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Abstract. We determine the critical exponent for certain semi-linear elliptic problem
on a Riemannian manifold assuming the volume regularity and Green function estimates.
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1. Introduction

Let (M, g) be a complete non-compact Riemannian manifold and Δ be the Laplace-
Beltrami operator on M . Consider the following differential inequality

Δu + Φ(x)uσ ≤ 0, (1.1)

where Φ is a given positive function, σ > 1 is a given exponent, and u is an unknown
non-negative C2-function.

In this paper we discuss the problem of existence of a non-trivial solution u of (1.1) in
a connected exterior domain M \ K, where K is a compact subset of M . The minimum
principle for superharmonic functions implies that either u ≡ 0 or u > 0 in M \ K. The
existence or non-existence of a positive solution depend on the value of σ as well as on the
geometric properties of M .

The question of existence of a positive solution of (1.1) in Rn (n > 2) has a long history.
It originated from the work [7] of Gidas and Spruck who considered the equation

Δu + uσ = 0 in Rn, (1.2)

and proved that if

1 < σ <
n + 2
n − 2

.

Keywords and phrases. differential inequalities; Green function; volume growth; uniqueness and exis-
tence.
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then the only non-negative solution of (1.2) is zero. On the contrary, if σ ≥ n+2
n−2 then

there exists a positive solution; for example, in the case σ = n+2
n−2 it is

u(x) =
cn

(1 + |x|2)
n−2

2

,

with some cn > 0. Hence, the critical value of the exponent σ for the problem (1.2) is n+2
n−2 .

However, the critical value of σ changes if we consider the equation in an exterior
domain:

Δu + uσ = 0 in Rn \ {0} . (1.3)
It was proved by Bidaut-Véron [2] that if

1 < σ ≤
n

n − 2
, (1.4)

then any non-negative solution of (1.3) is zero, while for σ > n
n−2 a positive solution exists,

for example,

u(x) = cn,σ|x|
− 2

σ−1 ,

with some cn,σ > 0. Hence, the critical value of the exponent σ for the problem (1.3) is
n

n−2 .
Consider now the inequality (1.1) in Rn with Φ ≡ 1, that is

Δu + uσ ≤ 0 in Rn. (1.5)

Mitidieri and Pohozaev [26] proved that any non-negative solution to (1.5) is zero if and
only if σ satisfies (1.4). Hence, the critical value of σ in this case is again n

n−2 . The
sharpness of n

n−2 can be seen as follows: if σ > n
n−2 then the function

u(x) =
c

(1 + |x|2)
1

σ−1

.

is a solution to (1.5) for small enough c > 0. Mitidieri and Pohozaev investigated in [27]
the inequality (1.1) in Rn with Φ(x) ≥ C|x|m for large enough |x|, and obtained that if

1 < σ ≤
n + m

n − 2
, (1.6)

then any non-negative solution to (1.1) is zero. Later Bidaut-Véron [3] showed that, for
the inequality (1.1) with Φ(x) = |x|m (m > −2) in the exterior domain Rn \ {0}, the
critical value of σ is equal to n+m

n−2 .
A rich class of problems generalizing (1.1) in Rn was systematically studied by Mitidieri

and Pohozaev, who developed test function techniques (or nonlinear capacity approach).
Their approach can be systematically applied to many types of differential inequalities
especially in Euclidean space, such as quasilinear elliptic and even parabolic differential
inequalities. Let us refer the readers to [4, 5, 21, 26, 27, 28] for details.

Let us return to a Riemannian manifold M and define for a fixed K the critical value
σ of the problem (1.1) as follows:

σ∗ = sup{σ > 1 : (1.1) has no positive solution in M \ K}.

Let d(x, y) be the geodesic distance on M . Denote by B(x, r) geodesic balls, that is,

B(x, r) = {y ∈ M : d(x, y) < r} .

Let μ be the Riemannian measure on M , and set

V (x, r) = μ(B(x, r)).

In [16], the authors investigated problem (1.1) on M with Φ(x) ≡ 1, that is

Δu + uσ ≤ 0 in M, (1.7)
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and proved that if, for some reference point o ∈ M and α > 2,

V (o, r) ≤ Crα ln
α−2

2 r, for all large enough r, (1.8)

then, for any σ ≤ α
α−2 , the inequality (1.7) has no positive solution. Consequently, we

have
σ∗ ≥

α

α − 2
. (1.9)

In the paper [29], the second author investigated inequality (1.1) on M with

Φ(x) ≥ Cd(x, o)m, for large d(x, o)

where m > −2, and proved that if, for some α > 2,

V (o, r) ≤ Crα ln
α−2
m+2 r, for all large enough r, (1.10)

then

σ∗ ≥
α + m

α − 2
.

The idea of using upper bounds of the volume function of balls in order to restrict the
set of solutions to certain differential inequalities has been widely used in the literature.
It originated from the pioneering work of Cheng and Yau [6] who proved that if, on a
geodesically complete Riemannian manifold M ,

V (o, r) ≤ Cr2, for all large enough r, (1.11)

then any non-negative superharmonic function on M is identical constant. Since any non-
negative solution of the inequality (1.1) on M is superharmonic, it follows that under the
hypothesis (1.11) the inequality (1.7) has only trivial solution 0 for any σ. Note also that
in the aforementioned hypotheses (1.8) and (1.10) the volume function may grow faster
than Cr2.

Further results of in this direction were obtained by Wang and Xiao [30] and Mastrolia,
Monticelli and Punzo [24]. For other related studies in this area we refer the readers to
[9, 12, 25, 23].

In this paper, we investigate the problem of existence of a positive solution to (1.1) using
apart from the volume growth condition also some bounds of the Green function G(x, y)
of the Laplacian. Although the latter is a stronger restriction on the class of manifolds in
question, it still allows us to obtain a better lower bound for the critical exponent σ∗ and
even to compute σ∗ exactly.

By definition, the Green function G (x, y) is the minimal positive fundamental solution
of the Laplace operator on M . The existence of G (x, y) is equivalent to the existence of
a non-constant positive superharmonic function on M . Hence, the existence of the Green
function is a necessary condition for the existence of a positive solution of (1.1).

Assume that, for some o ∈ M and all large enough r,

V (o, r) ' rα (Vo)

and, for all x, y ∈ M with large enough d (x, y),

G(x, y) ' d(x, y)−γ , (G)

where α, γ are positive parameters and the sign ' means that the relation of the both
sides is bounded from above and below by positive constants.

Our first main result (Theorem 2.1 and Corollary 2.3) says, in particular, that if (Vo)
and (G) and satisfied and σ ≤ α

γ , then the inequality

Δu + uσ ≤ 0 in M \ K (1.12)
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has the only non-negative solution u ≡ 0. Consequently, the critical exponent for the
problem (1.12) admits the estimate

σ∗ ≥
α

γ
.

Of course, if γ < α− 2 (that can actually occur – see Section 3), then this lower bound of
σ∗ is better than (1.9).

Replace now (Vo) by a stronger condition: for all large enough r and for all x ∈ M ,

V (x, r) ' rα. (V )

Our second main result Theorem 2.6 says that if M satisfies (V ) and (G) as well as has
bounded geometry then, for any σ > α

γ , the inequality (1.12) has a positive solution in
M \K. Consequently, the critical exponent for the problem (1.12) in M \K has the value

σ∗ =
α

γ
.

The aforementioned Corollary 2.3 is a particular case of Theorem 2.1 that says the
following: if M satisfies (Vo) and (G) , while Φ satisfies, for some m > γ−α, the condition

Φ(x) ≥ d(x, o)−m, for all x ∈ M with d (x, o) ≥ r0, (Φ)

then, for any σ ≤ α+m
γ , the inequality (1.1) in M \ K has the only solution u = 0.

Consequently, the critical value of σ in this case admits the lower bound

σ∗ ≥
α + m

γ
.

