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• Connected simple Lie groups

• Simple algebraic groups over local fields

• Complete Kac-Moody groups over finite fields

• Automorphism groups of trees, npc complexes

• Avatars

• ???
Non-Lie type simple groups are not sporadic!

linear

non-linear

simple locally compact groups
Compactly generatedNon-discrete
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Problem 

Characterise linear groups among (simple) l.c. groups?

• Solved Gleason; Montgomery-Zippin (1950) for 

connected groups

• Solved by Lazard (1960) and Lubotzky-Mann 

(1989) for p-adic fields

•Useful for discrete groups

•Open in characteristic >0

•Unified solution in all characteristics?
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Theorem (Tits 1974; Tits-Weiss 2002)

Let G be a simple group. 
If G has an irreducible split spherical BN-pair of 
rank ≥ 2, then G is linear (possibly over a skew- field).

•Rank one case?

•More natural conditions in the l.c. context?
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The contraction group associated with α is

Uα = { g ∈ G | limn→∞ αngα-n = 1 }.

The parabolic group associated with α is

Pα = { g ∈ G | αngα-n is bounded }.
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• G = Rn⋊ R    with R-action by homotheties

   0 ≠ α ∈ R                        Uα = Rn                        Pα = G 

α =

�
2 0
0 1/2

�

Uα =

��
1 0
x 1

�
| x ∈ R

�

Pα =

��
s 0
x s−1

�
| s, x ∈ R

�

• G = SL2(R)

Examples



G = ∏Z F ⋊α  Z   α = positive shift 
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Warning: The contraction group Uα need not 

be closed in general!

However, all contraction subgroups Uα < G  are 

closed when G is:

• a Lie group [Hazod-Siebert, 1986]

• a p-adic analytic group [Wang, 1988]

Relationship between closedness of contraction 

groups and smoothness/linearity?
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(i)                      is compact
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Then PSL2(k) ≤ G ≤ PGL2(k) for some l.c. field k.

• Characteristic-free

• Crucial step in the proof: Uα is closed
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Theorem II (C.-De Medts 2011) 

Let G be a non-compact unimodular l.c. group without 

non-trivial compact normal subgroup (eg. G simple).

Assume there is α ∈ G such that

(i)                      is compact

(ii)   Uα  is closed and torsion-*ee.
Then there is a l.c. field k of char 0 and a semisimple 

algebraic k-group G of k-rank one such that G(k) ≤ G 

with finite index.

G/�αUα�
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Question (Milnor 1976) 
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• Lie group ⇒ l.c. group

• Soluble ⇒ amenable

•Negatively curved ⇒ Gromov hyperbolic

Theorem (Heintze 1974) 
A Lie group G is negatively curved iff G ≅ N ⋊ R  
with N s.c. nilpotent and contracting action of R on N.
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compacting action of R or Z on N.
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Theorem (C.-Cornulier-Monod-Tessera 2011) 

Then G has a continuous proper cocompact action on a 

Gromov hyperbolic metric space. 

Let G be a l.c. group.

Assume there is α ∈ G such that                     is compact.G/�αUα�

If in addition G is unimodular, then modulo a compact 

normal subgroup, either: 

• G is a rank one simple Lie group, or 

• G ≤ Aut(T) and is 2-transitive on ∂T for some tree T.
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Theorem (Tits, 1949) 

Let G < Sym(Ω) be 3-transitive group. 

If Gx, y is abelian for x ≠ y ∈ Ω, then G = PGL2(k) for 

some  field k. 

Let G < Sym(Ω) be 3-transitive group. 

If Gx is metabelian for x ∈ Ω, then G = PGL2(k) for 

some  field k. 

PGL2(k)/PSL2(k) ≅ k/k2



Moufang sets

Definition (Tits, 1992; Timmesfeld, 1999) 

A set Ω with a 2-transitive group G < Sym(Ω) is 

called a Moufang set if for some (hence all) 

ξ ∈ Ω, the stabiliser Gξ has a normal subgroup Uξ , 

called a root group, acting regularly on Ω \ {ξ}.
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• G = PSL2(k) acting on Ω = P1(k)

• G = any simple algebraic group of rel. rank one
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Hazardous conjecture (Tits, 2000) 

A# Moufang sets are of « algebraic origin », ie. remotely 

related to the examples on that list.

