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1 Introduction and main results

Let M be a smooth connected Riemannian manifold and consider the differential
inequality on M

div (A (x)∇u) + V (x) uσ ≤ 0, (1.1)

where ∇ and div are respectively the Riemannian gradient and divergence, u = u (x)
is an unknown positive function on M , σ > 1 is a given constant, V is a given positive
measurable function on M , and A is a given measurable tensor field on M such that
A (x) is a non-negative definite symmetric operator in the tangent space TxM . The
inequality (1.1) is understood in a weak sense to be explained below.

We are concerned with the question when (1.1) has no positive solution u on M .
This question in the setting of Euclidean spaces has a long history, starting with the
pioneering work of Gidas and Spruck [3]. We refer the reader to [10] for the survey of
this problem. Let us cite only one result in this direction, which already exhibits the
phenomenon that the answer depends on the interplay of all the data, including the
geometry of M and the value of σ. Indeed, it is known that the following inequality
in Rn, n > 2,

∆u+ uσ ≤ 0

has no positive solution if and only if σ ≤ n
n−2

. If n ≤ 2 then there is no positive
solution for any σ.

The previously developed methods for investigation of the above question include
such advanced tools as Harnack inequalities and estimates of fundamental solutions.
Here we adopt another approach that originates from [8] and that uses only very
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basic tools as capacities and volumes. This enables us to replace a traditional
assumption on A (x) to be positive definite, by the non-negative definiteness.

In the rest of this section we state the main results: the capacity tests and the
volume test. The former are proved in Section 2, and the latter in Section 4. In
Sections 3 and 5 we give examples, showing the sharpness of the above tests.

Let us explain in what sense we understand (1.1). Let µ be the Riemannian
measure on M . All the spaces Lp (M) will be considered with respect to µ. Recall
that W 1 (M) is the Sobolev space defined by

W 1 (M) =
{
f ∈ L2 (M) : |∇f | ∈ L2 (M)

}
,

where ∇f is the weak gradient of f . Let W 1
c (M) be a subspace of W 1 (M) that

consists of functions with compact supports.
Similarly, define a local Sobolev space W 1

loc (M) by

W 1
loc (M) =

{
f ∈ L2

loc (M) : |∇f | ∈ L2
loc (M)

}
.

Definition. A function u on M is called a positive (weak) solution of the inequality
(1.1) on M if u is a positive function from W 1

loc (M), such that 1
u
∈ L∞loc (M), and,

for any non-negative function ψ ∈ W 1
c (M), the following inequality holds:

−
∫

M

(A (x)∇u,∇ψ) dµ+

∫

M

V (x) uσψdµ ≤ 0 (1.2)

where (·, ·) is the inner product in TxM given by the Riemannian metric.

To ensure the finiteness of the integrals in (1.2), we assume henceforth that the
function x 7→ ‖A (x) ‖ is locally bounded, where ‖A (x)‖ is the norm of the operator
A (x) in TxM , that is, the maximal eigenvalue of the operator A (x). Indeed, since
K := suppψ is compact, we have

∫

M

|(A (x)∇u,∇ψ)| dµ =

∫

K

|(A (x)∇u,∇ψ)| dµ

≤ esssup
x∈K

‖A (x)‖ ‖∇u‖L2(K)‖∇ψ‖L2(K)

< ∞.

The second integral in (1.2) is then finite due to (1.2).
Consider the following quadratic form in the tangent space TxM :

(ξ, η)A := (A (x) ξ, η) ,

and the corresponding semi-norm

|ξ|A := (A (x) ξ, ξ)1/2
.

In particular, for any function f ∈ W 1
loc (M), we have

|∇f |A = (A (x)∇f,∇f)1/2
.
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Definition. Let A and V be as above, and fix two constants p > 0 and q ≥ 0. For
any precompact set K ⊂M , define the capacity capp,q(K) as follows:

capp,q(K) := inf
ϕ∈T (K)

∫

M

|∇ϕ|pA V
−qdµ,

where T (K) is the class of test function, defined by

T (K) =
{
ϕ ∈ Lipc (M) : 0 ≤ ϕ ≤ 1, and ϕ ≡ 1 in a neighborhood of K

}
,

and Lipc (M) is the class of Lipschitz functions on M with compact supports.