The methods of proofs of Theorems 2.1 and 2.6 are based on some new ideas. Let u be
a positive solution of (1.1) with σ ≤ α+m

γ . Assume without loss of generality that o ∈ K.
For any precompact open set U ⊃ K and for all x ∈ U c, we obtain from (1.1) that

u (x) ≥
∫

Uc

GU
c (x, y)Φ (y) uσ (y) dμ (y) , (1.13)

where GU
c (x, y) is the Green function of Δ in U

c
with the Dirichlet boundary condition.

The superharmonicity of u implies that

u (y) ≥ cG (y, o) (1.14)

for some c > 0 and for all y ∈ U c. On the other hand, by Lemma 4.1 we have, for any
precompact open set Ω ⊂ M ,

sup
Ω

(Δu + λ1(Ω)u) ≥ 0,

where λ1 (Ω) is the first Dirichlet eigenvalue of Δ in Ω. It follows that

λ1 (Ω) ≥ inf
x∈Ω

Φ(x) uσ−1 (x) .

Combining this with (1.13) and (1.14), we obtain for Ω ⊂ U
c

that

λ1 (Ω)
1

σ−1 ≥ c inf
x∈Ω

Φ
1

σ−1

∫

Uc

GU
c (x, y)Φ (y) Gσ (y, o) dμ (y) .

Then we bring this inequality to contradiction by choosing Ω large enough and by applying
the hypotheses (Vo), (G), (Φ) and σ ≤ α

γ to estimate all the quantities involved.
To prove Theorem 2.6, we construct for any σ > α/γ a positive solution to the equation

Δu + uσ + λσfσ = 0 in M,
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where f is a specifically chosen decreasing function and λ > 0 is small enough (see Theorem
7.6). This differential equation amounts to the integral equation

u(x) =
∫

M
G(x, y) (uσ(y) + λσf(y)σ) dμ(y),

and the latter is solved in a certain closed subset of L∞ (M) by observing that the operator
in the right hand side is a contraction for small enough λ. Next, we improve the regularity
properties of u in two steps: first show that u is Hölder and then u ∈ C2.

The paper is organized as follows: In Section 2, we state our results in the setting of a
weighted manifold M with an arbitrary distance function. In Section 3, we give examples
of manifolds, satisfying the conditions (Vo), (V ), (G). Section 4 contains some technical
preparation for the proof of the uniqueness Theorem 2.1, and the latter is then proved
in Section 5. In Section 6 we obtain some applications of Theorem 2.1 to the uniqueness
problem for some Schrödinger operators. In Section 7 we prove the existence Theorems
2.6, 7.6.

Notation. The letters C,C ′, C0, C1, c0, c1... denote positive constants whose values are
unimportant and may vary at different occurrences.

2. Statements

A weighted manifold is a couple (M,μ), where M is a connected Riemannian manifold
and μ is a measure on M with a smooth positive density with respect to the Riemannian
measure μ0. Assume that dμ = ωdμ0, where ω is a positive C∞ function on M . The
weighted Laplacian Δ of (M,μ) is defined by

Δu =
1
ω

div(ω∇u).

In particular, if ω ≡ 1 then Δ is the Laplace-Beltrami operator on M .
Fix a compact set K (may be empty) such that M \ K is connected. Given a non-

negative function Φ on M \ K and a constant σ > 1, consider the following differential
inequality in M \ K

Δu + Φ(x)uσ ≤ 0, (2.1)

where u is an unknown non-negative C2-function in M \ K, and set

σ∗ = sup{σ > 1 : any non-negative solution of (2.1) in M \ K is identical zero}.

Let d be a distance function on M (not necessarily geodesic). We always assume that
the metric balls

B(x, r) = {y ∈ M, d(x, y) < r} .

are precompact open subsets of M . If d is the geodesic distance, then the latter assumption
is equivalent to the geodesic completeness of M . Set also

V (x, r) = μ(B(x, r)). (2.2)

Let G (x, y) be the Green function of Δ, that is, the smallest positive fundamental
solution of Δ. We always assume that G exists.

Fix a reference point o ∈ K (when K is empty, o can be any point on M), positive reals
α, γ, R0 and introduce the following hypotheses.

(Vo) There exist positive constants c and C such that, for all r > R0,

crα ≤ V (o, r) ≤ Crα.

(G) There exist positive constants c and C such that, for all x, y ∈ M with d(x, y) > R0,

cd(x, y)−γ ≤ G(x, y) ≤ Cd(x, y)−γ . (2.3)
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(Φ) There exist reals m > γ −α and c > 0 such that, for all x ∈ M with d (x, o) > R0,

Φ(x) ≥ cd(x, o)m. (2.4)

Our first main result is the following theorem.

Theorem 2.1. Assume that the hypotheses (Vo) , (G) and (Φ) are satisfied. If

1 < σ ≤
α + m

γ
,

then any non-negative solution u of (2.1) in M \ K is identical zero. Consequently, we
have

σ∗ ≥
α + m

γ
.

Remark 2.2. As we will see from proof of Theorem 2.1 in Section 5, the condition (Vo)
here can be replaced by a weaker condition (V≥) as follows.

(V≥) There exist τ ∈ (0, 1) and c > 0, such that for all large enough r

V (o, r) − V (o, τr) ≥ crα. (2.5)

Clearly, (Vo) implies (V≥).

If Φ(x) ≡ 1, then Theorem 2.1 implies the following.

Corollary 2.3. Assume that conditions (V0) and (G) are satisfied with α > γ. If

1 < σ ≤
α

γ
,

then any non-negative solution u of

Δu + uσ ≤ 0 in M \ K,

is identical zero. Consequently, we have

σ∗ ≥
α

γ
.

Example 2.4. Let M = Rn (n > 2), μ be the Lebesgue measure and d(x, y) = |x − y|.
Then Δ is the classical Laplacian, and its Green function is given by

G(x, y) =
cn

|x − y|n−2
,

with cn > 0. It follows that (Vo) and (G) are satisfied with α = n and γ = n − 2. If, for
some m > −2,

Φ(x) ≥ c|x|m for large |x| ,

then we conclude by Theorem 2.1, that

σ∗ ≥
n + m

n − 2
.

Recall that, by a result of [27], if Φ(x) = c|x|m for large |x|, then

σ∗ =
n + m

n − 2
.

Example 2.5. Let M be a geodesic complete Riemannian manifold, μ be the Riemannian
measure and d be the geodesic distance. Set Φ(x) ≡ 1. Then, by a result of [16], if

V (o, r) ≤ Crα, (2.6)

then
σ∗ ≥

α

α − 2
.
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Although the assumption (V0) and (G) are stronger than (2.6), the estimate σ∗ ≥ α
γ may

be sharper than σ∗ ≥ α
α−2 provided that γ < α − 2. The latter can actually occur in a

number of situations (see Section 3).

Now we provide sufficient conditions for the existence of a positive solution u of

Δu + uσ ≤ 0 in M. (2.7)

For that, we need to slightly strengthen our assumptions on M . We restrict our setting
as follows: assume that M is a connected non-compact geodesically complete Riemannian
manifold, d is the geodesic distance on M , and μ is the Riemannian measure of M .

Assume in addition that M has bounded geometry, that is, there exists r0 > 0 such
that the geodesic balls B(x, r0) on M are uniformly quasi-isometric to the Euclidean ball
Br0(0) in Rn. Consider the following stronger version of the hypothesis (Vo) .

(V ) There exist positive constants c and C such that, for all x ∈ M and r ≥ R0,

crα ≤ V (x, r) ≤ Crα.

Our existence result is stated in the following theorem.

Theorem 2.6. Assume that dim M > 2 and that M has bounded geometry. Assume also
that (V ) and (G) are satisfied with α > γ. Then, for any

σ >
α

γ
,

the inequality (2.7) admits a positive solution on M . Consequently, in this case we have

σ∗ =
α

γ
.

