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Abstract

We introduce a relative version of Balmer’s tensor triangular geometry by con-

sidering the action of a tensor triangulated category on another triangulated

category. Several of Balmer’s results are extended to this relative setting giving

rise to, among other things, a theory of supports for objects of a category upon

which a tensor triangulated category acts.

In the case that a rigidly-compactly generated tensor triangulated category

acts on a compactly generated category we describe a version of the local-to-

global principle of Benson, Iyengar, and Krause, and a relative version of the

telescope conjecture. We prove the local-to-global principle holds quite generally

which is new even in the case that a tensor triangulated category acts on itself as

in Balmer’s theory. We are also able to give sufficient conditions for the relative

telescope conjecture to hold.

As an application we study the stable injective category of a noetherian sep-

arated scheme X, as introduced by Krause, in terms of an action of the derived

category D(X). We give a complete classification of the localizing subcategories

of this category in the case that X is the spectrum of a hypersurface ring and

prove that the telescope conjecture holds. Our methods allow us to extend these

results, suitably modified, to certain complete intersection schemes of arbitrary

codimension.
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Notation and terminology

Unless explicitly mentioned otherwise all rings are commutative, unital and

noetherian.

We index our complexes cohomologically so a complex X of R-modules is of

the form

· · · −→ X−2 −→ X−1 −→ X0 −→ X1 −→ X2 −→ · · ·

the exception being when speaking of complete resolutions as in Definition 4.1.1

where mixed indexing is used.

For a ring R we denote by R-Mod the category of R-modules and by R-mod

the category of finitely generated R-modules. For a scheme X we denote by

QCohX and CohX the categories of quasi-coherent and coherent OX-modules

respectively. For an abelian category A we follow standard notation and de-

note by D(A) the unbounded derived category of A, by Db(A) the bounded

derived category, by D+(A) the derived category of cohomologically bounded be-

low complexes, and by D−(A) the derived category of cohomologically bounded

above complexes. We denote byDperf(R) ⊆ D(R-Mod) the subcategory of perfect

complexes i.e., the compact objects of the unbounded derived category.

We denote by InjR, ProjR, and FlatR respectively the full subcategories of

injective, projective, and flat R-modules, and for a scheme X by InjX and FlatX

the categories of injective and flat quasi-coherent OX-modules.

For an R-module M we use pdR M and idR M to denote the projective and

injective dimension of M .

We will denote the suspension functor of a triangulated category by Σ; we use

this notation for the suspension functor of all triangulated categories concerned

but this should not cause any confusion.

xi





Chapter 1

Introduction

Triangulated categories, introduced by Verdier [70] and by Dold and Puppe [31]

(but without Verdier’s octahedral axiom), permeate modern mathematics. Their

utility has been demonstrated in algebraic geometry, motivic theory, homotopy

theory, modular representation theory, and noncommutative geometry: the the-

ory of Grothendieck duality ([38], [43], [57], [60], [62]), Voevodsky’s motivic cat-

egory ([54], [6]), Devinatz, Hopkins, and Smith’s work on tensor nilpotence [30],

support varieties and the extension of complexity to infinitely generated repre-

sentations ([27], [14], [15]), and recent work on the Baum-Connes conjecture [29]

respectively are striking examples of the applications of triangulated categories

in these areas.

In each of these areas one often has the good fortune to have more than just

a triangulated category. Indeed, usually the triangulated categories arising are

naturally tensor triangulated categories : we say (T ,⊗,1) is tensor triangulated

if T is a triangulated category and (⊗,1) is a symmetric monoidal structure on

T such that ⊗ is exact in each variable and preserves any coproducts T might

possess. This is a very rich structure and exploiting the monoidal product leads

to many beautiful results such as the work of Neeman [59] and Thomason [69] on

the classification of thick subcategories of derived categories of perfect complexes

in algebraic geometry.

Tensor triangular geometry, developed by Paul Balmer [7], [9], [8], [11], asso-

ciates to any essentially small tensor triangulated category (T ,⊗,1) a topological

space Spc T , the spectrum of T . The spectrum comes with a universal, tensor

compatible, support theory which assigns to objects of T closed subsets of the

spectrum. This generalizes the homological support for derived categories of

sheaves in algebraic geometry and the support varieties attached to representa-

1



2 CHAPTER 1. INTRODUCTION

tions in modular representation theory. One obtains from this support theory a

classification of certain ⊗-ideals which unifies classifications occurring in algebraic

geometry, modular representation theory, and algebraic topology.