If q = 0 then we write

capp (K) ≡ capp,0(K) = inf
ϕ∈T (K)

∫

M

|∇ϕ|pA dµ,

so that capp(K) is independent of V (x). It is well-known that if cap2(K) = 0 for
any compact set (or for some compact set with non-empty interior) then any positive
solution to the inequality

div (A (x)∇u) ≤ 0 (1.3)

must be constant (see, for example, [5]). Since any positive solution to (1.1) satisfies
(1.3), we obtain in this setting that u ≡ const, which implies by (1.1) that u ≡ 0.
Hence, the condition cap2(K) = 0 implies the absence of a positive solution of (1.1)
for any potential V (x) and any σ.

We state now more subtle conditions in terms of higher capacities that take into
account also σ and V (x). Fix some σ > 1 in (1.1) and set

p =
2σ

σ − 1
, q =

1

σ − 1
. (1.4)

Theorem 1.1 If, for some compact set K ⊂ M with non-empty interior, the fol-
lowing condition is satisfied

capp−2ε,q−ε(K) = o
(
εp/2
)

as ε→ 0+, (1.5)

then (1.1) has no positive solution on M .

Theorem 1.2 If, for some compact set K ⊂M with non-empty interior and some
ε ∈ (0, q], the following condition is satisfied

capp−2ε,q−ε(K) = 0, (1.6)

then (1.1) has no positive solution on M .

Let d (x, y) be the geodesic distance on M and B (x, r) be the open geodesic ball
of radius r centered at x ∈ M . Assume further that M is geodesically complete,
which is equivalent to the relative compactness of all geodesic balls in M . For any
ε ≥ 0, consider a measure νε on M defined by

dνε = ‖A‖p/2−ε V −(q−ε)dµ,

where p, q are the same as in (1.4).
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Theorem 1.3 Let M be a geodesically complete Riemannian manifold and assume
that, for some x0 ∈M , C > 0, κ < q, the following inequality holds

νε (B (x0, r)) ≤ Crp+Cε logκ r (1.7)

for all large enough r and all small enough ε > 0. Then (1.1) has no positive
solution.

As we will see in Section (5), the restriction κ < q is sharp. More precisely, in
the case κ > q there is a counterexample with a positive solution. The borderline
case κ = q requires further investigation.

Note that
dν0 = ‖A‖p/2 V −qdµ

and

dνε =

(
V

‖A‖

)ε
dν0

(although the latter makes sense only if ‖A (x) ‖ > 0 a.e.). Clearly, the condition
(1.7) holds provided

ν0 (B (x0, r)) ≤ Crp (log r)κ (1.8)

and
V

‖A‖
(x) ≤ C (1 + d (x, x0))C , (1.9)

for some C > 0.

Example. Let A = id and V ≡ 1 so that the inequality (1.1) becomes

∆u+ uσ ≤ 0. (1.10)

The condition (1.7) is equivalent to

µ (B (x0, r)) ≤ Crp logκ r, (1.11)

where p and κ are related to σ as above, that is,

p =
2σ

σ − 1
and κ <

1

σ − 1
.

Assume now that (1.11) is given with some non-negative p and κ, and determine for
which σ > 1 the inequality (1.1) has no positive solutions. Set

pσ =
2σ

σ − 1
, κσ =

1

σ − 1
.

If either p < pσ or p = pσ and κ < κσ then (1.11) implies

µ (B (x0, r)) ≤ Crpσ logκσ−ε r

for some ε > 0, whence the absence of positive solutions of (1.10) follows. In terms
of σ, the above conditions are satisfied in any of the three cases:
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1. p ≤ 2, σ > 1, κ is any,

2. p > 2, σ < p
p−2

, κ is any,

3. p > 2, σ = p
p−2

, and κ < p
2
− 1.

For example, if M = Rn then (1.11) holds with p = n and κ = 0. If n ≤ 2
then (1.10) has no positive solutions for any σ > 1 (in fact, for any real σ), and if
n > 2 then (1.10) has no positive solutions for σ ≤ n

n−2
, as it was already mentioned

above.

