Cohomology of Groups:
 A Crossroads in Mathematics

Dave Benson
University of Aberdeen

Groups 2012, Bielefeld, 16 March 2012
In honour of Bernd Fischer's 75th birthday

University of Aberdeen

1. Homological Algebra

- Let G be a group, k a commutative ring of coefficients (the phrase "of coefficients" here has the empty meaning as usual)

Definition

$$
H^{*}(G, k)=\operatorname{Ext}_{\mathbb{Z} G}^{*}(\mathbb{Z}, k) \cong \operatorname{Ext}_{k G}^{*}(k, k)
$$

In other words, take a Projective Resolution of \mathbb{Z} as a $\mathbb{Z} G$-module

$$
\cdots \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbb{Z} \rightarrow 0
$$

and form the complex

$$
0 \rightarrow \operatorname{Hom}_{\mathbb{Z} G}\left(P_{0}, k\right) \rightarrow \operatorname{Hom}_{\mathbb{Z} G}\left(P_{1}, k\right) \rightarrow \cdots
$$

Now take homology: $\operatorname{Ext}_{\mathbb{Z} G}^{n}(\mathbb{Z}, k)$ is kernel mod image in nth place

- The answer is independent of choice of projective resolution (up to natural isomorphism)
- More generally, if M is a $\mathbb{Z} G$-module we can take $\operatorname{Hom}_{\mathbb{Z} G}\left(P_{*}, M\right)$ and define $H^{*}(G, M)$ the same way.

1. Homological Algebra, Contd.

If we tensor with k :

$$
\cdots \rightarrow k \otimes_{\mathbb{Z}} P_{n} \rightarrow \cdots \rightarrow k \otimes_{\mathbb{Z}} P_{1} \rightarrow k \otimes_{\mathbb{Z}} P_{0} \rightarrow k \rightarrow 0
$$

this is a projective resolution of k. Hence if M is a $k G$-module

$$
\operatorname{Ext}_{\mathbb{Z} G}^{n}(\mathbb{Z}, M) \cong \operatorname{Ext}_{k G}^{n}(k, M)
$$

Some Facts:

- $H^{*}(G, k)$ is a graded commutative ring:

$$
y x=(-1)^{|x||y|} x y .
$$

- $H^{*}(G, M)$ is a graded $H^{*}(G, k)$-module.
- (Evens) If G is finite and M is a Noetherian $k G$-module then $H^{*}(G, M)$ is a Noetherian $H^{*}(G, k)$-module.

1. Homological Algebra, Contd.

- (Evens) If G is finite and M is a Noetherian $k G$-module then $H^{*}(G, M)$ is a Noetherian $H^{*}(G, k)$-module.
- In particular, if k is Noetherian so is $H^{*}(G, k)$.
- If k is a field, then $H^{*}(G, k)$ is a finitely generated graded commutative k-algebra.
- If char (k) is zero or does not divide $|G|$ then there's nothing interesting here: you just get k in degree zero.
- More generally, for any $k,|G|$ annihilates positive degree elements.

Example (The Mathieu Group M_{11})

$G=M_{11}, \operatorname{char}(k)=2: H^{*}(G, k)=k[x, y, z] /\left(x^{2} y+z^{2}\right)$ where $|x|=3,|y|=4,|z|=5$.

2. Commutative Algebra

- Commutative algebraists usually write their theorems assuming that commutative means $x y=y x$; this is bad for us.
- They also often require their generators to be in the same degree; this is almost never the case for group cohomology.
- Nonetheless, we can talk about the usual commutative algebra concepts such as
- Depth
- Cohen-Macaulay
- Gorenstein
- Complete Intersection
- Local Cohomology
- Castelnuovo-Mumford regularity
- etc.

2. Commutative Algebra, Contd.

Theorem (Quillen 1971)

If $\operatorname{char}(k)=p$ then the Krull dimension of $H^{*}(G, k)$ is equal to the p-rank of G, namely the largest r for which $(\mathbb{Z} / p)^{r} \leq G$.

More generally, he described the prime ideal spectrum of $H^{*}(G, k)$ in terms of the elementary abelian subgroups:

$$
H^{*}(G, k) \rightarrow \lim _{\leftrightarrows} H^{*}(E, k)
$$

is an F-isomorphism - it induces an isomorphism of varieties.

Theorem (Duflot 1981)

The depth of $H^{*}(G, k)$ is at least the p-rank of the centre of a Sylow p-subgroup of G.

2. Commutative Algebra, Contd.

Theorem (B-Carlson, 1994)

(i) If $H^{*}(G, k)$ is Cohen-Macaulay then it's Gorenstein.
(ii) If $H^{*}(G, k)$ is a polynomial ring then the generators are all in degree one; in this case $p=2$ and G modulo an odd order normal subgroup is $(\mathbb{Z} / 2)^{r}$.

