On Brauer's height zero conjecture

Radha Kessar
University of Aberdeen

March 15, 2012

Joint work with Gunter Malle (Kaiserslautern)

p : prime number
$k: \overline{\mathbb{F}}_{p}$
\mathfrak{p} : maximal ideal of complete d.v.r. in characteristic 0 lifting $\overline{\mathbb{F}}_{p}$
G : finite group
$\operatorname{Irr}(G):\{c o m p l e x ~ i r r e d u c i b l e ~ c h a r a c t e r s ~ o f ~ G\} ~$
Block decomposition of $k G$ into indecomposable algebra factors:

$$
\begin{aligned}
k G & =\prod_{B \in B l_{p}(G)} B \\
& \downarrow \\
\operatorname{Irr}(G) & =\bigsqcup_{B \in B l_{p}(G)} \operatorname{Irr}(B)
\end{aligned}
$$

- χ, χ^{\prime} in same p-block iff

$$
\frac{|G| \chi(x)}{\left|C_{G}(x)\right| \chi(1)}-\frac{|G| \chi^{\prime}(x)}{\left|C_{G}(x)\right| \chi^{\prime}(1)} \in \mathfrak{p}
$$

for all $x \in G$.

$$
k G=\prod_{B \in B I_{p}(G)} B, \quad \operatorname{Irr}(G)=\bigsqcup_{B \in B l_{p}(G)} \operatorname{Irr}(B)
$$

Definition

Let Q be a p-subgroup of G. The Brauer homomorphism $\mathrm{Br}_{Q}: k G \rightarrow k C_{G}(Q)$ is defined by $\sum_{g \in G} \alpha_{g} g \rightarrow \sum_{g \in C_{G}(Q)} \alpha_{g} g$.

Definition

A defect group of B is a p-subgroup P of G satisfying one of the following equivalent conditions:

- P maximal s.t. $\operatorname{Br}_{P}\left(1_{B}\right) \neq 0$.
- P maximal s.t. for some p-regular $x \in C_{G}(P)$,
$\frac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(B)} \chi(1) \chi(x) \notin \mathfrak{p}$.
- P minimal s.t. B is a summand of $B \otimes_{k P} B$ as (B, B)-bimodules.
- Defect groups exist and are unique upto G-conjugacy.
B : p-block of $G, \quad P$: defect group of B. Representation theory of B is influenced by P, e.g.:
- (Brauer) $|P|=\max \left\{\frac{|G|_{p}}{\chi(1)_{p}}: \chi \in \operatorname{Irr}(B)\right\}$.
- (Brauer-Feit) $|\operatorname{Irr}(B)| \leq \frac{1}{4}|P|^{2}+1$.
- (Brauer) $P=1$ iff $B=\operatorname{Mat}_{n}(k)$ iff $|\operatorname{Irr}(B)|=1$ iff $\exists \chi \in \operatorname{Irr}(B)$ with $\chi(1)_{p}=|G|_{p}$.
\vdots
\vdots
And many conjectures...
B : p-block of $G, \quad P$: defect group of B.
- $|P|=\max \left\{\frac{|G|_{p}}{\chi(1)_{p}}: \chi \in \operatorname{Irr}(B)\right\}$.

Brauer's height zero conjecture, 1955
P abelian $\Longleftrightarrow \forall \chi \in \operatorname{Irr}(B),|P|=\frac{|G|_{p}}{\chi(1)_{p}}$.
Will refer to the forward direction of conjecture as (HZ1), reverse direction as (HZ2).
Brauer's evidence (1963):

- (HZ1) true if either P cyclic (Brauer) or $G p$-solvable (Fong).
- (HZ2) true if $G p$-solvable and B principal block (Fong). Many cases handled subsequently.
- Structural explanation for (HZ1) is provided by Broue's Abelian Defect Group Conjecture (1990):
If P abelian, then B is derived equivalent to a p-block of $k H$, with $H=O_{p^{\prime}, p, p^{\prime}}(H)$, and $O_{p^{\prime}}(H) \leq Z(H), P$ a Sylow p-subgroup of H.
[formulation above depends on a theorem of Külshammer.]
B : p-block of $G, \quad P$: defect group of B.
Conj. (HZ1): If P abelian, then $\forall \chi \in \operatorname{Irr}(B),|P|=\frac{|G|_{p}}{\chi(1)_{p}}$.
Conj. (HZ2) : Converse.
Theorem (Berger-Knörr, 1988)
(HZ1) true if true for quasi-simple groups.
Theorem (2011)
(HZ1) true.
To get from the reduction to the final theorem, need to solve:
Problem
For all finite quasi-simple G, and all primes p, "describe" the p-blocks of G and their defect groups.
$G:$ quasi-simple,$\quad \bar{G}=G / Z(G)$.
- \bar{G} sporadic: Use character tables.
- $\bar{G}=A_{n}$:

$B_{1}\left(S_{n}\right)$		$\{p$-cores of partitions of $n\}$		
B_{τ}		τ		
$\chi_{\lambda} \in \operatorname{Irr}\left(B_{\tau}\right)$		$\tau=p-$ core of λ		

If $|\tau|=m$, Sylow $p-$ subgroup of S_{n-m} is a defect group of B_{τ}.
-Similar (but independent, and more complicated) combinatorial story for projective representations of S_{n} (Schur, Morris, Humphreys).
(HZ) True for G if $\bar{G}=A_{n} . \quad$ (Olsson '90)

- $\bar{G}:$ finite group of Lie type in characteristic.