Examples: 

• G sharply 2-transitive on Ω

• G = PSL2(k) acting on Ω = P1(k)

• G = any simple algebraic group of rel. rank one
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Theorem (De Medts-Weiss; Grüninger; Segev) 

Let Ω, G ≤ Sym(Ω) be a proper Moufang set.

Assume that Ux and Gx,y are both abelian for x, y ∈ Ω. 

Then there is a field k and: 

either Ω = P1(k) and PSL₂(k) ≤ G ≤ PGL₂(k),

or char(k) = 2 and Ω ⊂ P1(k) is exceptional. 

• If Ux is abelian, then Gx,y is abelian if and only if 
Gx = Ux ⋊ Gx,y is metabelian.

• Conjecturally: abelian root groups ⇒ quadratic 
Jordan division algebras
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Proposition 
Let G ≤ Aut(T) closed non-compact such that

(i) G is transitive on ∂𝜕X
(ii)    Uα is closed for some α hyperbolic.

Then ∂T is a Moufang set with Uα as a root group. 

Moreover the system of root groups is unique. 

Back to l.c. groups

If the contraction group Uα is abelian, then it is closed.
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with metabelian stabilisers.
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⇒ there is α ∈ G hyperbolic. 

Let ξ ∈ ∂T be the repelling fixed point of α. 

Need to show: G is a projective group.
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• By Proposition, Uα is closed and ∂T is a Moufang 

set with abelian root groups and metabelian 

stabilisers.

• Can invoke Theorem on Moufang sets.

• Get a l.c. field.

• Exceptional case in char 2 does not occur over 

local fields.

⇒   Uα   abelian.



Back to Theorem II 
Let G be a non-compact unimodular l.c. group without 

non-trivial compact normal subgroup (eg. G simple).

Assume there is α ∈ G such that

(i)                      is compact

(ii)   Uα  is closed and torsion-*ee.
Then there is a l.c. field k of char 0 and a semisimple 

algebraic k-group G of k-rank one such that G(k) ≤ G 

with finite index.

G/�αUα�



Enough to prove:

Let G ≤ Aut(T) closed non-compact such that  
(G, ∂𝜕T) is a Moufang set with closed torsion-
*ee root groups.

Then there is a l.c. field k of char 0 and a semisimple 

algebraic k-group G of k-rank one such that G(k) ≤ G 

with finite index.

Back to Theorem II 
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with Ni nilpotent pi -adic analytic for some 

prime pi. 
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• Assume that the root group Uξ  is closed and 

torsion-free. Then by [Glöckner-Willis] we have

Uξ ≅ N1 x N2 x ... x Nt, 

with Ni nilpotent pi -adic analytic for some 

prime pi. 

• Need to show t = 1. 

• Strategy: show that Ni is a root subgroup.



• Given a compact subgroup K ≤ Gξ ,η, the 

centraliser ZG(K) turns the fixed point set ∂TK 

into a sub-Moufang set.
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• Given a compact subgroup K ≤ Gξ ,η, the 

centraliser ZG(K) turns the fixed point set ∂TK 

into a sub-Moufang set.

• Useful provided one can find K non-trivial.

Sub-Moufang sets
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The derived length of G is bounded in terms of the 

nilpotency classes of A and B.
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Conjecture 

Let G be a profinite group.
If G = A.B with  A, B ≤ G nilpotent, then G is soluble.

Given G ≤ Aut(T) and ξ, η ∈ ∂T, if all compact 

subgroups K ≤ Gξ ,η  are trivial, then have product 

decomposition of vertex stabilisers 

Gv = (Gv ∩ Uξ) . (Gv ∩ Uη).

However Gv cannot be soluble.



Conjecture 

Let G be a profinite group.
If G = A.B with  A, B ≤ G nilpotent, then G is soluble.
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Let G be a finite group.
If G = A.B with  A, B ≤ G nilpotent of classes a and b, 

then G is soluble of derived length ≤ f(a, b).
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• True if A, B are abelian [Ito 1955]

• True if A, B have coprime order [Hall-Higman 1956]

• Reduces to the case of p-groups [Pennington 1973]

• The derived length of G can be greater than the sum 

of the nilpotency classes of A and B [Cossey-

Stonehewer 1998]

Conjecture 

Let G be a finite group.
If G = A.B with  A, B ≤ G nilpotent of classes a and b, 

then G is soluble of derived length ≤ f(a, b).