So far we have only mentioned the topology of Spc T . In the case that T is

rigid i.e., every object of T admits a strong dual, the spectrum can be endowed

with a sheaf of rings making it a locally ringed space. This construction essentially

embeds algebraic geometry into tensor triangular geometry; the derived category

of quasi-coherent sheaves on a quasi-compact quasi-separated scheme X does not

generally contain enough information to reconstruct X (cf. [24] and [19]), but

together with the left derived tensor product one can recover X via the spectrum

of the perfect complexes.

Now suppose (T ,⊗,1) is a compactly generated tensor triangulated category

and the compact objects form a tensor subcatgory. In [11] Balmer and Favi

have used tensor idempotents built from support data on the spectrum Spc T c of

the compact objects T c to extend Balmer’s notion of supports to T . A related

construction due to Benson, Iyengar, and Krause [13] takes as input an R-linear

compactly generated triangulated category K, where R is a (graded) commutative

noetherian ring, and assigns supports valued in SpecR to objects of K. In the

first part of this thesis we develop relative tensor triangular geometry by allowing

a tensor triangulated category T to act on K i.e., there is a biexact functor

T ×K −→ K which is compatible with the monoidal structure on T and associa-

tive and unital in the appropriate senses. This can be viewed as a categorification

of the work of Benson, Iyengar, and Krause; for instance, letting R be a commu-

tative noetherian ring, an action of the unbounded derived category D(R) yields

the same support theory as the support construction of [13]. By construction

it specializes to the theory of Balmer and Favi when a tensor triangulated cate-

gory acts on itself in the obvious way. Thus the notion of action provides a link

between these two theories of supports and we are able to extend many of the

important results of both theories to the case of actions.

Let us fix compactly generated triangulated categories T and K. Further-

more, suppose T carries a compatible symmetric monoidal structure (T ,⊗,1) so

that the compact objects form a rigid tensor triangulated subcategory (T c,⊗,1)

whose spectrum Spc T c is a noetherian topological space (these hypotheses are

not necessary for all of the results we quote but are chosen for simplicity). We

recall that T c is rigid if for all x and y in T c, setting x∨ = hom(x,1), the natural

map

x∨ ⊗ y −→ hom(x, y)
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is an isomorphism, where hom(−,−) denotes the internal hom which is guar-

anteed to exist in this case by Brown representability. In Chapter 2 we give a

definition of a left action of T onK. This amounts to giving a functor T ×K
∗

−→ K

satisfying certain compatibility conditions. To each specialization closed subset

V ⊆ Spc T c and each point x ∈ Spc T c we associate ⊗-idempotent objects ΓV1

and Γx1 of T as in [11]. The object ΓV1 is the idempotent corresponding to

acyclization with respect to the smashing subcategory generated by the compact

objects supported in V and we denote by LV1 the idempotent corresponding to

localization at this category. Then Γx1 is defined to be ΓV(x)1⊗ LZ(x)1 where

V(x) = {x} and Z(x) = {y ∈ Spc T c | x /∈ V(y)}.

We prove in Lemmas 2.2.5 and 2.2.6 that each specialization closed subset V

yields a localization sequence

ΓVK // K //
ii LVKgg

where ΓVK is the essential image of ΓV1 ∗ (−). Furthermore, ΓVK is generated

by objects of Kc by Corollary 2.2.13. The idempotents Γx1 give rise to supports

on K with values in Spc T c: for an object A of K we set

suppA = {x ∈ Spc T c | Γx1 ∗ A 6= 0}.

In good situations the subcategories ΓVK and LVK consist precisely of those

objects whose support is in V and Spc T c \ V respectively and the associated

localization triangles decompose objects into a piece supported in each of these

subsets; this last fact is proved in Proposition 2.2.20 together with other desirable

properties of the support.

The local-to-global principle, originally introduced in [17] in the context of ring

actions on triangulated categories, allows one to reduce classification problems to

considering local pieces of a triangulated category. We introduce the following

version for actions of triangulated categories:

Definition (2.3.1). We say T × K
∗

−→ K satisfies the local-to-global principle if

for each A in K

〈A〉∗ = 〈ΓxA | x ∈ Spc T c〉∗

where 〈A〉∗ and 〈ΓxA | x ∈ Spc T c〉∗ are the smallest localizing subcategories of

K containing A or the ΓxA respectively and closed under the action of T .