Theorem (Conjectured by me in 2004, proved by SYmonds 2010)

The Castelnuovo-Mumford regularity of $H^{*}(G, k)$ is always equal to zero.

As a consequence, $\operatorname{dim} H^{n}(G, k)$ is polynomial on residue classes, not just eventually so. So if you know $\operatorname{dim} H^{n}(G, k)$ for $n>1000000$ then you know it for all $n \geq 0$.

$2 \frac{1}{2}$. Representation Theory

Definition

The stable module category $\operatorname{StMod}(k G)$ is the quotient of the module category $\operatorname{Mod}(k G)$ by the projective modules. It is a compactly generated tensor triangulated category.

Theorem (BIK, Annals 2011)

There is a natural bijection between (tensor ideal) minimal localising subcategories of $\operatorname{StMod}(k G)$ and nonmaximal homogeneous prime ideals in $H^{*}(G, k)$.

- $E G$ - a contractible space on which G acts freely
- $B G$ - the quotient $E G / G$
- $H^{*}(G, k)=H^{*}(B G ; k)$
- Up to homotopy, $B G$ is independent of choice of $E G$.
- $\Omega B G \simeq G$.
- Relationship with algebraic definition:
- $C_{*}(E G)$ is an acyclic complex of free $\mathbb{Z} G$-modules; i.e., a free resolution of \mathbb{Z} as a $\mathbb{Z} G$-module.

$$
\begin{aligned}
H^{*}(B G ; k) & =H^{*}\left(\operatorname{Hom}_{\mathbb{Z}}\left(C_{*}(B G), k\right)\right) \\
& =H^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(C_{*}(E G), k\right)\right) \\
& \cong \operatorname{Ext}_{\mathbb{Z} G}^{*}(\mathbb{Z}, k)
\end{aligned}
$$

3. Topology: Examples

(1) $G=\mathbb{Z} ; \quad E G=\mathbb{R} ; \quad B G=\mathbb{R} / \mathbb{Z}=S^{1}$. $H^{0}(\mathbb{Z}, k) \cong H^{1}(\mathbb{Z}, k) \cong k, H^{i}(\mathbb{Z}, k)=0$ for $i \geq 2$.
(2) $G=\mathbb{Z} / 2 ; E G=S^{\infty} ; B G=\mathbb{R} P^{\infty}$.

If $\operatorname{char}(k)=2$ then $H^{*}(G, k)=k[x]$ with $|x|=1$.
(3) $G=\mathbb{Z} / 2 \times \mathbb{Z} / 2 ; E G=S^{\infty} \times S^{\infty} ; B G=\mathbb{R} P^{\infty} \times \mathbb{R} P^{\infty}$ 。 If $\operatorname{char}(k)=2$ then $H^{*}(G, k)=k[x, y]$ with $|x|=|y|=1$.
(1) $G=Q_{8} \subseteq S U(2) \cong S^{3}=$ unit quaternions G acts freely on S^{3} by left multiplication Cellular chains $C_{*}\left(S^{3}\right)$:

$$
0 \rightarrow \mathbb{Z} \rightarrow C_{3} \rightarrow C_{2} \rightarrow C_{1} \rightarrow C_{0} \rightarrow \mathbb{Z} \rightarrow 0
$$

Form an infinite splice:

$$
\cdots \rightarrow C_{1} \rightarrow C_{0} \underset{\searrow_{\searrow}}{\longrightarrow} C_{3} \rightarrow C_{2} \rightarrow C_{1} \rightarrow C_{0} \rightarrow \mathbb{Z} \rightarrow 0
$$

3. Topology, Contd.

Conclusion: Let k be a field of characteristic 2 .
$H^{*}\left(Q_{8}, k\right)$ is periodic with periodicity 4.
In fact the periodicity is given by multiplication by $z \in H^{4}\left(Q_{8}, k\right)$ and $H^{*}\left(Q_{8}, k\right) /(z) \cong H^{*}\left(S^{3} / Q_{8} ; k\right)$.

Theorem

If G acts freely on S^{n-1} then $H^{*}(G, k)$ is periodic with period dividing n.

Example

If $G=\mathbb{Z} / 2 \times \mathbb{Z} / 2$ then G cannot act freely on any sphere of any dimension.

4. Topology plus Commutative Algebra

Notice that S^{3} / Q_{8} is a manifold so $H^{*}\left(Q_{8}, k\right) /(z)$ satisfies Poincaré duality.

