

Finally, (3.16) follows immediately from (3.17) and Ptf
L2

→ f as t→ 0. �

3.4. Ultracontractivity and the existence of the heat kernel. Fix some p, q
such that 1 ≤ p ≤ q ≤ +∞. A semigroup {Pt} in L2 is said to be Lp → Lq

ultracontractive if there exists a positive decreasing function γ on (0,+∞), called
the rate function, such that, for each t > 0 and for all f ∈ Lp ∩ L2,

‖Ptf‖q ≤ γ (t) ‖f‖p. (3.22)

Note that if Pt is Lp → Lq ultracontractive, then Pt is also Lq
∗
→ Lp

∗
ultracontrac-

tive with the same rate function, where p∗ and q∗ are the Hölder conjugates to p
and q, respectively. This is because for any t ≥ 0, the operator T := Pt is symmetric
and ‖T ∗‖ = ‖T‖ . In particular, we see that Pt is L1 → L2 ultracontractive if and
only if it is L2 → L∞ ultracontractive. In this case, we simply say that {Pt} is
ultracontractive.

The next lemma relates the ultracontractivity of {Pt} with the existence of a heat
kernel satisfying a uniform upper bound. This fact is well known but there hardly
exists a reference with a detailed proof matching our setting (see [1], [4], [7], [11],
[20], [23], [36] for the proofs in various settings).

Lemma 3.7. The heat semigroup {Pt} is L1 → L2 ultracontractive with a rate
function γ, if and only if {Pt} has the heat kernel pt satisfying the estimate

esup
x,y∈M

pt (x, y) ≤ γ (t/2)2
, (3.23)

for all t > 0.

Proof. If the heat kernel exists and satisfies (3.23), then we have, by (3.20) and
(3.23),

(P2tf, g) ≤ esup
x,y∈M

p2t (x, y) ‖f‖1‖g‖1 ≤ γ (t)2 ‖f‖1‖g‖1,

for all f, g ∈ L1 ∩L2. Taking f = g and noticing that (P2tf, f) = ‖Ptf‖2
2, we obtain

‖Ptf‖2 ≤ γ (t) ‖f‖1,
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that is, the semigroup {Pt} is L1 → L2 ultracontractive with the rate function γ (t).
Conversely, if Pt is L1 → L2 ultracontractive, then Pt is also L2 → L∞ ultracon-

tractive, that is, for any f ∈ L2 and t > 0,

‖Ptf‖∞ ≤ γ(t)‖f‖2. (3.24)

By Lemma 3.3, the operator Pt has the integral kernel pt (x, y) (it is non-negative
by Lemma 3.2) that satisfies the estimate

esup
x
‖pt (x, ·)‖2 ≤ γ (t) .

By Lemma 3.6, pt (x, y) is the heat kernel of Pt. Using the semigroup identity (3.15)
and the symmetry of the heat kernel, we obtain that, for almost all x, y ∈M ,

p2t (x, y) = (pt (x, ·) , pt (y, ·)) ≤ ‖pt (x, ·)‖2 ‖pt (y, ·)‖2 , (3.25)

whence (3.23) follows. �

For the sake of completeness, let us prove also a similar result for L1 → L∞

ultracontractivity, although we will not use it.

Corollary 3.8. The heat semigroup {Pt} is L1 → L∞ ultracontractive with a rate
function γ, if and only if {Pt} has the heat kernel pt satisfying the estimate

esup
x,y∈M

pt (x, y) ≤ γ (t) , (3.26)

for all t > 0.

Proof. If the heat kernel exists and satisfies (3.26) then we have, for any f ∈ L1∩L2,

‖Ptf‖∞ = esup
x∈M

∣
∣
∣
∣

∫

M

pt (x, y) f (y) dµ (y)

∣
∣
∣
∣ ≤ esup

x,y∈M
pt (x, y) ‖f‖1 ≤ γ (t) ‖f‖1 .

Conversely, if the semigroup {Pt} is L1 → L∞ ultracontractive then we have, for
any f ∈ L2, that f 2 ∈ L1 and, hence

∥
∥Pt

(
f 2
)∥∥
∞
≤ γ (t)

∥
∥f 2
∥
∥

1
= γ (t) ‖f‖2

2 .

Since (Ptf)2 ≤ Pt (f 2), we obtain

‖Ptf‖∞ ≤
√
γ (t) ‖f‖2

so that Pt is L2 → L∞ ultracontractive. By Lemma 3.7, we conclude that the
heat kernel exists. Finally, by the L1 → L∞ ultracontractivity, we have, for all
non-negative f, g ∈ L1 ∩ L2,

∫

M

∫

M

pt (x, y) f (x) g (y) dµ (x) dµ (y) = (Ptf, g) ≤ γ (t) ‖f‖1 ‖g‖1 ,

whence (3.26) follows by Lemma 3.4. �
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3.5. Decay of esupU pt. For any subset U ⊂M , set

esup
U

pt := esup
x,y∈U

pt (x, y) .

Lemma 3.9. If the heat kernel pt exists, then for any set U ⊂ M , the function
t 7→ esupU pt is non-increasing on (0,+∞). Also, for any two sets U, V ⊂M ,

esup
x∈V,y∈U

pt (x, y) ≤

(

esup
V

pt · esup
U

pt

)1/2

. (3.27)

Proof. For an open set U , define the class of test functions T (U) by

T (U) =
{
f ∈ L1(U) ∩ L2 (U) : ‖f‖1 = 1

}
.

By Lemma 3.4, we have

esup
x∈V,y∈U

pt (x, y) = sup
f∈T (V )
g∈T (U)

∫

U

∫

V

pt (x, y) f (x) g (y) dµ (x) dµ (y)

= sup
f∈T (V )
g∈T (U)

(Ptf, g) . (3.28)

The symmetry of Pt and the semigroup property imply

(Ptf, g) =
(
Pt/2f, Pt/2g

)
≤ ‖Pt/2f‖2‖Pt/2g‖2 = (Ptf, f)1/2 (Ptg, g)1/2

,

whence

sup
f∈T (V )
g∈T (U)

(Ptf, g) ≤

(

sup
f∈T (V )

(Ptf, f) sup
g∈T (U)

(Ptg, g)

)1/2

. (3.29)

Applying this to the case U = V , we obtain

sup
f,g∈T (U)

(Ptf, g) ≤ sup
f∈T (U)

(Ptf, f) .

Since the opposite inequality is trivial, we have in fact the identity

sup
f,g∈T (U)

(Ptf, g) = sup
f∈T (U)

(Ptf, f) ,

which implies
esup
x,y∈U

pt (x, y) = sup
f∈T (U)

(Ptf, f) . (3.30)

Combining (3.28), (3.29), and (3.30), we obtain (3.27 ).
Finally, let us show that (Ptf, f) = ‖Pt/2f‖2

2 is non-increasing in t > 0, which will
finish the proof. It follows from (2.3) that, for all f, g ∈ F ,

d

dt
(Ptf, g) |t=0 = −E (f, g) .

Since Ptf ∈ F for any t > 0 and f ∈ L2, it follows that

d

dt
(Ptf, g) = −E (Ptf, g)

for all t > 0. Therefore, we obtain

d

dt
‖Ptf‖

2
2 =

d

dt
(Ptf, Ptf) = −2E (Ptf, Ptf) ≤ 0, (3.31)
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which was to be proved. �

4. Comparison of heat semigroups in different domains

In this section we prove comparison inequalities for heat semigroups and heat
kernels in different domains (Corollaries 4.4, 4.5 and Theorem 4.6). The main tool
in the proofs is the parabolic maximum principle of [21, Proposition 4.11].

4.1. A maximum principle and its applications. Let I be an interval in R, and
let Ω be an open subset of M . A function u : I → F is said to be a weak subsolution
(resp. a weak supersolution) of the heat equation in I × Ω if the derivative ∂u

∂t
of u

exists in I in the norm topology of L2(Ω) and, for any t ∈ I and any non-negative
function ψ ∈ F (Ω),

(
∂u

∂t
(t, ·), ψ

)

+ E (u(t, ·), ψ) ≤ 0 (resp. ≥ 0). (4.1)

If the inequality in (4.1) is replaced by equality, then u is called a weak solution of
the heat equation in I × Ω. It is known that Ptf is a weak solution in (0,∞) × Ω
for any open Ω ⊂M (cf. [21, Example 4.10]).

Proposition 4.1 (parabolic maximum principle [21]). Let u be a weak subsolution
of the heat equation in (0, T )×Ω, where T ∈ (0,+∞] and Ω is an open subset of M .
Assume in addition that u satisfies the following boundary and initial conditions:

• u+(t, ·) ∈ F(Ω) for any t ∈ (0, T );

• u+ (t, ·)
L2(Ω)
−→ 0 as t→ 0.

Then u(t, x) ≤ 0 for any t ∈ (0, T ) and µ-almost all x ∈ Ω.

Remark 4.2. It was shown in [21, Lemma 4.4] that, for a regular Dirichlet form
(E ,F), if u ∈ F and if u ≤ v for some v ∈ F(Ω), then u+ ∈ F(Ω). We will frequently
use this result later on.

We use the maximum principle to prove the following lemma.

Lemma 4.3. Assume that (E ,F) is regular and local. Let u (t, x) be a weak subso-
lution of the heat equation in (0,∞)×U , where U is an open subset of M . Assume
further, for any t > 0, u (t, ·) is bounded in M and is non-negative in U . If

u (t, ·)
L2(U)
−→ 0 as t→ 0 (4.2)

then the following inequality hold for all t > 0 and almost all x ∈ U :

u (t, x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t

‖u (s, ·) ‖L∞(U). (4.3)

Proof. We first assume that U is precompact. Choose an open set W such that
W b U. Fix a real T > 0 and set

m := sup
0<s≤T

‖u (s, ·)‖L∞(U) . (4.4)

We show that, for all 0 < t ≤ T and µ-almost all x ∈ W ,

u (t, x) ≤ m
(
1− PW

t 1W (x)
)
. (4.5)
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Let ζ and η be cut-off functions5 of the couples (W,U) and (U,M), respectively.
Consider the function

w := ζu−m
[
η − PW

t 1W
]
. (4.6)

Then (4.5) will follow if we prove that w ≤ 0 in (0, T ]×W .
Claim 1. The function w is a weak subsolution of the heat equation in (0,∞)×W .
Clearly, PW

t 1W is a weak solution of the heat equation in (0,∞) ×W . Let us
show that so is ζu. Indeed, the product ζu belongs to F because both ζ and u are
in L∞ ∩ F . For any test function ψ ∈ F(W ), we have, using ζψ ≡ ψ,

(
∂ (ζu)

∂t
, ψ

)

=

(

ζ
∂

∂t
u, ψ

)

=

(
∂

∂t
u, ψ

)

= −E (u, ψ) = −E (ζu, ψ) + E ((ζ − 1)u, ψ)

= −E (ζu, ψ) ,

where we have used also that (ζ − 1) u = 0 in W and, hence,

E ((ζ − 1)u, ψ) = 0,

by the locality of (E ,F). Thus, ζu is a weak solution in (0,∞)×W .
Finally, the function η (x) considered as a function of (t, x), is a weak supersolution

of the heat equation in (0,∞)×W , since for any non-negative ψ ∈ F(W )

E(η, ψ) = lim
t→0

t−1 (η − Ptη, ψ) = lim
t→0

t−1 (1− Ptη, ψ) ≥ 0,

whence it follows that w is a weak subsolution.
Claim 2. For every t ∈ (0, T ], we have (w (t, ·))+ ∈ F(W ).
By Remark 4.2, it suffices to prove that in (0, T ]×M

w (t, ·) ≤ mPW
t 1W , (4.7)

because mPW
t 1W ∈ F (W ). In M \ U , inequality (4.7) holds trivially because

ζ = 0 = PW
t 1W in M \ U

and, hence, w = −mη ≤ 0. To prove (4.7) in U , observe that η = 1 in U and
0 ≤ u ≤ m in (0, T ]× U , whence

w = ζu−m+mPW
t 1W ≤ u−m+mPW

t 1W ≤ mPW
t 1W ,

which was to be proved.
Claim 3. The function w satisfies the initial condition

w (t, ·)
L2(W )
−→ 0 as t→ 0. (4.8)

Noticing that η = 1 in W , we see that

η − PW
t 1W = 1W − P

W
t 1W

L2(W )
−→ 0 as t→ 0.