Our main result concerning the local-to-global principle is that, assuming T

is sufficiently nice, it is only a property of T not of the action and it always holds.
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Theorem (2.3.9). Suppose T is a rigidly-compactly generated tensor triangu-

lated category with a model and that Spc T c is noetherian. Then the following

statements hold:

(i) The local-to-global principle holds for the action of T on itself;

(ii) The associated support function detects vanishing of objects i.e., X ∈ T is

zero if and only if suppX = ∅;

(iii) For any chain {Vi}i∈I of specialization closed subsets of Spc T c with union

V there is an isomorphism

ΓV1 ∼= hocolimΓVi
1

where the structure maps are the canonical ones.

Furthermore, the relative versions of (i) and (ii) hold for any action of T on a

compactly generated triangulated category K.

In the penultimate section of Chapter 2 we explore a relative version of the

telescope conjecture. The telescope conjecture states that if L is a localizing

subcategory of a compactly generated triangulated category T such that the

inclusion of L admits a coproduct preserving right adjoint i.e., L is smashing, then

L is generated by compact objects of T . This is a general version of the conjecture

originally made for the stable homotopy category of spectra by Bousfield [22] and

Ravenel [65]. It is still open for the stable homotopy category, it is known to

be true for certain categories such as the derived category of a noetherian ring

(by [59]), and in the generality we have stated it the conjecture is actually false.

For instance Keller has given a counterexample in [45], although Krause in [47]

shows that a slightly weaker version of the conjecture does hold. Our version in

the relative setting is as follows:

Definition (2.4.1). We say the relative telescope conjecture holds for K with

respect to the action of T if every smashing T -submodule S ⊆ K (this means S

is a localizing subcategory with an associated coproduct preserving localization

functor such that T × S
∗

−→ K factors via S ) is generated by compact objects

of K.

We give sufficient conditions for the relative telescope conjecture to hold for

the action of T on K. In order to state one of our results let us introduce the

following assignments relating subsets of Spc T c and localizing submodules of K

i.e., those localizing subcategories of K stable under the action of T .
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Definition (2.2.22). There are order preserving assignments

{

subsets of Spc T c
} τ //

oo
σ

{

localizing submodules of K
}

where for a localizing submodule L we set

σ(L) = suppL = {x ∈ Spc T c | Γx1 ∗ L 6= 0}

for a subset W of Spc T c

τ(W ) = {A ∈ K | suppA ⊆ W}

and both the subsets and subcategories are ordered by inclusion.

Our theorem is:

Theorem (2.4.14). Suppose T is rigidly-compactly generated and has a model.

Let T act on a compactly generated triangulated category K so that the support

of any compact object of K is a specialization closed subset of σK and for each

irreducible closed subset V in σK there exists a compact object whose support

is precisely V. Furthermore, suppose the assignments σ and τ give a bijection

between localizing submodules of K and subsets of σK. Then the relative telescope

conjecture holds for K i.e., every smashing T -submodule of K is generated by

objects compact in K.

Studying schemes via derived categories of sheaves has an auspicious his-

tory. The theory of Grothendieck duality, which we have already mentioned,

semiorthogonal decompositions, Fourier-Mukai transforms and applications to

birational geometry [21], [24], the Riemann-Hilbert correspondence [55], and the

study of singularities [26], [63] all give examples of important work couched in the

language of derived categories. It is this last example, the study of singularities,

which will be of most interest to us. Suppose X is a noetherian separated scheme.

Then one defines a category

DSg(X) := Db(CohX)/Dperf(X)

where Db(CohX) is the bounded derived category of coherent sheaves on X

and Dperf(X) is the full subcategory of complexes locally isomorphic to bounded

complexes of finitely generated projectives, which measures the singularities of

X. In particular, DSg(X) vanishes if and only if X is regular, it is related to

other measures of the singularities of X for example maximal Cohen-Macaulay
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modules (see [26]), and its properties reflect the severity of the singularities of X.

The particular category which will concern us is the stable injective category of

Krause [48], namely

S(X) := Kac(InjX)

the homotopy category of acyclic complexes of injective quasi-coherent

OX-modules. We call S(X) the singularity category of X. The singularity cate-

gory is a compactly generated triangulated category whose compact objects are

equivalent to DSg(X) up to summands.

We show that the unbounded derived category of quasi-coherent sheaves of

OX-modules, which we denote D(X), acts on the singularity category S(X).

Given an object E in D(X) one can replace E by a K-flat resolution and tensoring

this resolution with an acyclic complex of injectives again gives an acyclic complex

of injectives; as X is noetherian the tensor product of a flat quasi-coherent sheaf

and an injective quasi-coherent sheaf is injective and preservation of acyclicity

can be taken as the defining property of K-flat complexes. This gives rise to a

theory of supports for objects of S(X) and DSg(X) taking values in X.