2 Proof of the capacity tests

Here we prove Theorems 1.1 and 1.2, using the approach of Kurta [8]. Let u be a
positive solution of (1.1). We first obtain some estimates of u without using specific
hypotheses of Theorems 1.1 and 1.2. Fix some function ϕ ∈ Lipc (M), such that
0 ≤ ϕ ≤ 1, constants 0 < t ≤ 1, s ≥ 2, and take in (1.2) the test function ψ = u−tϕs.
Clearly, ψ has compact support and is bounded, due to the local boundedness of
u−1. We have

∇ψ = −tu−t−1ϕs∇u+ su−tϕs−1∇ϕ,

whence it is clear that |∇ψ| ∈ L2 (M) and, consequently, ψ ∈ W 1
c (M). We obtain

from (1.2) that

t

∫

M

|∇u|2A u
−t−1ϕsdµ+

∫

M

uσ−tϕsV dµ ≤ s

∫

M

(∇u,∇ϕ)A u
−tϕs−1dµ. (2.1)

By the Cauchy-Schwarz inequality, we estimate the right hand side of (2.1) as follows:

s

∫

M

(∇u,∇ϕ)A u
−tϕs−1dµ =

∫

M

(√
tu−

t+1
2 ϕs/2∇u,

s
√
t
u−

t−1
2 ϕs/2−1∇ϕ

)

A

dµ

≤
t

2

∫

M

|∇u|2A u
−t−1ϕsdµ

+
s2

2t

∫

M

|∇ϕ|2A u
1−tϕs−2dµ.

Substituting into (2.1) and cancelling out the half of the first term in (2.1), we obtain

t

2

∫

M

|∇u|2A u
−t−1ϕsdµ+

∫

M

uσ−tϕsV dµ ≤
s2

2t

∫

M

|∇ϕ|2A u
1−tϕs−2dµ. (2.2)

In what follows, assume that 0 < t < 1 and set

α =
σ − t
1− t

, β =
σ − t
σ − 1
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so that α and β are Hölder conjugate. Applying the Young inequality in the form

∫
fg dµ ≤

∫
|f |α dµ+

∫
|g|β dµ

we estimate the right hand side of (2.2) as follows:

s2

2t

∫

M

|∇ϕ|2A u
1−tϕs−2dµ =

1

2

∫

M

[
u1−tϕ

s
αV

1
α

] [s2

t
|∇ϕ|2A ϕ

s
β
−2V −

1
α

]

dµ

≤
1

2

∫

M

uσ−tϕsV dµ

+
1

2

(
s2

t

) σ−t
σ−1
∫

M

|∇ϕ|
2 σ−t
σ−1

A ϕs−2 σ−t
σ−1V −

1−t
σ−1dµ.

Now we substitute this estimate into (2.2), using also that

(
s2

t

) σ−t
σ−1

≤

(
s2

t

) σ
σ−1

,

and
ϕs−2 σ−t

σ−1 ≤ 1

provided

s >
2σ

σ − 1
,

which will be assumed in the sequel. Noticing that a half of the middle term in (2.2)
cancels out and multiplying by 2, we obtain

t

∫

M

|∇u|2A u
−t−1ϕsdµ+

∫

M

uσ−tϕsV dµ ≤

(
s2

t

) σ
σ−1
∫

M

|∇ϕ|
2 σ−t
σ−1

A V −
1−t
σ−1dµ. (2.3)

Proof of Theorem 1.1. Let K be a compact set from (1.5) and let ϕ be a
test function from the class I (K). Applying (2.3) with this function ϕ and taking
infimum in ϕ on the right hand side, we obtain

∫

K

uσ−tV dµ ≤

(
s2

t

) σ
σ−1

cap2 σ−t
σ−1

, 1−t
σ−1

(K)

= cs,σε
−p/2 capp−2ε,q−ε(K), (2.4)

where ε = t
σ−1

. Letting ε→ 0 and using the hypothesis (1.5), we see that the right
hand side here goes to 0, whence

∫

K

uσV dµ = 0,

which contradicts the positivity of u and V .
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Proof of Theorem 1.2. Let K be a compact set from (1.6). If 0 < ε < q then
set t = ε (σ − 1) so that 0 < t < 1. Then the right hand side of (2.4) vanishes due
to (1.6), whence we again obtain the contradiction.

