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1 Introduction

The aim of this note is to give some examples of toy tensor triangulated categories to
illustrate certain properties of the Bousfield lattice; it serves to show that one can not
be too ambitious in trying to prove general results about the Bousfield lattice.

2 Recollections on Heyting and Boolean algebras

In this section we give a brief reminder of the definitions of Heyting algebras, Boolean
algebras, and of the Booleanization functor.

Notation 2.1. Let L be a lattice. All our lattices will be bounded and we denote by
0 and 1 (or 0L and 1L if our notation would otherwise be ambiguous) the minimal and
maximal elements of L respectively. We use ∨ and ∧ to denote the join and meet on
L.

Definition 2.2. A Heyting algebra is a lattice H equipped with an implication oper-
ation ⇒ : Hop ×H −→ H satisfying the following universal property:

(l ∧m) ≤ n if and only if l ≤ (m ⇒ n)

for all l,m, n ∈ H. A complete Heyting algebra is a Heyting algebra which is complete
as a lattice.
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A morphism of Heyting algebras is a morphism of lattices which preserves impli-
cation. A morphism of complete Heyting algebras is a morphism of lattices which
preserves implication and arbitrary joins.

It is standard that Heyting algebras are distributive and that complete Heyting
algebras are the same as frames i.e., complete distributive lattices. In a frame L the
implication operation l ⇒ m, for l,m ∈ L, is given by the join of the set {x ∈ L | x∧l ≤
m}. However, not every morphism of frames preserves the implication operation. We
denote the category of (complete) Heyting algebras and (complete) Heyting algebra
morphisms by Heyt (cHeyt).

Definition 2.3. Let H be a Heyting algebra. The pseudocomplement or negation of
h ∈ H is defined to be

¬h := (h ⇒ 0).

The element ¬h is the largest element of H such that h∧¬h = 0. We say h is regular
if ¬¬h = h and that h is complemented if h ∨ ¬h = 1. We recall that regularity
of h is equivalent to the condition that there exists h′ with h = ¬h′ and that every
complemented element of a Heyting algebra is regular.
We denote byH¬¬ the subposet (in general it is not a subalgebra) of regular elements

of H.

Definition 2.4. A (complete) Heyting algebra B is a (complete) Boolean algebra if it
satisfies one (and hence both) of the following equivalent conditions:

1 every element of B is regular;

2 every element of B is complemented.

A morphism of (complete) Boolean algebras is just a morphism of (complete) Heyting
algebras.

We denote the category of (complete) Boolean algebras and morphisms of (complete)
Boolean algebras by Bool (cBool).
Let H be a Heyting algebra. Then double negation defines a morphism of Heyting

algebras ¬¬ : H −→ H¬¬. In fact double negation gives a monad on Heyt. If H
is complete then so is H¬¬ and double negation gives a monad on cHeyt. This is
summarised in the following well known theorem.

Theorem 2.5. Let H be a (complete) Heyting algebra. Then the poset H¬¬ is a
(complete) Boolean algebra called the Booleanization of H. Furthermore, H 7→ H¬¬
extends to a functor

B : Heyt −→ Bool

which is left adjoint to the fully faithful inclusion Bool −→ Heyt. The double negation
H −→ H¬¬ is the unit of this adjunction. Moreover, the functor B restricted to cHeyt

gives a left adjoint to the fully faithful inclusion cBool −→ cHeyt.
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3 Any complete Boolean algebra is a Bousfield lat-

tice

In this section we show how to construct, starting from a frame L, an algebraic tensor
triangulated category TL whose Bousfield lattice is the Booleanization of L. Hence if
L is a complete Boolean algebra then the Bousfield lattice of TL is precisely L. Let us
explain the construction. We fix a complete distribute lattice i.e., a frame, L and a
field k. We define a triangulated category TL by

TL =
∏

l∈L\{0L}
D(kl)

where kl = k for all l ∈ L \ 0L - the subscript is merely to keep track of the entries.
For a k-vector space V we use ΣiVl to denote the object of TL which is ΣiV in the
lth position and zero elsewhere. With this convention an object (Xl)l∈L\{0} of T is∐

l Xl. The triangulation is just given levelwise by the usual triangulated structure
on the unbounded derived category of k-vector spaces D(k). It is easily seen that TL
is compactly generated, pure semisimple, and has a stable combinatorial model. For
convenience we will often denote the zero object 0 of TL by k0L and think of it as
the “generator corresponding to 0L” (thus we do not worry about excluding 0L when
indexing generators of TL over L).
We now show how to use the lattice structure of L to define an exact symmetric

monoidal structure on TL. For l, l′ ∈ L we set

kl ⊗ kl′ = kl∧l′

where we use the identification k0L = 0. This extends to a monoidal structure on TL
which is exact and coproduct preserving in each variable with unit k1. Indeed, every
object of TL is a sum of suspensions of the kl for l ∈ L so the rule above, together with
the usual tensor product on D(k), determines (an essentially unique) exact coproduct
preserving extension.
Let us denote the Bousfield lattice of TL, our main object of interest, by A(TL).