3. Examples in the case Φ(x) ≡ 1

We present here some examples of application of Corollary 2.3 and Theorem 2.6.

Example 3.1. Let Γ be an infinite, locally finite, connected graph. Let d (x, y) be the
graph distance on Γ and μ be the degree measure. Define the volume function V (x, r) on
Γ by (2.2). Assume that the discrete Laplace operator on Γ has a positive finite Green
function G (x, y). Barlow constructed in [1] a family of fractal graphs such that each graph
from this family satisfies the conditions (V ) and (G) for some α and γ. Moreover, such a
graph exists for any pair (α, γ) of reals satisfying the following restrictions:

0 < γ ≤ α − 2.

Now let us inflate Γ into a 2-dim manifold M by replacing the edges of Γ by 2-dim cylinders.
Then the Riemannian manifold M with the geodesic distance d and the Riemannian
measure μ will satisfy conditions (V ) and (G) with the same values of α and γ as above
(which can be proved by using the techniques from Kanai’s papers [18, 19]). For example,
if we take Γ = Zn, n > 2, then we obtain a 2- dim manifold M satisfying (V ) and (G)
with α = n and γ = n − 2.

Since the manifold M obtained in this way from a graph Γ has bounded geometry, we
obtain by Theorem 2.6 that on M

σ∗ =
α

γ
.

Hence, if γ < α − 2 then σ∗ > α
α−2 , which improves the estimate of Example 2.5.
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Example 3.2. Assume that (M, g) is a 2-dim Riemannian manifold with the Riemannian
measure μ and some distance function d. We refer to the triple (M, g, d) as a metric
manifold. Assume that (M, g, d) satisfies (Vo) and (G) with some positive reals α, γ. For
example, (M, g, d) could be one of the manifolds, constructed in the previous example.

Fix a smooth positive function ϕ on M and consider a conformal change of metric

g̃ = ϕg.

Consider now the metric manifold (M, g̃, d) (with the same distance d as before, but with
the Riemannian measure μ̃ of g̃). Denote by Ṽ and G̃ the volume and Green functions on
(M, g̃, d), respectively.

It is well known that on 2-dim manifolds the Green function does not change after a
conformal transformation of the Riemannian metric, hence G̃ = G. Assume in addition
that

ϕ(x) ' d(x, o)δ, for large d(x, o),
with some real δ. Since V (o, r) satisfies (Vo) and dμ̃ = ϕdμ, a simple computation shows
that

Ṽ (o, r) ' rα+δ, for large r,

provided α + δ > 0. Thus, (M, g̃, d) satisfies (V0) and (G) with parameters

α̃ = α + δ and γ̃ = γ.

Obviously, α̃ and γ̃ can be arbitrary positive numbers. Under the above hypotheses, we
obtain by Corollary 2.3 that the critical value σ∗ on (M, g̃, d) satisfies

σ∗ ≥
α + δ

γ
.

Example 3.3. Let (M, g) be a Riemannian manifold. Assume that the Green function
G(x, y) on M exists and satisfies the following 3G-inequality

min (G(x, z), G(z, y)) ≤ CG (x, y) ,

for all x, y, z ∈ M and some C > 1 (cf. [13, Sect. 4,5]). Then the function

ρ(x, y) :=
1

G (x, y)

is a quasi-metric on M . It is well-known that, for any quasi-metric ρ, there exist a distance
function d(x, y) and a real γ > 0 such that

ρ(x, y) ' d(x, y)γ .

Hence, on the metric manifold (M, g, d), we have

G(x, y) ' d(x, y)−γ , for all x, y ∈ M.

In particular, (M, g, d) satisfies (G).
Assume that (M, g) satisfies (Vo) in terms of the quasi-metric ρ, that is

μ {y : ρ(o, y) < r} = μ
{
y : G(o, y)−1 < r

}
' rα, for large r. (3.1)

Then for metric balls B(o, r) with respect to d, we have

μ(B(o, r)) = μ({y : d(o, y) < r})

= μ {y : d(o, y)γ < rγ} ' rαγ .

Hence, (M, g, d) satisfies (Vo) with α̃ := αγ. Assuming in addition that all balls B(o, r)
are precompact, we obtain by Corollary 2.3 that the critical value σ∗ on (M, g, d) satisfies

σ∗ ≥
α̃

γ
= α.
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Example 3.4. Fix an integer α > 2, a compact Riemannian manifold N , and consider
the Riemannian manifold M = Rα ×N with the product metric. It is well known that on
M

V (x, r) ' rα, for large r.

and

G(x, y) ' d(x, y)−(α−2), for large d(x, y),

By Theorem 2.6, we obtain σ∗ = α
α−2 .

Example 3.5. Assume that a Riemannian manifold M admits a discrete group of isome-
tries Γ such that the fundamental domain M/Γ is compact. Assume also that the group Γ
has a polynomial volume growth rn for some n > 2 (with respect to some generating set).
In this case the volume growth function V (x, r) of M satisfies (V ) with α = n, and the
Green function on M satisfies (G) with γ = n− 2 (cf. [17]). By Theorem 2.6, we conclude
that σ∗ = n

n−2 .

4. Preliminaries

We start the proof of Theorem 2.1 with some preliminary results. For any precompact
open domain Ω in M , denote by λ1(Ω) the first Dirichlet eigenvalue for Δ in Ω, and by
GΩ (x, y) – the Green function of Δ on Ω with the Dirichlet boundary condition.

Lemma 4.1. For any non-negative function f ∈ C2(Ω) ∩ C
(
Ω
)

we have

sup
Ω

(Δf + λ1(Ω)f) ≥ 0. (4.1)

Proof. Without loss of generality, we can assume that Ω has smooth boundary (oth-
erwise consider approximation of Ω from inside by an increasing sequence {Ωn}

∞
n=1 of

domains with smooth boundaries using λ1 (Ωn) → λ1 (Ω)). Let v be the Dirichlet eigen-
function of Δ in Ω with the eigenvalue λ = λ1 (Ω). Since v does not change sign in any
connected component of Ω, we can assume that v > 0 in Ω. Using the equation Δv+λv = 0
and the Green formula, we obtain

∫

Ω

(Δf + λf)v dμ =
∫

∂Ω

(
∂f

∂ν
v −

∂v

∂ν
f

)

dS +
∫

Ω

f (Δv + λv)dμ

= −
∫

∂Ω

∂v

∂ν
f dS,

where ν is the outward normal unit vector field on ∂Ω and S is the surface measure on
∂Ω. Since ∂v

∂ν

∣
∣
∂Ω

≤ 0, it follows that
∫

Ω

(Δf + λf)v dμ ≥ 0.

whence the claim follows.

Lemma 4.2. Assume that M satisfies (G). Choose R > R0 and set Ω = B(o,NR),
where N > 1 is a large enough constant depending on the constants in (G). Then, for all
x ∈ B(o,R) \ B (o,R0), we have

GΩ(x, o) ' d(x, o)−γ . (4.2)
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Proof. We will prove that if N is large enough then, for all x ∈ B (o,R),

1
2
G (x, o) ≤ GΩ (x, o) ≤ G (x, o) , (4.3)

which together with (2.3) will imply (4.2). The upper bound in (4.3) is trivially satisfied
for all x. It suffices to prove the lower bound for a smaller domain Ω. Let now Ω be a
domain with smooth boundary between B

(
o, 1

2NR
)

and B (o,NR). Consider the function

h(x) = G(x, o) − GΩ(x, o)

that is non-negative and harmonic in Ω. Since ∂Ω is smooth, GΩ (x, o) vanishes at any
point x ∈ ∂Ω. Hence, we obtain by (2.3)

h(x)|∂Ω = G(x, o)|∂Ω ≤ C(1
2NR)−γ . (4.4)

The maximum principle implies then that

h(x) ≤ C(1
2NR)−γ for all x ∈ Ω.