If ε = q then t = 1 and (2.3), (2.4) do not apply. In this case the condition (1.6)
becomes cap2(K) = 0, which implies that any positive solution of the inequality
(1.3) is constant. Hence, (1.1) has no positive solution. Alternatively, we obtain
from (2.2) with s = 2 that

∫

M

uσ−1ϕ2V dµ ≤ 2

∫

M

|∇ϕ|2A dµ. (2.5)

The hypothesis cap2(K) = 0 implies that the infimum of the right hand side of (2.5)
over all ϕ ∈ T (K) is equal to 0, which finishes the proof.

The condition (1.6) of Theorem 1.2 can be replaced by the following assumption:
there is a constant C > 0 such that for any compact set K ⊂M ,

capp−2ε,q−ε(K) ≤ C. (2.6)

Indeed, using certain properties of capacities (cf. [6, Lemma 2.5]), it is possible to
show that (2.6) implies (1.6).

3 Examples to the capacity test

In this section, we set M = Rn, n > 2, µ is the Lebesgue measure, A (x) = (aij (x))
where aij ∈ L∞ (Rn), and V (x) ≡ 1. Set σ = n

n−2
which is the critical exponent for

the problem (1.1). Let BR be the Euclidean ball of radius R centered at the origin.
Let us use the following expression for the Euclidean capacity (see [2], [9]): for any
s ∈ (1, n),

inf
ϕ∈I(BR)

∫

Rn
|∇ϕ|s dµ = (n− s)s−1 ωn

(s− 1)s
Rn−s,

where ωn is the area of the unit sphere in Rn. Since for the above value of σ we
have p = n, and ‖A‖ is uniformly bounded, we obtain for s = p− 2ε = n− 2ε that

capp−2ε,q−ε(BR) ≤ C inf
ϕ∈I(BR)

∫

Rn
|∇ϕ|n−2ε

dµ

= C (2ε)n−2ε−1 ωn

(n− 2ε− 1)n−2εR
2ε

= O (εn) as ε→ 0.

The condition (1.5), that is,

capp−2ε,q−ε(BR) = o
(
εn/2

)
,

is obviously satisfied, and we obtain by Theorem 1.1 that (1.1) has no positive
solution. This result was previously known for positive definite matrices A (x).
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Let us show that one cannot set ε = 0 in Theorem 1.1; that is, the condition

capp,q(K) = 0

does not necessarily imply the non-existence of positive solutions. Before we can
state an example supporting this claim, let us cite the following theorem of Atkinson.

Proposition 3.1 (Atkinson [1]) Let σ > 1 be a constant and β (x) be a continuous
function on (x0,+∞) such that

∫ ∞
x |β (x)| dx <∞. (3.1)

Then there exists a positive solution y (x) to the differential equation

y′′ + β (x) yσ = 0

in an interval (x1,+∞) with a large enough x1, such that

y (x)→ 1 and y′ (x)→ 0 as x→ +∞.

We will use the following generalization of Proposition 3.1.

Proposition 3.2 Let α (x) be a positive C1-function on (x0,+∞) such that

∫ ∞ dx

α (x)
<∞. (3.2)

Define the function γ (x) on (x0,+∞) by

γ (x) =

∫ ∞

x

ds

α (s)
.

Let β (x) be a continuous function on (x0,+∞) such that

∫ ∞
γ (x)σ |β (x)| dx <∞. (3.3)

Then the differential equation

(α (x) y′)
′
+ β (x) yσ = 0 (3.4)

has a positive solution y (x) on an interval (x1,+∞) for large enough x1, such that

y (x) ∼ γ (x) as x→ +∞.
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Proof. Introducing an independent variable z = 1
γ(x)

and a function u (z) =

y (x) z, we obtain by the chain rule that

d2u

dz2
+ β̃ (z) uα = αγ3 d

dx

(

α
dy

dx

)

+
β̃

γσ
yσ,

so that (3.4) is equivalent to the equation

d2u

dz2
+ β̃ (z) uα = 0

with β̃ (z) = αγσ+3β. By Proposition 3.1, this equation has a positive solution in a
neighborhood of +∞ provided

∫ ∞
z
∣
∣
∣β̃ (z)

∣
∣
∣ dz <∞. (3.5)

By (3.2), z →∞ is equivalent to x→∞. Since dz = − γ′

γ2dx = 1
αγ2dx, the condition

(3.5) becomes ∫ ∞ 1

γ
|β (x)|αγσ+3 1

αγ2
dx <∞,

which coincides with (3.3). Finally, by Proposition 3.1, there is a solution u (z) ∼ 1
as z →∞, which implies y (x) ∼ γ (x) as x→∞.

