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Abstract

We consider on arbitrary Riemannian manifolds the Leibenson equation ∂tu = Δpu
q.

This equation is also known as doubly nonlinear evolution equation, and it comes from
hydrodynamics where it describes filtration of a turbulent compressible liquid in porous
medium. It was proved by the authors in [15] that if q(p − 1) > 1 then solutions to
this equation have finite propagation speed. In this paper obtain a sharp estimate of the
propagation rate of solutions, although under additional restrictions on p, q.
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1 Introduction

We are concerned here with a non-linear evolution equation

∂tu = Δpu
q (1.1)

where p > 1, q > 0, u = u(x, t) is an unknown non-negative function, and Δp is the p-
Laplacian

Δpv = div
(
|∇v|p−2∇v

)
.

For the physical meaning of (1.1) see [24, 25, 15].
The equation (1.1) is referred to as a Leibenson equation or a doubly non-linear parabolic

equation. In the case q = 1, it becomes an evolutionary p-Laplace equation ∂tu = Δpu, and
if in addition p = 2 then it amounts to the classical heat equation ∂tu = Δu.

Barenblatt [3] constructed spherically symmetric self-similar solutions of (1.1) in Rn, that
are nowadays called Barenblatt solutions. If

q(p − 1) > 1 (1.2)

then the Barenblatt solution u(x, t) has the property that

u(x, t) = 0 whenever |x| > ct1/β ,

where
β = p + n[q(p − 1) − 1] (1.3)

and c is a large enough constant (see also Proposition 5.1); thus, u(∙, t) has a compact support
for any t > 0. One says in this case that u has a finite propagation speed, and the propagation
rate is given by ct1/β .

On the other hand, if q(p− 1) ≤ 1, then the Barenblatt solution is positive for all x ∈ Rn

and t > 0, which means an infinite propagation speed.
In [15] the authors proved that, under condition (1.2), solutions of (1.1) have finite prop-

agation speed also on an arbitrary Riemannian manifold (in the case q = 1 this was also
proved in [7]). However, the estimate of the rate of propagation in [15] was not optimal.

The purpose of this paper is to obtain better estimates for propagation rate for solutions
of (1.1) on Riemannian manifolds although under the additional restrictions

p > 2,
1

p − 1
< q ≤ 1. (1.4)

Moreover, if in addition

q <
2

p − 1
, (1.5)

then our estimate of the propagation rate is sharp for a large class of manifolds (including
Rn).

From now on let M be a geodesically complete Riemannian manifold. We understand
solutions of (1.1) in M × R+ in a certain weak sense (see Section 2 for the definition). The
main result of the present paper is as follows (cf. Theorem 4.1).

Theorem 1.1. Assume that (1.4) is satisfied and let u be a bounded non-negative solution
to (1.1) in M × R+ with an initial function u0 = u(∙, 0). Let σ be a real such that

σ ≥ 1 and σ > q(p − 1) − 1. (1.6)
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If u0 vanishes in a geodesic ball B0 in M of radius R then

u = 0 in
1
2
B0 × [0, t0],

where
t0 = ημ(B0)

q(p−1)−1
σ Rp||u0||

−[q(p−1)−1]
Lσ(M) , (1.7)

and the constant η > 0 depends on the intrinsic geometry of B0.

Hence, the solution u has a finite propagation speed inside ball B0, and the rate of
propagation is determined by t0 that depends on the intrinsic geometry of B0 via the constant
η.

Let us mention for comparison that a similar result was obtain in [15] but with a different
value of t0:

t0 = ηRp||u0||
−[q(p−1)−1]
L∞(M) , (1.8)

(the same value of t0 was obtained also in [7] in the case q = 1). Clearly, (1.8) matches (1.7)
with σ = ∞, and (1.7) gives a larger value of t0 for σ < ∞ as it takes into account the volume
μ(B0).

The value of t0 from (1.8) leads to the following estimate of the propagation rate: if
K = supp u0 is compact, then

supp u(∙, t) ⊂ Kct1/p

while in Rn the sharp estimate is

supp u(∙, t) ⊂ Kct1/β (1.9)

where β > p is given by (1.3). The value of t0 from (1.7) leads in Rn to the sharp result (1.9)
provided p and q satisfy (1.4) and (1.5), which allows to choose σ = 1 in (1.7).

Of course, Theorem 1.1 allows us to obtain a sharp propagation rate also on a larger class
of Riemannian manifolds.

Corollary 1.2. Let M satisfy a relative Faber-Krahn inequality (see Section 3 for definition).
Assume that (1.4) is satisfied and let u be a bounded non-negative solution in M × R+ with
the initial condition u (∙, 0) = u0; set K = supp u0. Assume that, for some x0 ∈ K, α > 0
and all large enough r,

μ(B(x0, r)) ≥ crα, (1.10)

where c > 0. Then, for all t > 0,

supp u(∙, t) ⊂ KCt1/β ,

where

β = p + α
q(p − 1) − 1

σ
(1.11)

with σ as in (1.6) and the constant C depends on ‖u0‖Lσ , p, q, α, c.

For example, this result applies on all manifolds of non-negative Ricci curvature as the
relative Faber-Krahn inequality is satisfied on such manifolds (see [5, 12, 31]).

In Rn we have (1.10) with α = n. Comparing the values of β in (1.3) and (1.11) we see
that Corollary 1.2 gives a sharp propagation rate in Rn provided σ = 1. By (1.6), we can
take σ = 1 if q(p − 1) − 1 < 1, which is equivalent to (1.5).

In Proposition 5.1 we show that the propagation rate of Corollary 1.2 is sharp also in a
class spherically symmetric (model) manifolds under the above restrictions on p and q.
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Let us discuss the differences in methods of the proof of finite propagation speed in [15]
and the present paper and how they yield different rates of propagation. Even though, in both
papers, the finite propagation speed follows from a certain non-linear mean value inequality
for solutions, these mean value inequalities are different and their proofs are carried out in
entirely different ways.

Let us first discuss the mean value inequality of the present paper (cf. Lemma 3.2), which
says the following. Assume that (1.4) holds. Let u be a non-negative bounded subsolution of
(1.1) in a cylinder

Q = B × [0, t]

where B is a geodesic ball in M of radius R. Assume that u (∙, 0) = 0 in B. Then, for the
cylinder

Q′ =
1
2
B × [0, t]

we have

‖u‖L∞(Q′) ≤

(
CB

μ(B)Rp

∫

Q
uσ

)1/λ

, (1.12)

where λ > 0, σ = λ + q(p − 1) − 1, and CB depends on the intrinsic geometry of the ball B,
namely, on a Faber-Krahn inequality in B (see Section 5).

The mean value inequality (1.12) allows to get the recursive estimate

Jk+1 ≤ CB2k/λ

(
t

Rp

)1/λ

J
σ
λ
k , (1.13)

for the integrals Jk =
∫
Qk

uσ, where Qk is a certain sequence of shrinking cylinders in-
terpolating between Q and Q′. Iterating (1.13) and using that σ > λ, we obtain then a
super-exponential decay of Jk provided t ≤ t0 (where t0 given by (1.7)), which leads to the
proof of Theorem 1.1.

In contrast to (1.12), the mean value inequality of [15] says that, under the above as-
sumptions,

‖u‖L∞(Q′) ≤

(
CB

μ(B)Rp
||u||q(p−1)−1

L∞(Q)

∫

Q
uλ

)1/λ

, (1.14)

where again λ > 0. However, one obtains from (1.14) only the recursive estimate (1.13) for
Jk = ||u||L∞(Qk), which in the end leads to (1.8) and hence, to the non-optimal propagation
rate.