In Chapter 3 we treat the case X = SpecR the spectrum of a noetherian ring.

We first verify that the claimed action of D(R), the unbounded derived category

of R-modules, on S(R) = Kac(InjR) is in fact an action and demonstrate its

basic properties. In particular we use work of Greenlees [34] to give a concrete

description for the action of certain objects.

We next consider the assignments

σ(L) = suppL = {p ∈ SpecR | ΓpL 6= 0}

and

τ(W ) = {A ∈ S(R) | suppA ⊆ W}

for a localizing subcategory L ⊆ S(R) and a subset W ⊆ SpecR. It is proved

that, as one would expect, the support actually takes values in SingR the sin-

gular locus of SpecR. The behaviour of the action of D(R) with respect to the

various functors connecting D(R), S(R), and K(InjR) is also discussed. The

main theorem of this chapter is a technical one proving that σ and τ restrict to

bijections between certain localizing subcategories of S(R) and subsets of SingR;

we do not state it here as the remainder of the thesis is dedicated to improving

this result as well as extending it to the non-affine case and sharper results are

obtained.
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The focus of the fourth chapter is on proving the assignments σ and τ give

a complete classification of the localizing subcategories of S(R) when the ring R

is locally a hypersurface. This extends work of Takahashi [68] who has classified

thick subcategories of DSg(R) when R is a local hypersurface. We are able to

extend this result to cover all localizing subcategories of S(R) as well as removing

the hypothesis that R be local by using the action of D(R):

Theorem (4.2.13). If R is a noetherian ring which is locally a hypersurface then

there is an order preserving bijection

{

subsets of SingR
} τ //

oo
σ

{

localizing subcategories of S(R)
}

.

It follows that there are also order preserving bijections
{

specialization closed

subsets of SingR

}

τ //
oo

σ

{

localizing subcategories of S(R)

generated by objects of S(R)c

}

and
{

specialization closed

subsets of SingR

}

//
oo

{

thick subcategories of DSg(R)
}

.

Using the machinery of Chapter 2 we are also able to deduce the telescope

conjecture for S(R) when R is locally a hypersurface.

In Chapter 5 we approach the problem of understanding the structure of

S(X) where X is any noetherian separated scheme. We prove there is an action

of D(X) on S(X) and by working locally we extend our main results from the

affine case. In particular, as we show in Theorem 5.2.7 our result for hypersurface

rings extends to classify certain localizing subcategories of S(X) where X is a

noetherian separated scheme with only hypersurface singularities. For such X

subsets of the singular locus correspond to localizing subcategories of S(X) which

are stable under the action of D(X). As a corollary (5.2.9) we obtain a complete

classification of the localizing subcategories of S(X) when X can be expressed

as the zero scheme of a section of an ample line bundle on an ambient regular

scheme. As consequences we obtain proofs of the relative telescope conjecture

and the telescope conjecture respectively.

We end by considering locally complete intersection schemes which are not

necessarily hypersurfaces. By a theorem of Orlov [64], working over some fixed

base field, if X is a noetherian separated locally complete intersection scheme,

admitting a suitable embedding into a regular scheme with enough locally frees,
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the category DSg(X) is equivalent to DSg(Y ) for a hypersurface Y which can be

given explicitly. We prove that this equivalence extends to the level of Krause’s

stable injective categories and are thus able to employ it in Theorem 5.3.8 to

reduce an aspect of the classification problem for such local complete intersection

schemes to the corresponding classification problem for hypersurfaces which we

have already solved. As a special case we are able to completely classify the local-

izing subcategories of S(R) when R is a local (non-abstract) complete intersection

ring over a field

Theorem (5.3.16). Suppose (R,m, k) is a local complete intersection of finite

type over a field. Then there are order preserving bijections







subsets of
∐

p∈SingR

Pcp−1

k(p)







τ //
oo

σ

{

localizing subcategories of S(R)
}

where cp is the codimension of the singularity at the closed point of Rp. Further-

more, the telescope conjecture holds for S(R).

This gives a new proof of certain cases of a similar result for local complete

intersections announced by Iyengar [42].



Chapter 2

Actions in Tensor Triangular

Geometry

In recent work Paul Balmer has developed a notion of tensor triangular geometry

([7], [9], [11]) associating to an essentially small triangulated category with a

compatible tensor product (T ,⊗,1) a topological space Spc T called the spectrum

of T . The spectrum of T classifies certain ⊗-ideals of T in a spirit similar to the

classification of Thomason [69] in the case of the left derived tensor product on

Dperf(X) for a quasi-compact quasi-separated scheme X.