Our purpose here is to construct in Rn a positive solution u (x) of the inequality

n∑

i=1

∂

∂xi

(

a (r)
∂u

∂xi

)

+ uσ ≤ 0, (3.6)

where σ = n
n−2

, r is the polar radius in Rn and the function a (r) is a positive
constant for small r and

a (r) = logk r for large r,

where k can be any constant such that

k >
n− 2

n
. (3.7)

Since p = n and V ≡ 1, the corresponding capacity is given by

capp,q(K) = capn(K) = inf
ϕ∈T (K)

∫

Rn
an/2 (r) |∇ϕ|n dx.

Evaluation of this capacity by the variational method shows that, for any ball BR

centered at the origin,

capn(BR) = cn

(∫ ∞

R

dr

(an/2 (r) rn−1)
1

n−1

)1−n

,
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where cn > 0. Hence, capn(BR) = 0 if and only if

nk

2 (n− 1)
≤ 1. (3.8)

Clearly, there is k such that the both conditions (3.7) and (3.8) are satisfied. With
this k, we obtain an example, where capp,q(K) = 0 for any compact set K, whereas
the inequality (3.6) has a positive solution.

We construct such a solution as a function of r only, so we write u = u (r).
Writing u′ and a′ for the derivative in r and using that ∂xi

∂r
= xi

r
, one easily obtains

n∑

i=1

∂

∂xi

(

a (r)
∂u

∂xi

)

= au′′ + a′u′ +
(n− 1) a

r
u′

= r1−n
(
a (r) rn−1u′

)′
.

Hence, (3.6) is equivalent to

(
a (r) rn−1u′

)′
+ rn−1uα ≤ 0. (3.9)

The condition (3.2) of Proposition (3.2) is obviously satisfied. The function γ (r) is
given for large r by

γ (r) =

∫ ∞

r

ds

sn−1a (s)
=

∫ ∞

r

ds

sn−1 logk s
' r−(n−2) log−k r.

The condition (3.3) with β (r) = rn−1 is satisfied provided

∫ ∞
r−σ(n−2) log−σk rn−1dr =

∫ ∞ dr

r logαk r
<∞,

which is exactly the case when k > 1
σ
, which is the same as (3.7). By Proposition

3.2, there is a positive solution u (r) to (3.9) in some interval [r0,+∞) such that

u (r) ∼ γ (r) ' r−(n−2) log−k r as r →∞,

in particular, u (r) → 0 as r → ∞. By increasing r0 if necessary, we can assume
that u′ (r0) < 0. For small values of r, namely for r ≤ ξ where ξ will be specified
later on, the function a (r) will be defined to be a constant, whose value will also be
determined later.

So far consider the linear equation

v′′ +
n− 1

r
v′ + εv = 0

that has a solution v (r) with the initial conditions

v (0) = 1, v′ (0) = 0.
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This solution is positive and decreasing for r < rε for some positive rε and vanishes
at rε; moreover, rε → ∞ as ε → 0. Since 0 < v ≤ 1 in (0, rε), it follows that v is a
positive solution in (0, rε) of the inequality

v′′ +
n− 1

r
v′ + εvσ ≤ 0. (3.10)

Choose ε so small that rε > r0 and

v′

v
(r0) >

u′

u
(r0) . (3.11)

This is possible to achieve because for small enough ε the function v (r) is nearly con-
stant 1 up to 2r0 and v′ (r0) can be made arbitrarily close to 0 (although negative),
whereas u′ (r0) < 0 by construction.

Compare the functions u (r) and v (r) in the interval [r0, rε). Set

c = inf
r∈[r0,rε)

u (r)

v (r)
.