We recall from [4] that A(TL) is a set rather than a proper class, although this will
become clear through explicit computation. For an object X of TL we write A(X) for
its Bousfield class. The set A(TL) has a natural structure of complete lattice where the
Bousfield classes are ordered by reverse inclusion and the join of the Bousfield classes
{A(Xi) | i ∈ I} is given by A(

∐
i Xi). Since it should not cause confusion we shall

also use ∧ and ∨ to denote the meet and join of the Bousfield lattice.
We begin with the simple observation that every Bousfield class in TL comes from

one of the standard generators kl. Before proving this we note that, for any object X
of TL, the class A(X) is determined by the kl it contains; this is immediate as Bousfield
classes are closed under summands and every object of TL is a sum of suspensions of
the kl.

Lemma 3.1. Let X be an object of TL. Then there exists an l ∈ L such that A(X) =
A(kl).
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Proof. We can write X as a coproduct of suspensions of the km for m ∈ L and, since
suspension does not change Bousfield classes, we may without loss of generality take
X ∼=

∐
i kli where li ∈ L are lattice elements indexed by some set I. Let us write l

for the join ∨ili of the li. Then

A(X) = A(
∐

i

kli)

= 〈km | (
∐

i

kli)⊗ km = 0〉loc

= 〈km |
∐

i

(kli ⊗ km) = 0〉loc

= 〈km |
∐

i

(kli∧m) = 0〉loc

= 〈km | li ∧m = 0L ∀i ∈ I〉loc
= 〈km | l ∧m = 0L〉loc
= A(kl).

Remark 3.2. We proved a little more than we stated in the Lemma and we wish to
record it for use later. Namely, we showed that if {li}i∈I is a set of elements of L then
A(

∐
i kli) = A(k∨ili).

Next we shall describe the meet on A(TL). By the last lemma it is sufficient to do
this for the Bousfield classes of the kl with l ∈ L. Given objects X and Y of TL we
set A(X)⊗A(Y ) := A(X ⊗ Y ). Observe that if X ≤ X ′ and Y ≤ Y ′ then there is an
inequality A(X)⊗A(Y ) ≤ A(X ′)⊗A(Y ′).

Lemma 3.3. Let l and l′ be elements of L. Then the meet of A(kl) and A(kl′) is
given by A(kl)⊗A(kl′) = A(kl∧l′).

Proof. We need to show that A(kl∧l′) is the greatest lower bound for A(kl) and A(kl′).
So suppose A(kx) ≤ A(kl) and A(kx) ≤ A(kl′). Then

A(kx) = A(kx∧x) = A(kx)⊗A(kx) ≤ A(kl)⊗A(kl′) = A(kl∧l′)

which shows that A(kl∧l′) is the greatest lower bound for A(kl) and A(kl′) and com-
pletes the proof.

It follows easily that A(TL) is a frame (aka a complete Heyting algebra).

Lemma 3.4. The Bousfield lattice A(TL) is distributive.

Proof. Let l be an element of L and {mi}i∈I a set of elements of L indexed by a set I.
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Then

A(kl) ∧ (
∨

i

A(kmi
)) = A(kl)⊗A(

∐

i

kmi
)

= A(kl ⊗ (
∐

i

kmi
))

= A(
∐

i

(kl ⊗ kmi
))

=
∨

i

A(kl ⊗ kmi
)

=
∨

i

(A(kl) ∧A(kmi
))

where we have used Lemma 3.3 and Remark 3.2.

As usual we can then define implication for l,m ∈ L by

(A(kl) ⇒ A(km)) =
∨

A(kx)∧A(kl)≤A(km)

A(kx).

In fact A(TL) is a complete Boolean algebra. Before proving this let us give a concrete
description of the negation operation on the Bousfield lattice. This negation operator
is a general form of the one originally considered by Bousfield [2] (also see [3]).

Lemma 3.5. For l ∈ L there is an equality

¬A(kl) = A(
∐

km∈A(kl)

km) = A(k¬l).

Proof. Recall that ¬A(kl) is, by definition, A(kl) ⇒ A(k0l) where A(k0L) = T . Ex-
plicitly we have

¬A(kl) =
∨

A(kx)∧A(kl)≤A(k0L
)

A(kx).

