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Abstract

We give a proof that in any compactly generated triangulated category

with a biexact coproduct preserving symmetric monoidal structure the col-

lection of Bousfield classes forms a set.

In [Ohk89] Ohkawa proved that the collection of Bousfield classes (i.e. kernels of the

smash product with some fixed object) in the stable homotopy category of spectra

is a set. Dwyer and Palmieri presented in [DP01] a slick proof of Ohkawa’s result

that works for any Brown category. However, this is still a restrictive hypothesis;

Neeman has shown in [Nee97] that the unbounded derived category of C[x, y] is

not a Brown category. In this note we show Ohkawa’s theorem extends to any

compactly generated triangulated category equipped with a biexact and coproduct

preserving tensor product. In particular, this answers Question 5.9 of [DP08] in

the affirmative: for any commutative ring R the Bousfield lattice of D(R) forms

a set.

The idea of the proof is to extend the argument given by Dwyer and Palmieri

in [DP01]. Instead of working with weak colimits in the triangulated category

T we pass to the category of abelian presheaves over the compact objects of

T . There is a restricted Yoneda functor from T to this presheaf category and

the image of every object of T is canonically a filtered colimit of representable

functors. Section 1 is the technical part of the paper where we show these colimit

representations are compatible with the monoidal structure on T . In Section 2

we use this compatibility to adapt the proof of Dwyer and Palmieri to this more

general situation, proving in Theorem 2.7 our claim that the collection of Bousfield

classes always forms a set in such a category.
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1 Modules over the compacts

Throughout we denote by T = (T ,⊗,1) a compactly generated triangulated cate-

gory equipped with a symmetric monoidal structure which is exact and commutes

with coproducts in each variable. Let us make it clear what we do not assume: the

compact objects are not assumed to form a tensor subcategory and so in particular

we are not assuming T rigidly-compactly generated.

We denote by Mod-T c the Grothendieck abelian category of additive presheaves

of abelian groups on the subcategory of compact objects T c. We let

H(−) : T −→ Mod-T c

denote the restricted Yoneda functor sending X to HX = Hom(−, X)|T c and note

that it preserves coproducts.

We now recall the definition of a certain comma category associated to objects of

T which will be central to our argument.

Definition 1.1. Let X be an object of T and denote by T c/X the slice category

over X (this is a slight abuse of terminology as X is not necessarily an object of

T c) whose objects are maps

x
f

−→ X

with x compact, which we will sometimes denote by (x, f) if the object X is clear,