Combining with (4.2), we obtain (4.8).
By the parabolic maximum principle (cf. Prop. 4.1), we obtain from Claims 1-3

that w ≤ 0 in (0, T ]×W , thus proving (4.5).

5A cut-off function of the couple (W,U) is a function ζ ∈ F ∩C0(M) such that 0 ≤ ζ ≤ 1 in M ,
ζ = 1 on an open neighborhood of W , and supp ζ ⊂ U . If (E ,F) is a regular Dirichlet form then
a cut-off function exists for any couple (W,U) provided U is open and W is a compact subset of
U (cf. [15, p.27]).
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Finally, let U be an arbitrary open subset of M . Let {Wi}
∞
i=1 and {Ui}

∞
i=1 be two

increasing sequences of precompact open sets, both of which exhaust U , and such
that Wi b Ui for all i. For each i, we have by (4.5) with t = T that in Wi

u ≤
[
1− PWi

t 1Wi

]
sup

0<s≤t
‖u (s, ·)‖L∞(Ui)

. (4.9)

Replacing by the monotonicity in the right hand side Ui by U , and noticing that

PWi
t 1Wi

a.e.
−→ PU

t 1U as i→∞,

we obtain (4.3) by letting i→∞ in (4.9). �

Corollary 4.4. Assume that (E ,F) is regular and local. Let U ⊂ Ω be two open
subsets of M . Then, for any non-negative function f ∈ L2(Ω), for all t > 0 and
µ-almost all x ∈ U ,

PΩ
t f(x)− PU

t f(x) ≤
[
1− PU

t 1U(x)
]

sup
0<s≤t

∥
∥PΩ

s f
∥
∥
L∞(U)

. (4.10)

Proof. It suffices to prove (4.10) for non-negative functions f ∈ L2∩L∞ (Ω) because
for a general non-negative f ∈ L2 (Ω), one first applies (4.10) to bounded functions
fn = f ∧ n for any n = 1, 2, ... and then let n→∞.

Fix such a function f , set

u (t, x) = PΩ
t f(x)− PU

t f(x)

and observe that u is a non-negative bounded weak solution of the heat equation in
(0,∞)×U satisfying the initial condition (4.2). By Lemma 4.3, we conclude that u
satisfies (4.3), whence (4.10) follows. �

Corollary 4.5. Assume that (E ,F) is regular and strongly local. Let U ⊂ Ω be two
open subsets of M . Then the following inequality holds for all t > 0 and µ-almost
all x ∈ U :

1− PΩ
t 1Ω(x) ≤

(
1− PU

t 1U(x)
)

sup
0<s≤t

∥
∥1− PΩ

s 1Ω

∥
∥
L∞(U)

. (4.11)

Proof. Approximating U by precompact open subsets, it suffices to prove the claim
in the case when U b Ω. Let ϕ be a cut-off function of the couple (U,Ω). Then we
can replace the term 1 − PΩ

t 1Ω(x) in the both sides of (4.11) by the function

u (t, x) = ϕ (x)− PΩ
t 1Ω(x).

Clearly, for any t > 0, the function u (t, ·) is bounded in M , non-negative in U , and
satisfies the initial condition (4.2). Let us verify that u (t, x) is a weak solution of
the heat equation in (0,∞) × U . It suffices to show that the function ϕ (x) as a
function of (t, x) is a weak solution in (0,∞) × U . Indeed, since ϕ is constant in
a neighborhood of U , the strong locality of (E ,F) yields that E(ϕ, ψ) = 0 for any
ψ ∈ F(U), which finishes the proof. �

4.2. Comparison of heat kernels. We now give a comparison inequality of two
Dirichlet heat kernels in distinct domains that will be used in Section 5 for obtaining
on-diagonal upper estimate of the global heat kernel. For simplicity, write

esup
U

pΩ
t := esup

x,y∈U
pΩ
t (x, y).
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Theorem 4.6. Assume that (E ,F) is regular and local. Let U ⊂ Ω be two open
subsets of M . If the Dirichlet heat kernels pUt , pΩ

t exist, then the following inequality
holds

esup
y∈U

pΩ
t+s(x, y) ≤ esup

y∈U
pUt (x, y) +

[
1− PU

t 1U(x)
]

esup
U

pΩ
s (4.12)

for any t, s > 0 and µ-almost every x ∈ U .

If the indeterminate form 0·∞ occurs in the last term in (4.12) then we understand
it as 0.

Let V be an open subset of U . Taking in (4.12) esup in x ∈ V , we obtain that,
for all t, s > 0,

esup
V

pΩ
t+s ≤ esup

U

pUt + esup
x∈V

[
1− PU

t 1(x)
]

esup
U

pΩ
s . (4.13)

This inequality will be used in Section 5.

Proof. Fix t, s > 0. Assume first that esupU p
Ω
s < ∞. Choose a non-negative

function f ∈ L1 ∩ L2(U). Using the inequality (4.10) of Corollary 4.4 with PΩ
s f

instead of f , we obtain that, for µ-almost all x ∈ U ,

PΩ
t+sf(x) ≤ PU

t

(
PΩ
s f
)

(x) +
[
1− PU

t 1U(x)
]

sup
s≤λ≤t+s

∥
∥PΩ

λ f
∥
∥
L∞(U)

. (4.14)

Note that

PU
t

(
PΩ
s f
)

(x) =

∫

U

pUt (x, z)PΩ
s f(z) dµ(z) =

∫

U

q (x, y) f (y) dµ (y) ,

where

q (x, y) :=

∫

U

pUt (x, z) pΩ
s (z, y) dµ (z) . (4.15)

By Lemma 3.9, we have

esup
U

pΩ
λ ≤ esup

U

pΩ
s

for any s ≤ λ, and so

sup
s≤λ≤t+s

∥
∥PΩ

λ f
∥
∥
L∞(U)

≤ ‖f‖1 sup
s≤λ≤t+s

esup
U

pΩ
λ ≤ ‖f‖1 esup

U

pΩ
s .

Therefore, it follows from (4.14) that, for almost all x ∈ U ,
∫

U

pΩ
t+s (x, y) f (y) dµ (y) ≤

∫

U

q (x, y) f (y) dµ (y) +K
[
1− PU

t 1U(x)
]
‖f‖1, (4.16)

where K = esupU p
Ω
s . Next, we will apply Corollary 3.5 with function

ϕ (x, y) = pΩ
t+s (x, y)− q (x, y)−K

[
1− PU

t 1U(x)
]
.

Observe that ϕ− ∈ L
1
rec (U × U) (cf. Lemma 3.4), which follows from

q (x, y) ≤
∫

Ω

pΩ
t (x, z) pΩ

s (z, y) dµ (z) = pΩ
t+s (x, y)

and pΩ
t+s ∈ L1

rec (Ω× Ω) (cf. the proof of Lemma 3.6). Hence, by Corollary 3.5,
(4.16) implies that, for almost all x, y ∈ U ,

pΩ
t+s (x, y) ≤ q (x, y) +K

[
1− PU

t 1U(x)
]
. (4.17)
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Taking the essential supremum in y ∈ U and noticing that by (4.15)

esup
y∈U

q (x, y) ≤ esup
z∈U

pUt (x, z) , (4.18)

we obtain (4.12).
Assume now that esupU p

Ω
s = ∞. Fix some pointwise version of PU

t 1U and con-
sider the set

W =
{
x ∈ U : PU

t 1U (x) = 1
}
.

If x ∈ U \W then the last term in (4.12) is ∞ and (4.12) is trivially satisfied. In
order to prove (4.12) in W , it suffices to show that, for almost all x ∈ W ,

esup
y∈U

pΩ
t+s(x, y) ≤ esup

y∈U
pUt (x, y). (4.19)

Indeed, for any measurable set A ⊂ Ω, we have that, in W ,

PU
t 1A ≤ PΩ

t 1A = PΩ
t 1Ω − P

Ω
t 1Ω\A

≤ 1− PU
t 1U\A = PU

t 1U − P
U
t 1U\A = PU

t 1A,

which implies that PΩ
t 1A = PU

t 1A in W . It follows by an approximation argument
that, for any h ∈ L2 (Ω),

PΩ
t h = PU

t h in W. (4.20)

Choosing h = PΩ
s f where f is as above, we obtain that, for µ-almost all x ∈ W ,

PΩ
t+sf(x) = PU

t P
Ω
s f (x) =

∫

U

q (x, y) f (y) dµ (y) ,

where q is given by (4.15). Applying Corollary 3.5 and (4.18), we obtain (4.19). �

4.3. Comparison estimate with localization in space.

Proposition 4.7. Assume that (E ,F) is a regular Dirichlet form. Let U,Ω be two
open subsets of M , and let K be a closed subset of M with K ⊂ U . Then, for any
non-negative function f ∈ L2 ∩ L∞(Ω), for all t > 0 and µ-almost all x ∈ Ω,

PΩ
t f(x)− PU

t f(x) ≤ sup
0<s≤t

∥
∥PΩ

s f
∥
∥
L∞(Ω\K)

. (4.21)

Remark 4.8. For the case when K is compact, this statement was proved in [21,
Lemma 4.18]. The extension to an arbitrary closed set K is rather non-trivial as
one can see from the proof below.

Before we proceed to the proof of Proposition 4.7, we prove two auxiliary state-
ments. We use a sign ‘⇀’ to denote the weak convergence in a Hilbert space.

Proposition 4.9. Let {uk} be a sequence of functions from F such that uk
L2

⇀ u ∈ F

as k → ∞. If in addition the numerical sequence {E(uk)} is bounded then uk
F
⇀ u

as k →∞.

Proof. Renaming uk − u to uk, we can assume that u = 0. We need to prove that
uk converges to 0 weakly in F , that is, for any ϕ ∈ F ,

E1 (uk, ϕ)→ 0 as k →∞. (4.22)



HEAT KERNEL 27

Let ∆ be the generator of the form (E ,F) and D be its domain. It is easy to verify

that (4.22) holds for any ϕ ∈ D. Indeed, since ϕ,∆ϕ ∈ L2 and uk
L2

⇀ 0, it follows
that

E1(uk, ϕ) = E(uk, ϕ) + (uk, ϕ) = − (uk,∆ϕ) + (uk, ϕ)→ 0.