Now the lattice elements representing Bousfield classes in the indexing set in the wedge
occurring above can be rewritten, using Lemma 3.3, as

{x ∈ L | A(kx∧l) ≤ A(k0L)} = {x ∈ L | kx∧l = k0L} = {x ∈ L | x ∧ l = 0L}

which is precisely the indexing set of the join occurring in the explicit definition of
(l ⇒ 0L). Together with Remark 3.2 this gives the claimed equalities.

Proposition 3.6. The Bousfield lattice of TL is a complete Boolean algebra.

Proof. We have just seen that A(TL) is a frame. We will show that every element of
A(TL) is regular i.e., check that ¬¬A(kl) = A(kl) for all l ∈ L.
So let l be an element of L. Since l∧¬l = 0L we have kl ⊗ k¬l = 0. In particular, kl

is a summand in
∐

km∈A(k¬l)
km which, by the last lemma gives an object representing

¬¬A(kl). Thus ¬¬A(kl) ⊆ A(kl).
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On the other hand say kw ⊗ kl = 0 i.e., w ∧ l = 0L. We know, by the last lemma,
that ¬A(kl) ⊆ A(kw). The double negation is given by

¬(¬A(kl)) = A(
∐

kx∈¬A(kl)

kx)

where, by definition, each kx lies in ¬A(kl) and hence in A(kw). Thus kw ∈ ¬¬A(kl)
showing A(kl) ⊆ ¬¬A(kl) and completing the proof.

We now want to compare the lattice L to A(TL). Define an assignment φ : L −→
A(TL) by φ(l) = A(kl). Our claim is that φ is a well defined morphism of complete
Heyting algebras which identifies A(TL) with the Booleanization of L. It is clear that
φ is well defined and it is surjective as we have noted above that every Bousfield class
is of the form A(kl).

Lemma 3.7. The assignment φ : L −→ A(TL) is a morphism of frames.

Proof. We need to check that φ is monotone, and preserves finite meets and infinite
joins.
Let us first show that φ is monotone. Suppose l ≤ m in L. Then for all x ∈ L we

have x ∧ l ≤ x ∧m and so x ∧m = 0L implies that x ∧ l = 0L. Hence A(kl) ⊇ A(km)
i.e., A(kl) ≤ A(km) as required.
The map φ preserves finite meets by Lemma 3.3. In order to show it preserves joins

let {li}i∈I be a set of elements of L with join l. We have

φ(
∨

i

li) = A(k∨ili) = A(
∐

i

kli) =
∨

i

A(kli) =
∨

i

φ(li),

where the second equality is Remark 3.2.

The next lemma shows that φ is in fact a morphism of complete Heyting algebras.

Lemma 3.8. The map φ preserves implication.

Proof. To start with let us recall that by Lemma 3.5 the map φ commutes with joins,
and by Proposition 3.6 A(TL) is a Boolean algebra and so negation is an involution on
A(TL). Thus for all l ∈ L we have φ(¬¬l) = φ(l). We need to check that

φ(l ⇒ m) = φ(¬¬(l ⇒ m)) = φ((¬¬l) ⇒ (¬¬m)) = φ(
∨

x∧(¬¬l)≤(¬¬m)

x)

=
∨

x∧(¬¬l)≤(¬¬m)

A(kx)

agrees with

φ(l) ⇒ φ(m) =
∨

A(kx)∧A(kl)≤A(km)

A(kx).

Since φ is order preserving we have φ(l ⇒ m) ≤ (φ(l) ⇒ φ(m)); if x ∧ l ≤ m then
A(kx) ∧A(kl) ≤ A(km).
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On the other hand suppose A(ky)∧A(kl) ≤ A(km) i.e., for z ∈ L we have m∧z = 0L
implies that (y ∧ l) ∧ z = 0L. In other words there is a containment

{z ∈ L | m ∧ z ≤ 0L} ⊆ {z ∈ L | (y ∧ l) ∧ z ≤ 0L}

of the index sets defining the negations of m and y ∧ l. Thus ¬m ≤ ¬(y ∧ l) and
so ¬¬m ≥ ¬¬(y ∧ l) = (¬¬y) ∧ (¬¬l). Hence A(k¬¬y) = A(ky) occurs in the wedge
defining φ(¬¬(l ⇒ m)) and we see that (φ(l) ⇒ φ(m)) ≤ φ(¬¬(l ⇒ m)) = φ(l ⇒ m)
completing the proof.

We are now ready to show that our construction gives a rather bizarre realisation of
the Booleanization of L.

Proposition 3.9. The morphism φ induces an isomorphism of complete Boolean al-
gebras A(TL) ∼= L¬¬.