and whose morphisms are commutative diagrams

x //

��

X

y

??
~~~~~~~~

Lemma 1.2. For every object X of T the slice category T c/X is filtered.

Proof. This is well known, see for instance [Nee92] Lemma 2.1.
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Lemma 1.3. For every X in T there is a natural isomorphism

HX
∼= colimT c/X H(−) ◦Q

where Q : T c/X −→ T c is the projection (x, f) 7→ x. In particular, the functor

HX can be written canonically as a filtered colimit of representable functors.

Proof. This is essentially just a restatement of the Yoneda lemma.

Given objects X and Y of T there is a natural map

colimT c/X H(−⊗Y ) ◦Q −→ HX⊗Y

induced by composition. To be explicit the component of this morphism at the

image of (x, f) is

Hf⊗Y : Hx⊗Y −→ HX⊗Y .

We consider the full subcategory L ⊆ T given by the objects for which this natural

map is always an isomorphism

L =

{

X ∈ T colimT c/X H(−⊗Y ) ◦Q
∼

−→ HX⊗Y

all Y ∈ T

}

.

We prove in Proposition 1.11 that L = T . From this we deduce there is a set of

Bousfield classes in T by adapting the argument of [DP01] (this is done in our

Lemma 2.6 and Theorem 2.7).

Convention 1.4. Throughout whenever we write HX
∼= colimI Hxi

for an object

X of T it is understood that this is the canonical representation in terms of the

slice category over X. That is, the diagram over which we are taking the colimit is

the image of H(−) ◦Q : T c/X −→ Mod-T c. Similarly colimI Hxi⊗Y always means

the colimit of the functor H(−⊗Y ) ◦Q with source T c/X.

Lemma 1.5. The subcategory L is closed under arbitrary small coproducts in T .

Proof. Suppose {Xα}α∈A is a collection of objects from L indexed by a set A and

let X =
∐

αXα. We wish to show that the natural map

γ : colimI Hxi⊗Y −→ HX⊗Y

is an isomorphism.
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First we show γ is surjective. Let c be a compact object of T and f : Hc −→ HX⊗Y

an element of HX⊗Y (c). As c is compact there are isomorphisms

Hom(c,X ⊗ Y ) = Hom(c, (
∐

α

Xα)⊗ Y )

∼= Hom(c,
∐

α

(Xα ⊗ Y ))

∼=
⊕

α

Hom(c,Xα ⊗ Y ).

Thus in T , identifying maps in T and Mod-T c via Yoneda, the map f factors as

c
f ′

//

f

��

⊕n
j=1Xαj

⊗ Y

wwooo
oo
oo
oo
o

X ⊗ Y

where f ′ is determined by its components f ′j : c −→ Xαj
⊗ Y .

By hypothesis for each αj the natural map

colimT c/Xαj
H(−⊗Y ) ◦Q −→ HXαj

⊗Y

is an isomorphism. As Hc is finitely presented in Mod-T c this isomorphism gives

rise to a factorization

Hc
//

f ′

j

��

Hxαj
⊗Y

yyss
ss
ss
ss
s

HXαj
⊗Y

for each j where Hxαj
⊗Y is in the image of T c/X under H(−⊗Y ) ◦Q. In particular

we get a factorization

Hc −→ ⊕n
j=1Hxαj

⊗Y −→ ⊕n
j=1HXαj

⊗Y

of the element of ⊕n
j=1HXαj

⊗Y (c) corresponding to f ′. Consider the diagram

Hc
// ⊕n

j=1Hxαj
⊗Y

��

// ⊕n
j=1HXαj

⊗Y

��
colimI Hxi⊗Y

γ // HX⊗Y
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where both vertical maps are induced by the fact that X is the coproduct of the

Xα. This diagram commutes as going down and then right in the square gives the

other composite by definition of γ. This shows γ is surjective: both composites

Hc −→ HX⊗Y give the element f so it is in the image of γ.

Now let us show γ is injective. Consider a compact object c together with a map

g : Hc −→ colimI Hxi⊗Y representing an element in the kernel of γ. The object

Hc is finitely presented so g factors as

Hc
//

%%LL
LL

LL
LL

LL
L colimI Hxi⊗Y

Hxj⊗Y

OO

where xj is compact and the map from Hxj⊗Y to the colimit is the structure map