Let us also make some comments on the differences in the proofs of the mean value
inequalities (1.12) and (1.14).

The mean value inequality (1.14) was proved by the authors in [15] using a modification
of the Moser iteration method [28]. In the present paper we use a different approach based
on the following observation, which is interesting in its own right: if u is a non-negative
subsolution of (1.1), then the function

(ua − θ)1/a
+ (1.15)

is also a subsolution of (1.1), provided θ ≥ 0 and

a :=
q(p − 1) − 1

p − 2
∈ (0, 1] (1.16)

(cf. Lemma 2.6). In particular, the condition a ∈ (0, 1] in (1.16) is satisfied provided (1.4)
holds. The proof of (1.12) employs then a modification of the classical De Giorgi iteration

4



argument [6]. Namely, we consider a shrinking sequence of cylinders {Qk}
∞
k=0 interpolating

between Q0 = Q and Q∞ = Q′, and a sequence of truncated functions

uk =
(
ua −

(
1 − 2−k

)
θ
)1/a

+
, k ≥ 0,

for some fixed θ > 0, where a is given by (1.16). Using a Caccioppoli type inequality (Lemma
2.8) and the Faber-Krahn inequality, we prove that, for Jk =

∫
Qk

uσ
k ,

Jk+1 ≤
CAk

(
μ(B)θ

λ
a Rp

)ν J1+ν
k , (1.17)

where A,C are some positive constants and the exponent ν > 0 comes from the Faber-Krahn
inequality in B (see Lemma 3.1 for details). Iterating (1.17), we then show that if

θ ≥

(
CJ0

μ(B)Rp

) a
λ

, (1.18)

then Jk → 0 for k → ∞, which implies
∫

Q′

[
(ua − θ)1/a

+

]σ
= 0,

and hence ua ≤ θ in Q′. Choosing θ minimal from (1.18), we conclude (1.12).
Note that if q = 1 then a = 1 by (1.16). In this case, the fact that (u−θ)+ is a subsolution,

was known before, and it was used to obtain similar mean value inequalities for subsolutions
of the p-Laplacian in [9, 11] in Rn and in [7] on manifolds.

For mean value inequalities in various other settings see also [1, 14, 17]. Related results
from the theory of the p-Laplace equation can be found, for instance, in [8, 10, 20, 21]. See
also [2, 27, 30, 32] for other results about the asymptotic behaviour of solutions of (1.1).

The structure of the paper is as follows.
In Section 2, we define the notion of a weak solution of the Leibenson equation (1.1).

In this section we prove in Lemma 2.6 that the truncated function (ua − θ)1/a
+ is again a

subsolution.
In Section 3 we prove the central technical result of this paper − the mean value inequality

for subsolutions (Lemma 3.2).
In Section 4 we prove our main results about finite propagation speed.
In Section 5 (Appendix) we construct the exact solutions of (1.1) on the model manifolds

(generalizing the Barenblatt solutions) that show sharpness of our estimates of propagation
rate.

2 Weak subsolutions

2.1 Definition and basic properties

We consider in what follows the following evolution equation on a Riemannian manifold M :

∂tu = Δpu
q. (2.1)

By a subsolution of (2.1) we mean a non-negative function u satisfying

∂tu ≤ Δpu
q (2.2)
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in a certain weak sense as explained below.
We assume throughout that

p > 1 and q > 0.

Set
δ = (p − 1)q − 1.

Let μ denote the Riemannian measure on M . For simplicity of notation, we frequently
omit in integrations the notation of measure. All integration in M is done with respect to
dμ, and in M × R – with respect to dμdt, unless otherwise specified.

Let Ω be an open subset of M and I be an interval in [0,∞).

Definition 2.1. We say that a non-negative function u = u(x, t) is a weak subsolution of
(2.1) in Ω × I, if

u ∈ L∞
loc

(
I; L1(Ω)

)
and uq ∈ Lp

loc

(
I; W 1,p(Ω)

)
(2.3)

and (2.2) holds weakly in Ω × I, that is, for and all non-negative test functions

ψ ∈ W 1,∞
loc (I; L∞(Ω)) ∩ Lp

loc

(
I; W 1,p

0 (Ω)
)

, (2.4)

and for all t1, t2 ∈ I with t1 < t2, we have

[∫

Ω
uψ

]t2

t1

+
∫ t2

t1

∫

Ω
−u∂tψ + |∇uq|p−2〈∇uq,∇ψ〉 ≤ 0. (2.5)

For different notions of weak solutions see also [10, 33]. Existence and uniqueness results
for the Cauchy problem with the above notion of weak solutions of (2.1) were obtained in the
euclidean case, for example, in [18, 19, 23, 29] and on manifolds in [16].

If u is of the class (2.3), we define

∇u :=

{
q−1u1−q∇(uq), u > 0,
0, u = 0.

Remark 2.2. Note that it follows from (2.3) and (2.4) that the integrals in (2.5) are finite.
Indeed, we have by Hölder’s inequality

∫ t2

t1

∫

Ω
|∇uq|p−2 |〈∇uq,∇ψ〉| ≤

∫ t2

t1

∫

Ω
|∇uq|p−1|∇ψ|

≤

(∫ t2

t1

∫

Ω
(|∇uq|)p

) p−1
p
(∫ t2

t1

∫

Ω
|∇ψ|p

) 1
p

.

From now on in this section, let I = [0, T ), where 0 < T ≤ ∞.

Definition 2.3. Let u = u(x, t) be a measurable function in Ω × [0, T ) and u(∙, 0) = u0.
Then we define, for h ∈ (0, T ),

uh(∙, t) =
1
h

∫ t

0
e(s−t)/hu(∙, s)ds

and

uh(∙, t) = e−t/hu0 +
1
h

∫ t

0
e(s−t)/hu(∙, s)ds.

The properties of uh and uh in the following Lemma are proved in Lemma 2.2 in [22] and
in Lemma B.1 and Lemma B.2 in [4].
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Lemma 2.4. Let p ≥ 1 and suppose that u ∈ Lp(Ω × [0, T )). Then

||uh||Lp(Ω×[0,T )) ≤ ||u||Lp(Ω×[0,T ))

and
||uh||Lp(Ω×[0,T )) ≤ ||u||Lp(Ω×[0,T )) + h1/p||u0||Lp(Ω),

Moreover, uh → u and uh → u in Lp(Ω × [0, T )) as h → 0 and

∂tuh =
1
h

(u − uh) ∈ Lp(Ω × [0, T )). (2.6)

Lemma 2.5. [15] Let Ω be an open subset of M and u = u(x, t) be a non-negative bounded
weak subsolution of (2.1) in Ω × [0, T ). Then

∫ τ

0

∫

Ω
(∂tuh)ψ + 〈[|∇uq|p−2∇uq]h,∇ψ〉 ≤ 0, (2.7)

for all τ ∈ (0, T ) and ψ ∈ Lp
(
[0, τ ]; W 1,p

0 (Ω)
)
.

Lemma 2.6. Let u be a non-negative bounded weak subsolution of (2.1) in Ω×[0, T ). Assume
that either

p > 2 and
1

p − 1
< q ≤ 1 or 1 < p < 2 and 1 ≤ q <

1
p − 1

. (2.8)

For any θ ≥ 0, define
f(s) = (sa − θ)1/a

+ ,

where

a =
q(p − 1) − 1

p − 2
=

δ

p − 2
. (2.9)

Then f(u) is also a weak subsolution of (2.1).