On the other hand, by the lower bound of G(x, o) in (2.3), we have, for all x ∈ B(o,R),

G(x, o) ≥ inf
∂B(o,R)

G(x, o) ≥ cR−γ .

If N is large enough, then this implies by (4.4) that, for all x ∈ B(o,R),

h(x) ≤
1
2
G(x, o).

It follows that in B (o,R)

GΩ(x, o) = G(x, o) − h(x) ≥
1
2
G(x, o),

which finishes the proof.

Proposition 4.3. Assume that (V≥) and (G) hold on M . Let

U = B(o, τR), Ω = B(o,N2R),

where N is the constant from Lemma 4.2, and τ is from (V≥). Then, for large enough R,
we have

λ1(Ω \ U) ≤ CR−(α−γ),

where the constant C depends on the constants in the hypotheses.

For the proof we need the notion of capacity. For any open set Ω ⊂ M and any
precompact open set U b Ω, the capacity of the pair (U, Ω) defined by

cap(U, Ω) = inf
ϕ∈C∞

0 (Ω)
ϕ|U≡1

∫

Ω
|∇ϕ|2 dμ. (4.5)

If Ω is precompact and if the both boundaries ∂U and ∂Ω are smooth then it is known
that

cap(U, Ω) =
∫

Ω\U
|∇u|2 dμ,

where u is the solution of the Dirichlet problem
{

Δu = 0 in Ω \ U
u|∂U = 1, u|∂Ω = 0

(see [9, Prop. 1], [22, Thm. 4.1,4.2]).
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The capacity cap(U, Ω) is monotone increasing with respect to U and decreasing with
respect to Ω. For any exhaustion Ω → M of M by increasing sequence of open sets Ω, we
have

lim
Ω→M

cap(U, Ω) = cap(U,M) =: cap(U).

Proof of Proposition 4.3. Recall that, for a precompact open set E ⊂ M ,

λ1 (E) = inf
ϕ∈C∞

0 (E)\{0}

∫
E |∇ϕ|2 dμ
∫
E ϕ2dμ

. (4.6)

Since for any function ϕ ∈ C∞
0 (E) with ϕ|D ≡ 1 we have

∫

E
ϕ2dμ ≥ μ (D) ,

we obtain from comparison of (4.6) and (4.5) that

λ1 (E) ≤
cap(D,E)

μ (D)
. (4.7)

Let us introduce the following sets (see Fig. 1):

U1 := B(o, τNR), U2 := B(o,NR), D = U2 \ U1, E = Ω \ U .

Ω

UU1 D U

E

Figure 1. Sets D = U2 \ U1 and E = Ω \ U

By [15, Remark 2.4], we have

cap(D,E) ≤ cap(U,U1) + cap(U2, Ω). (4.8)

Applying [10, Proposition 4.1], we obtain

cap(U,U1) ≤

(

inf
x∈∂U

GU1(x, o)

)−1

,

cap(U2, Ω) ≤

(

inf
x∈∂U2

GΩ(x, o)

)−1

.

Combining these estimates with (4.8), and applying Lemma 4.2 with a large enough R,
we obtain

cap(D,E) ≤ CRγ . (4.9)
By the condition (V≥), we have

μ(D) = μ(U2) − μ(U1) = V (o,NR) − V (o, τNR) ≥ cRα. (4.10)

Substituting (4.9) and (4.10) into (4.7), we obtain

λ1(E) ≤ CRγ−α,

which finishes our proof.
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Lemma 4.4. Let U and Ω be two precompact open subsets of M with smooth boundaries
and such that U b Ω. Let η be a harmonic function in Ω \ U satisfying η = 0 on ∂Ω and
η = 1 on ∂U . Then we have

η(x) ≤ C cap(U, Ω)d(x, U)−γ for large enough d(x, U), (4.11)

where the constant C depends on the constants in (G).

Proof. The harmonic function η admits at any x ∈ Ω \ U the following representation
via its boundary values and the Green function:

−η(x) =
∫

∂(Ω\U)

(
∂GΩ

∂ν
(x, y)η(y) − GΩ(x, y)

∂η

∂ν

)

dS(y),

where ν is the outward normal unit vector field to ∂
(
Ω \ U

)
. Since η = 0 on ∂Ω, η = 1

on ∂U , we have
∫

∂(Ω\U)

∂GΩ

∂ν
(x, y)η(y)dS(y) =

∫

∂U

∂GΩ

∂ν
(x, y)dS(y) = 0,

where we have used that the function GΩ (x, ∙) is harmonic in U . Since GΩ (x, ∙) vanishes
on ∂Ω, we obtain

η(x) =
∫

∂U
GΩ(x, y)

∂η

∂ν
dS(y).

By the maximum principle, we have ∂η
∂ν ≥ 0, whence it follows that

η (x) ≤ sup
y∈∂U

G(x, y)
∫

∂U

∂η

∂ν
dS(y).

Applying (G) and observing that
∫

∂U

∂η

∂ν
dS(y) =

∫

∂(Ω\U)

∂η

∂ν
ηdS(y) =

∫

Ω\U
|∇η|2 dμ = cap(U, Ω),

we obtain (4.11).

5. Proof of uniqueness of solutions

Proof of Theorem 2.1. Let u be a non-negative solution of (2.1) in M \K that is not
identical zero. Since u is superharmonic outside K, it follows from the strong minimum
principle that u is strictly positive.

Let U be a fixed precompact neighborhood of K with smooth boundary. Then u ≥ ρ > 0
on ∂U for small enough constant ρ. Let w be the equilibrium potential of the capacitor
(U,M), that is the smallest positive harmonic function outside U such that w|∂U = 1. By
the maximum principle we have

u(x) ≥ ρw(x) for all x ∈ U c. (5.1)

Since −Δu ≥ Φuσ and u ≥ 0 on U
c
, we have

u(x) ≥
∫

Uc

GU
c(x, y)Φ(y)uσ(y)dμ(y).

Substituting here (5.1), we obtain

u(x) ≥ ρσ

∫

Uc

GU
c(x, y)Φ(y)wσ(y)dμ(y) for all x ∈ U c. (5.2)

On the other hand, we claim that there exists some θ > 0 such that

w(x) ≥ θG(x, o) for all x ∈ U c. (5.3)
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Indeed, set

θ :=
1

sup
x∈∂U

G(x, o)
> 0.

For any precompact open set Ω with smooth boundary containing U , the function θGΩ (∙, 0)
is bounded by 1 on ∂U and vanishes on ∂Ω, which implies by the maximum principle that
it is bounded by w in Ω \U . Exhausting M by a sequence of such sets Ω, we obtain (5.3).

From (5.2) and (5.3) we obtain

u(x) ≥ ρσθσ

∫

Uc

GU
c(x, y)Φ(y)Gσ(y, o)dμ(y) for all x ∈ U c. (5.4)

Next, choose two precompact open sets U0 and Ω with smooth boundaries such that

U b U0 b Ω. (5.5)

By Lemma 4.1 we have
sup

x∈Ω\U0

(Δu + λ1(Ω \ U0)u) ≥ 0,

which together with (2.1) implies

inf
x∈Ω\U0

(Φuσ − λ1(Ω \ U0)u) ≤ 0

and, hence,

inf
x∈Ω\U0

Φ(x)
1

σ−1 u(x) ≤ λ1(Ω \ U0)
1

σ−1 .

From (5.4), we obtain

ρσθσ inf
x∈Ω\U0

Φ(x)
1

σ−1

∫

Uc

GU
c(x, y)Φ(y)Gσ(y, o)dμ(y) ≤ λ1(Ω \ U0)

1
σ−1 .