Definition

We say that a finitely generated positively graded commutative k-algebra is Cohen-Macaulay if it is a finitely generated free module over a polynomial subring $k\left[z_{1}, \ldots, z_{r}\right]$.

Noether Normalization: $\exists k\left[z_{1}, \ldots, z_{r}\right]$ over which it's f.g., and whether it's free is independent of choice of normalization.

Theorem (B-Carlson)

If $H^{*}(G, k)$ is Cohen-Macaulay then $H^{*}(G, k) /\left(z_{1}, \ldots, z_{r}\right)$ is a finite Poincaré duality ring with top degree $\sum_{i=1}^{r}\left(\left|z_{i}\right|-1\right)$
i.e., $H^{*}(G, k)$ is Gorenstein.

4. Topology plus Commutative Algebra

More generally, even if $H^{*}(G, k)$ is not Cohen-Macaulay, there is a spectral sequence converging to a finite Poincaré duality ring.

Greenlees reformulated this more cleanly as a local cohomology spectral sequence

$$
H_{\mathfrak{m}}^{s} H^{t}(G, k) \Rightarrow H_{-s-t}(G, k) .
$$

Symonds' theorem states that the E_{2} page is zero for $s+t>0$. There is a sense in which the cochains on $B G$ are always derived Gorenstein as a DGA (Dwyer-Greenlees-lyengar)

Let p be a prime. Bousfield-Kan p-completion is a functor from spaces to spaces together with a natural transformation $X \rightarrow X_{p}^{\wedge}$

- $X \rightarrow Y$ induces $H_{*}\left(X, \mathbb{F}_{p}\right) \xrightarrow{\cong} H_{*}\left(Y, \mathbb{F}_{p}\right)$ iff $X_{p}^{\wedge} \xrightarrow{\simeq} Y_{p}^{\wedge}$
- X is p-complete if $X \xrightarrow{\simeq} X_{p}^{\wedge}$
- X is p-good if X_{p}^{\wedge} is p-complete
- Otherwise X is p-bad and $X_{p p}^{\wedge \wedge} \ldots$ is still p-bad!
- X connected, $\pi_{1} X$ finite implies X p-good
- In particular if G is finite $B G$ is p-good
- $B G$ is p-complete $\Leftrightarrow G$ is p-nilpotent $\left(G / O_{p^{\prime}} G\right.$ is a p-group)
- The Eilenberg-Moore spectral sequence whose E^{2} page is $\operatorname{Tor}_{* *}^{H^{*}\left(B G, \mathbb{F}_{p}\right)}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)$ doesn't converge to $\mathbb{F}_{p} G$ but rather to $H_{*}\left(\Omega B G_{p}^{\wedge}, \mathbb{F}_{p}\right)$.

5. A glimpse of p-Completion, Contd.

- $B G_{p}^{\wedge}$ only depends on the p-local structure of G.
- More precisely, there's a category $\mathcal{L}_{S}^{c}(G)$ defined as follows: Let $S \in \operatorname{Syl}_{p}(G)$.
- Objects: subgroups $H \leq S$ satisfying $C_{G}(H)=Z(H) \times O_{p^{\prime}} C_{G}(H)$
- Arrows:
$\operatorname{Hom}_{\mathcal{L}_{S}^{c}(G)}(H, K)=\left\{g \in G \mid g H g^{-1} \subseteq K\right\} / O_{p^{\prime}} C_{G}(H)$.

$$
\begin{aligned}
& \text { THEOREM (BROTO-LEVI-OLIVER) } \\
& \left|\mathcal{L}_{S}^{c}(G)\right|_{p}^{\wedge} \simeq B G_{p}^{\wedge} \text {, and one can recover } \mathcal{L}_{S}^{c}(G) \text { from } B G_{p}^{\wedge}
\end{aligned}
$$

5. A glimpse of p-Completion, Contd.

If M is an $\mathbb{F}_{p} G$-module, define $\left[O^{p} G, M\right]$ to be the linear span of the elements $g(m)-m$ with $g \in O^{P} G$ and $m \in M$
This is the smallest submodule of M such that the quotient has a filtration where G acts trivially on the filtered quotients

- $P_{0}=N_{0}=$ projective cover of \mathbb{F}_{p} as $\mathbb{F}_{p} G$-module

For $i \geq 1$,

- $M_{i-1}=\left[O^{p} G, N_{i-1}\right]$
- $P_{i}=$ projective cover of M_{i-1}
- $N_{i}=\Omega M_{i-1}$

Theorem (B, 2009)

$$
H_{i}\left(P_{*}\right)=N_{i} / M_{i} \cong H_{i}\left(\Omega B G_{p}^{\wedge} ; \mathbb{F}_{p}\right) .
$$