Our aim here is to develop the corresponding theory of ‘modules’ in tensor tri-

angular geometry. Rather than working only with tensor triangulated categories

we consider actions of such categories on other triangulated categories. From this

we deduce structural information about the target. This can be regarded as a

‘categorified’ version of some recent work of Benson, Iyengar, and Krause ([13],

[16], [17]).

2.1 A Candidate Definition

Before beginning we owe it to the reader to make explicit exactly what we mean

by tensor triangulated category. A tensor triangulated category (T ,⊗,1) is a

triangulated category T together with a symmetric monoidal structure such that

the monoidal product ⊗ is an exact functor in each variable. We also require that

⊗ preserves whatever coproducts T might have. We do not assume any further

compatibility between the monoidal structure and the triangulation. We also do

not assume, unless explicitly stated, that the triangulated categories we deal with

are essentially small.

9



10 CHAPTER 2. ACTIONS IN TENSOR TRIANGULAR GEOMETRY

Let us propose a definition of what it means for a tensor triangulated category

to act on another triangulated category. We define here the notion of left action

and express a sinistral bias by only considering left actions and referring to them

just as actions.

Definition 2.1.1. Let (T ,⊗,1) be a tensor triangulated category and K a tri-

angulated category. A left action of T on K is a functor

∗ : T × K −→ K

which is exact in each variable, i.e. for all X ∈ T and A ∈ K the functors X ∗ (−)

and (−) ∗ A are exact (such a functor is called biexact), together with natural

isomorphisms

a : ∗ (⊗× idK)
∼

−→ ∗ (idT ×∗)

and

l : 1∗
∼

−→ idK

compatible with the biexactness of (−) ∗ (−) and satisfying the following condi-

tions:

(1) The associator a satisfies the pentagon condition which asserts that the

following diagram commutes for all X, Y, Z in T and A in K

X ∗ (Y ∗ (Z ∗ A))

X ∗ ((Y ⊗ Z) ∗ A)

X∗aY,Z,A

44jjjjjjjjjjjjjjj

(X ⊗ Y ) ∗ (Z ∗ A)

aX,Y,Z∗A

jjTTTTTTTTTTTTTTT

(X ⊗ (Y ⊗ Z)) ∗ A

aX,Y ⊗Z,A

OO

((X ⊗ Y )⊗ Z) ∗ A

aX⊗Y,Z,A

OO

oo

where the bottom arrow is the associator of (T ,⊗,1).

(2) The unitor l makes the following squares commute for every X in T and A

in K

X ∗ (1 ∗ A)
1X∗lA // X ∗ A

1X∗A

��
(X ⊗ 1) ∗ A

aX,1,A

OO

// X ∗ A

1 ∗ (X ∗ A)
lX∗A // X ∗ A

1X∗A

��
(1⊗X) ∗ A

a1,X,A

OO

// X ∗ A

where the bottom arrows are the right and left unitors of (T ,⊗,1).
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(3) For every A in K and r, s ∈ Z the diagram

Σr1 ∗ ΣsA
∼ //

≀
��

Σr+sA

(−1)rs

��
Σr(1 ∗ ΣsA) ∼

// Σr+sA

is commutative, where the left vertical map comes from exactness in the

second variable of the action, the bottom horizontal map is the unitor, and

the top map is given by the composite

Σr1 ∗ ΣsA −→ Σs(Σr1 ∗ A) −→ Σr+s(1 ∗ A)
l

−→ Σr+sA

whose first two maps use exactness in both variables of the action.

(4) The functor ∗ distributes over coproducts whenever they exist i.e., for fam-

ilies of objects {Xi}i∈I in T and {Aj}j∈J in K, and X in T , A in K there

are natural isomorphisms

∐

i

(Xi ∗ A)
∼

−→ (
∐

i

Xi) ∗ A

and
∐

j

(X ∗ Aj)
∼

−→ X ∗ (
∐

j

Aj)

whenever the coproducts concerned exist.

Remark 2.1.2. Given composable morphisms f, f ′ in T and g, g′ in K one has

(f ′ ∗ g′)(f ∗ g) = (f ′f ∗ g′g)

by functoriality of T × K
∗

−→ K.

Remark 2.1.3. It should be possible (at least in the essentially small case and

in the presence of an enhancement) to give a more natural definition in terms of

strong monoidal triangulated functors. This point of view will be pursued further

elsewhere.

We begin with a simple observation which we will use freely from now on

without reference.