A desired contradiction will be obtained if we show that, for any ε > 0, there exist U0 and
Ω as in (5.5) and such that

λ1(Ω \ U0)
1

σ−1 < ε inf
x∈Ω\U0

Φ(x)
1

σ−1

∫

Uc

GU
c(x, y)Φ(y)Gσ(y, o)dμ(y). (5.6)

Our next goal is to estimate GU
c (x, y) from below away from ∂U . For any x ∈ Ω \ U

consider in Ω \ U the function

ηΩ
x (∙) = GΩ(x, ∙) − GU

c(x, ∙). (5.7)

Clearly, ηΩ
x (∙) is harmonic in Ω \ U and

ηΩ
x (y)

∣
∣
y∈∂Ω

= −GU
c(x, y)

∣
∣
y∈∂Ω

≤ 0,

while
ηΩ

x (y)
∣
∣
y∈∂U

= GΩ(x, y)|y∈∂U ≤ sup
y∈∂U

G(x, y) ≤ Cd (x, U)−γ ,

provided d (x, U) is large enough. By Lemma 4.4, we conclude that

ηΩ
x (y) ≤ C cap(U, Ω)d(x, U)−γd(y, U)−γ , (5.8)

provided both d (x, U) and d (y, U) are large enough. Let

ηx(y) := lim
Ω→M

ηΩ
x (y) = G(x, y) − GU

c(x, y). (5.9)

If follows from (5.8) that

ηx(y) ≤ C cap(U)d(x, U)−γd(y, U)−γ , (5.10)

for large enough d (x, U) and d (y, U).
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Now we specify U0 and Ω as follows. Using the constant N > 2 from Lemma 4.2 and
τ ∈ (0, 1) from (2.5), set

Ω = B(o,N2R) and U0 = B(o, τR),

where R is large enough and will tend to +∞ in what follows. Define also the balls

Ω1 = B(o, 2N2R) and U1 = B (o, r) ,

where r is a fixed but large enough number to be specified below. At the moment we
assume that

r > 2 diam U,

so that U b U1. Also, let r be so large that (5.10) holds for all x, y outside B (o, r/2).
Later on we will impose one more restriction on r (see (5.14)). We always assume that
R > τ−1r so that U1 b U0 (see Fig. 2).

xy

K

U

U1 = B(o, r)

U0 = B(o, τR)

Ω = B(o,N2R)

Ω1 = B(o, 2N2R)

d(∂U0, U) ≥ τR/2d(∂U1, U) ≥ r/2

Figure 2. Points x and y

In order to estimate the integral in (5.6) from below, let us restrict the integration
domain to Ω1 \ U1. Observe that, for all large enough R and for

x ∈ Ω \ U0 and y ∈ Ω1 \ U1, (5.11)

we have
d(x, U) ≥ τR − diam U ≥

τ

2
R and d(y, U) ≥ r − diam U ≥

r

2
.

Hence, we obtain from (5.10)

ηx(y) ≤ C1(τR)−γr−γ , (5.12)

where cap(U) is absorbed into the constant C1. Next, for all

x ∈ Ω \ U0 and y ∈ ∂Ω1,

we obtain
N2R ≤ d(x, y) ≤ 3N2R

whence
G(x, y) ≥ cd(x, y)−γ ≥ c1R

−γ .
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Since G(x, ∙) is superharmonic, the above inequality holds also for all y ∈ Ω1. In particular,
for all x, y as in (5.11), we have

G(x, y) ≥ c1R
−γ . (5.13)

Therefore, for x, y as in (5.11), we obtain from (5.12) and (5.13) that

GU
c(x, y) = G(x, y) − ηx(y) ≥ c1R

−γ − C1(τR)−γr−γ ≥ c2R
−γ , (5.14)

where c2 = c1/2 and r is chosen to be large enough.
Hence, we obtain that, for all x ∈ Ω \ U0,

∫

Uc

GU
c(x, y)Φ(y)Gσ(y, o)dμ(y) ≥ c2R

−γ

∫

Ω\U1

Φ(y)Gσ(y, o)dμ(y). (5.15)

Next, we claim that, for some c > 0,
∫

Ω\U1

Φ(y)Gσ(y, o)dμ(y) ≥ c

{
Rα+m−σγ , if α + m > σγ,
ln R, if α + m = σγ.

(5.16)

Assuming that R is large enough, let us choose a positive integer k such that

τk+1 ≥
r

N2R
≥ τk+2. (5.17)

Since

Ω \ U1 ⊃ B
(
o,N2R

)
\ B

(
o, τk+1N2R

)

we obtain, using (G) and (V≥), that

∫

Ω\U1

Φ(y)Gσ(y, o)dμ(y) ≥
k∑

i=0

∫

B(o,τ iN2R)\B(o,τ i+1N2R)
Φ(y)Gσ(y, o)dμ(y)

≥ C
k∑

i=0

∫

B(o,τ iN2R)\B(o,τ i+1N2R)
d(y, o)m−σγdμ(y)

≥ C ′
k∑

i=0

(τ iN2R)m−σγμ
(
B(o, τ iN2R) \ B(o, τ i+1N2R)

)

≥ C ′′
k∑

i=0

(τ iN2R)α+m−σγ . (5.18)

If α + m > σγ then, using τ ∈ (0, 1), (5.17) and assuming that R is large enough, we
obtain from (5.18)

∫

Ω\U1

Φ(y)Gσ(y, o)dμ(y) ≥ C(N2R)α+m−σγ 1 − τ (k+1)(α+m−σγ)

1 − τα+m−σγ

≥ C ′Rα+m−σγ . (5.19)

If α + m = σγ then by (5.17)
k ≥ c ln R, (5.20)

where c = c(N, r, τ ) > 0. We obtain from (5.18) and (5.20) that
∫

Ω\U1

Φ(y)Gσ(y, o)dμ(y) ≥ Ck ≥ C ′ ln R. (5.21)

Clearly, (5.19) and (5.21) contain the claim (5.16).
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Combining (5.15), (5.16) and (Φ), we obtain, for large enough R,

inf
Ω\U0

Φ
1

σ−1

∫

Uc

GU
c(x, ∙)Φ(∙)Gσ(∙, o)dμ ≥ c

{
R

mσ
σ−1

+α−(σ+1)γ , if α + m > σγ,

R
m

σ−1
−γ ln R, if α + m = σγ.

(5.22)

On the other hand, by Proposition 4.3, we have

λ1(Ω \ U0)
1

σ−1 ≤ CR−α−γ
σ−1 . (5.23)

Let us verify that, under the hypothesis,

1 < σ ≤
α + m

γ
(5.24)

the estimates (5.22) and (5.23) imply (5.6).
Indeed, consider first the case of equality in (5.24), that is,

α + m = σγ.

It follows that α − γ = (σ − 1) γ − m and

α − γ

σ − 1
= γ −

m

σ − 1
.

Therefore, thanks to the factor ln R in (5.22), we obtain, as R → ∞,

λ1(Ω \ U0)
1

σ−1 = O(R−α−γ
σ−1 ) = o

(
R

m
σ−1

−γ ln R
)

= o

(

inf
Ω\U0

Φ
1

σ−1

∫

Uc

GU
c(x, ∙)Φ(∙)Gσ(∙, o)dμ

)

,

whence (5.6) follows.
Consider now the case of a strict inequality in (5.24), that is,

α + m > σγ. (5.25)

Let us verify that in this case

α − γ

σ − 1
> −

[
mσ

σ − 1
+ α − (σ + 1)γ

]

.

Indeed, this inequality is equivalent to

m >

[

(σ + 1) γ − α −
α − γ

σ − 1

]
σ − 1

σ

=
[(

σ2 − 1
)
γ − (σ − 1) α − (α − γ)

] 1
σ

= σγ − α,

which is equivalent to (5.25). Hence, comparing (5.22) and (5.23), we obtain, as R → ∞,

λ1(Ω \ U0)
1

σ−1 = O(R−α−γ
σ−1 ) = o

(
R

mσ
σ−1

+α−(σ+1)γ
)

= o

(

inf
Ω\U0

Φ
1

σ−1

∫

Uc

GU
c(x, ∙)Φ(∙)Gσ(∙, o)dμ

)

,

which yields again (5.6) and thus finishes proof.
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6. Application to Schrödinger operator Δ − Ψ

As in Section 2, let (M,μ) be a weighted manifold, d be a distance function on M with
precompact balls, and Δ be the weighted Laplace operator on (M,μ). Let Ψ, Φ be smooth
non-negative functions on M .