Since u (r) /v (r) → ∞ as r → rε, the value c is attained at some point, say ξ ∈
[r0, rε). We claim that ξ > r0. Indeed, at r = r0 we have by (3.11)

(u
v

)′
(r0) =

u′v − uv′

v2
(r0) < 0

so that u (r) /v (r) takes smaller values for some r > r0. Hence, the minimum point
ξ is contained in an open interval (r0, rε), and at this point we have

(u
v

)′
(ξ) = 0.

It follows that
u (ξ) = cv (ξ) and u′ (ξ) = cv′ (ξ) . (3.12)

Now we extend/redefine the function u (r) for r < ξ by setting u (r) = cv (r) . It
follows from (3.10) that u satisfies in (0, ξ] the inequality

u′′ +
n− 1

r
u′ +

ε

cσ−1
uα ≤ 0.

Hence, setting a (r) ≡ cσ−1/ε in [0, ξ], we obtain that u satisfies (3.6) for r ≤ ξ.
Since u satisfies (3.6) also for r ≥ ξ and by (3.12) u is differentiable at ξ, we obtain
that u is a weak solution of (3.6) in Rn.

4 Proof of the volume test

Here we prove Theorem 1.3, using Theorem 1.1. Using the obvious inequality

|∇ϕ|A ≤ ‖A‖
1/2 |∇ϕ| , (4.1)
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where |∇ϕ| is the Riemannian length of the gradient ∇ϕ, and setting in (2.3) ε =
t

σ−1
, we see that the integral in the right hand side of (2.3) can be estimated as

follows:
∫

M

|∇ϕ|p−2ε
A V −(q−ε)dµ ≤

∫

M

|∇ϕ|p−2ε ‖A‖p/2−ε V −(q−ε)dµ

=

∫

M

|∇ϕ|p−2ε
dνε. (4.2)

Next we apply the following result: for any Radon measure ν on a complete Rie-
mannian manifold, for any s > 1 and for any ball Br = B (x0, r),

inf
ϕ∈T (Br,M)

∫

M

|∇ϕ|s dν ≤ Cs

(∫ ∞

r

(
ρ

ν (Bρ)

) 1
s−1

dρ

)1−s

(4.3)

(see [4], [5], [7], [9, section 2.2.2, Lemma 1]). The constant Cs is locally uniformly
bounded in the interval s ∈ (1,+∞). The range of s that we are interested in is
s ≈ p so that we can assume Cs is uniformly bounded from above independently of
s.

Applying (4.3) with ν = νε and s = p− 2ε and combining with (4.2), we obtain

capp−2ε,q−ε(Br) ≤ C

(∫ ∞

r

(
ρ

νε (Bρ)

) 1
p−1−2ε

dρ

)1+2ε−p

.

The condition (1.5) of Theorem 1.1 will be satisfied provided

lim
ε→0

ε
p

2(p−1)

∫ ∞

r

(
ρ

νε (Bρ)

) 1
p−1−2ε

dρ =∞.

In the view of the hypothesis (1.7), it suffices to show that

lim
ε→0

ε
p

2(p−1)

∫ ∞

r

ρ−
p−1+Cε
p−1−2ε (log ρ)−

κ
p−1−2ε dρ =∞, (4.4)

where r can be assumed large enough (but fixed). Making change ρ = et and setting

δ = (C+2)ε
p−1−2ε

we obtain that the integral in (4.4) is equal to

∫ ∞

log r

exp (−δt) t−
κ

p−1−2εdt = δ
κ

p−1−2ε
−1

∫ ∞

δ log r

exp (−τ) τ−
κ

p−1−2εdτ. (4.5)

When ε→ 0, the right hand side of (4.5) is of the order

const ε
κ
p−1
−1

where const is a positive constant. Hence, the expression under the limit in (4.4) is
of the order

ε
p

2(p−1)
+ κ
p−1
−1
.
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By the hypothesis, we have κ < q = p/2 − 1, which implies that the exponent of ε
here is negative, which proves (4.4).

Remark. Assume that M is geodesically complete and consider the following mea-
sure

dν = ‖A‖dµ.