Lemma 2.1.4. There are natural isomorphisms

0T ∗ (−) ∼= (−) ∗ 0K ∼= 0

where 0 denotes the zero functor K −→ K
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Proof. For any A in K the functor (−) ∗ A is exact and so in particular it is

additive. Thus we must have 0T ∗ A ∼= 0K. Similarly X ∗ (−) is also additive for

each X in T so X ∗ 0K ∼= 0K.

We now give an indication of the sense in which our actions may be regarded

as an enhancement of the actions introduced in [13]. In order to do this we first

need to recall the definition of the graded centre of a triangulated category.

Definition 2.1.5. Let T be a triangulated category. The graded centre (or central

ring) of T is the graded abelian group

Z∗(T ) =
⊕

n

Zn(T ) =
⊕

n

{α : idT −→ Σn | αΣ = (−1)nΣα}

where n ranges over the integers, which is given the structure of a graded com-

mutative ring by composition of natural transformations.

Remark 2.1.6. Using the words ring and group above is somewhat abusive as the

centre of T may not form a set (we do not assume T essentially small). However,

this is not a problem if one only wishes to consider the image of genuine rings in

the centre.

Lemma 2.1.7. An action T × K
∗

−→ K induces a morphism of rings

End∗
T (1) −→ Z∗(K).

Proof. Given f ∈ Hom(1,Σi1) we send it to the natural transformation whose

component at A ∈ K is

A
∼ // 1 ∗ A

f∗1A// Σi1 ∗ A
∼ // ΣiA.

This is natural by our coherence conditions. It is a standard fact that the graded

endomorphism ring of the unit is graded commutative from which it is straight-

forward that this is a map of graded commutative rings.

Thus provided End∗
T (1) is noetherian one is in a position to apply the ma-

chinery of Benson, Iyengar, and Krause. In fact this is discussed in Section 8 of

[13] for the case of tensor triangulated categories acting on themselves and it is

shown in Section 9 that for the derived category of a noetherian ring one recovers

the classical notion of supports from their construction. Thus it agrees with the

action of D(R) on itself which also gives the usual supports.
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We would like to view K as a module over T and from now on we will use the

terms module and action interchangeably. There are of course, depending on the

context, natural notions of T -submodule.

Definition 2.1.8. Let L ⊆ K be a thick (localizing) subcategory. We say L is a

(localizing) T -submodule of K if the functor

T × L
∗

−→ K

factors via L i.e., L is closed under the action of T . We note that in the case

K = T acts on itself by ⊗ this gives the notion of a (localizing) ⊗-ideal of T . By

a smashing or compactly generated submodule we mean the obvious things.

Notation 2.1.9. For a collection of objects {Aλ | λ ∈ Λ} in K we denote by

〈Aλ | λ ∈ Λ〉∗

the smallest (localizing) T -submodule of K containing the Aλ.

For (localizing) thick subcategories L ⊆ T and M ⊆ K we set

L ∗M = 〈X ∗ A | X ∈ L, A ∈ M〉∗.

There is some ambiguity in the notation as we do not clutter it by distinguishing

between the localizing and thick cases and so we take care to make it clear which

we mean. However, this is not a serious problem in any case as in general if there

are sufficient coproducts submodules will always be localizing.

The operation of forming such submodules is well behaved. The results below

show that it commutes with the action in an appropriate sense. Most important

for us is the fact that given generating sets for L ⊆ T and M ⊆ K we obtain a

generating set for L ∗M as a submodule.

Lemma 2.1.10. Suppose I ⊆ T is a thick ⊗-ideal. Then there is an equality of

subcategories of K

I ∗ K = 〈X ∗ A | X ∈ I, A ∈ K〉thick.

The obvious analogue holds for localizing submodules.

Proof. Let us set

〈X ∗ A | X ∈ I, A ∈ K〉thick = L
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and denote by M ⊆ L the full subcategory of L consisting of those objects B

such that Y ∗ B ∈ L for every Y ∈ T . Then for every X ∈ I and A ∈ K the

object X ∗ A lies in M. Indeed, we have for any object Y of T

Y ∗ (X ∗ A) ∼= (Y ⊗X) ∗ A

which is one of the generators given for L as Y ⊗ X is an object of I. To see

that M is closed under suspension observe that for B ∈ M and Y ∈ T it holds

by the exactness properties of the action that

Y ∗ ΣB ∼= ΣY ∗B

where ΣY ∗ B ∈ L by the defining property of M. It is closed under finite

biproducts as the action commutes with the biproduct in K and by assumption

L is closed under biproducts. Similar considerations show that M is closed

under summands and triangles. Thus M = L as we have shown M is a thick

subcategory containing the generators of L. By construction T ∗ M ⊆ L and

combining this with the equality M = L shows L is a T -submodule of K. In

particular, it is already the smallest thick submodule containing the specified

objects so agrees with I ∗ K.