Figure 1: Function f(s)

Remark 2.7. For the p-Laplacian, that is when q = 1, we have a = 1. In this case, it is
proved in [7] that f(u) = (u − θ)+ is a subsolution of (2.1).

Proof. On {sa > θ} we have

f ′(s) =

(
f(s)

s

)1−a

. (2.10)

Noticing that the condition (2.8) is equivalent to 0 < a ≤ 1, we obtain that f is locally
Lipschitz in [0,∞) and in particular, f is continuously differentiable when 0 < a < 1. Consider
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in [0,∞) also the function Φ(s) =
(
s

a
q − θ

)q/a

+
. By (2.8), q − a = 1−q

p−2 ≥ 0, so that using the

same arguments as for f , Φ is also a locally Lipschitz function. Because Φ(0) = 0, it follows
that f(u)q(∙, t) = Φ(uq)(∙, t) ∈ W 1,p(Ω) for all t ∈ [0, T ), which proves that f(u) is in the
class (2.3).

Hence, it remains to show that f(u) satisfies (2.5), that is,

[∫

Ω
f(u)ψ

]t2

t1

+
∫ t2

t1

∫

Ω
−f(u)∂tψ + |∇f(u)q|p−2〈∇f(u)q,∇ψ〉 ≤ 0, (2.11)

for all ψ in the class (2.4).
On {ua > θ} we have

∇f(u)q = Φ′(uq)∇uq =

(
f(u)

u

)q−a

∇uq. (2.12)

and thus,

|∇f(u)q|p−2∇f(u)q =

(
f(u)

u

)(q−a)(p−1)

|∇uq|p−2∇uq.

Since (q − a)(p − 1) = 1 − a the inequality (2.11) is therefore equivalent to

[∫

Ω
f(u)ψ

]t2

t1

+
∫ t2

t1

∫

Ω
−f(u)∂tψ + f ′(u)|∇uq|p−2〈∇uq,∇ψ〉 ≤ 0. (2.13)

Clearly, the fact that 0 < a ≤ 1 implies on {sa > θ},

f ′′(s) = (1 − a)
(
f(s)1−2as2a−2 − sa−2f(s)1−a

)

= (1 − a)f(s)1−asa−2

((
s

f(s)

)a

− 1

)

≥ 0.

Let us consider, for ν < 1
4(t2 − t1), the function

θν(t) =






0, t < t1,
1
ν (t − t1), t1 ≤ t < t1 + ν,
1, t1 + ν ≤ t < t2 − ν,
1
ν (t2 − t), t2 − ν ≤ t < t2,
0, t ≥ t2

(2.14)

(cf. [26]). In order to prove (2.13), we want to apply (2.7) with test function

ψ̃k = f ′
k(u)ψθν ,

where ψ is a bounded function of the class (2.4) and fk is a sequence of C2([0,∞)) functions
such that

fk → f and f ′
k → f ′ as k → ∞

and, for all k,
f ′′

k ≥ 0 and f ′′
k (s) = 0 on {f(s) = 0} = {sa ≤ θ}.

For that, let us first show that for all k, ψ̃k(∙, t) ∈ W 1,p
0 (Ω) for all fixed t. Indeed, we have

ψ̃k(∙, t) ∈ Lp(Ω) since ψ(∙, t) ∈ Lp(Ω) and on the other hand,

∇ψ̃k = f ′
k(u)θν∇ψ + f ′′

k (u)ψθν∇u.
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Using ∇ψ ∈ Lp(Ω) and

f ′′
k (u)ψ∇u = q−1f ′′

k (u)ψθνu
1−q∇uq ∈ Lp(Ω),

where the latter holds because f ′′
k is bounded on bounded subsets of [0,∞), f ′′

k (u) = 0 on
{u = 0} ⊂ {f = 0} and ∇uq ∈ Lp, we get ψ̃k ∈ W 1,p

0 (Ω).
Hence, applying (2.7) with ψ̃ = f ′

k(u)ψθν , we deduce
∫

Q
(∂tuh)f ′

k(u)ψθν + 〈[|∇uq|p−2∇uq]h,∇(f ′
k(u)ψ)〉θν ≤ 0,

where Q = [t1, t2] × Ω. Let us write
∫

Q
∂tuhf ′

k(u)ψθν =
∫

Q
∂tuhf ′

k(uh)ψθν +
∫

Q
∂tuh(f ′

k(u) − f ′
k(uh))ψθν .

By (2.6), we see that
∫

Q
∂tuh(f ′

k(u) − f ′
k(uh))ψθν =

1
h

∫

Q
(u − uh)(f ′

k(u) − f ′
k(uh))ψθν ≥ 0,

because s 7→ f ′
k(s) is non-decreasing.

Whence, we obtain
∫

Q
∂tuhf ′

k(uh)ψθν + 〈[|∇uq|p−2∇uq]h,∇(f ′
k(u)ψ)〉θν ≤ 0. (2.15)

By using

∫

Q
∂tuhf ′

k(uh)ψθν =
∫

Q
∂t(fk(uh))ψθν =

[∫

Ω
fk(uh)ψθν

]t2

t1

−
∫

Q
fk(uh)∂tψθν−

∫

Q
fk(uh)ψ∂tθν ,

we get, since θν(t1) = θν(t2) = 0,

−
∫

Q
fk(uh)ψ∂tθν +

∫

Q
〈[|∇uq|p−2∇uq]h,∇(f ′

k(u)ψ)〉θν − fk(uh)∂tψθν ≤ 0. (2.16)

We now want to let h → 0 in (2.16) and apply Lemma 2.4 and then let ν → 0. Note that

|∇uq|p−1 ∈ L
p

p−1 (Q), so that by Lemma 2.4, for h → 0,

[|∇uq|p−2∇uq]h → |∇uq|p−2∇uq in L
p

p−1 (Q).

Together with |∇(f ′
k(u)ψ)|θν ∈ Lp(Q), we obtain

lim
h→0

∫

Q
〈[|∇uq|p−2∇uq]h,∇(f ′

k(u)ψ)〉θν =
∫

Q
〈[|∇uq|p−2∇uq],∇(f ′

k(u)ψ)〉θν .

For the convergence of the remaining terms in (2.16), we will use the boundedness of u. Note
that by assumption u ∈ L1(Q) whence Lemma 2.4 implies that uh → u in L1(Q). Since the
function s 7→ fk(s) is Lipschitz on any bounded subset of [0,∞), we get fk(uh) → fk(u) in
L1(Q) and thus,

lim
h→0

∫

Q
fk(uh)∂tψθν =

∫

Q
fk(u)∂tψθν .
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The convergence

lim
h→0

∫

Q
fk(uh)ψ∂tθν =

∫

Q
fk(u)ψ∂tθν

follows by the same arguments. Hence,

−
∫

Q
fk(u)ψ∂tθν +

∫

Q
〈[|∇uq|p−2∇uq],∇(f ′

k(u)ψ)〉θν − fk(u)∂tψθν ≤ 0.

Sending now ν → 0, we deduce
[∫

Ω
fk(u)ψ

]t2

t1

+
∫

Q
〈[|∇uq|p−2∇uq],∇(f ′

k(u)ψ)〉 − fk(u)∂tψ ≤ 0.