If p is the characteristic of \bar{G}, then few p-blocks (Humphreys, 1971):

$$
\begin{array}{ll}
B I_{p}(G) & \leftrightarrow \operatorname{Irr}(Z(G)) \cup\{\text { Steinberg character }\} \\
\text { Defect groups } & : \\
\text { Sylow } p-\text { subgps },\{1\}
\end{array}
$$

Remaining case: p different from the characteristic of \bar{G}.
Conceptual set up:
G: simple algebraic group over $\overline{\mathbb{F}}_{q}, q$ a prime power.
$F: \mathbf{G} \rightarrow \mathbf{G}$, a Steinberg endomorphism w.r.t. \mathbb{F}_{q}.
$\mathbf{G}=\mathbf{G}^{F}$.
Dual set up:
\mathbf{G}^{*} : dual group,
$F^{*}: \mathbf{G}^{*} \rightarrow \mathbf{G}^{*}$ compatible Steinberg,
$G^{*}=\mathbf{G}^{* F^{*}}$.
$\mathbf{G}=\mathbf{G}^{F}, \quad \mathbf{G}^{*}=\mathbf{G}^{* F^{*}}$.
Lusztig induction:
L an F-stable Levi subgroup of some parabolic subgroup of \mathbf{G}

$$
\begin{gathered}
\mathrm{R}_{\mathbf{L}}^{\mathrm{G}}: \mathbb{Z} \operatorname{Irr}(L) \rightarrow \mathbb{Z} \operatorname{Irr}(G), \quad\left(L=\mathbf{L}^{F}\right) \\
{ }^{*} \mathrm{R}_{\mathrm{L}}^{\mathrm{G}}: \mathbb{Z} \operatorname{Irr}(G) \rightarrow \mathbb{Z} \operatorname{Irr}(L), \quad \text { adjoint map. }
\end{gathered}
$$

The definition of R_{L}^{G} is geometric. A special case is Harish-Chandra induction:
If \mathbf{L} is a Levi of an F-stable parabolic \mathbf{P} of \mathbf{G}, then

$$
\mathrm{R}_{\mathbf{L}}^{\mathbf{G}}=\operatorname{Ind}_{P}^{G} \circ \operatorname{Inf}_{L}^{P}, \quad\left(P=\mathbf{P}^{F}\right)
$$

Lusztig's theory of characters (80's)

- $\operatorname{Irr}(G)=\bigsqcup_{s \in G_{s s}^{*} / \sim} \mathcal{E}(G,(s))$.
(union is over conjugacy classes of semisimple elements of G^{*})
Definition
$\mathcal{E}(G,(s))$: Lusztig series associated to s. $\mathcal{E}(G, 1)$: Unipotent characters of G.
- $\mathcal{E}(G, 1)$ is parametrised independently of q - depends only on the type of (\mathbf{G}, F). [e.g. If $\mathbf{G}=G L_{n}$, then $\mathcal{E}(G, 1) \leftrightarrow \operatorname{Irr}\left(S_{n}\right)$]
- For any $s \in G_{s s}^{*}$, there is a bijection

$$
\Psi_{s}: \mathcal{E}(G,(s)) \rightarrow \mathcal{E}\left(C_{G^{*}}(s), 1\right)
$$

such that for all $\chi \in \mathcal{E}(G,(s))$

$$
\chi(1)=\psi_{s}(\chi)(1)\left|G^{*}: C_{G^{*}}(s)\right|_{q^{\prime}}
$$

Blocks

$$
G=\mathbf{G}^{F}=G(q), \quad(p, q)=1
$$

- (Fong-Srinivasan, 1982): Description of p-blocks of finite general linear and unitary groups.
[Conj. (HZ1) true if G is of type A, (Blau-Ellers, 1999).]
For s a semisimple p^{\prime} - element of G^{*}, set

$$
\mathcal{E}_{p}(G,(s)):=\bigsqcup_{t \in C_{G^{*}}(s)_{p} / \sim} \mathcal{E}(G,(t s))
$$