corresponding to h : xj −→ X. As xj is compact h factors via some finite sum

⊕n
k=1Xαk

. We thus have a diagram

Hc
g //

��

colimI Hxi⊗Y
γ // HX⊗Y

Hxj⊗Y
//

55jjjjjjjjjjjjjjjj
⊕n

k=1 colimT c/Xαk
H(−⊗Y ) ◦Q

OO

∼ // ⊕n
k=1HXαk

⊗Y

OO

where the two triangles on the left commute as they are induced by the factor-

izations we have observed above, the righthand square commutes by naturality of

the horizontal comparison maps, and the bottom right map is an isomorphism as

the Xαk
lie in L. It follows that g = 0: if not the composite

Hc −→ ⊕n
k=1 colimT c/Xαk

H(−⊗Y ) ◦Q

would be non-zero, but then γ(g) would also necessarily be non-zero on some

component of HX⊗Y
∼= ⊕αHXα⊗Y .

Lemma 1.6. The subcategory L is closed under suspension.

Proof. Let us suppose we are given an object X of L and an object Y of T . For

any compact object c of T and any Z ∈ T there is an isomorphism

HΣZ(c)
∼

−→ HZ(Σ
−1c).
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In particular there is such an isomorphism for each xi ⊗ Y occurring in

colimI Hxi⊗Y . Taking colimits and considering the comparison maps we get a

commutative square

colimI HΣxi⊗Y (c)
∼ //

��

colimI Hxi⊗Y (Σ
−1c)

≀

��
HΣX⊗Y (c) ∼

// HX⊗Y (Σ
−1c)

where the right vertical map is an isomorphism by assumption. Thus the left

vertical map must also be an isomorphism and ΣX is an object of L as claimed.

Lemma 1.7. The subcategory L contains the subcategory T c of compact objects.

Proof. Suppose that z is a compact object of T . Then the slice category over z

has a terminal object, namely z
1z−→ z. Thus the functor iz : • −→ T c/z, where •

is the category with one object and no non-identity morphisms, sending the object

of • to z
1z−→ z is final. So for any object Y of T the canonical map

H−⊗Y ◦Q ◦ iz −→ colimT c/zH−⊗Y ◦Q

is an isomorphism from which it follows that z is an object of L.

We next wish to show the subcategory L is closed under the formation of triangles.

Let us begin by observing that morphisms in T induce natural maps between the

relevant colimits.

Suppose X, Y , and F are objects of T and let φ ∈ Hom(X,Y ). Then there is an

induced functor

φ : T c/X −→ T c/Y

sending an object x −→ X to the composite x −→ X
φ

−→ Y . This induces, via

abstract nonsense, a natural map

colimT c/X H−⊗F ◦Q = colimT c/X H−⊗F ◦Q ◦ φ −→ colimT c/Y H−⊗F ◦Q.

This construction is clearly functorial i.e., given ψ : Y −→ Z we have

ψ ◦ φ = ψ ◦ φ.

The following lemma is an immediate consequence of this functoriality.
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Lemma 1.8. Let

X −→ Y −→ Z −→ ΣX

be a triangle in T . Given an object F of T form the induced sequence

colimI Hxi⊗F
f

−→ colimJ Hyj⊗F
g

−→ colimK Hzk⊗F

of T c-modules. In this sequence the image of f is contained in the kernel of g.

Proof. Given the above this is simply the statement that the zero map X −→ Z

induces the zero map on the relevant colimits.

We now prove the sequence of the last lemma is in fact exact.

Lemma 1.9. Let

X −→ Y −→ Z −→ ΣX

be a triangle in T and let F be an object of T . In the induced sequence

colimI Hxi⊗F
f

−→ colimJ Hyj⊗F
g

−→ colimK Hzk⊗F

of T c-modules the kernel of g is contained in the image of f .

Proof. Suppose a is a compact object of T and let the morphism

α : Ha −→ colimJ Hyj⊗F correspond to an element in the kernel of g. As Ha is

finitely presented the map α factors through some Hyλ⊗F and the composite gα

factors through some Hzγ⊗F . We thus deduce a commutative diagram

Ha
α′

//

α

&&LL
LL

LL
LL

LL
L

(gα)′

||xx
xx
xx
xx
x

Hyλ⊗F

sλ