In the case of localizing ideals and submodules coproduct closure is easy to

deduce from the fact that we require the action to commute with coproducts in

both T and K.

Remark 2.1.11. We only state and prove Lemmas 2.1.12, 2.1.13, and 2.1.14

for localizing subcategories and modules as we will mostly be concerned with

categories having enough coproducts. Of course one can replace localizing by

thick everywhere and the corresponding results hold.

Lemma 2.1.12. Formation of localizing subcategories commutes with the action,

i.e., given a set of objects {Xi}i∈I of T and a set of objects {Aj}j∈J of K

〈X ∗ A | X ∈ 〈Xi | i ∈ I〉loc, A ∈ 〈Aj | j ∈ J〉loc〉loc = 〈Xi ∗ Aj | i ∈ I, j ∈ J〉loc.

Proof. Denote the category on the left by L and the one on the right by M. It

is clear M ⊆ L as each Xi ∗ Aj is in L. For the converse it is sufficient to check

that M contains generators for L. For each j ∈ J define a subcategory

Tj = {X ∈ T | X ∗ Aj ∈ M}.

The subcategory Tj is localizing as (−) ∗ Aj is an exact coproduct preserving

functor and the subcategory M is localizing. As, by definition, Xi ∗ Aj is in M
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for all i ∈ I each Xi lies in Tj. So for any X in 〈Xi | i ∈ I〉loc we have X in Tj.

In particular, X ∗ Aj lies in M for each such X and all j ∈ J .

Now consider the subcategory

{A ∈ K | X ∗ A ∈ M for all X ∈ 〈Xi | i ∈ I〉loc}.

It is localizing as M is so and by what we have just seen it contains the Aj for

j ∈ J . Thus it contains 〈Aj | j ∈ J〉loc so for every X in 〈Xi | i ∈ I〉loc and every

A in 〈Aj | j ∈ J〉loc we have X ∗ A in M. Hence M contains generators for L

which gives the equality L = M.

Lemma 2.1.13. Given collections of objects {Xi}i∈I of T and {Aj}j∈J of K there

is an equality of submodules

〈Xi | i ∈ I〉loc ∗ 〈Aj | j ∈ J〉loc = 〈Xi | i ∈ I〉⊗ ∗ 〈Aj | j ∈ J〉loc.

Proof. It is clear that

〈Xi | i ∈ I〉loc ∗ 〈Aj | j ∈ J〉loc ⊆ 〈Xi | i ∈ I〉⊗ ∗ 〈Yj | j ∈ J〉loc.

To see there is an inclusion in the other direction note that by definition and

Lemma 2.1.10 the subcategory (T ⊗ 〈Xi〉loc) ∗ 〈Aj〉loc can be written as

〈W ∗ A′ | W ∈ 〈Z ⊗X ′ | Z ∈ T , X ′ ∈ 〈Xi〉loc〉loc, A
′ ∈ 〈Aj〉loc〉∗

where we drop the indexing sets for brevity of notation. By Lemma 2.1.12 we

can rewrite this as

〈(Z ⊗X ′) ∗ Aj | Z ∈ T , X ′ ∈ 〈Xi〉loc〉∗.

Each of the generators in the above presentation can be rewritten in the form

Z ∗ (X ′ ∗Aj) via the associator. In particular each of the generators is an object

of the localizing submodule 〈Xi〉loc ∗ 〈Aj〉loc so

(T ⊗ 〈Xi〉loc) ∗ 〈Aj〉loc ⊆ 〈Xi〉loc ∗ 〈Aj〉loc.

It just remains to observe that since (T ⊗ 〈Xi〉loc) is a localizing ⊗-ideal of T

containing the Xi it must contain the ⊗-ideal they generate. This gives the

desired containment

〈Xi | i ∈ I〉loc ∗ 〈Aj | j ∈ J〉loc ⊇ 〈Xi | i ∈ I〉⊗ ∗ 〈Yj | j ∈ J〉loc

and completes the proof.
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We can now give a version of Lemma 2.1.12 for submodules.

Lemma 2.1.14. Formation of localizing T -submodules commutes with the action

i.e., given a set of objects {Xi}i∈I of T and a set of objects {Aj}j∈J of K we have

〈Xi | i ∈ I〉⊗ ∗ 〈Aj | j ∈ J〉loc = 〈Xi | i ∈ I〉loc ∗ 〈Aj | j ∈ J〉loc

= 〈Xi ∗ Aj | i ∈ I, j ∈ J〉∗.