We investigate the problem of uniqueness of a non-negative solution to the following
non-linear Schrödinger problem

Δu − Ψ(x) u + Φ(x) uσ ≤ 0 in M \ K. (6.1)

Let us introduce the following conditions. As before, we assume that Δ has a finite positive
Green function G (x, y).

(Ψ) The function Ψ is Green bounded, that is,

sup
x∈M

∫

M
G(x, y)Ψ(y)dμ(y) < ∞.

(G+) The Green function satisfies the following estimates:

G(x, y) '

{
d (x, y)−γ′

, d (x, y) ≤ 1,

d (x, y)−γ , d (x, y) > 1,

for some γ, γ′ > 0.

Clearly, (G+) ⇒ (G).
Our uniqueness result for (6.1) is as follows.

Theorem 6.1. Assume that conditions (Vo), (G+) , (Φ) and (Ψ) are satisfied. If

1 < σ ≤
α + m

γ
,

then any non-negative C2 solution u of the inequality (6.1) is identically equal to zero.

Remark 6.2. In the case M = Rn (n > 2) this result was obtained by Kondratiev,
Liskevich and Sobol [20].

Let us cite some previous results that we need for the proof.

Lemma 6.3. [11, Lemmas 10.1, 10.3] For any smooth non-negative function Ψ on M ,
there exists a smooth positive function h such that

Δh = Ψh on M. (6.2)

If in addition Ψ is Green bounded, then the equation (6.2) has a solution h ' 1 on M .

Let us fixed h as in Lemma 6.3 for the rest of this section. Consider the weighted
manifold (M, μ̃), where μ̃ is a measure on M defined by dμ̃ = h2dμ. Let Δ̃ be the
weighted Laplace operator of (M, μ̃). By [11, Lemma 4.3], the operators Δ̃ and Δ−Ψ are
related by the Doob transform

Δ̃ =
1
h
◦ (Δ − Ψ) ◦ h. (6.3)

Let Ṽ be the volume function on (M, μ̃), that is,

Ṽ (x, r) := μ̃(B(x, r)) =
∫

B(x,r)
h2dμ.

If (Ψ) is satisfied, then we obtain by Lemma 6.3 that

Ṽ (x, r) ' V (x, r). (6.4)



18 GRIGOR’YAN AND SUN

Lemma 6.4. [11, Lemma 4.7] The Green function GΨ(x, y) of the operator Δ − Ψ on
(M,μ) and the Green function G̃(x, y) of the operator Δ̃ on (M, μ̃) are related by the
identity

GΨ(x, y) = G̃(x, y)h(x)h(y).

Lemma 6.5. [13, Prop. 5.1] If (G+) is satisfied then there exists some constant C > 0,
such that, for all x, y, z ∈ M ,

min {G(x, z), G(z, y)} ≤ CG(x, y). (6.5)

In other words, function 1
G(x,y) is a quasi-metric on M.

Lemma 6.6. [11, Remark 10.8] If conditions (Ψ) and (6.5) are satisfied, then, for all
x 6= y.

GΨ(x, y) ' G(x, y).

Combining Lemmas 6.3, 6.4, 6.5, 6.6, we obtain that, under (G+) and (Ψ),

G̃ (x, y) ' G (x, y) . (6.6)

Proof of Theorem 6.1. Since Ψ is Green bounded, we obtain by Lemma 6.3, that
there exists a solution h of (6.2) that satisfies h ' 1. Set

v = u/h,

so that v satisfies in M \ K the inequality

(Δ − Ψ) (hv) + Φhσvσ ≤ 0.

Multiplying the both sides by 1
h , we obtain by means of (6.3) that

Δ̃v + Φhσ−1vσ ≤ 0.

Setting
c := min

x∈M
hσ−1 > 0.

we obtain
Δ̃v + cΦ(x)vσ ≤ 0. (6.7)

Since (Vo) and (G+) are satisfied on (M,μ), we see from (6.4) and (6.6) that the conditions
(Vo) and (G+) are satisfied also on (M, μ̃). In particular, we have on (M, μ̃) all the
hypotheses (Vo), (G), (Φ). Applying Theorem 2.1 to the inequality (6.7), we obtain v ≡ 0
in M \ K, which implies u = hv ≡ 0.

7. Proof of existence of solutions

In this section we prove Theorem 2.6. Let dim M = n > 2.

Lemma 7.1. If M has bounded geometry and (G) is satisfied, then

V (x, r) ' rn, for r < R0, (7.1)

and
G(x, y) ' d (x, y)2−n , for d(x, y) < R0. (7.2)

Proof. If r ≤ r0, then V (x, r) ' rn by definition of bounded geometry. For any
r0 ≤ r < R0, we have

V (x, r) ≥ V (x, r0) ' rn
0 ' Rn

0 ≥ crn,

and
V (x, r) ≤ V (x,R0) ' Rα

0 ' rn
0 ≤ Crn,

which yields (7.1).
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Let us fix x ∈ M and set Ω = B(x, r0). By [22], we have

GΩ(x, y) ' d(x, y)2−n, for y ∈ B(x, r0
2 ).

Since G ≥ GΩ, it follows that for any y ∈ B(x, r0
2 )

G(x, y) ≥ cd (x, y)2−n . (7.3)

Let y ∈ B(x,R0) \ B(x, r0
2 ). Then connect x to y by a shortest geodesic that intersects

∂B(x, r0
2 ) at a point z. Connecting z and y along the geodesic by a sequence of balls

of radii r0
2 (the number of such balls is obviously uniformly bounded), and applying a

uniform Harnack inequality in such balls, we obtain

G(x, y) ≥ cG(x, z) ≥ cd(x, z)2−n ≥ cd(x, y)2−n. (7.4)

Thus, we have proved the lower bound in (7.2).
To prove the upper bound for G(x, y), observe that the function

G(x, ∙) − GΩ(x, ∙)

is harmonic in Ω and, therefore, it is bounded in Ω by its maximum on ∂Ω. This maximum
is equal to G(x, z) for some z ∈ ∂Ω. Hence, for any y ∈ Ω,

G(x, y) ≤ GΩ(x, y) + G(x, z).

Connecting z to a point z′ ∈ ∂B(x,R0) by a chain of balls of radii 1
2r0 and using again a

uniform Harnack inequality, we obtain

G(x, z) ≤ CG(x, z′) ' R−γ
0 ,

whence it follows for y ∈ B(x, r0
2 )

G(x, y) ≤ Cd(x, y)2−n + CR−γ
0 ≤ C ′d(x, y)2−n.

It remains to prove the same inequality also for y ∈ B(x,R0) \ B(x, r0
2 ). Connecting y to

a point y′ ∈ ∂B(x, r0
2 ) by a chain of balls of radii of 1

4r0, and applying again a uniform
Harnack inequality, we obtain

G(x, y) ≤ CG(x, y′) ≤ Cd(x, y′)2−n ≤ C ′d(x, y)2−n,

which finishes the proof.
In the rest of this section we give the proof of Theorem 2.6. We always assume that the

hypotheses of this theorem are satisfied, that is, M is a manifold of bounded geometry
satisfying (V ) and (G).

Without loss of generality, let us take R0 = 1. We introduce two functions

v(r) =

{
rn, r ≤ 1,
rα, r ≥ 1.

(7.5)

and

g(r) =

{
r2−n, r ≤ 1,
r−γ , r ≥ 1.

(7.6)

It follows easily from (V ), (G) and Lemma 7.1 that, for all x, y ∈ M and r > 0,

V (x, r) ' v(r), G(x, y) ' g(d (x, y)). (7.7)

In what follows we use the notation

|x| := d(x, o).