wwppp
pp
pp
pp
pp g′

$$J
JJ

JJ
JJ

JJ
J

Hzγ⊗F

tγ **TTT
TTT

TTT
TTT

TTT
TTT

colimJ Hyj⊗F

g

��

Hzγ′⊗F

tγ′tthhhh
hhh

hhh
hhh

hhh
hhh

h

colimK Hzk⊗F

of factorizations; one obtains the factorization of gsλ by noting that the composite

Hyλ −→ colimJ Hyj −→ colimK Hzk
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factors via some Hzγ′ as Hyλ is finitely presented and that this factorization re-

mains valid when one instead applies H−⊗F in which case the corresponding com-

posite is gsλ. In particular this line of argument shows that g′ has a canonical lift

to T of the form g̃′ ⊗ 1F .

As K is filtered we can without loss of generality take γ = γ′. We thus have

tγ(gα)
′ = gα = gsλα

′ = tγg
′α′ = 0.

Again using the fact that K is filtered we may assume g′α′ = 0. We observed

above that g′ has a canonical lift to T which we denoted g̃′ ⊗ 1F . Thus we can

use this lift to obtain a diagram in T

a

α′

��

∃

yysss
ss
ss
ss
ss

w ⊗ F // yλ ⊗ F
g̃′⊗1F // zγ ⊗ F

where we have completed g̃′⊗1F to a triangle. The object w is compact as both yλ
and zγ are and completing a morphism to a triangle commutes with tensoring with

F by exactness of the tensor product. The factorization exists as the composite

(g̃′ ⊗ 1F )α̃
′ vanishes. Now consider the diagram of triangles

w //

∃

��

yλ //

��

zγ

��

// Σw

∃

��
X // Y // Z // ΣX

where the outer maps exist as the middle square commutes in T . Indeed its image

commutes in Mod-T c so it commutes up to phantoms and yλ is compact so it

commutes on the nose. As the index category I in colimI Hxi
is the slice category

T c/X the object Hw together with the map in this diagram occurs in colimI Hxi
.

Thus combining the last two diagrams gives a commutative diagram of T c-modules

Hw⊗F

��

''NN
NN

NN
NN

NN
N

Ha
oo

wwppp
pp
pp
pp
pp
pp

α

��

Hyλ⊗F

''NN
NN

NN
NN

NN
N

colimI Hxi⊗F
f

// colimJ Hyj⊗F

proving α is in the image of f . Thus ker g ⊆ im f as claimed.
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Lemma 1.10. Suppose X −→ Y −→ Z −→ ΣX is a triangle in T where X and

Y are objects of L. Then the object Z also lies in L.

Proof. Let F be an object of T and consider the sequence

colimI Hxi⊗F
f

−→ colimJ Hyj⊗F
g

−→ colimK Hzk⊗F .

Combining Lemma 1.9 and Lemma 1.8 we see that any such sequence arising from

a triangle is exact. Consider the diagram

colimI Hxi⊗F
//

≀

��

colimJ Hyj⊗F
//

≀

��

colimK Hzk⊗F
//

��
HX⊗F

// HY⊗F
// HZ⊗F

//

// colimI HΣxi⊗F
//

≀

��

colimJ HΣyj⊗F

≀

��
// HΣX⊗F

// HΣY⊗F

which commutes by naturality of the vertical morphisms. The two rightmost

isomorphisms follow from suspension closure of L which was proved in Lemma 1.6.

The bottom row is exact as H is homological and we have just seen the top row

is also exact. So by the 5-lemma the natural morphism colimK Hzk⊗F −→ HZ⊗F

is an isomorphism proving Z is in L as claimed.

Proposition 1.11. There is an equality of categories L = T .

Proof. We have seen in Lemma 1.5 that L is coproduct closed, in Lemma 1.6 that

it is suspension closed, in Lemma 1.7 that T c ⊆ L, and in Lemma 1.10 that it is

closed under the formation of triangles. Now the localization theorem of Neeman-

Ravenel-Thomason-Trobaugh-Yao (see for example [Nee96] Theorem 2.1) tells us

we must have L = T as claimed.

2 Extending Ohkawa’s Theorem

We use compatibility of the restricted Yoneda functor, the tensor product, and

filtered colimits to extend Dwyer and Palmieri’s [DP01] reformulation of the proof