Using that
∇(f ′

k(u)ψ) = f ′
k(u)∇ψ + q−1f ′′

k (u)ψu1−q∇uq,

we get
∫

Q
|∇uq|p−2〈∇uq,∇(f ′

k(u)ψ)〉 =
∫

Ω
|∇uq|p−2

(
〈∇uq, f ′

k(u)∇ψ〉 + q−1〈∇uq, f ′′
k (u)ψu1−q∇uq〉

)

=
∫

Q
f ′

k(u)|∇uq|p−2〈∇uq,∇ψ〉 + q−1|∇uq|pf ′′
k (u)ψu1−q.

Noticing that

q−1

∫

Q
|∇uq|pf ′′

k (u)ψu1−q ≥ 0,

we obtain [∫

Ω
fk(u)ψ

]t2

t1

+
∫

Q
f ′

k(u)|∇uq|p−2〈∇uq,∇ψ〉 − fk(u)∂tψ ≤ 0.

Using that f ′
k → f ′ ∈ C([0,∞)) implies f ′

k → f ′ in L∞ on bounded sets, we get that

lim
k→∞

∫

Q
f ′

k(u)|∇uq|p−2〈∇uq,∇ψ〉 =
∫

Q
f ′(u)|∇uq|p−2〈∇uq,∇ψ〉.

Since f(u) ≤ u ∈ L1 and fk ∈ C2, there is a function g so that |fk(u)| ≤ g(u) ∈ L1, whence

lim
k→∞

[∫

Ω
fk(u)ψ

]t2

t1

=

[∫

Ω
f(u)ψ

]t2

t1

and

lim
k→∞

∫

Q
fk(u)∂tψ =

∫

Q
f(u)∂tψ

by the dominated convergence theorem. This proves (2.13) and finishes the proof.

Lemma 2.8. [15] Let v = v (x, t) be a non-negative bounded subsolution to (2.1) in a cylinder
Ω× [0, T ). Let η (x, t) be a locally Lipschitz non-negative bounded function in Ω× [0, T ) such
that η (∙, t) has compact support in Ω for all t ∈ [0, T ). Fix some real σ such that

σ ≥ max (p, pq) (2.17)

and set
λ = σ − δ and α =

σ

p
. (2.18)

Choose 0 ≤ t1 < t2 < T and set Q = Ω × [t1, t2]. Then
[∫

Ω
vληp

]t2

t1

+ c1

∫

Q
|∇ (vαη)|p ≤

∫

Q

[
pvληp−1∂tη + c2v

σ |∇η|p
]
, (2.19)

where c1, c2 are positive constants depending on p, q, λ.
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In particular, if η does not depend on t, then

[∫

Ω
vληp

]t2

t1

+ c1

∫

Q
|∇ (vαη)|p ≤ c2

∫

Q
vσ |∇η|p . (2.20)

Let us recall for later that

vαη ∈ Lp
loc

(
[0, T ]; W 1,p

0 (Ω)
)

. (2.21)

Indeed, using α ≥ q, we get that the function Φ(s) = s
α
q is Lipschitz on any bounded interval

in [0,∞). Thus, vα = Φ(vq) ∈ W 1,p(Ω) and

|∇vα| =
∣
∣Φ′(vq)∇vq

∣
∣ ≤ C |∇vq| ,

whence
∫

Q
|∇ (vαη)|p ≤ C ′

∫

Q
|∇vα|p ηp + vαp|∇η|p = C ′

∫

Q
|∇vq|p ηp + vσ|∇η|p,

which is finite since ∫

Q
vσ|∇η|p ≤ const ||v||σ−pq

L∞

∫

Q
vpq

and proves (2.21).

2.2 Norm decay of subsolutions

Lemma 2.9. Let M be geodesically complete and v = v (x, t) be a bounded non-negative
subsolution to (2.1) in M × [0, T ). If λ ≥ 1, including λ = ∞, then the function

t 7→ ‖v(∙, t)‖Lλ(M)

is monotone decreasing in [0, T ).

Proof. Let fk be a sequence of non-negative locally Lipschitz functions in [0,∞) such that
for all k ≥ 0, fk(0) = 0 and f ′

k ≥ 0.
We want to apply (2.7) with test function ψk = fk(vq)θν , where θν(t) is defined by (2.14).

Indeed, since fk is Lipschitz on bounded subsets of [0,∞), fk(0) = 0 and v ∈ Lp(M × [0, τ ]),
we have

fk(v
q)θν ∈ Lp(M × [0, τ ]).

Therefore, using that
vq(∙, t) ∈ W 1,p(M) = W 1,p

0 (M)

by the completeness of M , we see that

fk(v
q) ∈ (∙, t) ∈ W 1,p

0 (M)

and
∇(fk(v

q)) = f ′
k(v

q)∇vq. (2.22)

Hence, applying (2.7) with this test function, we get
∫

Q
∂tvhfk(v

q)θν + 〈[|∇vq|p−2∇vq]h,∇(fk(v
q))〉θν ≤ 0,

11



where Q = M × [t1, t2]. Let us write
∫

Q
∂tvhfk(v

q)θν =
∫

Q
∂tvhfk(v

q
h)θν +

∫

Q
∂tvh(fk(v

q) − fk(v
q
h))θν .

By (2.6), we deduce
∫

Q
∂tvh(fk(v

q) − fk(v
q
h))θν =

1
h

∫

Q
(v − vh)(fk(v

q) − fk(v
q
h))θν ≥ 0,

since s 7→ fk(sq) is non-decreasing. Whence, we obtain
∫

Q
∂tvhfk(v

q
h)θν + 〈[|∇vq|p−2∇vq]h,∇(fk(v

q))〉θν ≤ 0. (2.23)

Setting

ϕk(u) =
∫ u

0
fk(s

q)ds, (2.24)

we get ∫

Q
∂tvhfk(v

q
h)θν =

∫

Q
∂tϕk(vh)θν =

[∫

M
ϕk(vh)θν

]t2

t1

−
∫

Q
ϕk(vh)∂tθν .

Since θν(t1) = θν(t2) = 0, we obtain

−
∫

Q
ϕk(vh)∂tθν +

∫

Q
〈[|∇vq|p−2∇vq]h,∇(fk(v

q))〉θν ≤ 0. (2.25)

We now want to let h → 0 in (2.25) and apply Lemma 2.4. Note that

|∇vq|p−1 ∈ L
p

p−1 (Q),

so that by Lemma 2.4, for h → 0,

[|∇vq|p−2∇vq]h → |∇vq|p−2∇vq in L
p

p−1 (Q).

Together with |∇(fk(vq))|θν ∈ Lp(Q), we obtain

lim
h→0

∫

Q
〈[|∇vq|p−2∇vq]h,∇(fk(v

q))〉θν =
∫

Q
〈|∇vq|p−2∇vq,∇(fk(v

q))〉θν .

For the convergence of the remaining term in (2.25) we have, since v ∈ L1(Q),
∫

Q
|ϕk(vh) − ϕk(v)| =

∫

Q

∣
∣
∣
∣

∫ vh

v
fk(s

q)ds

∣
∣
∣
∣ ≤ C

∫

Q
|vh − v| → 0 for h → 0

and thus,

lim
h→0

∫

Q
ϕk(vh)∂tθν =

∫

Q
ϕk(v)∂tθν .

Hence, we obtain from (2.25),

−
∫

Q
ϕk(v)∂tθν +

∫

Q
〈|∇vq|p−2∇vq,∇(fk(v

q))〉θν ≤ 0.