Since D is dense in F , for any function ϕ ∈ F , there exists a sequence {ϕj} ⊂ D(∆)
such that ϕj → ϕ in F as j →∞. Let C be a constant that bounds all E (uk). By
the Cauchy-Schwarz inequality, we have

∣
∣E1

(
uk, ϕ− ϕj

)∣∣ ≤
√
E1 (uk) E1

(
ϕ− ϕj

)
≤ C

√
E1

(
ϕ− ϕj

)
,

whence

|E1 (uk, ϕ)| =
∣
∣E1

(
uk, ϕj

)
+ E1

(
uk, ϕ− ϕj

)∣∣

≤
∣
∣E1

(
uk, ϕj

)∣∣+ C
√
E1

(
ϕ− ϕj

)
.

Letting k →∞ and then letting j →∞, we obtain (4.22). �

Proposition 4.10. Let Ω be a precompact open subset of M , U be an open subset
of M , and K be a closed subset of U . If g ∈ F(Ω) ∩ L∞ and g ≤ ψ in Ω \ K for
some 0 ≤ ψ ∈ F ∩ C0(M), then

(g − ψ)+ ∈ F (Ω ∩ U) .

Proof. Assume first that g ∈ F ∩ C0(Ω). Since ψ ≥ 0 and g ≤ ψ in Ω \K, we see
that

supp(g − ψ)+ ⊂ (supp g) ∩K b Ω ∩ U.

Noting that (g − ψ)+ ∈ F ∩ C0(M), we obtain that

(g − ψ)+ ∈ F (Ω ∩ U) . (4.23)

For a general function g ∈ F(Ω)∩L∞, choose a sequence {gk} from F ∩C0(Ω) such

that gk
F
→ g as k →∞. Since g is bounded, say by a constant C, we can assume all

gk are also bounded by C; otherwise, we can replace gk by (−C)∨ gk ∧C, using the
fact that

(−C) ∨ gk ∧ C
F
−→ g

(cf. [15, Theorem 1.4.2 (v)]). Choose a cut-off function ϕ of the couple (K ∩ Ω, U)
and set

g̃k := (gk ∧ ψ) (1− ϕ) + gkϕ. (4.24)

Since g̃k ∈ F ∩ C(M), and supp g̃k ⊂ supp gk b Ω, we see that g̃k ∈ F ∩ C0(Ω).
Define the set

K̃ := K ∪ suppϕ

(see Fig. 1).

Clearly K̃ is a closed subset of U . Observe that g̃k ≤ ψ in Ω \ K̃. Applying the

above argument to the closed set K̃, we obtain that

(g̃k − ψ)+ ∈ F (Ω ∩ U) . (4.25)

By the weak closedness of F (Ω ∩ U) in F , it remains to show that

(g̃k − ψ)+

F
⇀ (g − ψ)+ .
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supp

Figure 1. Set Ω, U,K and K̃ = K ∪ suppϕ

By Proposition 4.9, it suffices to verify that

(g̃k − ψ)+

L2

−→ (g − ψ)+ as k →∞, (4.26)

E
(
(g̃k − ψ)+

)
≤ C for some constant C and for all k. (4.27)

To prove (4.26), it is enough to show that

g̃k
L2

−→ g as k →∞.

Since gk
L2

→ g, we see that

g̃k = (gk ∧ ψ) (1− ϕ) + gkϕ
L2

−→ (g ∧ ψ) (1− ϕ) + gϕ =: g̃.

Let us verify that g ≡ g̃. Indeed, on K we have ϕ = 1 in K and hence g̃ = g; in
Ω \K we have g ≤ ψ and hence

g̃ = g(1− ϕ) + gϕ = g;

finally, outside Ω, we have g = 0 whence also g̃ = 0. Therefore, (4.26) is proved.
To prove (4.27), note that (g̃k − ψ)+ is obtained from gk, ψ by using a finite

number of the following operations on functions from F ∩ L∞:

(1) addition and subtraction;
(2) taking a positive part;
(3) taking minimum of two functions;
(4) multiplication by ϕ ∈ F ∩ C0.

In each of these operations, the energy of the outcome is controlled by the energy
of the input entries as follows.

(1) If u, v ∈ F then

E (u± v) ≤ 2E (u) + 2E (v)

(2) If u ∈ F , then E (u+) ≤ E (u).
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(3) If u, v ∈ F then

E (u ∧ v) =
1

4
E (u+ v − |u− v|)

≤
1

2
(E(u+ v) + E(u− v))

≤ 2 (E (u) + E (v)) .

(4) If u ∈ F ∩ L∞ then

E(uϕ)1/2 ≤ ‖ϕ‖∞E(u)1/2 + ‖u‖∞E(ϕ)1/2.

It follows that E
(
(g̃k − ψ)+

)
is bounded in terms of E (gk) , E (ψ), E (ϕ) , ‖gk‖∞, ‖ϕ‖∞,

which implies that E
(
(g̃k − ψ)+

)
is uniformly bounded for all k, which proves

(4.27). �

We are now in a position to prove Proposition 4.7.

Proof of Proposition 4.7. We can assume that Ω is precompact, because in the gen-
eral case one can exhaust Ω by a sequence of precompact open subsets {Ωk}, apply
(4.21) to each Ωk and then pass to the limit as k →∞.

In Ω \U the inequality (4.21) is trivially satisfied so that it suffices to verify it in
Ω ∩ U . Fix T > 0, set

m := sup
0<s≤T

∥
∥PΩ

s f
∥
∥
L∞(Ω\K)

, (4.28)

and prove that

PΩ
t f − P

U
t f ≤ m in (0, T ]× (Ω ∩ U) , (4.29)

which will imply (4.21). Let us first state the idea of the proof assuming that M
is a Riemannian manifold and functions PΩ

t f and PU
t f are continuous up to the

boundaries of Ω and U , respectively. Then the function v = PΩ
t f − P

U
t f satisfies in

Ω∩U the heat equation, the initial condition v (t, ·)→ 0 as t→ 0 and the boundary
condition

v ≤ m on (0, T ]× ∂ (Ω ∩ U) ,

because v ≤ 0 on ∂Ω and v ≤ m on ∂U ∩ Ω by (4.28). By the classical parabolic
maximum principle, we obtain v ≤ m in (0, T ]× (Ω ∩ U).

In the general case, let η be a cut-off function of the couple (Ω,M). Set

u := PΩ
t f − P

U
t f −mη

and show that u is non-positive in (0, T ] × (Ω ∩ U), which will settle (4.29). It is
easy to see that u is a weak subsolution of the heat equation in (0,∞) × (Ω ∩ U)
(cf. the proof of Lemma 4.3) and that

u (t, ·)+

L2(Ω∩U)
−→ 0 as t→ 0.

We are left to verify that

u (t, ·)+ ∈ F(Ω ∩ U) for all t ∈ (0, T ] (4.30)
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because then the parabolic maximum principle yields u ≤ 0. First observe that, for
t ∈ (0, T ],

PΩ
t f ∈ F(Ω) ∩ L∞,

0 ≤ mη ∈ F ∩ C0(M),

PΩ
t f ≤ mη in Ω \K,

where the latter holds by the definition of m. Applying Proposition 4.10 with
g = PΩ

t f and ψ = mη, we conclude that
(
PΩ
t f −mη

)
+
∈ F(Ω ∩ U).

Since u ≤
(
PΩ
t f −mη

)
+

, we see that (4.30) follows by Remark 4.2. �

5. Analytic characterization of (UEβ)

In this section we present the proof of the main Theorem 2.1, which is preceded
by a number of auxiliary results.

5.1. Volume doubling. Let (M,d) be a metric space, and let µ be a Borel measure
on M . The following lemmas are well-known in the setting of complete manifolds,
see for example [24], [16], [33].

Proposition 5.1. If (V D) holds on M , then there exists α > 0 depending only on
the doubling constant CD, such that for all x, y ∈M and 0 < r ≤ R,

V (x,R)

V (y, r)
≤ CD

(
R + d (x, y)

r

)α
. (5.1)

Proof. If x = y, then R ≤ 2nr where

n =

⌈

log2

R

r

⌉

≤ log2

R

r
+ 1,

whence, it follows from (V D) that

V (x,R)

V (x, r)
≤
V (x, 2nr)

V (x, r)
≤ (CD)n ≤ (CD)log2

R
r

+1 = CD

(
R

r

)log2 CD

. (5.2)

If x 6= y, then B (x,R) ⊂ B (y,R + r0) where r0 = d (x, y). It follows from (5.2)
that

V (x,R)

V (y, r)
≤
V (y,R + r0)

V (y, r)
≤ CD

(
R + r0

r

)log2 CD

,

which finishes the proof. �

Proposition 5.2. If (M,d) is connected and µ satisfies (V D), then there exist
positive constants α′ and c such that

V (x,R)

V (x, r)
≥ c

(
R

r

)α′

for all x ∈M and 0 < r ≤ R, (RVD)

provided B (x,R)c is non-empty.
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Proof. The condition B (x,R)c 6= ∅ implies that

B (x, ρ′) \B (x, ρ) 6= ∅ (5.3)

for all 0 < ρ < R and ρ′ > ρ. Indeed, otherwise M splits into disjoint union of two
open sets: B (x, ρ) and B (x, ρ)

c
. Since M is connected, the set B (x, ρ)

c
must be

empty, which contradicts the non-emptiness of B (x,R)c.
If 0 < ρ ≤ R/2, then we have by (5.3)

B

(

x,
5

3
ρ

)

\B

(

x,
4

3
ρ

)

6= ∅.

Let y be a point in this annulus. It follows from (5.1) that

V (x, ρ) ≤ CV (y, ρ/3)

for some constant C > 0, whence

V (x, 2ρ) ≥ V (x, ρ) + V (y, ρ/3) ≥ (1 + ε)V (x, ρ) , (5.4)

where ε = C−1.
For any 0 < r ≤ R, we have that 2nr ≤ R where

n :=

⌈

log2

R

r

⌉

≥ log2

R

r
− 1.

For any 0 ≤ k ≤ n− 1, we have 2kr ≤ R/2, and whence by (5.4),

V
(
x, 2k+1r

)
≥ (1 + ε)V (x, 2kr).

Iterating this inequality, we obtain

V (x,R)

V (x, r)
≥
V (x, 2nr)

V (x, r)
≥ (1 + ε)n

≥ (1 + ε)log2
R
r
−1 = (1 + ε)−1

(
R

r

)log2(1+ε)

,

thus proving (RVD). �

Corollary 5.3. Assume that (M,d) is connected and µ satisfies (V D). Then

µ (M) =∞ ⇔ diam(M) =∞ ⇔ (RVD) .

Proof. If µ (M) =∞, then diam(M) =∞; indeed, otherwise M would be a ball of
a finite radius and its measure would be finite by (V D). If diam(M) = ∞, then
Bc (x,R) 6= ∅ for any ball B (x,R), and (RVD) holds by Proposition 5.2. Finally,
(RVD) implies µ (M) =∞ by letting R→∞ in (RVD). �

In the case when all balls in M are precompact, the statement of Corollary 5.3
can be complemented as follows6:

µ (M) =∞⇔M is non-compact⇔ (RVD) .

Indeed, if diamM <∞ then M is a ball and, hence, M is compact. If diamM =∞
then M is non-compact as an unbounded set. Let us emphasize that we never
assume in this paper that balls are precompact.

6As the referee pointed it out, this equivalence is due to Martell.
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5.2. An estimate of the Dirichlet heat kernel. The results of this Subsection
are used in the proof of the implication (FKβ) + (Sβ) ⇒ (DUEβ) of Theorem 2.1.
The arguments are known in the setting of manifolds, see for example [24], [17], [18],
[9]. Here we have modified them to adjust to the present setting.