Clearly, we have

cap2(K) = inf
ϕ∈T (K)

∫
|∇ϕ|2A dµ ≤ inf

ϕ∈T (K)

∫

M

|∇ϕ|2 dν.

Using the estimate (4.3), we obtain that if
∫ ∞ rdr

ν (Br)
=∞ (4.6)

then cap2(K) = 0. As it was remarked in Section 1, the latter implies that (1.1)
has no positive solution regardless of V and σ. The condition (4.6) is satisfied if,
for example,

ν (Br) ≤ Cr2 (4.7)

for all large r.

5 Examples to the volume test

Consider in this section the setting M = Rn,

V (x) ' r−α1 log−α2 r and ‖A (x) ‖ ' rβ1 logβ2 r (5.1)

as r := |x| → ∞, where αi, βi are real constants.
If β1 < 2 − n then it is easy to verify that the condition (4.7) of Remark 4 is

satisfied and, hence, there is no positive solution to (1.1) for any σ and V .
Assume in the sequel that

β1 + n− 2 > 0.

For functions V (x) and ‖A (x)‖ from (5.1), the condition (1.9) is obviously satisfied.
Hence, the hypothesis (1.7) of Theorem 1.3 can be replaced by (1.8). Let us estimate
ν0 (BR) where BR is the ball of radius R centered at the origin. We have, for large
R, that

ν0 (BR) '
∫ R

2

(
rβ1 logβ2 r

)p/2
(rα1 logα2 r)q rn−1dr

=

∫ R

2

r
α1+β1σ
σ−1

+n−1 (log r)
α2+β2σ
σ−1 dr

≤ CR
α1+β1σ
σ−1

+n (logR)
α2+β2σ
σ−1 .

The condition (1.8) is satisfied in the two cases (in all cases σ > 1):

13



1. either
α1 + β1σ

σ − 1
+ n <

2σ

σ − 1
,

2. or
α1 + β1σ

σ − 1
+ n =

2σ

σ − 1
and

α2 + β2σ

σ − 1
<

1

σ − 1
.

Solving these inequalities, we obtain that (1.8) is satisfied and, hence, (1.1) has
no positive solutions, provided one of the following two cases takes place:

1. σ < σ∗ := n−α1

β1+n−2
.

2. σ = σ∗ and α2 + β2σ < 1.

Assuming that σ∗ > 1, let us show that in the opposite case

σ = σ∗, α2 + β2σ > 1 (5.2)

a positive solution to (1.1) does exist, which will show the sharpness of the volume
test of Theorem 1.3.

The construction uses Proposition 3.2 and is similar to the example in Section
3. Assuming (5.2), we will construct a positive solution in Rn to the inequality

n∑

i=1

∂

∂xi

(

a (r)
∂u

∂xi

)

+ V (r) uσ ≤ 0, (5.3)

where r = |x|,

a (r) = rβ1 logβ2 r and V (r) = r−α1 log−α2 r for large r.

In the polar coordinates, the inequality (5.3) becomes

(
a (r) rn−1u′

)′
+ rn−1V (r) uα ≤ 0. (5.4)

The condition (3.2) of Proposition 3.2 becomes

∫ ∞ dr

rβ1+n−1 logβ2 r
<∞,

which is true due to β1 + n− 2 > 0. Setting

γ (r) =

∫ ∞

r

ds

a (s) sn−1
=

∫ ∞ ds

sβ1+n−1 logβ2 s
' r−(β1+n−2) log−β2 r,

we see that the condition (3.3) of Proposition 3.2 is equivalent to

∫ ∞ (
r−(β1+n−2) log−β2 r

)σ
rn−1

(
r−α1 log−α2 r

)
dr <∞,
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which by σ = n−α1

β1+n−2
is equivalent to

∫ ∞
r−1 log−(α2+σβ2) rdr <∞.

The latter is obviously satisfied due to α2 + σβ2 > 1. We conclude by Proposition
3.2 that (5.4) has a positive solution u (r) in a neighborhood of +∞, such that

u (r) ' r−(β1+n−2) log−β2 r as r →∞.

Arguing further as in Section 3, one extends this function to be a solution of (5.3)
on Rn.

Similarly, one can show the existence of a positive solution of (5.3) in the case
σ > σ∗.
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