By (2.22), we have
∫

Q
〈|∇vq|p−2∇vq,∇(fk(v

q))〉θν =
∫

Q
|∇vq|pf ′

k(v
q)θν ≥ 0,

12



so that by sending ν → 0 we get [∫

M
ϕk(v)

]t2

t1

≤ 0.

Choosing fk such that for all s > 0, fk(s) → s
λ−1

q for k → ∞, we obtain from (2.24),
ϕk(v) → vλ as k → ∞. Also noticing that ϕk(v) ≤ Cv, we conclude

[∫

M
vλ

]t2

t1

≤ 0,

which finishes the proof.

3 Mean value inequality

Let M be a connected Riemannian manifold of dimension n. Let d be the geodesic distance
on M . For any x ∈ M and r > 0, denote by B(x, r) the geodesic ball of radius r centered at
x, that is,

B(x, r) = {y ∈ M : d(x, y) < r} .

3.1 Faber-Krahn inequality

Let the geodesic ball B be precompact. Then the following Faber-Krahn inequality in B of
order p ≥ 1 holds: if w ∈ W 1,p

0 (B) is non-negative and

D = {w > 0}

then ∫

B
|∇w|p ≥

1
rp

(

ι(B)
μ(B)
μ(D)

)ν ∫

B
wp, (3.26)

where ν > 0 and ι(B) is a positive constant that depends on the geometry of B. In fact, the
value of ν is independent of B and can be chosen as follows:

ν =

{ p

n
, if n > p,

any number ∈ (0, 1), if n ≤ p.
(3.27)

Choosing ι(B) to be an optimal constant in (3.26) and denoting by r(B) the radius of a
ball B, we obtain that the function

B 7→
(ι(B)μ(B))ν

r(B)p
(3.28)

is monotone decreasing with respect to the partial order ⊂ on balls.
We say that M satisfies a relative Faber-Krahn inequality of order p if (3.26) holds with

ι(B) ≥ const > 0 for all geodesic balls B ⊂ M . This holds for example, if M is a complete
manifold with non-negative Ricci curvature (see [5, 12, 31]).

3.2 Comparison in two cylinders

We assume here that

p > 2 and
1

p − 1
< q ≤ 1 or 1 < p < 2 and 1 ≤ q <

1
p − 1

. (3.29)

13



Let a be defined by (2.9), that is,

a =
q(p − 1) − 1

p − 2
=

δ

p − 2
. (3.30)

Observe that under condition (3.29) we have a ∈ (0, 1].

Lemma 3.1. Consider two balls B0 = B (x0, r0) and B1 = B (x0, r1) with 0 < r1 < r0, and
two cylinders

Qi = Bi × [0, T ].

Assume that B0 is precompact. Let v0 be non-negative bounded subsolution in Q0 such that

v0 (∙, 0) = 0. (3.31)

Set, for some θ > 0,
v1 = (va

0 − θ)1/a
+ ,

where a as in (3.30). Let λ and σ be reals satisfying (2.17) and (2.18). Set also

Ji =
∫

Qi

vσ
i dμdt.

Then

J1 ≤
Crp

0(
ι(B0)μ(B0)θ

λ
a (r0 − r1)

p
)ν

(r0 − r1)
p
J1+ν

0 . (3.32)

where ν is the Faber-Krahn exponent, ι(B0) is the Faber-Krahn constant in B0 and C depends
on p, q and λ.

Proof. From Lemma 2.6 we know that v1 is also a subsolution. Let η(x, t) = η (x) be a
bump function of B1 in B1/2 = B

(
x0,

r0+r1
2

)
. Recall that by (2.21),

vα
1 η ∈ Lp

(
[0, T ]; W 1,p

0 (B)
)

,

where α is defined by (2.18), that is α = σ
p . Hence, applying the Faber-Krahn inequality

(3.26) in ball B0 for any t ∈ [0, T ] we get that
∫

B1

vσ
1 ≤

∫

B0

(vα
1 η)p ≤ rp

0

(
μ (Dt)

ι(B0)μ(B0)

)ν ∫

B0

|∇ (vα
1 η)|p , (3.33)

where we used that αp = σ and η = 1 on B1 and

Dt = {vα
1 η (∙, t) > 0} = {v1 > 0} ∩ {η > 0} =

{
v0 (∙, t) > θ1/a

}
∩ B1/2.

We have ηt = 0 and |∇η| ≤ 2
r0−r1

. From (2.20) we therefore obtain

c1

∫ T

0

∫

B0

|∇ (vα
1 η)|p ≤

∫ T

0

∫

B0

vσ
1 |∇η|p ≤

c3

(r0 − r1)
p J0, (3.34)

where c3 = c22p and we used that v1 ≤ v0.
Let us now apply Lemma 2.8 to function v0 in B0 × [0, t] where t ∈ [0, T ]. This time we

take η(x, t) = η (x) as a bump function of B1/2 = B
(
x0,

r0+r1
2

)
in B0. From (2.20) we obtain

[∫

B0

vλ
0ηp

]t

0

≤ c2

∫ t

0

∫

B0

|∇η|p vσ
0 ≤

c3

(r0 − r1)
p

∫ t

0

∫

B0

vσ
0 ≤

c3

(r0 − r1)
p J0.
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Hence, by (3.31), ∫

B1/2

vλ
0 (∙, t) ≤

c3

(r0 − r1)
p J0.

Thus, we deduce

μ (Dt) ≤
1

θλ/a

∫

B1/2

vλ
0 (∙, t) ≤

c3

θλ/a (r0 − r1)
p
J0.

Combining this with (3.33) and (3.34) we obtain

J1 =
∫ T

0

∫

B1

vσ
1 ≤

(p

2

)p
rp
0

(
c3J0

ι(B0)μ(B0)θλ/a (r0 − r1)
p

)ν
c3

c1 (r0 − r1)
p J0

=
(p

2

)p rp
0c

1+ν
3(

ι(B0)μ(B0)θλ/a (r0 − r1)
p
)ν

c1 (r0 − r1)
p
J1+ν

0

which implies (3.32) and finishes the proof.

3.3 Iterations and the mean value theorem

Lemma 3.2. Suppose that (3.29) is satisfied. Let the ball B = B (x0, r) be precompact. Let
u be a non-negative bounded subsolution in

Q = B × [0, t]

such that
u (∙, 0) = 0 in B.

Let σ and λ be reals such that

σ > 0 and λ = σ − δ > 0. (3.35)

Then, for the cylinder

Q′ =
1
2
B × [0, t] ,

we have

‖u‖L∞(Q′) ≤

(
C

ι(B)μ(B)rp

∫

Q
uσ

)1/λ

, (3.36)

where ι(B) is the Faber-Krahn constant in B, and the constant C depends on p, q and λ.

Figure 2: Cylinders Q and Q′
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Proof. Let us first prove (3.36) for σ large enough as in Lemmas 2.8 and 3.1. Choose some
θ > 0 to be specified later and define a sequence of functions {uk} by

u0 = u, uk =
(
ua

k−1 − 2−kθ
)1/a

+
for k ≥ 1.

The function fθ (s) = (sa − θ)1/a
+ has the property that fθ1 ◦ fθ2 = fθ1+θ2 . Hence, we obtain

uk =

(

ua −
1
2
θ − ... −

1
2k

θ

)1/a

+

=
(
ua −

(
1 − 2−k

)
θ
)1/a

+
.

Consider a sequence rk =
(

1
2 + 2−k−1

)
r, and set

Bk = B (x0, rk) , Qk = Bk × [0, t]

so that
B0 = B, Q0 = Q and Q∞ := lim

k→∞
Qk = Q′.