Lemma 5.4. Let (E ,F) be a regular Dirichlet form in L2 (M,µ). Let U ⊂M be an
open set with µ (U) < ∞. Assume that there exist positive constants a and ν such
that, for all non-empty open sets Ω ⊂ U ,

λmin (Ω) ≥ aµ (Ω)−ν . (5.5)

Then there exists a constant cν > 0 depending only on ν such that

E (u) ≥ cν a‖u‖
2+2ν
2 ‖u‖−2ν

1 , (5.6)

for any function u ∈ F (U) \ {0}.

Proof. Assume first that u ∈ F ∩ C0 (U) and u ≥ 0. By the Markov property, we
have that, for any t ≥ 0,

E (u) ≥ E
(
(u− t)+

)
. (5.7)

The set

Us := {x ∈ U : u (x) > s}

is open for every s > 0. For any t > s, we have that Ut b Us. Since (u− t)+

vanishes outside Ut, we see that (u− t)+ ∈ F (Us). It follows from (2.12) that

E
(
(u− t)+

)
≥ λmin (Us)

∫

Us

(u− t)2
+ dµ. (5.8)

For simplicity, let A = ‖u‖1 and B = ‖u‖2
2. Since u ≥ 0, we have

(u− t)2
+ ≥ u2 − 2tu in M,

which implies that
∫

Us

(u− t)2
+dµ =

∫

M

(u− t)2
+dµ ≥ B − 2tA. (5.9)

On the other hand, we have

µ(Us) ≤
1

s

∫

Us

u dµ ≤
A

s
,

which combines with (5.5) to yield that

λmin (Us) ≥ aµ (Us)
−ν ≥ a

( s
A

)ν
. (5.10)

Combining (5.7), (5.8), (5.9), and (5.10), we obtain

E (u) ≥ λmin (Us)

∫

Us

(u− t)2
+ dµ ≥ a

( s
A

)ν
(B − 2tA) .

Letting t → s+ and then choosing s = B
4A

, we obtain that (5.6) holds for any
non-negative u ∈ F ∩ C0 (U).

Since E (|u|) ≤ E(u) by the Markov property, we see that (5.6) holds also for any
signed u ∈ F ∩ C0 (U).
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Consider now a general function u ∈ F (U). By the definition of (E ,F (U)), there
exists a sequence {un} ∈ F ∩ C0 (U) such that

‖un − u‖2 −→ 0 and E (un − u) −→ 0. (5.11)

Since µ (U) <∞, the Cauchy-Schwarz inequality yields

‖un − u‖1 ≤
√
µ(U) ‖un − u‖2 → 0. (5.12)

By the first part of the proof, (5.6) holds for each function un. Passing to the limit
as n→∞ and using (5.11), (5.12), we obtain (5.6) for any u ∈ F (U). �

The next lemma is a modification of the Nash argument [31], which allows to
obtain an upper bound of the Dirichlet heat kernel from the Nash type inequality
(5.6) (see also [7], [17, Theorem 2.1]).

Lemma 5.5. Under the hypotheses of Lemma 5.4, the heat kernel pUt exists, and
satisfies the inequality

esup
x,y∈U

pUt (x, y) ≤ C (at)−1/ν (5.13)

for all t > 0, where C = C (ν).

Proof. Let f ∈ L2 (U, µ) be non-negative with ‖f‖1 = 1. Set ut = PU
t f for t > 0 so

that ut ∈ F (U). Denote J(t) = ‖ut‖2
2. Similarly to (3.31), we have that

dJ

dt
= −2E (ut) . (5.14)

Because PU
t is a contraction in L1, we have ‖ut‖1 ≤ 1. Applying (5.6) for ut and

then using (5.14), we obtain the differential inequality

dJ

dt
≤ −caJ1+ν ,

whence J (t) ≤ C (at)−1/ν . That is,

‖PU
t f‖

2
2 ≤ C (at)−1/ν

,

which means that the semigroup
{
PU
t

}
t>0

is L1(U) → L2(U) ultracontractive. By

Lemma 3.7, we conclude that PU
t has a heat kernel pUt satisfying (5.13). �

Note that the hypothesis µ (U) <∞ can be dropped in the context of Lemma 5.5
using an exhaustion of U by precompact open sets.

5.3. From heat kernels in balls to the global heat kernel. The following
lemma is used in the proof of the implication (FKβ) + (Sβ)⇒ (DUEβ) ,which is a
part of Theorem 2.1.

Lemma 5.6. Assume that (E ,F) is regular and local. Let Qt (B) be a positive
function defined for any t > 0 and any ball B ⊂M such that, for some constant L,

Qs (λB) ≤ LQt (B) (5.15)
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for all balls B, t
2
≤ s ≤ t, and 1 ≤ λ ≤ 4. Assume that the heat kernel pBt exists for

any ball B and let ρ : [0,∞) → [0,∞) be an increasing function. Assume that, for
any ball B of radius r ≥ ρ(t), the following conditions both are satisfied:

esup
B

pBt ≤ Qt (B) , (5.16)

1− PB
t 1B ≤

1

2L
in

1

4
B. (5.17)

Then the global heat kernel pt exists and satisfies the following estimate, for any
t > 0 and any ball B of radius r = ρ (t):

esup
B

pt ≤ 2L2Qt (B) .

The proof below is an elaborated version of Kigami’s iteration argument [28, proof
of Theorem 2.9]. Unlike [28], we use neither ultracontractivity nor continuity of the
heat kernel.

Proof. Choose some x0 ∈M , R > r > 0, and set

U = B (x0, r) and Ω = B (x0, R) .

It follows from (5.17) that if 0 < s < t and

r ≥ ρ (t− s)

then

esup
1
4
U

(
1− PU

t−s1U
)
≤ ε :=

1

2L
.

By Theorem 4.6 (cf. (4.13)), we have

esup
1
4
U

pΩ
t ≤ esup

U

pUt−s + ε esup
U

pΩ
s , (5.18)

which implies together with (5.16) that

esup
1
4
U

pΩ
t ≤ Qt−s (U) + ε esup

U

pΩ
s . (5.19)

Fix t > 0 and define for k = 0, 1, 2, ... the sequences

tk =
1

2

(
1 + 2−k

)
t, rk = 4kρ (t) , Bk = B (x0, rk) .

(see Fig. 2). In particular, we have t0 = t and B0 = B (x0, ρ (t)).
Note that, for any k ≥ 0,

rk+1 = 4k+1ρ (t) ≥ ρ
(
2−(k+2)t

)
= ρ(tk − tk+1).

Assuming that Bk+1 ⊂ Ω and applying (5.19) with U = Bk+1, we obtain

esup
Bk

pΩ
tk
≤ Q2−(k+2)t (Bk+1) + ε esup

Bk+1

pΩ
tk+1

. (5.20)

On the other hand, we have by (5.15)

Q2−(k+2)t (Bk+1) ≤ LQ2−(k+1)t (Bk) ≤ L2Q2−kt (Bk−1)

≤ · · · ≤ Lk+1Qt/2 (B0) ≤ Lk+2Qt (B0) .
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Ω

1/2t

Figure 2. The sequences of times tk and balls Bk

Hence, it follows from (5.20) that

esup
Bk

pΩ
tk
≤ Lk+2Qt (B0) + ε esup

Bk+1

pΩ
tk+1

,

which gives by iteration that, for any positive integer n,

esup
B0

pΩ
t ≤ L2

(
1 + Lε+ (Lε)2 + ...

)
Qt (B0) + εn esup

Bn

pΩ
tn

= 2L2Qt (B0) + εn esup
Bn

pΩ
tn
, (5.21)

as long as Bn ⊂ Ω. Set here Ω = Bn and let n → ∞. Observe that by (5.16) and
(5.15),

esup
Bn

pBntn ≤ Qtn (Bn) ≤ LnQt (B0) ,

and, hence,

lim
n→∞

εn esup
Bn

pBntn ≤ lim
n→∞

(εL)nQt (B0) = 0.

It follows from (5.21) that

lim
n→∞

esup
B0

pBnt ≤ 2L2Qt (B0) . (5.22)

On the other hand, the sequence
{
pBnt
}∞
n=1

increases as n→∞ and converges almost
everywhere on M ×M to a function pt . This function is finite almost everywhere
because of the uniform estimate

∫

Bn

pBnt (x, y) dµ (y) ≤ 1.

For any non-negative function f ∈ L2 (M), we have as n→∞
∫

Bn

pBnt (x, y) f (y) dµ (y)→
∫

Bn

pt (x, y) f (y) dµ (y)
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and ∫

Bn

pBnt (x, y) f (y) dµ (y) = PBn
t f (x)→ Ptf (x) .

Hence, pt (x, y) is the heat kernel of Pt. It follows from (5.22) that

esup
B0

pt = lim
n→∞

esup
B0

pBnt ≤ 2L2Qt (B0) ,

which was to be proved. �

5.4. Tail estimates. The main result of this Subsection is Theorem 5.8, which
implies the equivalences

(Texp)⇔ (Tβ)⇔ (Sβ) .

The most non-trivial part of Theorem 5.8 is contained in the following statement.

Theorem 5.7. Let (E ,F) be a regular, strongly local Dirichlet form in L2(M,µ).
Let ρ : [0,∞)→ [0,∞) be an increasing function. Assume that there exist ε ∈ (0, 1)
and δ > 0 such that, for any ball B of radius r > 0 and for any positive t such that
ρ (t) ≤ δr,

1− PB
t 1B ≤ ε in

1

4
B. (5.23)

Then, for any t > 0 and any ball B of radius r > 0,

Pt1Bc ≤ C exp
(
−c′tΨ

(cr
t

))
in

1

2
B, (5.24)

where C, c, c′ > 0 are constants depending on ε, δ, and function Ψ is defined by

Ψ(s) := sup
λ>0

{
s

ρ(1/λ)
− λ

}

(5.25)

for all s ≥ 0.

Before the proof, let us give some comments.
1. Letting λ→ 0 in (5.25), one sees that Ψ (s) ≥ 0 for all s ≥ 0. It is also obvious

from (5.25) that Ψ (s) is increasing in s.
2. If ρ(t) = t1/β for β > 1, then

Ψ(s) = sup
λ>0

{
sλ1/β − λ

}
= cβs

β/(β−1)

for all s ≥ 0, where cβ > 0 depends only on β (the supremum is attained for

λ = (s/β)
β
β−1 ). The estimate (5.24) becomes

Pt1Bc ≤ C exp

(

−c

(
rβ

t

) 1
β−1

)

in
1

2
B.

3. Substituting (5.25) into (5.24), we can rewrite the latter in the form

Pt1Bc ≤ C exp

(

c′λt−
c′′r

ρ(1/λ)

)

in
1

2
B, (5.26)

for any λ > 0, which is sometimes more convenient than (5.24).
4. A similar Theorem was proved in [21, Theorem 3.4], using a more complicated

method. A relatively short proof presented below is an adaptation of the argument
of Hebisch and Saloff-Coste [26], although with two modifications: firstly, we do
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not assume the existence of the heat kernel, secondly, we do not use the associated
diffusion process.

Proof. Step 1. Assume that

ρ (t) ≤ δr (5.27)

and that B is a ball of radius r. For any positive integer k, set Bk = kB. We will
prove that

1− PBk
t 1Bk ≤ εk in

1

4
B. (5.28)

Since M is separable, there is a dense countable set of points in Bk. Let {bj} be
a sequence of balls of radii r centered at those points. Clearly, bj ⊂ Bk+1 and the
family

{
1
4
bj
}

covers Bk (see Fig. 3).