Proof. By the universal property of the Booleanization (see Theorem 2.5) the mor-
phism φ must factor via a unique map of complete Boolean algebras φ′ : L¬¬ −→
A(TL). Since φ is surjective so is φ′.
The map φ′ is also injective. Indeed, φ′(¬¬l) = φ′(¬¬m) if and only if A(kl) = A(km)

if and only if

{z ∈ L¬¬ | z ∧ (¬¬l) = 0L} = {z ∈ L¬¬ | z ∧ (¬¬m) = 0L},

which can happen if and only if ¬¬l = ¬¬m. This last statement is a consequence
of the fact that elements of a Boolean algebra are completely determined by their
annihilators [5].

Corollary 3.10. Every complete Boolean algebra occurs as the Bousfield lattice of an
algebraic tensor triangulated category which can be presented as the homotopy category
of a combinatorial stable monoidal model category.

4 Not every localizing ideal is a Bousfield class

We give an example of a very simple tensor triangulated category possessing a localizing
⊗-ideal which is not a Bousfield class; this shows that Conjecture 9.1 of [3] need not
be true in an arbitrary tensor triangulated category. One can view the example as
a special case of the construction involving lattices. However, we instead choose to
describe it via a similar construction using a monoid. We will use this construction
later anyway and it does no harm to adopt this point of view now.
Let k be a field and let M denote the monoid with two elements {1,m} where 1 is

the identity and m2 = m. Let TM denote the triangulated category D(k1) ⊕ D(km),
where k1 = km = k. We define a tensor product ⊗ on TM using the monoid structure
of M : k1 is the unit object and km⊗km ∼= km. As usual one extends this using the fact
that D(k) is pure-semisimple with unique indecomposable object, up to suspension,
k to obtain a tensor triangulated structure on TM . It is easily checked that TM is a
compactly generated algebraic tensor triangulated category arising as the homotopy
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category of a stable combinatorial monoidal model category i.e., it is an exceedingly
nice triangulated category.
It is clear that A(TM ) is the two element lattice consisting of A(0) and A(k1). On

the other hand 〈km〉loc is a non-zero proper ⊗-ideal of TM ; there is no object X of TM
such that 〈km〉loc = A(X).
The category TM also gives an example of a smashing localization where the acy-

clization functor is given by tensoring with an idempotent object but the localization
functor is not. In particular, TM cannot be rigidly compactly generated i.e., the full
subcategory of compact objects is not rigid. To see this note that 〈km〉loc is, as noted
above, a localizing ⊗-ideal generated by the compact object km. It is thus smashing
and one sees easily that the corresponding acyclization functor is given by km ⊗ (−).
However, there is no tensor idempotent realizing the localization functor, given by
projection onto the component D(k1), as it would have to be tensor orthogonal to km
and no such non-zero object exists in TM .

5 Strange behaviour of the Bousfield lattice under

localization

We now give a slightly modified version of the last example which shows that the
Bousfield lattice is not necessarily well behaved under localization by a tensor ideal;
in particular we show that localizing by the nilradical can destroy the good behaviour
of the Bousfield lattice. To begin, let us define what me mean by the nilradical of a
tensor triangulated category.

Definition 5.1. Let T be a tensor triangulated category with small coproducts. The
nilradical of T , denoted

√
T , is the smallest radical localizing ⊗-ideal containing 0.

Explicitly, it is the smallest localizing subcategory of T which is closed under tensoring
with all objects of T and has the property that if it contains Y ⊗n then it contains Y .

We will use the same construction as in the last section. Let M be the commutative
monoid {0, 1, x, y} with multiplication table

0 1 x y

0 0 0 0 0
1 0 1 x y
x 0 x 0 0
y 0 y 0 y

As in the last section we associate to M a tensor triangulated category TM = D(k1)⊕
D(kx)⊕D(ky) with tensor product defined using the multiplication of M . One checks
easily that the spectrum of localizing prime tensor ideals of T (which agrees with the
spectrum, in the sense of [1], of the compacts) has two points 〈kx〉 =

√
T and 〈kx, ky〉.

It is the same as the topological space underlying the spectrum of a discrete valuation
ring. Both of these ideals are Bousfield classes:

〈kx〉 = A(ky) and 〈kx, ky〉 = A(kx).
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Denoting by Loc
√
⊗(T ) the collection of radical localizing ⊗-ideals we have

A(T ) = Loc
√
⊗(T ) ∪ {〈0〉} = {T , 〈kx〉, 〈kx, ky〉, 〈0〉}.

There is also a non-radical ideal, namely 〈ky〉, which is not a Bousfield class.

It is easily seen that forming the quotient S = T /
√
T does not change the spectrum

and gives a bijection Loc
√
⊗(T ) ∼= Loc

√
⊗(S). However, it is no longer true that every

radical ideal is a Bousfield class. Indeed, the generic point of the global spectrum of
S is 〈ky〉 and this is not a Bousfield class.
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