Figure 3: Cylinders Qk

Setting Jk =
∫
Qk

uσ
k we obtain by Lemma 3.1 that

Jk+1 ≤
Crp

k(
ι(Bk)μ(Bk)

(
2−(k+1)θ

)λ
a (rk − rk+1)

p
)ν

(rk − rk+1)
p
J1+ν

k .

Observe that, by monotonicity of the function (3.28), we have

rp
k

(ι(Bk)μ(Bk))
ν ≤

rp

(ι(B)μ(B))ν .

Since rk − rk+1 = 2−(k+2)r, we obtain

Jk+1 ≤
C2(k+1) λν

a rp

(
ι(B)μ(B)θ

λ
a

(
2−(k+2)r

)p)ν (
2−(k+2)r

)p J1+ν
k

=
C2(k+1) λν

a
+(k+2)(pν+p)

(
ι(B)μ(B)θ

λ
a rp
)ν J1+ν

k =
Ak

Θ
J1+ν

k ,

where
A = 2

λν
a

+(pν+p) and Θ = C−1
(
ι(B)μ(B)θ

λ
a rp
)ν

.
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Now let us apply Lemma 5.2 with ω = ν: if

Θ ≥ A1/νJν
0 , (3.37)

then, for all k ≥ 0,
Jk ≤ A−k/νJ0.

In terms of θ the condition (3.37) is equivalent

C−1
(
ι(B)μ(B)θ

λ
a rp
)ν

≥ A1/νJν
0

that is,

θ ≥

(
CJ0

ι(B)μ(B)rp

) a
λ

,

where A is absorbed into a new constant C. Hence, we choose θ as follows:

θ =

(
CJ0

ι(B)μ(B)rp

) a
λ

,

and for this choice of θ we have Jk → 0, which implies ua ≤ θ in Q∞. Hence, we obtain

‖u‖L∞(Q∞) ≤

(
CJ0

ι(B)μ(B)rp

)1/λ

=

(
C

ι(B)μ(B)rp

∫

Q
uσ

)1/λ

, (3.38)

which was to be proved.
Now we prove (3.36) for any σ so that (3.35) is satisfied. Let σ0 be such that (3.36) is

already known for σ = σ0 and let σ < σ0. Denote

λ0 = σ0 − δ and λ = σ − δ

so that λ < λ0.
For simplicity of notation, for any set E ⊂ M , denote Et = E × [0, t].
By the first part of the proof, we have, for any precompact ball B of radius r,

‖u‖λ0

L∞( 1
2
Bt)

≤
C

χ(B)rp

∫

Bt

uσ0 ,

where χ(B) = ι(B)μ(B). Consider for k ≥ 0, a sequence

rk =

(

1 −
1

2k+1

)

r,

so that r0 = 1
2r and rk ↑ r as r → ∞, and set Bk = B(x0, rk). Denoting also B = B(x0, r),

we see that
1
2
B ⊂ Bk ⊂ B and Bk ↑ B

as k → ∞. Set also ρk = rk+1 − rk = 1
2k+2 r.
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Figure 4: Balls Bk and B(x, ρk)

For any point x ∈ Bk, applying Theorem 3.2 in the ball B (x, ρk), we obtain

‖u‖λ0

L∞(Bt(x, 1
2
ρk))

≤
C

χ (B(x, ρk)) ρp
k

∫

Bt(x,ρk)
uσ0

≤
C

χ (B(x, ρk)) ρp
k

‖u‖σ0−σ
L∞(Bt(x,ρk))

∫

Bt(x,ρk)
uσ.

Since B (x, ρk) ⊂ Bk+1 ⊂ B, we have by the monotonicity of (3.28)

χ(B(x, ρk))

ρ
p/ν
k

≥
χ (B)
rp/ν

whence
1

χ(B(x, ρk))
≤

(r/ρk)
p/ν

χ(B)
=

2(k+2)p/ν

χ(B)
.

Hence, we obtain

‖u‖λ0

L∞(Bt(x, 1
2
ρk))

≤
C2kp(ν−1+1)

χ (B) rp
‖u‖λ0−λ

L∞(Bt
k+1)

∫

Bt

uσ.

Covering Bk by a sequence of balls B(x, 1
2ρk) with x ∈ Bk, we obtain

‖u‖λ0

L∞(Bt
k)

≤
C2kp(ν−1+1)

χ (B) rp
‖u‖λ0−λ

L∞(Bt
k+1)

∫

Bt

uσ. (3.39)

Setting Jk = ‖u‖−(λ0−λ)

L∞(Bt
k)

, we rewrite (3.39) as follows:

Jk+1 ≤
Ak

Θ
J

λ0
λ0−λ

k =
Ak

Θ
J1+ω

k ,

where A = 2p(ν−1+1),

Θ−1 =
C

χ (B) rp

∫

Bt

uσ

and ω = λ0
λ0−λ − 1 = λ

λ0−λ . Applying Lemma 5.2, we obtain

Jk ≤

(
J0

(
A−1/ωΘ

)1/ω

)(1+ω)k
(
A−1/ωΘ

)1/ω
,
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that is,

J0 ≥
(
A−1/ωΘ

)1/ω
((

A1/ωΘ−1
)1/ω

Jk

) 1

(1+ω)k

.

Since Jk ≥ ‖u‖−(λ0−λ)
L∞(Bt)

=: const > 0, we see that

lim inf
k→∞

((
A1/ωΘ−1

)1/ω
Jk

) 1

(1+ω)k

≥ 1,

whence

J0 ≥
(
A−1/ωΘ

)1/ω
.

It follows that J−1
0 ≤ A1/ω2

Θ−1/ω, that is,

‖u‖λ0−λ
L∞(Bt

0)
≤ A1/ω2

(
C

χ (B) rp

∫

Bt

uσ

)1/ω

,

and thus,

‖u‖L∞( 1
2
B×[0,t]) ≤

(
C

ι(B)μ(B)rp

∫

B×[0,t]
uσ

)1/λ

,

which was to be proved.

4 Finite propagation speed

In this section we assume that M is geodesically complete and

p > 2 and
1

p − 1
< q ≤ 1.

In particular, this implies that
δ = q(p − 1) − 1 > 0.

4.1 Propagation inside a ball

The next result contains Theorem 1.1 from the Introduction.

Theorem 4.1. Let u be a bounded non-negative subsolution in M×[0, T ]. Let B0 = B (x0, R)
be a ball such that

u0 = 0 in B0.

Let σ be a real such that
σ ≥ 1 and σ > δ. (4.40)

Set
t0 = ηι(B0)μ(B0)

δ
σ Rp||u0||

−δ
Lσ(M) ∧ T, (4.41)

where η = η(p, q, ν, σ) > 0 is sufficiently small. Then

u = 0 in
1
2
B0 × [0, t0] .

Remark 4.2. Although σ = ∞ is formally not included in this statement, (4.41) is true also
for σ = ∞, that is, with

t0 = ηι(B0)R
p||u0||

−δ
L∞(M) ∧ T,

where η = η(p, q, ν) > 0 (see [15]).
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Proof. Set r = 1
2R and fix for a while a point x ∈ 1

2B0 so that B := B (x, r) ⊂ B0. Fix also
some t ∈ (0, T ] and set

Qk = 2−kB × [0, t] and Jk =
∫

Qk

uσ.

Figure 5: Cylinders Qk

Since σ > δ, we have λ = σ − δ > 0. By Theorem 3.2, we obtain

‖u‖L∞(Qk+1) ≤

(
C

ι(2−kB)μ (2−kB) (2−kr)p

∫

Qk

uσ

)1/λ

.

