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e Avatars

o 77

e Finitely generated simple groups
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Wrong for non-discrete groups

Non-discrete topology

= algebraic restrictions
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Non-discrete Compactly generated
simple locally compact groups

e Connected simple Lie groups linear I

e Simple algebraic groups over local fields

_
e Complete Kac-Moody groups over finite fields

e Automorphism groups of trees, npc complexes

e Avatars )
- non-linear I

Non-Lzie type stmple groups are not sporadic!




Problem

Characterise linear groups among (simple) L.c. groups?




Problem

Characterise linear groups among (simple) L.c. groups?

e Solved Gleason; Montgomery-Zippin (1950) for

connected groups




Problem

Characterise linear groups among (simple) L.c. groups?

e Solved Gleason; Montgomery-Zippin (1950) for

connected groups

e Solved by Lazard (1960) and Lubotzky-Mann
(1989) for p-adic fields




Problem

Characterise linear groups among (simple) L.c. groups?

e Solved Gleason; Montgomery-Zippin (1950) for

connected groups

e Solved by Lazard (1960) and Lubotzky-Mann
(1989) for p-adic fields

e Useful for discrete groups




Problem

Characterise linear groups among (simple) L.c. groups?

e Solved Gleason; Montgomery-Zippin (1950) for

connected groups

e Solved by Lazard (1960) and Lubotzky-Mann
(1989) for p-adic fields

e Useful for discrete groups

¢ Open in characteristic >0




Problem

Characterise linear groups among (simple) L.c. groups?

e Solved Gleason; Montgomery-Zippin (1950) for

connected groups

e Solved by Lazard (1960) and Lubotzky-Mann
(1989) for p-adic fields

e Useful for discrete groups

¢ Open in characteristic >0

e Unified solution in all characteristics?
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Theorem (Tits 1974;Tits-Weiss 2002)

Let G be a simple group.

If G bas an irreducible split spherical BN-pair of
rank > 2, then G is linear (possibly over a skew- field).

e Rank one case?

e More natural conditions in the l.c. context?
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Let G be al.c. group, let a € G.

The contraction group associated with a is

Us={g€ G |lim-.. angan=1}.

The parabolic group associated with o is

P,={ g€ G|argo " is bounded }.
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e G = R"X R with R-action by homotheties

Dxrace R

o 5= SLz(R)
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Warning: The contraction group Uq need not

be closed in general!

However, all contraction subgroups U, < G are
closed when G is:

* a Lie group [Hazod-Siebert, 19861}

® a p-adic analytic group [Wang, 1988}

Relationship between closedness of contraction

groups and smoothness/linearity?
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Lemma
a acts as a compaction on the closure of U,

F = non-trivial finite group

G=11zF X, Z o = positive shift

Ua= (@n.,<OF)@(Hn.,20F)

Ua - HZF
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e Characteristic-free

* Crucial step in the proof: U, is closed
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Let G be a non-compact unimodular l.c. group without.

non-trivial compact normal subgroup (eg. G simple).

Assume there is a € G such that.

@) G/(aUa) is compact.

@7) U, is closed and torsion-free.
Then there is a l.c. field k of char O and a semisimple

algebraic k-group G of k-rank one such that. G®) < G

with finite index.
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Question (Milnor 1976)
Which connected Lie groups admit an invariant.

Riemannian metric of negative sectional curvature?

Theorem (Heintze 1974)
A Lze group G is negatively curved iff G = N X R

with N s.c. nilpotent and contracting action of R on. N.

e Lie group = l.c. group

e Soluble = amenable

e Negatively curved = Gromov hyperbolic
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Assume there is o € G such that G/{aU,) is compact.

Then G has a continuous proper cocompact action on a

Gromov hyperbolic metric space.

Proof.
<(1Ua>s<(x>[><f]; =7 XN
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Theorem (C.-Cornulier-Monod-Tessera 201 1)

Let G be al.c. group.

Assume there is a € G such that G/(aU,) is compact.

Then G has a continuous proper cocompact action on a

Gromov bhyperbolic metric space.

If in addition G is unimodular, then modulo a compact.
normal subgroup, either:

® (5 15 a rank one simple Lie group, or

o G < Aut(T) and is 2-transitive on OT for some tree T.
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Let G < Aut(T) closed non-compact act.

@) 2-transitively on 0T,

(77) with metabelian stabilisers.

Then. PSLo(B) < G < PGLy(®) and 0T = P'(k)
with k locally compact freld.
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Let G < Sym(Q)) be 3-transitive group.
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some freld k.




Theorem (Tits, | 949)

Let G < Sym(Q) be_ 3-transitive group.

If Gy, y is abelian for x + y € Q, then G = PGLy(k) for
some freld k.

Let G < Sym(Q) be. 3-transitive group.
If Gy is metabelian for x € Q, then G = PGLy(k) for
some freld k.

PGLy(2)/PSLo(®) = k/k2
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Examples:

* (G sharply 2-transitive on Q
e G = PSLy(k) acting on Q = P1(k)

* (G = any simple algebraic group of rel. rank one

Hazardous conjecture (Tits, 2000)

All Moufang sets are of « algebraic origin », ie. remotely

related to the examples on that list.
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Theorem (De Medts-Weiss; Gruninger; Segev)

Let Q, G < Sym(Q) be a proper Moufang set.

Assume that Uy and Gy, are both abelian for x, y € Q).
Then there is a field k and.

either QO = PU(k) and PS1,(B) < G < PGL2(k),

or char(®) = 2 and QO C PL(R) is exceptional.

e If U, is abelian, then Gy, is abelian if and only if

Gy = Uy X Gy, is metabelian.

e Conjecturally: abelian root groups = quadratic

Jordan division algebras
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Back to l.c. groups

Proposition
Let G < Aut(T) closed non-compact such that.

@) G istransitive on 0X
(@7) U, is closed for some a byperbolic.

Then 0T is a Moufang set with U, as a root group.

Moreover the system of root groups is unique.

If the contraction group U, is abelian, then it is closed. I
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= U, abelian.

* By Proposition, Ug is closed and 07T'is a Moufang

set with abelian root groups and metabelian
stabilisers.

e Can invoke Theorem on Moufang sets.

* Get al.c. field.

e Exceptional case in char 2 does not occur over

local fields.
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Enough to prove:

Let G < Aut(T) closed non-compact such that.
(G, 0T) is a Moufang set with closed torsion-

free root groups.
Then there is a l.c. freld k of char O and a semisimple

algebraic k-group G of k-rank one such that. G(®) < G

with finite index.
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e Assume that the root group Uk is closed and

torsion-free. Then by {Glockner-Willis} we have

Us= N1 x Ny x ... x Ny,

with N; nilpotent p,;-adic analytic for some

prime p;.
e Need to show t = 1.

e Strategy: show that N; is a root subgroup.
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Sub-Moufang sets

* (Given a compact subgroup K < G¢ 4, the
centraliser Zg(K) turns the fixed point set 07X

into a sub-Moufang set.

e Useful provided one can find K non-trivial.
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If G=A.Bwith A, B < G nilpotent, then G is soluble.

Given G < Aut(7T) and &, n € 9T, if all compact

subgroups K < Gg¢ ; are trivial, then have product

decomposition of vertex stabilisers

However G-, cannot be soluble.
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¢ True if A, B have coprime order [Hall-Higman 1956]
* Reduces to the case of p-groups {Pennington 1973}

* The derived length ot G can be greater than the sum

of the nilpotency classes of A and B {Cossey-

Stonehewer 1998}






