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For some years now I have been trying to understand the finite simple groups
of Lie type, in a way that (a) explains their covering groups, and (b) is in the
smallest possible dimension, to facilitate concrete calculations. I should say I’m
really only interested in definitions, not theorems.

The usual approach via Lie algebras and/or algebraic groups, while having
the advantage of uniformity, does not do this.

1 Lie groups

First we should understand the much simpler situation of the complex Lie groups.
There are three infinite families of classical groups (orthogonal = real, uni-
tary/linear = complex, and symplectic = quaternionic), and five exceptional
groups (G2, F4, E6, E7, E8). The Lie algebras of the classical groups are best de-
scribed as algebras of matrices, and have dimension of the order of n2 or 1

2
n2,

where the natural representation has degree n.
The exceptional Lie algebras have dimension respectively 14, 52, 78, 133, 248,

while the smallest representations have dimension respectively 7, 26, 27, 56, 248.
The 7-dimensional representation of G2 is on the pure imaginary octonions

(Cayley numbers): indeed G2 is the automorphism group of this Cayley algebra.
The 26-dimensional representation of F4 is similarly the automorphism group

of the exceptional Jordan algebra (or Albert algebra). This algebra consists of
3 × 3 Hermitian matrices over the Cayley numbers, with multiplication defined
by X ◦ Y = 1

2
(XY + Y X). The group can be extended to E6 by preserving only

the (Freudenthal) determinant, and not the algebra product.
The compact real forms (e.g. for orthogonal groups this means the underlying

quadratic form is positive definite) reveal that

• F4 acts on a 26-dimensional real (orthogonal) space;

• E6 acts on a 27-dimensional complex (unitary) space;

• E7 acts on a 28-dimensional quaternionic (symplectic) space.
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This suggests the best way to study these groups is top-down, from the 28-
dimensional representation of E7, rather than the traditional bottom-up approach
starting from the exceptional Jordan algebra for F4.

2 Finite groups of Lie type

In the finite field case, the situation is more complicated. There are six families
of classical groups (linear, unitary, symplectic, and three families of orthogonal
groups), and ten families of exceptional groups:

Chevalley (1955) G2(q) F4(q) E6(q) E7(q) E8(q)
Steinberg–Tits (1959) 3D4(q)

2E6(q)
Suzuki–Ree (1961) 2B2(2

2n+1) 2G2(3
2n+1) 2F4(2

2n+1)

As well as the problems of the large dimension of the Lie algebra, there is also
the problem of disappearing scalars: there is a double cover 2E7(q) for all odd q,
a triple cover 3E6(q) whenever q ≡ 1 mod 3, and 3.2E6(q) whenever q ≡ 2 mod 3.
Let’s look at the situation in detail:

H C R
symplectic linear, unitary real W

4-form 3-form algebras ‘double algebras’
E8(q)

Lie algebra
dim. 248

(2)E7(q) (3)E6(q), (3)2E6(q) F4(q)
2F4(2

2n+1)
Dickson form Jordan algebra
≈ determinant

dim. 28 dim. 27 = 33 dim. 26
3D4(q) G2(q),

2G2(3
2n+1)

Springer algebra Cayley algebra
twisted octonion

dim. 8 = 23 dim. 7
2B2(2

2n+1)
dim. 4

O
octonions
dimension 8
H
quaternions
dimension 4

C
complexes
dimension 2

3 History

Of these, G2, F4 and E6 are well-studied, and well-understood in terms of the
Cayley (octonion) algebra and the Albert (Jordan) algebra. We’ll start with
these and work outwards to the rest. Historically, Dickson (1901) constructed G2

in odd characteristic (characteristic 2 in 1905) essentially as automorphisms of

2



the Cayley numbers; and E6 as the stabilizer of a cubic form of 45 terms in 27
variables. If the variables are called xi, yi, zij = −zji for i 6= j ∈ {1, 2, 3, 4, 5, 6}
then the form is

∑
i<j xiyjzij +

∑
zijzklzmn where the second sum is over all even

permutations.
Jacobson (1959–1961) studied F4 and E6 in characteristic not 2 or 3, using

Jordan algebras, and Springer introduced twisted octonion algebras to study
3D4(q). Suzuki’s construction of his group around the same time was already as
4 × 4 matrices. R. B. Brown (1969) studied E7 in characteristic not 2 using a
quartic form with 1036 terms in 56 variables.