It follows that

Jk+1 =
∫

Qk+1

uσ ≤ μ
(
2−(k+1)B

)
t ‖u‖σ

L∞(Qk+1)

≤ μ(B0)t

(
C

ι(2−kB)μ (2−kB) (2−kr)p

∫

Qk

uσ

)σ/λ

.

Since by the monotonicity of the function (3.28)

ι(2−kB)μ
(
2−kB

)

(2−kr)p/ν
≥

ι(B0)μ(B0)
Rp/ν

and r = 1
2R, we obtain

Jk+1 ≤ μ(B0)t

(
C2kp(ν−1+1)

ι(B0)μ(B0)Rp
Jk

)σ/λ

=
Ak

Θ
J1+ω

k ,

where

ω =
σ

λ
− 1 =

δ

λ
, A = 2p(ν−1+1)σ/λ and Θ =

(ι(B0)Rp)1+ω μ(B0)ω

Ct
.

By Lemma 5.2 we obtain

Jk ≤

(
A1/ωJω

0

Θ

) (1+ω)k

ω (
A−1/ωΘ

)1/ω
. (4.42)
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We have

A1/ωJω
0

Θ
=

CA1/ωt
(∫

B×[0,t] u
σ
)ω

(ι(B0)Rp)1+ω μ(B0)ω
.

Since σ ≥ 1, we have by Lemma 2.9
∫

B×[0,t]
uσ ≤ t

∫

M
uσ

0

and
A1/ωJω

0

Θ
≤

CA1/ωt1+ω
(∫

M uσ
0

)ω

(ι(B0)Rp)1+ω μ(B0)ω
.

We would like to have
A1/ωJω

0

Θ
≤

1
2

(4.43)

For that it suffices to have

t1+ω ≤
1
2
C−1A−1/ω (ι(B0)R

p)1+ω μ(B0)
ω

(∫

M
uσ

0

)−ω

,

that is,

t ≤ ηι(B0)R
pμ(B0)

ω
1+ω

(∫

M
uσ

0

)− ω
1+ω

(4.44)

where η =
(

1
2C−1A−1/ω

) 1
1+ω . Since ω = δ

λ = δ
σ−δ and ω

1+ω = δ
σ we see that (4.44) is satisfied

for t = t0 where t0 is given by (4.41).
Hence, it follows from (4.42) and (4.43) that

Jk ≤ 2−
(1+ω)k

ω K,

where K =
(
A−1/ωΘ

)1/ω
depends on B0, R and t but does not depend on x or k; that is, for

any x ∈ 1
2B0, for t = t0 and, for any k ≥ 0, we have

∫

B(x,2−kr)×[0,t]
uσ ≤ 2−

(1+ω)k

ω K. (4.45)

Let D = D(B0) be such that any ball in B0 of any radius ρ ≤ 1
2R can be covered by D balls

of radii ρ/2. Let us cover the ball 1
2B0 by a finite sequence of balls

{
B
(
xi, 2−kr

)}N

i=1
with

xi ∈ 1
2B0. Then the number N is estimated as follows: N ≤ Dk. It follows from (4.45) that

∫

1
2
B0×[0,t]

uσ ≤
N∑

i=1

∫

B(xi,2−kr)×[0,t]
uσ ≤ Dk2−

(1+ω)k

ω K. (4.46)

Since the right hand side here → 0 as k → ∞, we conclude that
∫

1
2
B0×[0,t]

uσ = 0

that is, u = 0 in 1
2B0 × [0, t] ,which finishes the proof.
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4.2 Propagation of support

Let u (x, t) be a non-negative bounded subsolution in M × R+ with the initial function
u0 = u (∙, 0) . Assume that the support

K = supp u0

of u0 is compact. For any r > 0, denote by Kr a closed r-neighborhood of K.

Corollary 4.3. Suppose that there exists a point x0 ∈ K and a continuous monotone in-
creasing function ϕ(r) converging to +∞ such that for all large enough r,

ηι(B(x0, r))μ(B(x0, r))
δ
σ rp

(∫

M
uσ

0

)− δ
σ

≥ ϕ(r). (4.47)

Then there exists a continuous monotone increasing function ρ : (0,∞) → R+ such that
supp u (∙, t) ⊂ Kρ(t) for all t ∈ (0,∞) .

Figure 6: The support of u(∙, t)

Here ρ (t) may depend on u. The function ρ(t) is called a propagation rate or propagation
function of u.
Proof. As a continuous monotone increasing function converging to +∞, ϕ has an inverse
function ρ = ϕ−1 defined on (0,∞) that is also continuous and monotone increasing.

Let us show that r = ρ(t) implies

supp u (∙, t) ⊂ Kr,

that is,
u(∙, t) = 0 in M \ Kr.

Let us fix a point x ∈ K2r \ Kr. We have d(x,K) ≥ r and thus B(x, r) ∩ K = ∅. By (4.47),
r = ρ(t) implies that for all large enough r,

t ≤ ϕ(r) ≤ ηι(B(x, r))μ(B(x, r))
δ
σ rp

(∫

M
uσ

0

)− δ
σ

.

Since u(∙, 0) = 0 in B(x, r), we conclude by Theorem 4.1 that

u(∙, t) = 0 in B(x, r/2).

Since this is true for any x ∈ K2r \ Kr, we obtain that

u(∙, t) = 0 in K2r \ Kr. (4.48)
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Let us show that in this case also

u(∙, t) = 0 in M \ Kr. (4.49)

Fix some s >> 2r and let η (x) be a bump function of Ks \K2r in K2s \Kr; that is, η is the
following function of |x| := d (x,K):

η (x) =






(
|x|
r − 1

)

+
, |x| ≤ 2r,

1, |x| ∈ [2r, s] ,

2
(
1 − |x|

2s

)

+
, |x| ≥ s.

Figure 7: Function η

Applying the inequality (2.20) of Lemma 2.8 with large enough σ, we obtain
[∫

M
uληp

]t

0

≤ c2

∫ t

0

∫

M
uσ |∇η|p . (4.50)

Since u (∙, 0) = 0 on supp η and η = 1 on Ks \ K2r, the left hand side here is bounded below
by ∫

Ks\K2r

uλ(∙, t).

Since η = 0 in Kr, u(∙, τ ) = 0 in K2r \ Kr for all τ ≤ t (by (4.48)), and ∇η = 0 in Ks \ K2r,
the right hand side in (4.50) is equal to

c2

∫ t

0

∫

M\Ks

uσ |∇η|p .

Since |∇η| ≤ 1
s in M \ Ks, we obtain that

∫

Ks\K2r

uλ(∙, t) ≤ c2

∫ t

0

∫

M\Ks

uσ |∇η|p ≤
c2

sp

∫ t

0

∫

M\Ks

uσ.

The right hand side goes to 0 as s → ∞, which implies that u (∙, t) = 0 in M \ K2r, thus
proving (4.49).

4.3 Curvature and propagation rate

Corollary 4.4. Let M satisfy the relative Faber-Krahn inequality. Fix a reference point
x0 ∈ K and assume that, for some α > 0 and all large enough r,

μ (B (x0, r)) ≥ crα. (4.51)
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Then u has a propagation function
ρ(t) = Ct1/β

for large t, where

β = p + α
δ

σ

with σ as in (4.40) and C depends on ‖u0‖Lσ(M) , p, q, n, α and c.