Bk

Bk+1

bj

1/4bj

r

Figure 3. Balls Bk and bj

Due to (5.27), inequality (5.23) is valid for any ball bj, that is, for all 0 < s ≤ t,

PBk+1
s 1Bk+1

≥ P bj
s 1bj ≥ 1− ε in

1

4
bj.

It follows that

PBk+1
s 1Bk+1

≥ 1− ε in Bk.

Applying the inequality (4.11) of Corollary 4.5 with Ω = Bk+1 and U = Bk, we
obtain that the following inequality holds in Bk:

1− PBk+1

t 1Bk+1
≤

(
1− PBk

t 1Bk

)
sup

0<s≤t

∥
∥1− PBk+1

s 1Bk+1

∥
∥
L∞(Bk)

≤ ε
(

1− PBk
t 1Bk

)
.

Iterating in k and using (5.23), we obtain (5.28).
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It follows from (5.28) that

Pt1Bck ≤ 1− Pt1Bk ≤ 1− PBk
t 1Bk ≤ εk in

1

4
B. (5.29)

Although (5.29) has been proved for any integer k ≥ 1, it is trivially true also for
k = 0, if we define B0 := ∅.

Step 2. Fix t > 0, x ∈M and consider the function

Et,x = exp

(

c
d(x, ·)
ρ(t)

)

, (5.30)

where the constant c > 0 is to be determined later on. Set

r = δ−1ρ (t) ,

and we will prove that
Pt (Et,x) ≤ C in B (x, r/4) , (5.31)

where C is a constant depending on ε, δ. Set as before Bk = B (x, kr) , k ≥ 1, and
B0 = ∅. Using (5.30) and (5.29), we obtain that in B (x, r/4),

Pt (Et,x) =
∞∑

k=0

Pt
(
1Bk+1\BkEt,x

)
≤

∞∑

k=0

‖Et,x‖L∞(Bk+1)Pt
(
1Bk+1\Bk

)

≤
∞∑

k=0

exp

(

c
(k + 1) r

ρ(t)

)

Pt
(
1Bck
)
≤

∞∑

k=0

exp
(
c(k + 1)δ−1

)
εk.

Choosing c < δ log 1
ε

we obtain that this series converges, which proves (5.31).
Step 3. Let us prove that, for all t > 0 and x ∈M ,

PtEt,x ≤ C1Et,x, (5.32)

for some constant C1 = C (ε, δ). Observe first that, for all y, z ∈M , we have by the
triangle inequality

Et,x(y) = exp

(

c
d(x, y)

ρ(t)

)

≤ exp

(

c
d(x, z)

ρ(t)

)

exp

(

c
d(z, y)

ρ(t)

)

= Et,x(z)Et,z(y),

which can also be written in the form of a function inequality:

Et,x ≤ Et,x (z)Et,z.

It follows that
Pt (Et,x) ≤ Et,x (z)Pt (Et,z) . (5.33)

By the previous step, we have

Pt (Et,z) ≤ C in B (z, r) , (5.34)

where r = 1
4
δ−1ρ (t). For all y ∈ B (z, r), we have

Et,z (y) ≤ exp

(
cr

ρ (t)

)

= exp
(
cδ−1/4

)
=: C ′,

whence
Et,x (z) ≤ Et,x (y)Et,z (y) ≤ C ′Et,x (y)
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(see Fig. 4).

x z
r

y

Figure 4. Points x, y, z

Letting y vary, we can write

Et,x (z) ≤ C ′Et,x in B (z, r) .

Combining this with (5.33) and (5.34), we obtain

Pt (Et,x) ≤ CC ′Et,x in B (z, r) .

Since z is arbitrary, covering M by a countable sequence of balls like B (z, r), we
obtain that (5.32) holds on M with C1 = CC ′.

Step 4. Let us prove that, for all t > 0, x ∈M , and for any positive integer k,

Pkt (Et,x) ≤ Ck
1 in

1

4
B, (5.35)

where B =
(
x, δ−1ρ (t)

)
. Indeed, by (5.32)

Pkt (Et,x) = P(k−1)tPt (Et,x) ≤ C1P(k−1)tEt,x

which implies by iteration that

Pkt (Et,x) ≤ Ck−1
1 PtEt,x.

Combining with (5.31) and noticing that C ≤ C1, we obtain (5.35).
Step 5. Fix a ball B = B (x0, r) and observe that (5.24) is equivalent to the

following: for all t, λ > 0,

Pt1Bc ≤ C exp

(

c′λt−
cr

ρ(1/λ)

)

in
1

2
B, (5.36)

where C, c, c′ > 0 are constants depending on ε, δ. In what follows, we fix also t and
λ.

Observe first that, for any x ∈ 1
2
B,

Pt1Bc ≤ Pt1B(x,r/2)c .

Hence, it suffices to prove that, for any x ∈ 1
2
B,

Pt1B(x,r/2)c ≤ C exp

(

c′λt−
cr

ρ(1/λ)

)

(5.37)

in a (small) ball around x. Covering then 1
2
B by a countable family of such balls,

we then obtain (5.36).
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Changing t to t/k in (5.35), we obtain that

Pt
(
Et/k,x

)
≤ Ck

1 in B (x, σk)

where σk = 1
4
δ−1ρ (t/k). Since

Et/k,x ≥ exp

(

c
r

ρ (t/k)

)

in B (x, r)c

and, hence,

1B(x,r)c ≤ exp

(

−
cr

ρ(t/k)

)

Et/k,x,

we obtain that the following inequality holds in B (x, σk)

Pt1B(x,r)c ≤ exp

(

−
cr

ρ(t/k)

)

Pt
(
Et/k,x

)
≤ exp

(

c′k −
cr

ρ(t/k)

)

where c′ = logC1. Given λ > 0, choose an integer k ≥ 1 such that

k − 1

t
< λ ≤

k

t
.

Then we obtain the following inequality in B (x, σk)

Pt1B(x,r)c ≤ exp

(

c′ (λt+ 1)−
cr

ρ (1/λ)

)

,

which finishes the proof. �

Theorem 5.8. Let (E ,F) be a regular, local, conservative Dirichlet form in L2(M,µ).
Let ρ : [0,∞)→ [0,∞) be an increasing function and let Ψ be defined as in (5.25).
Then, the following conditions are equivalent.

(i) : There exist ε ∈ (0, 1) and δ > 0 such that, for any ball B of radius r and
any positive t such that ρ (t) ≤ δr,

1− PB
t 1B ≤ ε in

1

4
B. (5.38)

(ii) : There exist constants C, c, c′ > 0 such that, for any t > 0 and any ball B of
radius r > 0,

Pt1Bc ≤ C exp
(
−c′tΨ

(cr
t

))
in

1

4
B. (5.39)

(iii) : There exist ε ∈ (0, 1
2
) and δ > 0 such that, for any ball B of radius r and

any positive t such that ρ (t) ≤ δr,

Pt1Bc ≤ ε in
1

4
B. (5.40)

Proof. Let us first show that the locality and the conservativeness imply the strong
locality. Indeed, by [15, Lemmas 4.5.2, 4.5.3], we have the following identity

lim
t→0

1

t

∫

M

(1− Pt1) u2 dµ =

∫

M

ũ2dk

for any u ∈ F where k is the killing measure of (E ,F) and ũ is a quasi-continuous
version of u. Since Pt1 = 1, it follows that k = 0. Therefore, by the Beurling-Deny
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formula [15, Theorem 3.2.1], (E ,F) is strongly local. Hence, Theorem 5.7 applies
and gives the implication (i)⇒ (ii).

To prove (ii) ⇒ (iii) observe first that the function Ψ defined by (5.25) satisfies
the following inequality: for all s ≥ 0 and A ≥ 1,

Ψ(As) ≥ AΨ(s), (5.41)

which follows from

Ψ(As) = sup
λ>0

{
As

ρ(1/λ)
− λ

}

≥ A sup
λ>0

{
s

ρ(1/λ)
− λ

}

= AΨ(s).

If r ≥ 2c−1Aρ(t) where a constant A will be specified below, then we have, using
(5.41),

Ψ
(cr
t

)
≥ Ψ

(

2A
ρ(t)

t

)

≥ AΨ

(

2
ρ(t)

t

)

= A sup
λ>0

{
2ρ(t)

tρ(1/λ)
− λ

}

≥
A

t
,

where the last inequality holds by letting λ = 1/t. Hence, we obtain from (5.39)
that in 1

4
B

Pt1Bc ≤ C exp(−c′A) ≤ ε,

provided A is sufficiently large.
The implication (iii)⇒ (i) was proved in [21, Theorem 3.1] under the assumption

that all the balls are precompact (a probabilistic prototype of that proof can be
found in [1]). Here we repeat the same argument but now we do not need the
precompactness of balls due to Proposition 4.7. Indeed, applying estimate (4.21) of
Proposition 4.7 with Ω = M , U = B = B (x0, r), K = 3

4
B and f = 1 1

2
B, we obtain

that, for all t and almost everywhere in M ,

PB
t 1 1

2
B ≥ Pt1 1

2
B − sup

0<s≤t

∥
∥
∥Ps1 1

2
B

∥
∥
∥
L∞(( 3

4
B)

c
)
. (5.42)

For any x ∈ 1
4
B, we have that B(x, r/4) ⊂ 1

2
B (see Fig. 5).

Using the identity Pt1 = 1 we obtain, for any x ∈ 1
4
B,

Pt1 1
2
B = 1− Pt1( 1

2
B)

c ≥ 1− Pt1B(x,r/4)c .

Applying (5.40) for the ball B (x, r/4), we obtain that

Pt1B(x,r/4)c ≤ ε in B (x, r/16) ,

provided t is so small that

ρ (t) ≤ δ
r

4
. (5.43)

It follows that, for any x ∈ 1
4
B,

Pt1 1
2
B ≥ 1− ε in B (x, r/16) ,

whence

Pt1 1
2
B ≥ 1− ε in

1

4
B. (5.44)
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x0

y

1/4 B

B=B(x0,r)

1/2 B

x

3/4 B

B(y, 1/4 r)

B(x, 1/4 r)

B(y,1/16 r)

B(x,1/16 r)

Figure 5. Illustration to the proof of the implication (iii) ⇒ (i) of
Theorem 5.8

On the other hand, for any y ∈
(

3
4
B
)c

, we have 1
2
B ⊂ B (y, r/4)c (see Fig. 5),

whence

Ps1 1
2
B ≤ Ps1B(y,r/4)c .

Applying (5.40) for the ball B (y, r/4) at time s, we obtain if (5.43) holds then, for
all 0 < s ≤ t,

Ps1B(y,r/4)c ≤ ε in B (y, r/16) .

It follows that, for any y ∈
(

3
4
B
)c

,

Ps1 1
2
B ≤ ε in B (y, r/16) ,

whence

Ps1 1
2
B ≤ ε in

(
3

4
B

)c
. (5.45)

Combining (5.42), (5.44) and (5.45), we obtain that, under condition (5.43),

PB
t 1B ≥ PB

t 1 1
2
B ≥ 1− 2ε in

1

4
B, (5.46)

which is equivalent to (5.38). �

Remark 5.9. Observe that for (i) ⇒ (ii), the strong locality is needed but the
conservation property of (E ,F) is not required. For (iii) ⇒ (i), the conservation
property is needed but the locality is not required. Finally, the implication (ii) ⇒
(iii) requires no assumption on (E ,F).