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of Ohkawa’s theorem to any compactly generated tensor triangulated category.

As in the first section (T ,⊗,1) is a compactly generated triangulated category

equipped with a biexact and coproduct preserving symmetric monoidal structure.

Fix a generating set of compact objects G = ΣG for T and denote by [T c] a set

of compact objects meeting each isomorphism class in T c precisely once.

Definition 2.1. Given an object E of T we denote by 〈E〉 the Bousfield class of

E

〈E〉 = {X ∈ T | E ⊗X = 0}.

Definition 2.2. For f ∈ Hom(g, E ⊗ c) with g ∈ G and c ∈ T c we define the

annihilator of f with respect to g to be

anng,c(f) = {α ∈ Hom(c, d) | d ∈ [T c],Hom(g, E ⊗ α)(f) = 0}.

For any g ∈ G, c ∈ T c and f ∈ Hom(g, E ⊗ c) the set of morphisms anng,c(f)

is a left ideal in T c based at c. In other words every (α : c −→ d) ∈ anng,c(f)

has source c and for any β : d −→ d′ in T c it holds that βα ∈ anng,c(f). The

statement that the annihilators are left ideals is immediate from functoriality of

Hom(g, E ⊗ (−)).

Definition 2.3. The Ohkawa class of E ∈ T is defined to be the set of left ideals

〈〈E〉〉 = {anng,c(f) | g ∈ G, c ∈ [T c], f ∈ Hom(g, E ⊗ c)}

in T c.

Notation 2.4. We write O for the collection of Ohkawa classes and B for the

collection of Bousfield classes.

Lemma 2.5. The collection O of all Ohkawa classes forms a set.

Proof. Since T c is essentially small and T is locally small there is a set of mor-

phisms between objects of [T c]. Thus there is a set of left ideals of maps between

compacts. Each Ohkawa class is a set of such left ideals so O forms a set.

We partially order the Bousfield classes by reverse inclusion i.e., for 〈E〉, 〈F 〉 ∈ B

we declare 〈E〉 ≥ 〈F 〉 if for every X ∈ T we have E ⊗X = 0 implies F ⊗X = 0.

We partially order the Ohkawa classes by inclusion i.e., 〈〈E〉〉 ≥ 〈〈F 〉〉 if for every

annihilator ideal anng,c(f) ∈ 〈〈F 〉〉 there exists g′ ∈ G and f ′ ∈ Hom(g′, E ⊗ c)

such that anng,c(f) = anng′,c(f
′).
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Lemma 2.6. Suppose E and F are objects of T . Then if 〈〈E〉〉 ≥ 〈〈F 〉〉 it follows

that 〈E〉 ≥ 〈F 〉.

Proof. Suppose X ∈ 〈E〉 that is, E ⊗ X = 0. We wish to demonstrate that

F ⊗X = 0 as well. By Proposition 1.11 the subcategory

L =

{

X ∈ T colimT c/X H(−⊗Y ) ◦Q
∼

−→ HX⊗Y

all Y ∈ T

}

is equal to T . Thus the compact objects xi indexed by the slice category I = T c/X

give

HX⊗E
∼= colimI Hxi⊗E and HX⊗F

∼= colimI Hxi⊗F .

To see X ⊗ F is zero it is thus sufficient to check for every f ∈ Hxi⊗F (g) with

g ∈ G that f goes to zero in the colimit. Indeed, if this is the case then

0 = colimI Hom(Hg, Hxi⊗F ) ∼= Hom(Hg, colimI Hxi⊗F )

∼= Hom(Hg, HX⊗F )

∼= Hom(g,X ⊗ F ),

where we get the first isomorphism as Hg is finitely presented in Mod-T c, so X⊗F

must be zero as G is a generating set.

By assumption 〈〈E〉〉 ≥ 〈〈F 〉〉 so for each such f we have

anng,xi
(f) = anng′,xi

(f ′)

for some g′ ∈ G and f ′ ∈ Hxi⊗E(g
′). AsX⊗E = 0 we must have colimI Hxi⊗E = 0

so the structure maps for the colimit are eventually in anng′,xi
(f ′). Hence they

are also in anng,xi
(f) showing that f is killed. This works for every g ∈ G and

every map to X ⊗ F as both were arbitrary. Thus X ⊗ F = 0 as claimed so

〈E〉 ≥ 〈F 〉.

Theorem 2.7. The collection of Bousfield classes B forms a set.

Proof. By Lemma 2.6 the assignment

〈〈E〉〉 7→ 〈E〉

is a well defined morphism of “posets” O −→ B and it is clearly surjective. In

Lemma 2.5 we saw that O is a set so that B must also be a set.
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