- (Broué-Michel, 1989) $\mathcal{E}_{p}(G,(s))$ is a union of p-blocks.
- (Hiss, 1989) If B is a p-block in $\mathcal{E}_{p}(G,(s))$, then $\operatorname{Irr}(B) \cap \mathcal{E}(G,(s)) \neq \emptyset$.
Our problem reduces to: For all p-regular semisimple $s \in G^{*}$, determine p-blocks and defect groups in $\mathcal{E}_{p}(G,(s))$. Solution: Nice fit between Brauer and Lusztig theories.
$G=\mathbf{G}^{F}=G(q), \quad(p, q)=1, s \in G_{s s}^{*}, p \nmid O(s)$.
$B: p$-block of G in $\mathcal{E}_{p}(G,(s))$.
$\mathbf{L}: F$-stable Levi subgroup of \mathbf{G} with $s \in L^{*}, \quad L=\mathbf{L}^{F}$.
C : p-block of L in $\mathcal{E}_{p}(G,(s))$.
λ : irreducible character of L in $C \cap \mathcal{E}(L,(s))$.
$Z=Z(L)_{p}$.
$\mathrm{R}_{\mathrm{L}}^{\mathrm{G}}: \mathbb{Z} \operatorname{Irr}(L) \rightarrow \mathbb{Z} \operatorname{Irr}(G)$, Lusztig induction.
$\mathrm{Br}_{Z}: k G \rightarrow k C_{G}(Z)$, Brauer homomorphism.
Theorem (Cabanes)
Suppose that $\mathbf{L}=C_{G}(Z)$ and $\lambda(1)=|L: Z|_{p}$. Then,

$$
\operatorname{Br}_{Z}\left(1_{B}\right) 1_{C} \neq 0 \Longleftrightarrow \text { the constituents of } \mathrm{R}_{\mathrm{L}}^{\mathrm{G}}(\lambda) \text { lie in } B .
$$

Further, if $\operatorname{Br}_{Z}\left(1_{B}\right) 1_{C} \neq 0$ and the relative Weyl group $N_{G}(\mathbf{L}, \lambda) / L$ is a p^{\prime}-group, then Z is a defect group of B.

d-Harish-Chandra theory

$d \in \mathbb{N}, \quad \Phi_{d}(x)$: d-th cyclotomic polynomial.
d-split Levi subgroups: centralisers in \mathbf{G} of F-stable tori \mathbf{T} with $\left|\mathbf{T}^{F}\right|=\Phi_{d}(q)^{m}$ (some m).
$\chi \in \operatorname{Irr}(G)$ is d-cuspidal if
$\left\langle\chi, \mathbf{R}_{\mathbf{L}}^{\mathbf{G}}(\psi)\right\rangle=0$ for all proper $d-$ split $\mathbf{L}<\mathbf{G}, \psi \in \operatorname{Irr}(L)$.
A d-cuspidal pair is a pair (\mathbf{L}, λ) such that \mathbf{L} is d-split and λ is a d-cuspidal character of L.
Theorem (Broué-Malle-Michel, 1993)
Let d be the order of q modulo p. Suppose that p is sufficiently large and $s=1$.

- If (L, λ) is a unipotent d-cuspidal pair, then

$$
\mathbf{L}=C_{\mathbf{G}}(Z) \quad \text { and } \quad \lambda(1)=|L: Z|_{p}
$$

where $Z=Z(L)_{p}$.

- $\{$ blocks $\} \xrightarrow{1-1}\{d$-cuspidal pairs $\}$.
$G=\mathbf{G}^{F}=G(q), \quad(p, q)=1, s \in G_{s s}^{*}, p \nmid O(s)$.
The Broué- Malle-Michel situation, i.e., $s=1$ and p large may be considered as the "generic case". Carries over (with modifications) to the other cases:
- $s=1, p$ good for \mathbf{G}, odd (Cabanes-Enguehard, 1994)
- p good, odd (Cabanes-Engeuhard, 1999) [special cases -(Fong-Srinivasan)]
- $s=1, p$ bad (Enguehard, 2000)
- $p=2, G$ classical (Enguehard, 2008) [special cases- (An)]

Remaining Case:

- p bad, G exceptional, $s \neq 1$

Theorem (Bonnafé-Rouquier, 2003)

Suppose that \mathbf{L} an F-stable Levi subgroup of \mathbf{G} with
$C_{\mathrm{G}^{*}}(\mathrm{~s}) \leq \mathrm{L}^{*}$. Then, $\mathrm{R}_{\mathrm{L}}^{\mathrm{G}}$ induces a Morita equivalence between p-blocks of L in $\mathcal{E}_{p}(L,(s))$ and p-blocks of G in $\mathcal{E}_{p}(G,(s))$.
May assume that s is quasi-isolated, i.e., that $C_{\mathbf{G}^{*}}(s)$ is not contained in any proper Levi subgroup of \mathbf{G}^{*}.

- p bad, s quasi-isolated, G exceptional (K-Malle, 2011). [special cases-(Schwewe, Deriozitis-Michler, Hiss, Ward, Malle]

So, now have a parametrization of p-blocks (and defect groups) of G, for all p, all quasi-simple G.
Getting from the parametrization to Conjecture (HZ1) required a bit more work. For instance:

Theorem (K-Malle, 2011)
If \mathbf{G} is simple and simply connected, then Bonnafé-Rouquier Morita equivalences preserve abelian defect groups.