Lemma 7.2. Set ρ = d(x, y). If ρ ≥ |y|, then

|x| + |y|
3

≤ ρ ≤ |x| + |y|.
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Proof. The upper bound is true by the triangle inequality. Since ρ ≥ |y|, we have

ρ ≥ |x| − |y| ≥ |x| − ρ,

whence 2ρ ≥ |x|. Since ρ ≥ |y|, we obtain 3ρ ≥ |x| + |y|, which was to be proved.

Lemma 7.3. If F is a non-negative monotone decreasing function on (0,∞). Then, for
any x0 ∈ M and 0 ≤ a < b ≤ +∞ ,

∫

B(x0,b)\B(x0,a)
F (|x|)dμ(x) ≤ C

∫ b

1
4
a
F (r)v(r)

dr

r
,

where the constant C depends only on the constant c in V (x, r) ≤ cv (r) as well as on α
and n.

Proof. This follows by a standard argument decomposing the integral over M into a
sum of the integrals over the annuli B

(
x0, 2i+1

)
\ B

(
x0, 2i

)
and then using V (x0, r) ≤

cv (r) and the monotonicity of F .
Consider the following function on R+:

f (r) = g (r) ∧ 1 =

{
1, r ≤ 1,
r−γ , r ≥ 1.

(7.8)

Proposition 7.4. If σ > α
γ then, for the function f from (7.8), we have
∫

M
G(x, y)f(|y|)σdμ(y) ≤ Cf(|x|) (7.9)

for all x ∈ M , where the constant C depends only on the constants in the hypotheses of
Theorem 2.6.

Proof. Fix x ∈ M and write for simplicity

ρ = ρ (y) = d(x, y).

We split the domain of integration in (7.9) into two parts:

{y ∈ M : |y| ≤ ρ (y)} and {y ∈ M : |y| > ρ (y)} ,

and estimate separately each of the two integrals.
Step 1. Let us prove that

∫

{|y|≤ρ(y)}
G(x, y)f(|y|)σdμ(y) ≤ Cf(|x|). (7.10)

By Lemma 7.2, we have in the domain of integration ρ ' |x| + |y|. By (7.7), we have

G(x, y) ' g(ρ) ' g(|x| + |y|),

whence from Lemma 7.3
∫

{|y|≤ρ(y)}
G(x, y)f(|y|)σdμ(y) ≤ C

∫

M
g(|x| + |y|)f(|y|)σdμ(y)

≤ C

∫ ∞

0
g(|x| + r)f(r)σv(r)

dr

r
,

It remains to verify that
∫ ∞

0
g(|x| + r)f(r)σv(r)

dr

r
≤ Cf(|x|). (7.11)

Consider further two cases: |x| ≤ 1 and |x| > 1.
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Case |x| ≤ 1. We have
∫ ∞

0
g(|x| + r)f(r)σv(r)

dr

r
≤

∫ ∞

0
g(r)f(r)σv(r)

dr

r

≤
∫ 1

0
g(r)v(r)

dr

r
+
∫ ∞

1
g(r)σ+1v(r)

dr

r
< ∞, (7.12)

where the both integrals in (7.12) converge due to (7.6) and σγ > α. Hence, we obtain
(7.11).

Case |x| ≥ 1. We have
∫ ∞

0
g(|x| + r)f(r)σv(r)

dr

r
=

∫ ∞

0

1
(|x| + r)γ

f(r)σv(r)
dr

r

≤
1

|x|γ

∫ ∞

0

(
|x|

|x| + r

)γ

f(r)σv(r)
dr

r

≤
1

|x|γ

∫ ∞

0
f(r)σv(r)

dr

r
(7.13)

= Cf (|x|) ,

because the integral in (7.13) converges at ∞ due to σγ > α. Hence, we finish the proof
of (7.11) and (7.10).

Step 2. Let us prove that
∫

{|y|>ρ(y)}
G(x, y)f(|y|)σdμ(y) ≤ Cf(|x|). (7.14)

By Lemma 7.2, we have |y| ' |x|+ ρ. Since G (x, y) ' g (ρ), we obtain by Lemma 7.3 that
∫

{|y|>ρ(y)}
G(x, y)f(|y|)σdμ(y) ≤ C

∫

M
g (ρ) f (|x| + ρ)σ dμ (y)

≤ C

∫ ∞

0
g(r)f(|x| + r)σv(r)

dr

r
,

so that it remains to prove that
∫ ∞

0
g(r)f(|x| + r)σv(r)

dr

r
≤ Cf(|x|). (7.15)

We also consider two cases: |x| ≤ 1 and |x| > 1.
Case |x| ≤ 1. Since

∫ ∞

0
g(r)f(|x| + r)σv(r)

dr

r
≤
∫ ∞

0
g(r)f(r)σv(r)

dr

r
,

the estimate (7.15) follows from (7.12).
Case |x| ≥ 1. We have

∫ ∞

0
g(r)f(|x| + r)σv(r)

dr

r
=

∫ ∞

0
g(r)

1
(|x| + r)σγ

v(r)
dr

r

=
∫ ∞

0
g(r)

1
(|x| + r)γ

1

(|x| + r)(σ−1)γ
v(r)

dr

r

≤
∫ ∞

0
f (|x|) g(r)

1

(1 + r)(σ−1)γ
rα dr

r

= Cf (|x|) ,

where the last integral converges at ∞ by σγ > α.
Combining the two steps, we complete the proof.
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Proposition 7.5. If σ > α
γ , then

sup
x∈M

∫

M
G(x, y)f(|y|)σ−1dμ(y) < ∞.

Proof. Since
∫

M
G(x, y)f(|y|)σ−1dμ(y) =

∫

{|y|≤2|x|}
G(x, y)f(|y|)σ−1dμ(y)

+
∫

{|y|>2|x|}
G(x, y)f(|y|)σ−1dμ(y).

If |y| ≤ 2|x| then we have by (7.8)

1
f(|y|)

≤
C

f(|x|)
,

and Proposition 7.4 implies
∫

{|y|≤2|x|}
G(x, y)f(|y|)σ−1dμ(y) ≤ C

∫

|y|≤2|x|
G(x, y)

f(|y|)σ

f(|x|)
dμ(y) ≤ C ′ < ∞. (7.16)

If |y| > 2|x| then by Lemma 7.2, we have d(x, y) ' |y| and, hence,

G(x, y) ' g(|y|).

By Lemma 7.3, we obtain
∫

{|y|>2|x|}
G(x, y)f(|y|)σ−1dμ(y) ≤ C

∫

M
g(|y|)f(|y|)σ−1dμ(y)

≤ C

∫ ∞

0
g(r)f(r)σ−1v(r)

dr

r
≤ C ′, (7.17)

where the last integral converges due to (7.6) and σγ > α. Combining (7.16) and (7.17),
we finish the proof.

Theorem 2.6 is contained in the following theorem.

Theorem 7.6. Assume that M has bounded geometry, and assume also that (V ) and (G)
are satisfied. If

σ >
α

γ
,

then, for small enough λ > 0, there exists a positive solution u ∈ C2(M) to the equation

Δu + uσ + λσfσ = 0 in M, (7.18)

where f is defined as in (7.8). In particular, u is also a solution to differential inequality

Δu + uσ < 0 in M.

Proof. Define the operator

Tu(x) =
∫

M
G(x, y) (uσ(y) + λσf(|y|)σ) dμ(y), (7.19)

acting on the space
Sλ = {u ∈ L∞(M)|0 ≤ u(x) ≤ λf(|x|).}

where λ is a small enough constant.
It is easy to see that Sλ is a closed set of L∞(M). Let us show that

TSλ ⊂ Sλ.
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By Proposition 7.4, we have

Tu =
∫

M
G(x, y) (uσ + λσf(|y|)σ) dμ(y)

≤ 2λσ

∫

M
G(x, y)f(|y|)σdμ(y)

≤ 2Cλσf(|x|).