4 Root systems

The root systems of type B2, G2, F4 and E8 are conveniently thought of as subsets
of (respectively) C, C, H and O. The short roots of B2, G2, F4 are respectively

±1,±i
±1,±ω,±ω
±1,±i,±j,±k, 1

2
(±1± i± j ± k) (1)

and the long roots are

±1± i
±ωa(1− ω)
±1± i, . . . (2)

5 Algebras

Look first at the column of algebras. The Lie algebra is spanned by 240 root
vectors er, and 8 dimensions of nilpotent elements hr, and the Lie product is
defined by equations like

[er, es] = ±er+s
[er, hs] = λr,ser
[hr, hs] = 0. (3)

The (split) Cayley algebra may be spanned by 6 short root vectors er, correspond-
ing to the short roots of the G2 root system, and two orthogonal idempotents
e±0, with product defined by

eres = ±er+s (r, s 6= ±0)
ezer = λz,rer z = ±0 (4)
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The (split) Jordan algebra may similarly be spanned by 24 short root vectors er,
corresponding to the short roots of F4, and three orthogonal idempotents e0, eω0,
eω. The Jordan product is given by equations of the form

er ◦ es = er+s
ez ◦ er = λz,rer (5)

In every case there is also a bilinear form such that er.e−r = ±1.

6 Double algebras

The map φ defined on B2, G2 and F4 respectively by

z 7→ (1 + i)z
z 7→ (1− ω)z
z 7→ (1 + i)zj (6)

maps short roots to long roots and squares to p = 2, 3, 2 respectively.
Now take the above (Jordan and Cayley) algebras over a field of characteristic

p and odd degree, and reduce the dimension by 1 by defining e0 + e−0 = 0 in the
Cayley algebra, and e0 + eω0 + eω0 = 0 in the Jordan algebra. Similarly for B2,
take the 4-space spanned by e±1 and e±i, with just the bilinear form, and zero
product.

We can define a new product by

er ? es = ±eφ−1(r+s)

(and other things involving the zeroes), and extending biadditively and

(λu) ? v = u ? (λv) = λσ(u ? v)

where λσ
2

= λ−p, and then restricting ? to expressions∑
(λr,ser) ? es such that

∑
λr,s(er × es) = 0.

Then it turns out that the Suzuki and Ree groups are exactly the automor-
phism groups of these double algebras (W-algebras). As they are in the R column
of the main table, I might call them RW-algebras.

7 Quaternionic E7

The roots of E7 are perhaps best described as the 14 + 112 = 126 pure imaginary
octonions ±i0, . . . ,±i6 (that is it for t ∈ F7), and 1

2
(±i2± i4± i5± i6) and images

under t 7→ t + 1. The minimal vectors of the dual lattice are ±it ± it+1 ± it+3.
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Label these pairs ±v by H−t, I−t, J−t, K−t, where the signs are respectively +++,
+−−, −+−, −−+. These are quaternions, and we now construct 63 root groups
SU(2) as follows: the root group corresponding to ±i0 is obtained by letting a

quaternion q = z + wj act as

(
z wj
wj z

)
on (H1, I1), (H2, J2), (H4, K4) and as(

z̄ w̄j
w̄j z

)
on (J1, K1), (K2, I2) and (I4, J4). The other orbit of root groups is

similar: the first matrix acts on (H2, I6), (H4, J5) and (H1, K3), and the second
on (H5, I4), (H3, J1), (H6, K2).

These matrices generate (the double cover of the compact real form of) E7.
To get this as a 56-dimensional complex representation, just write q = q′ + q′′j
for each quaternion q. Then the quartic form is a sum over orbits of the Weyl
group:

−1

4

∑
(H ′0H

′′
0 )2 +

1

2

∑
H ′0H

′′
0 I
′
0I
′′
0 +

∑
H ′0I

′
0J
′
0K
′
0

This can be interpreted over any field of characteristic not 2, and gives a definition
of 2E7(q) for any odd q. To get E7(q) in characteristic 2, just delete the terms
which don’t make sense, and just keep

∑
H ′0I

′
0J
′
0K
′
0. (See my webpage for a

preprint with more details.)
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