The same argument as in the proof of the implication (iii)⇒ (i) shows that (Texp)
implies the following version of the survival estimate: for any ball B = B (x0, r) and
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any t > 0,

1− PB
t 1B ≤ 2C exp

(

−c
( r

4t1/β

) β
β−1

)

in
1

4
B, (5.47)

where C, c are the same constants as in (Texp).

5.5. Proof of Theorem 2.1. We are now in position to prove Theorem 2.1. Ob-
serve that the implication

(UEβ)⇒ (ΦUEβ)

is trivial by taking
Φ(s) = exp

(
−csβ/(β−1)

)
.

Applying Theorem 5.8 with ρ(t) = t1/β, we obtain

(Texp)⇔ (Tβ)⇔ (Sβ) .

We are left to verify the following four implications:

(FKβ) + (Sβ)⇒ (DUEβ)
(ΦUEβ)⇒ (DUEβ) + (Tβ)
(DUEβ) + (Texp)⇒ (UEβ)
(DUEβ)⇒ (FKβ) .

Indeed, using the above implications, the proof of Theorem 2.1 can be presented in
the following flowchart:

(UEβ) ⇒ (ΦUEβ) ⇒ (DUEβ) + (Tβ)
⇑ ⇓

(DUEβ) + (Texp) ⇐ (FKβ) + (Sβ) ⇐ (DUEβ) + (Sβ)

Proof of (FKβ) + (Sβ)⇒ (DUEβ). Let B be a ball of radius r > 0 in M . Let us
restate (FKβ) in the following form: for any non-empty open set Ω ⊂ B,

λmin (Ω) ≥ a µ (Ω)−ν

where
a =

c

rβ
µ (B)ν .

Therefore, by Lemma 5.5, the heat kernel pBt exists, and satisfies that

esup
B

pBt ≤
C

µ (B)

(
rβ

t

)1/ν

, (5.48)

for all t > 0. Hence, condition (5.16) is satisfied with the function

Qt (B) =
C

µ (B)

(
rβ

t

)1/ν

.

On the other hand, it follows from (Sβ) that condition (5.17) of Lemma 5.6 is
satisfied with

ρ (t) = C ′t1/β,

where C ′ is a large enough constant. By Lemma 5.6, the global heat kernel pt exists
and satisfies for all t > 0 the estimate

esup
B(x0,ρ(t))

pt ≤
C

V (x0, ρ (t))
≤

C

V (x0, t1/β)
.
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Using (3.27), we obtain that, for all x0, y0 ∈M and t > 0,

esup
x∈B(x0,ρ(t))
y∈B(y0,ρ(t))

pt (x, y) ≤
C

√
V (x0, t1/β)V (y0, t1/β)

.

Using (V D), we see that, for any x ∈ B (x0, ρ (t)),

V
(
x, t1/β

)
≤ C V

(
x0, t

1/β
)
,

whence it follows that, for µ-almost all x ∈ B (x0, ρ (t)) and y ∈ B (y0, ρ (t)),

pt (x, y) ≤
C

√
V (x, t1/β)V (y, t1/β)

. (5.49)

Since M can be covered by a countable family of balls of radius ρ (t), we conclude
that (5.49) holds for µ-almost all x, y ∈M . �

Proof of (ΦUEβ)⇒ (DUEβ) + (Tβ). It follows from (ΦUEβ) that, for all t > 0 and
µ-almost all x ∈M ,

esup
z∈M

pt(x, z) ≤
C

V (x, t1/β)
, (5.50)

which implies that
∫

M

pt(x, z)2 dµ(z) ≤ esup
z∈M

pt (x, z)

∫

M

pt(x, z) dµ(z) ≤
C

V (x, t1/β)
.

Using the semigroup property, the Cauchy-Schwarz inequality, and the symmetry,
we obtain

p2t(x, y) =

∫

M

pt(x, z)pt(z, y) dµ(z)

≤

(∫

M

pt(x, z)2dµ(z)

)1/2(∫

M

pt(y, z)2dµ(z)

)1/2

≤
c

√
V (x, t1/β)V (y, t1/β)

for all t > 0 and µ-almost all x, y ∈ M . Replacing 2t by t and then using the
doubling property of V , we obtain (DUEβ).

In order to verify the implication (ΦUEβ)⇒ (Tβ), set rk = 2kr for some r > 0 and
k = 0, 1, 2, .... It follows from (ΦUEβ) and (2.2) that, for any t > 0 and µ-almost
all x ∈M ,

∫

B(x,r)c
pt (x, y) dµ (y) =

∞∑

k=0

∫

B(x,rk+1)\B(x,rk)

pt (x, y) dµ (y) (5.51)

≤
∞∑

k=0

V (x, rk+1)
C

V (x, t1/β)
Φ
( rk

t1/β

)

≤
∞∑

k=0

C
( rk

t1/β

)α
Φ
( rk

t1/β

)

≤ C

∫ ∞

1
2
rt−1/β

sα−1Φ (s) ds. (5.52)
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Due to (2.14), the integral in (5.52) can be made arbitrarily small provided rt−1/β

is sufficiently large. Hence, for any ball B = B (x0, r), for any ε > 0, and for almost
all x ∈ 1

4
B, we have

Pt1Bc (x) ≤
∫

B(x,r/2)c
pt (x, y) dµ (y) < ε

provided rt−1/β is large enough, which proves (Tβ). �

Proof of (DUEβ) + (Texp)⇒ (UEβ). By the semigroup property, we have that, for
all t > 0 and µ-almost all x, y ∈M ,

p2t(x, y) =

∫

M

pt(x, z)pt(z, y) dµ(z)

≤
∫

B(x,r)c
pt(x, z)pt(z, y) dµ(z) +

∫

B(y,r)c
pt(x, z)pt(z, y) dµ(z), (5.53)

where r = 1
2
d (x, y). Let us estimate the first term in (5.53) (and the second term

can be estimated similarly). By (2.2) we have, for every z ∈M ,

V
(
x, t1/β

)

V (z, t1/β)
≤ C

(
d (x, z) + t1/β

t1/β

)α
= C

(

1 +
d (x, z)

t1/β

)α
.

It follows from (DUEβ) that, for µ-a.a. z ∈ B(x, 2kr),

pt(z, y) ≤
C

√
V (z, t1/β)V (y, t1/β)

=
C

V (x, t1/β)

√
V (x, t1/β)

V (z, t1/β)

V (x, t1/β)

V (y, t1/β)

≤
C

V (x, t1/β)

(

1 +
2kr

t1/β

)α/2(

1 +
2r

t1/β

)α/2

≤
C

V (x, t1/β)

(
1 + 2kR

)α
(5.54)

where

R :=
r

t1/β
.

On the other hand, we have by (Texp)

∫

B(x,2kr)c
pt(x, z) dµ(z) ≤ C Φ

(
2kR

)
, (5.55)

where

Φ(s) := exp
(
−c sβ/(β−1)

)
.
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Combining (5.54) and (5.55), we obtain
∫

B(x,2kr)\B(x,2k−1r)

pt(x, z)pt(z, y) dµ(z)

≤
C
(
1 + 2kR

)α

V (x, t1/β)

∫

B(x,2kr)\B(x,2k−1r)

pt(x, z) dµ(z)

≤
C
(
1 + 2kR

)α

V (x, t1/β)
Φ
(
2k−1R

)
,

whence it follows that
∫

B(x,r)c
pt(x, z)pt(z, y) dµ(z) ≤

C

V (x, t1/β)

∞∑

k=1

(
1 + 2kR

)α
Φ
(
2k−1R

)

≤
C

V (x, t1/β)

∞∑

k=1

(
1 + 2kR

)α
Φ
(
2k−2R

)
Φ

(
1

2
R

)

≤
C

V (x, t1/β)

(∫ ∞

0

sα−1Φ(s) ds

)

Φ

(
1

2
R

)

≤
C

V (x, t1/β)
Φ

(
1

2
R

)

, (5.56)

where we have the following obvious inequality

Φ (aR) ≤ Φ

(
1

2
aR

)

Φ

(
1

2
R

)

,

which is true for all a ≥ 1 and R > 0. Hence, it follows from (5.53) and (5.56) that

p2t(x, y) ≤
C

V (x, t1/β)
Φ

(
1

2
R

)

.

Replacing 2t by t and using the doubling property of V , we obtain (UEβ). �

Proof of (DUEβ)⇒ (FKβ). Let us first show that (DUEβ) implies the following
estimate: for any ball B = B (x0, r) on M and for all t > 0,

esup
B

pBt ≤
C

µ (B)

( r

t1/β

)α
, (5.57)

where α is the same as in (2.2). Observe the following property of the function
t 7→ esupB p

B
t : if the inequality

esup
B

pBt ≤
K

µ (B)

( r

t1/β

)α
(5.58)

holds for t = s, then (5.58) holds also for t = 2s provided

s ≥ T := 2Kβ/αrβ, (5.59)

where K > 1 is a constant to be specified below. Indeed, by the semigroup property,
we have, for µ-a.a. x, y ∈ B,

pB2s (x, y) =

∫

B

pBs (x, z) pBs (z, y) dµ (z) ≤

(

esup
B

pBs

)2

µ (B) ,
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whence by (5.58) and (5.59),

esup
B

pB2s ≤
K2

µ (B)

( r

s1/β

)2α

≤
K2

µ (B)

(
r

(T/2)1/β

)α(
r

(2s)1/β

)α

=
K

µ (B)

(
r

(2s)1/β

)α

,

which was claimed.
Assume for a moment that we have proved (5.58) for t = T . Then, by induction,

we see that (5.58) holds for all t = 2nT, where n is a non-negative integer. Since
by Lemma 3.9 the function t 7→ esupB p

B
t is non-increasing, we obtain that, for

2nT ≤ t < 2n+1T ,

esup
B

pBt ≤ esup
B

pB2nT ≤
K

µ (B)

(
r

(2nT )1/β

)α

≤
K2α/β

µ (B)

( r

t1/β

)α
.

Therefore, if we prove that there exists K such that (5.58) holds for 0 < t ≤ T then
we can conclude that (5.57) holds for all t > 0.

Consider first the case 0 < t ≤ rβ. By (DUEβ) we have, for µ-a.a. x, y ∈ M and
t > 0,

pt (x, y) ≤
C0√

V (x, t1/β)V (y, t1/β)
(5.60)

(the argument below is sensitive to constant factors, so we use individual notation
for different constants such as C0, C1, etc). Observe that, by (2.2), for any x ∈ B
and 0 < t ≤ rβ,

V (x0, r)

V (x, t1/β)
≤ C1

( r

t1/β

)α
. (5.61)

Since pBt ≤ pt, we see from (5.60) and (5.61) that, for µ-a.a. x, y ∈ B and 0 < t ≤ rβ,

pBt (x, y) ≤
C0C1

V (x0, r)

( r

t1/β

)α
, (5.62)

which means that (5.58) holds for 0 < t ≤ rβ provided K ≥ C0C1.
Consider now the remaining case rβ < t ≤ T. We have, for any x ∈ B,

1

V (x, t1/β)
=
V
(
x0, T

1/β
)

V (x, t1/β)

V (x0, r)

V (x0, T 1/β)

1

V (x0, r)
.

Since t ≤ T , we obtain that, using (2.2) and (5.59),

V
(
x0, T

1/β
)

V (x, t1/β)
≤ C1

(
T

t

)α/β
= C12a/βK

( r

t1/β

)α
.