By choosing λ small enough, we obtain Tu ∈ Sλ and hence TSλ ⊂ Sλ.
Let us show that T is a contraction map. For u1, u2 ∈ Sλ, we have

|Tu1 − Tu2| ≤
∫

M
G(x, y)|uσ

1 − uσ
2 |dμ(y).

Noting that
|uσ

1 − uσ
2 | ≤ σ sup{uσ−1

1 , uσ−1
2 }|u1 − u2|,

we obtain

|Tu1 − Tu2| ≤ λσ−1σ ‖u1 − u2‖L∞

∫

M
G(x, y)f(|y|)σ−1dμ(y)

≤ Cλσ−1σ ‖u1 − u2‖L∞

∫

M
G(x, y)f(|y|)σ−1dμ(y).

Applying Proposition 7.5, we obtain

‖Tu1 − Tu2‖L∞ ≤ Cλσ−1σ ‖u1 − u2‖L∞ .

Choosing λ small enough we obtain that Cλσ−1σ < 1, and hence T is a contraction map.
By the Banach fixed point theorem, T has a fixed point u.

In the rest of the proof, we verify that the fixed point u of T belongs to C2(M) and
satisfies (7.18). Denote

w := uσ + λσfσ. (7.20)

so that by (7.19)

u(x) =
∫

M
G(x, y)w(y)dμ(y).

Since u ∈ Sλ, we have
w ≤ 2λσfσ,

which implies
w (x) ≤ C (1 + |x|)−σγ . (7.21)

Let us first prove that u is locally Hölder, that is, there exists θ ∈ (0, 1) (depending
on n, α, γ and the bounded geometry constants) and C > 0 (depending on the all the
hypotheses) such that

|u(x) − u(x′)| ≤ Cd(x, x′)θ,

provided d (x, x′) is small enough (depending on |x|). Set

ε := d(x, x′)1/N ,

where N ≥ 2 is a large enough positive real that will be specified below depending on the
constants in the hypotheses (see (7.26)). Assume that d (x, x′) is so small that

ε <
1
2

min
(
1, r0, r

−1
0 , |x|−1

)
.

It follows that d (x, x′) = εN < 1
2ε so that x′ ∈ B(x, 1

2ε). Set

R := ε−1 > 2max (1, r0, |x|) (7.22)
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and observe that

|u(x) − u(x′)| ≤
∫

B(x,2ε)
|G(x, y) − G(x′, y)|w(y)dμ(y) (7.23)

+
∫

M\B(x,R)
|G(x, y) − G(x′, y)|w(y)dμ(y) (7.24)

+
∫

B(x,R)\B(x,2ε)
|G(x, y) − G(x′, y)|w(y)dμ(y). (7.25)

For the integral in (7.23), we have by the boundedness of w and by (7.7),
∫

B(x,2ε)
|G(x, y) − G(x′, y)|w(y)dμ(y) ≤ C

∫

B(x,2ε)

(
G(x, y) + G(x′, y)

)
dμ(y)

≤ Cε2.

In order to estimate the integral in (7.24), observe that, for y ∈ M \ B (x,R), we have by
(7.7)

|G(x, y) − G(x′, y)| ≤ G(x, y) + G(x′, y) ≤ CR−γ

and by (7.21) and (7.22)

w (y) ≤ C |y|−σγ ≤ C (d (x, y) − |x|)−σγ ≤ C

(
1
2
d (x, y)

)−σγ

.

Using also that σγ > α, we obtain by Lemma 7.3
∫

M\B(x,R)
|G(x, y) − G(x′, y)|w(y)dμ(y) ≤ CR−γ

∫

M\B(x,R)
d (x, y)−σγ dμ (y)

≤ CR−γ

∫ ∞

1
4
R

r−σγrα−1dr

≤ CR−γ−σγ+α ≤ CR−γ = Cεγ .

Figure 3.

If y ∈ B(x,R) \ B(x, 2ε) then the function G(∙, y) is harmonic in B(x, ε) (see Fig. 3).
Applying de Giorgi’s theorem in the ball B (x, r0) that is quasi-isometric to a Euclidean
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ball (cf. [8, Theorem 8.22]), we obtain

|G(x, y) − G(x′, y)| ≤ C

(
d(x, x′)

ε

)η

sup
z∈B(x,ε)

G(z, y),

where η, C > 0 depend on the bounded geometry constants and on n. Since d (z, y) ≥ ε,
by (7.7) we have

sup
z∈B(x,ε)

G (z, y) ≤ Cε2−n.

Using also d (x, x′) = εN , we obtain, for the integral in (7.25),
∫

B(x,R)\B(x,2ε)
|G(x, y) − G(x′, y)|w(y)dμ(y) ≤ CRαε(N−1)η+2−n

= Cε(N−1)η+2−n−α

= Cε2,

where in the last step we choose N from the equation

(N − 1) η = n + α. (7.26)

Combing all the above estimates, we obtain from (7.23)-(7.25) that

|u(x) − u(x′)| ≤ C
(
ε2 + εγ + ε2

)
≤ C ′d

(
x, x′)θ ,

with θ = min (2, γ) /N.
Since f is also locally Hölder continuous, we obtain from (7.20) that w is locally Hölder

on M . For any precompact domain Ω ⊂ M , we obtain by Lemma 8.1 in Appendix that
the function

uΩ (x) :=
∫

Ω
GΩ (x, y) w (y) dμ (y)

belongs to C2 (Ω). Since the difference u−uΩ is harmonic in Ω in the distributional sense,
it follows that u−uΩ has a smooth modification in Ω. Therefore, u has a C2-modification
in Ω. Since u is continuous, we conclude that u ∈ C2 (Ω). Since Ω is arbitrary, it follows
that u ∈ C2(M). By [12, Lemma 13.1], the function u solves Δu = −w, which is equivalent
to (7.18).

8. Appendix

The following statement is well-know for domains in Rn, but we need it for an arbitrary
manifold. We use the notation

GΩh (x) =
∫

Ω
GΩ (x, y) h (y) dμ (y) .

Lemma 8.1. Let M be an arbitrary weighted manifold and let f be a locally Hölder
continuous function on M with some Hölder exponent θ ∈ (0, 1). Then, for any precompact
domain Ω, the function u := GΩf belongs to C2(Ω).

Proof. We use in the proof the fact that the Green function GΩ (x, y) has a uniformly
bounded integral ∫

Ω
GΩ (x, y) dμ (y) ,

which implies that, for any bounded function h in Ω,

sup
x∈Ω

|GΩh (x)| ≤ C sup
x∈Ω

|h (x)| . (8.1)
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Choose a sequence fk ∈ C∞
0 (M) such that

fk
C0,θ(Ω)
−→ f

and set
uk := GΩfk. (8.2)

By [12, Lemma 13.1], we have uk ∈ C∞(Ω) and

−Δuk = fk in Ω.

Since fk ⇒ f in Ω as k → ∞ (where ⇒ means the uniform convergence), it follows from
(8.1) that

uk ⇒ u in Ω. (8.3)

In any small enough precompact chart U b Ω, that is contained in a ball of radius r0, we
can apply the Schauder estimates (cf. [8, Theorem 6.2]), to obtain

‖uk‖C2,θ(U) ≤ C(‖uk‖C(Ω) + ‖fk‖C0,θ(Ω)), (8.4)

(where C depends on U). Since the sequence of norms ‖fk‖C(Ω) is uniformly bounded, we
obtain by (8.1) that also the sequence ‖uk‖C(Ω) is uniformly bounded. By (8.4) we conclude
that the sequence ‖uk‖C2,θ(U) is uniformly bounded. By the Arzelà-Ascoli theorem, there
exists a subsequence {uki

} that converges in C2 (U). By (8.3) we conclude that the limit
function is u and, hence, u ∈ C2 (U). It follows that u ∈ C2(Ω), which finishes the proof.
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