Proof. Let compute the function ρ(t) from Corollary 4.3. By assumption we have that the
Faber-Krahn constant ι(B) has a uniform positive lower bound for all geodesic balls B ⊂ M .

Using (4.51) and treating
(∫

M uσ
0

)− δ
σ as constant, we see that the function ϕ from (4.47) can

be taken in this case as follows:

ϕ (r) = crp+α δ
σ = crβ .

Finally, we conclude that
ρ(t) = ϕ−1 (t) = Ct1/β

for large enough t, which was to be proved.

Remark 4.5. Under the hypothesis α ∈ (0, n] the model manifold constructed in Proposition
5.1 satisfies the volume doubling property and the Poincaré inequality, and in particular, also
the relative Faber-Krahn inequality (see Proposition 4.10 in [13]).

Remark 4.6. In Rn we have (4.51) with α = n. If σ = 1, we obtain the sharp propagation
rate 1/β, where β = p + nδ. By (4.40), we can take σ = 1 provided δ < 1, that is, when
q < 2

p−1 . Hence, in the range

p > 2,
1

p − 1
< q ≤ min

(
2

p − 1
, 1

)

(4.52)

(see Fig. 8), we get a sharp propagation rate. In this range of p, q we not only get a sharp
propagation rate in Rn, but by Proposition 5.1 also in the class of model manifolds satisfying
the relative Faber-Krahn inequality and (4.51) with any α ∈ (0, n].

Figure 8: Range of p, q

Corollary 4.7. Suppose that M satisfies the following isoperimetric inequality: for any pre-
compact open set Ω ⊂ M with smooth boundary,

μ′(∂Ω) ≥ cμ(Ω)
α−1

α , (4.53)

for some c > 0 and where α ≥ n and α > p. Also, assume that for some x0 ∈ K and all large
enough r,

μ (B (x0, r)) ≤ Crα, (4.54)
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where C > 0. Then u has a propagation function

ρ(t) = C ′t1/β

for large t, where

β = α
δ

σ
+ p (4.55)

with σ as in (4.40) and C ′ depends on ‖u0‖Lσ(M) , p, q, α, c and C.

Note that the inequality (4.53) implies that for all x ∈ M and r > 0,

μ (B(x, r)) ≥ const rα. (4.56)

Proof. The isoperimetric inequality (4.53) implies the following Sobolev inequality : for all
geodesic balls B ⊂ M and all non-negative w ∈ W 1,p

0 (B),

(∫

B
w

αp
α−p

)α−p
α

≤ const
∫

B
|∇w|p.

From that we obtain

ι(B) ≥ c
r(B)

p
ν

μ(B)

where ν = p
α (see Section 3 in [15]). Hence, applying condition (4.54), we deduce for all large

enough r,
ι(B(x0, r)) ≥ cr

p
ν
−α = c.

Substituting this into (4.47) we obtain from (4.56) that ϕ can be taken as follows:

ϕ(r) = crα δ
σ

+p.

Thus, we conclude ρ(t) = C ′t1/β , where β is given by (4.55). This completes the proof.

5 Appendix

5.1 Radial solution on polynomial models

Let M be a model manifold, that is M = (0, +∞) × Sn−1 as topological spaces and M is
equipped with the Riemannian metric ds2 given by

ds2 = dr2 + ψ2(r)dθ2,

where ψ(r) is a smooth positive function on (0, +∞) and dθ2 is the standard Riemannian
metric on Sn−1. We define S(r) = ψn−1(r), which is called the profile of the model manifold.

We search for solutions u of (1.1) on M with finite propagation speed. We always assume
that

p > 1 and q(p − 1) > 1.

Let u(x, t) = u(r, t), that is, function u depends only on the polar radius r and time t. Assume
also that ∂ru ≤ 0, then

Δpu = −
1
S

∂r

(
S (−∂ru)p−1

)

so that (1.1) becomes

∂tu = −
1
S

∂r

(
S (−∂ru

q)p−1
)

. (5.1)
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Proposition 5.1. Assume that, for some α ∈ (0, n] and all r ≥ r0,

S (r) = Crα−1.

Then the following function is a non-negative solution of (1.1) in M \ Br0 × R+:

u (x, t) =
1

tα/β

(

C − κ
( r

t1/β

) p
p−1

)1/γ

+

(5.2)

where C > 0 and

β = p + α [q (p − 1) − 1] , γ = q −
1

p − 1
, κ = γ

p − 1

pqβ
1

p−1

.

Note that the volume of the central balls on this manifold is of the order rα, and the
propagation rate of the above solution is Ct1/β , which matches our main results in the case
when we can take σ = 1.
Proof. By (5.1) the equation (1.1) for u becomes for r > r0,

∂tu = −
1

rα−1
∂r

(
rα−1 (−∂ru

q)p−1
)

. (5.3)

We search for a solution of the form

u (x, t) = taf(rtb) for large r,

where f is a decreasing function. Let us require in addition that the solution u (∙, t) has
bounded L1-norm. One can show that for that we need to require that a = αb. Using the
variable s = rtb, we obtain that (5.3) is equivalent to

bta−1

sα−1
(sαf (s))′ = −

qp−1t(aq+b)(p−1)

sα−1
tb∂s

(
sα−1

(
−f(s)q−1f ′(s)

)p−1
)

.

We also require that
(aq + b) (p − 1) + b = a − 1,

which together with a = bα yields

b = −
1

α (q (p − 1) − 1) + p
< 0.

Under the above choice of a and b, the powers of t and s in the above equation cancel out,
and we obtain since b < 0,

f
(q−1)− 1

p−1 f ′ = −
(|b| s)

1
p−1

q
. (5.4)

Note that γ := q − 1
p−1 > 0. Integration of (5.4) yields

f (s) =
(
C − κs

p
p−1

)1/γ

where

κ = γ
p − 1

p

|b|
1

p−1

q
=

q (p − 1) − 1
p

|b|
1

p−1

q

and C is a positive constant.
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5.2 An auxiliary lemma

Lemma 5.2. [15] Let a sequence {Jk}
∞
k=0 of non-negative reals satisfy

Jk+1 ≤
Ak

Θ
J1+ω

k for all k ≥ 0.

where A, Θ, ω > 0. Then, for all k ≥ 0,

Jk ≤

((
A1/ωΘ−1

)1/ω
J0

)(1+ω)k (
A−k−1/ωΘ

)1/ω
.

In particular, if Θ ≥ A1/ωJω
0 , then Jk ≤ A−k/ωJ0 for all k ≥ 0.

References

[1] S. Andres and M. T. Barlow. Energy inequalities for cutoff functions and some
applications. Journal für die reine und angewandte Mathematik (Crelles Journal) ,
2015(699):183–215, 2015.

[2] D. Andreucci and A. F. Tedeev. Asymptotic properties of solutions to the Cauchy
problem for degenerate parabolic equations with inhomogeneous density on manifolds.
Milan Journal of Mathematics, 89(2):295–327, 2021.

[3] G. I. Barenblatt. On self-similar motions of a compressible fluid in a porous medium.
Akad. Nauk SSSR. Prikl. Mat. Meh, 16(6):679–698, 1952.

[4] V. Bögelein, F. Duzaar, and P. Marcellini. Parabolic systems with p, q-growth: a
variational approach. Archive for Rational Mechanics and Analysis, 210(1):219–267,
2013.

[5] P. Buser. A note on the isoperimetric constant. Ann. Sci. Ecole Norm. Sup., 15:213–230,
1982.
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