Since r < T 1/β, the reverse volume doubling (RVD) yields

V (x0, r)

V (x0, T 1/β)
≤ C2

( r

T 1/β

)α′
≤ C2K

−α′/α

Hence, it follows from (5.60) that, for µ-a.a. x, y ∈ B,

pBt (x, y) ≤ C0C1C22α/βK−α
′/α K

V (x0, r)

( r

t1/β

)α
,
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whence (5.58) follows, provided K is chosen large enough to satisfy

C0C1C22α/βK−α
′/α ≤ 1.

Let Ω be an open subset of B. Using (5.57) and the Cauchy-Schwarz inequality,
we obtain, for any f ∈ F (Ω) and t > 0,

(
PΩ
t f, f

)
=

∫

Ω

∫

Ω

pΩ
t (x, y)f (x) f(y)dµ (x) dµ(y)

≤
C

µ (B)

( r

t1/β

)α
‖f‖2

1

≤
Cµ (Ω)

µ (B)

( r

t1/β

)α
‖f‖2

2.

Using the fact that the function t−1
(
f − PΩ

t f, f
)

monotone increases and converges
to E (f) when t monotone decreases and goes to 0 (cf. Section 2.2), we obtain that

E(f) ≥
1

t

(
f − PΩ

t f, f
)

=
1

t

(
‖f‖2

2 −
(
PΩ
t f, f

))
,

whence, for a non-zero f ,

E(f)

‖f‖2
2

≥
1

t

(

1−
Cµ (Ω)

µ (B)

( r

t1/β

)α)

. (5.63)

Since t in (5.63) is arbitrary , we can choose t to satisfy the identity

C
µ (Ω)

µ (B)

( r

t1/β

)α
=

1

2
,

that is,

1

t
=

c

rβ

(
µ (B)

µ (Ω)

)β/α
,

for some c > 0. Substituting this t into (5.63), we obtain

λmin (Ω) = inf
f∈F(Ω)\{0}

E(f)

‖f‖2
2

≥
1

2t
=

c

2rβ

(
µ (B)

µ (Ω)

)β/α
,

which proves (FKβ). �

6. The exit time

Let
(
{Xt}t≥0 , {Px}x∈M

)
be a Hunt process of the regular Dirichlet form (E ,F).

6.1. Quasi-continuous functions. For any set E ⊂ M , the capacity Cap (also
called 1-capacity) is defined by

Cap(E) = inf
ϕ
E1 (ϕ) , (6.1)

where ϕ varies over all functions from F such that ϕ ≥ 1 in an open neighborhood
of E (see [15, p.64]). Clearly, we have Cap(E) ≥ µ (E). Also, it is obvious from the
definition that Cap(E) is monotone function of E.

A function u : M → R is said to be quasi-continuous if it is continuous in M \E
for some set E of capacity 0.
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Proposition 6.1. Let u be a quasi-continuous function on M such that u ≥ 0 µ-a.e.
Then there is an invisible set N such that u (x) ≥ 0 for all x ∈M \N .

Proof. By [15, Theorem 2.1.2, p.67-68], the inequality u ≥ 0 holds quasi-everywhere,
that is, outside some set E of capacity 0. We are left to show that E is contained
in an invisible set N . Since (E ,F) is regular, any compact set has finite capacity.
As Cap(E) = 0, it follows from [15, Theorem 4.2.1, p.142] that set E is exceptional.
By [15, Theorem 4.1.1, p.137], every exceptional set is contained a Borel, properly
exceptional set, which is also an invisible set. �

6.2. Exit times and transition functions. For any bounded Borel function f on
M , set

Ptf(x) := Exf(xt), t > 0, x ∈M. (6.2)

It follows from (2.19) that Ptf = Ptf almost everywhere. By [15, Theorem 4.2.3,
p.144], the function Ptf is a quasi-continuous realization of a measurable function
Ptf .

For any open set Ω ⊂M , the Hunt process
(
{Xt}t≥0 ,

{
PΩ
x

}
x∈M

)
associated with

the Dirichlet form (E ,F (Ω)) is obtained from Xt by imposing the killing condition
outside Ω. The transition function PΩ

t of this process is given by

PΩ
t (x,B) = PΩ

x (Xt ∈ A) = Px (t < τΩ and Xt ∈ B) ,

where τΩ is the first exit time of the process Xt from Ω defined by (2.20) (see [15,
p.135, eq. (4.1.2)]). Consequently, we have

PΩ
t f (x) = EΩ

x f (Xt) = Ex
(
1{t<τΩ}f (Xt)

)
, (6.3)

for every x ∈ M , t > 0, and for every bounded (or non-negative) Borel function f .
For the heat semigroup PΩ

t of the form (E ,F (Ω)), we have then

PΩ
t f (x) = Ex

(
1{t<τΩ}f (Xt)

)
for µ-a.a. x ∈M. (6.4)

Let ϕ (t) be a non-negative continuous function on [0,+∞). Multiplying (6.3) by
ϕ (t) and integrating in t, we obtain, for any open set Ω ⊂M and all x ∈M ,

∫ ∞

0

ϕ (t)PΩ
t f (x) dt = Ex

(∫ τΩ

0

ϕ (t) f (Xt) dt

)

. (6.5)

In particular, for ϕ ≡ 1, we obtain

∫ ∞

0

PΩ
t f (x) dt = Ex

(∫ τΩ

0

f (Xt) dt

)

, (6.6)

whence it follows, for f ≡ 1, that

ExτΩ =

∫ ∞

0

PΩ
t 1Ω (x) dt. (6.7)
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6.3. Mean exit time and the spectral gap. Here we prove an inequality between
the spectral gap and the mean exit time. For any open set Ω ⊂M , set

E (Ω) = esup
x∈Ω

ExτΩ. (6.8)

Lemma 6.2. For any non-empty open set Ω ⊂M , we have

λmin (Ω) ≥
1

E (Ω)
, (6.9)

where λmin (Ω) is defined by (2.12).

Inequality (6.9) is well known in the setting of random walks on graphs and
diffusions on manifolds (see for example [22]). Here we give a proof in the full
generality.

Proof. Let H = HΩ be the generator of the form (E ,F (Ω)) in L2 (Ω, µ). For any
T > 0 and consider the following operator

GT =

∫ T

0

e−tHdt = ϕT (H) ,

where

ϕT (λ) =

∫ T

0

e−tλdt =
1− e−Tλ

λ
.

Since the function ϕT is bounded and continuous on [0,+∞), the operator GT is a
bounded self-adjoint operator in L2. Since the function ϕT is decreasing, we obtain
by the spectral mapping theorem

ϕT (λmin (Ω)) = ϕT (inf spec (H)) = sup spec (GT ) .

Note that
sup spec (GT ) = ‖GT‖2→2,

where ‖ · ‖p→p stands for the norm of an operator in Lp (Ω, µ). It remains to prove
that, for all T > 0,

‖GT‖2→2 ≤ E (Ω) . (6.10)

Indeed, if (6.10) holds then we obtain from the above three lines that

ϕT (λmin (Ω)) ≤ E (Ω) .

Letting T →∞ and observing that ϕT (λ)→ 1/λ, we obtain (6.9).
To verify (6.10), recall that the operator etH = PΩ

t can be extended to a bounded
operator in L∞. Therefore, the operator GT also extends to a bounded operator in
L∞. Since PΩ

t and PΩ
t coincide as operators in L∞, we see that, for any bounded

Borel function f ,

GTf =

∫ T

0

(
PΩ
t f
)
dt µ-a.e..

Therefore, for µ-a.a. x ∈ Ω, we obtain

|GTf (x)| ≤
∫ ∞

0

PΩ
t |f | (x) dt = Ex

∫ τΩ

0

|f | (Xt) dt ≤ (ExτΩ) sup |f | ,

that is, using (6.8),
esup

Ω
|GTf | ≤ E (Ω) sup |f | .
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This implies, for any g ∈ L1 ∩ L2 (Ω, µ),

‖GTg‖1 = sup
f∈C0(Ω)\{0}

(GT g, f)

‖f‖∞
= sup

f∈C0(Ω)\{0}

(g,GTf)

‖f‖∞
≤ E (Ω) ‖g‖1

that is,

‖GT‖1→1 ≤ E (Ω) . (6.11)

Since PΩ
t is a positivity preserving operator, so is GT , that is f ≥ 0 implies GTf ≥ 0,

for any Borel function f . In particular, for any s ∈ R we have GT (f + s)2 ≥ 0, that
is

GTf
2 + 2sGTf + s2GT1 ≥ 0,

whence

(GTf)2 ≤ GT1GTf
2 ≤ E (Ω)GTf

2.

Integrating this inequality, we obtain

‖GTf‖
2
2 ≤ E (Ω) ‖GTf

2‖1 ≤ E (Ω)2 ‖f 2‖1 = E (Ω)2 ‖f‖2
2,

whence (6.10) follows. �

6.4. Proof of Theorem 2.2. Here we prove Theorem 2.2. Recall that by Theorem
5.8 we have

(Sβ)⇔ (Tβ) , (6.12)

by Theorem 2.1

(UEβ)⇔ (DUEβ) + (Sβ)⇔ (FKβ) + (Sβ) , (6.13)

and, by a remark after Theorem 2.2,

(EΩβ)⇒ (Eβ ≤) . (6.14)

Besides, we have by [1, Lemma 3.16]

(Eβ)⇒ (Pβ) . (6.15)

We will prove below the following implications:

(DUEβ) ⇒ (EΩβ) , (6.16)

(EΩβ) ⇒ (FKβ) , (6.17)

(Sβ) ⇒ (Pβ)⇒ (Tβ) , (6.18)

(Pβ) ⇒ (Eβ ≥) . (6.19)

Together all the above implications settle Theorem 2.2. Indeed, it follows from
(6.12) and (6.18) that

(Sβ)⇔ (Pβ) ,

which together with (6.13) yields

(UEβ)⇔ (DUEβ) + (Pβ)⇔ (FKβ) + (Pβ) .



52 GRIGOR’YAN AND HU

Using these implications and (6.16), (6.19), (6.14), (6.17), (6.15), we obtain

(UEβ)
⇓

(DUEβ) + (Pβ) ⇒ (EΩβ) + (Eβ ≥)
⇓

(EΩβ) + (Eβ) ⇒ (FKβ) + (Eβ)
⇓ ⇓

(EΩβ) + (Pβ) ⇒ (FKβ) + (Pβ)
⇓

(UEβ)

whence also

(UEβ)⇒ (DUEβ) + (Eβ)⇒ (DUEβ) + (Pβ)⇒ (UEβ) .

Clearly, the above implications contain all the equivalences of Theorem 2.2.

Proof of (DUEβ)⇒ (EΩβ). Let B be a ball of radius r in M and Ω be a non-empty
open subset of B. We use the fact that (DUEβ) implies the estimate (5.57) (see the
proof of Theorem 2.1). It follows from (5.57) that, for every t > 0 and µ-almost all
x ∈M ,

PΩ
t 1Ω(x) =

∫

Ω

pΩ
t (x, y) dµ(y) ≤

∫

Ω

pBt (x, y) dµ(y) ≤
Cµ(Ω)

µ(B)

( r

t1/β

)α

Since the function PΩ
t 1Ω is a quasi-continuous realization of PΩ

t 1Ω, it follows from
Proposition 6.1 that there is an invisible set N ⊂M such that the following inequal-
ity holds for all x ∈M \N :

PΩ
t 1Ω (x) ≤

Cµ(Ω)

µ(B)

( r

t1/β

)α
. (6.20)

Choose a dense countable subset D of M and let S be the set of all balls of rational
radii centered at the points of D. Let S ′ be the set of all finite unions of balls from S.
Since countable unions of invisible sets are invisible, we obtain that there exists an
invisible set N such that (6.20) holds for all B ∈ S, Ω ∈ S ′, t ∈ Q+, and x ∈M \N .

For an arbitrary ball B ⊂ M of radius r and any open subset Ω ⊂ B, choose a
ball B0 ∈ S of radius < 2r such that B0 ⊃ B, and an increasing sequence {Ωk} of
the sets from S ′ such that Ωk ↑ Ω. It follows that, for all t ∈ Q+ and x ∈M \N ,

PΩk
t 1Ωk(x) ≤

Cµ(Ωk)

µ(B0)

(
2r

t1/β

)α
≤

2αCµ(Ω)

µ(B)

( r

t1/β

)α
.

Letting k → ∞, we obtain that the same inequality holds for PΩ
t 1Ω (x), that is,

(6.20). Finally, using the fact that PΩ
t 1Ω(x) is monotone decreasing in t, we obtain

the same inequality for all real t > 0.
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It follows from (6.7) and (6.20) that, for all T > 0,

ExτΩ =

∫ T

0

PΩ
t 1Ω (x) dt+

∫ ∞

T

PΩ
t 1Ω (x) dt

≤ T +

∫ ∞

T

Cµ (Ω)

µ (B)

( r

t1/β

)α
dt

≤ T +
Cµ (Ω)

µ (B)
rαT 1−α/β,

where we have assumed that α > β (it is clear from (2.2) that α can be taken
arbitrarily large). Finally, setting

T =

(
µ (Ω)

µ (B)

)β/α
rβ,

we obtain (EΩβ). �

Proof of (EΩβ)⇒ (FKβ). Hypothesis (EΩβ) implies that, for any ball B of radius
r and for any open set Ω ⊂ B, we have

E (Ω) := esup
x∈Ω

ExτΩ ≤ Crβ
(
µ (Ω)

µ (B)

)ν
,

which together with (6.9) yields

λmin (Ω) ≥
1

E (Ω)
≥
C

rβ

(
µ (B)

µ (Ω)

)ν
.

�

Proof of (Pβ)⇒ (Tβ). Fix t > 0 and let B be a ball of radius r ≥ 2
(
δ−1t

)1/β
. Then,

for µ-a.a. x ∈ 1
2
B, we have by (2.19)

Pt1Bc(x) = Ex (1Bc(Xt)) = Px (Xt ∈ B
c)

≤ Px (Xt ∈ B (x, r/2)c)

≤ Px
(
τB(x,r/2) ≤ t

)

≤ Px
(
τB(x,r/2) ≤ δ (r/2)β

)
≤ ε,

where we have used that Bc ⊂ B(x, r/2)c and the hypothesis (Pβ). �

Proof of (Sβ)⇒ (Pβ). It follows from (6.3) that the following identity holds for all
open sets Ω ⊂M , all t > 0 and x ∈M :

Px (τΩ ≤ t) = 1− PΩ
t 1Ω (x)

Hence, it suffices to prove that there exist constants ε ∈ (0, 1), C, δ > 0 and an
invisible set N ⊂ M such that, for any t > 0 and any ball B = B (x, r) with
x ∈M \N and r ≥ Ct1/β, the following inequality holds:

PBt 1B(x) ≥ 1− ε. (6.21)
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Since the function PBt 1B is a quasi-continuous realization of PB
t 1B, it follows from

(2.10) and Proposition 6.1 that, for any t > 0 and ball B as above, there is an
invisible set N such that

PBt 1B ≥ 1− ε in
1

4
B \N. (6.22)

Choose a dense countable subset D of M , and let S be the set of all balls of rational
radii centered at the points of D. Since countable unions of invisible sets is invisible,
there exists an invisible set N such that (6.22) holds for all B ∈ S and t ∈ Q+

provided r ≥ Ct1/β.
For any real t > 0 and an arbitrary ball B = B (x, r) of radius r ≥ C ′t1/β (where

C ′ = 21+1/βC) choose a ball B0 ∈ S of radius r0 ≥ 1
2
r such that x ∈ 1

4
B0, B0 ⊂ B,

and select s ∈ Q+ such that s
2
≤ t ≤ s. Since r0 ≥ Cs1/β, we obtain from the

previous paragraph that the following inequalities hold in 1
4
B0 \N :

PBt 1B ≥ P
B
s 1B ≥ P

B0
s 1B0 ≥ 1− ε.

If x /∈ N then x ∈ 1
4
B0 \N whence we obtain (6.21). �

Proof of (Pβ)⇒ (Eβ ≥). Fix a ball B = B (x, r) centered at x ∈ M \ N , where N
is an invisible set from condition (Pβ). Writing τ = τB and using (2.21), we obtain

Exτ ≥ Ex
(
1{τ>δrβ}τ

)
≥ Px

(
τ > δrβ

)
δrβ ≥ (1− ε) δrβ,

which finishes the proof. �

7. Appendix: proof of Lemma 3.4

It suffices to prove that

sup
f∈TX ,g∈TY

Φ (f, g) ≥ esup
X×Y

ϕ. (7.1)

Having proved (7.1) in the case of finite measures µ and ν, one obtains (7.1) for
σ-finite measures in an obvious way. In what follows we assume that µ (X) < ∞
and ν (Y ) <∞ and, hence, ϕ− ∈ L

1 (X × Y ) .
Set Z = X×Y and σ = µ×ν. Let S ⊂ Z be a measurable set with σ (S) > 0. By

construction of the product measure, for any ε > 0, there exists a sequence {Ri}
∞
i=1

of the rectangles Ri = Ai × Bi such that S ⊂
⋃
iRi and

∑

i

σ (Ri) ≤ σ (S) + ε.

Using the fact that the difference of two rectangles is a finite disjoint union of
rectangles, one can make {Ri} into a disjoint sequence while keeping all the above

properties. Define a new set S̃ =
⋃
iRi. It follows that

∑

i

∫

Ri

ϕdσ =

∫

S̃

ϕdσ =

∫

S

ϕdσ +

∫

S̃\S
ϕdσ

≥
∫

S

ϕdσ −
∫

S̃\S
ϕ−dσ.
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Restricting the above summation to those i with σ (Ri) > 0, we obtain

∑

i

σ (Ri)

σ(S̃)

(
1

σ (Ri)

∫

Ri

ϕdσ

)

=
1

σ(S̃)

∑

i

∫

Ri

ϕdσ

≥
1

σ(S̃)

∫

S

ϕdσ −
1

σ(S̃)

∫

S̃\S
ϕ−dσ

Since
∑

i
σ(Ri)

σ(S̃)
= 1, there exists an index i such that

1

σ (Ri)

∫

Ri

ϕdσ ≥
1

σ(S̃)

∫

S

ϕdσ −
1

σ(S̃)

∫

S̃\S
ϕ−dσ. (7.2)

Fix a real number t < esupϕ and consider the set S = {z ∈ Z : ϕ (z) ≥ t} . Then
σ (S) > 0 and

1

σ (S)

∫

S

ϕdσ ≥ t.

Note that σ(S̃) can be made arbitrarily close to σ (S) by taking ε to be sufficiently

small. Also, since σ(S̃ \ S) ≤ ε and ϕ− ∈ L1 (Z), the integral
∫
S̃\S ϕ−dσ can be

made arbitrarily small provided ε is small enough. Hence, we see that the right
hand side of (7.2) can be made arbitrarily close to t. Since t < esupϕ is arbitrary,
we conclude that

sup
R

1

σ (R)

∫

R

ϕdσ ≥ esup
Z

ϕ, (7.3)

where sup is taken over all rectangles R = A × B of positive measure. Setting
f = 1

µ(A)
1A and g = 1

µ(B)
1B, we obtain (7.1).

8. Appendix: list of conditions

(V D) : Volume doubling property. There exists a positive constant C such that, for
all x ∈M and r > 0,

V (x, 2r) ≤ CV (x, r) .

Equivalently, there exist positive constants α and C such that, for all x, y ∈
M and 0 < r ≤ R,

V (x,R)

V (y, r)
≤ C

(
d(x, y) + R

r

)α
. (8.4)

(RVD) : Reverse volume doubling property. There exist positive constants α′ and c
such that, for all x ∈M and 0 < r ≤ R,

V (x,R)

V (x, r)
≥ c

(
R

r

)α′

.

(UEβ) : Upper estimate. The heat kernel exists and satisfies the inequality

pt (x, y) ≤
C

V (x, t1/β)
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

,

for some constants C, c > 0, all t > 0 and µ-almost all x, y ∈M .
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(ΦUEβ) : Upper estimate with Φ-term. The heat kernel pt (x, y) exists and admits the
following estimate

pt (x, y) ≤
C

V (x, t1/β)
Φ

(
d (x, y)

t1/β

)

,

for some constant C, all t > 0 and µ-almost all x, y ∈ M , where Φ satisfies
(2.14).

(DUEβ) : On-diagonal upper estimate. The heat kernel pt exists and satisfies the esti-
mate

pt (x, y) ≤
C

√
V (x, t1/β)V (y, t1/β)

,

for some constant C, all t > 0 and µ-almost all x, y ∈M .
(Sβ) : The survival estimate. There exist 0 < ε < 1 and C > 0 such that, for all

t > 0 and all balls B = B(x0, r) with r ≥ Ct1/β,

PB
t 1B(x) ≥ 1− ε for µ-almost all x ∈

1

4
B.

(Tβ) : The tail estimate. There exist 0 < ε < 1
2

and C > 0 such that, for all t > 0

and all balls B = B(x0, r) with r ≥ Ct1/β,

Pt1Bc(x) ≤ ε for µ-almost all x ∈
1

4
B.

(Texp) : The exponential tail estimate. The heat kernel pt exists and satisfies estimate
∫

B(x,r)c
pt(x, y) dµ(y) ≤ C exp

(

−c
( r

t1/β

) β
β−1

)

,

for some constants C, c > 0, all t > 0, r > 0 and µ-almost all x ∈M .
(Pβ) : The exit probability estimate. There exist an invisible set N ⊂ M and con-

stants ε ∈ (0, 1), δ > 0 such that, for all x ∈M \N and r > 0,

Px
(
τB(x,r) ≤ δrβ

)
≤ ε.

(Eβ) : The mean exit time estimate. There exist an invisible set N ⊂ M and
positive constants C, c such that, for all x ∈M \N and r > 0,

crβ ≤ Ex
(
τB(x,r)

)
≤ Crβ.

(EΩβ) : Isoperimetric inequality for the mean exit time. There exist an invisible set
N ⊂M and positive constants C, ν such that, for any ball B in M of radius
r > 0 and for any non-empty open set Ω ⊂ B,

sup
x∈Ω\N

Ex (τΩ) ≤ Crβ
(
µ (Ω)

µ (B)

)ν
.

(FKβ) : The Faber-Krahn inequality. There exist positive constants ν, c such that,
for all balls B ⊂M of radius r > 0 and for any non-empty open sets Ω ⊂ B,

λmin (Ω) ≥
c

rβ

(
µ (B)

µ (Ω)

)ν
,

where λmin (Ω) is defined by (2.12).
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