Proof. The first equality is Lemma 2.1.13. The second follows from Lemma 2.1.12

as it identifies the smallest localizing subcategories containing generators (as sub-

modules) for the submodules in question and hence the smallest submodules con-

taining these generating sets.

We record here the following trivial observation which turns out to be quite

useful.

Lemma 2.1.15. If T is generated as a localizing subcategory by the tensor unit

1 then every localizing subcategory of K is a T -submodule.

Proof. Let L ⊆ K be a localizing subcategory and set

T L = {X ∈ T | X ∗ L ⊆ L}.

Now note that as T L contains 1 and is localizing T L must be equal to T .

2.2 The Case of Rigidly-Compactly Generated

Tensor Triangulated Categories

We now restrict ourselves to the case that (T ,⊗,1) is a rigidly-compactly gener-

ated tensor triangulated category (unless explicitly mentioned otherwise) acting

on a compactly generated K. Actions of such categories have several desirable

properties and we can extend much of the machinery developed in [11], [13], and

[17] to this setting. First let us make explicit our hypotheses on T .

Definition 2.2.1. A rigidly-compactly generated tensor triangulated category is

a compactly generated tensor triangulated category (as usual the monoidal struc-

ture is assumed to be symmetric, biexact, and preserve coproducts so that T has

an internal hom by Brown representability which we denote by hom(−,−)) such

that T c, the (essentially small) subcategory of compact objects, is a rigid tensor
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triangulated subcategory. We recall that T c is a rigid tensor triangulated subcat-

egory if the monoidal structure and internal hom restrict to T c (in particular the

unit object 1 must be compact), and for all x and y in T c, setting x∨ = hom(x,1),

the natural map

x∨ ⊗ y −→ hom(x, y)

is an isomorphism. In particular such categories are unital algebraic stable ho-

motopy categories in the sense of [40] Definition 1.1.4.

In the case that T is rigidly-compactly generated we can use Spc T c, as defined

in [7], in order to define a theory of supports by using the ⊗-ideals of T generated

by objects of T c which provide us with many Rickard idempotents as in [11].

Our first task is to show that if such a T acts on a compactly generated

triangulated category K that we can transfer compactly generated subcategories

across this action: from Rickard idempotents on T we can obtain localization

sequences on K where each of the categories involved is compactly generated by

compact objects of K. Before proceeding let us fix some notation and recall the

definition of Thomason subsets.

Convention 2.2.2. Throughout this subsection all submodules will be localizing

unless explicitly mentioned otherwise.

Definition 2.2.3. Suppose that X is a topological space. A subset V ⊆ X is a

Thomason subset if it is of the form V = ∪iVi where each Vi is a closed subset of

X with quasi-compact complement.

Notation 2.2.4. Given a Thomason subset V ⊆ Spc T c we denote by T c
V the

thick subcategory of compact objects supported, in the sense of [7], on V . We let

TV be the localizing subcategory generated by T c
V and note that TV is smashing as

it is generated by compact objects of T . In particular there are associated Rickard

idempotents which we denote by ΓV1 and LV1 with the property that under

the tensor product they give rise to the smashing acyclization and localization

functors corresponding to TV (see for example [11] Theorem 2.13). It follows that

they are ⊗-orthogonal by the usual properties of localization and acyclization

functors. We will also sometimes write ΓVT for the category associated to V .

We now prove that from a Thomason subset of Spc T c we can produce a pair

of compactly generated subcategories of K. We do this via a series of relatively

straightforward lemmas.
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Lemma 2.2.5. Suppose V ⊆ Spc T c is a Thomason subset. Then the subcategory

ΓVK := {A ∈ K | ∃A′ with A ∼= ΓV1 ∗ A′}

is a localizing T -submodule.

Proof. We begin by showing ΓVK is localizing. It is sufficient to show that

ΓVK = kerLV1 ∗ (−),

as the kernel of any exact coproduct preserving functor is a localizing subcategory.

By [11] Theorem 3.5 the subcategory ΓVT of T is precisely the essential image,

im(ΓV1 ⊗ (−)), of tensoring with ΓV1 and the corresponding idempotents are

tensor orthogonal i.e., ΓV1⊗ LV1 = 0. So if A is in ΓVK then

LV1 ∗ A ∼= LV1 ∗ (ΓV1 ∗ A′)

∼= (LV1⊗ ΓV1) ∗ A
′

∼= 0

showing

ΓVK ⊆ kerLV1 ∗ (−).

Conversely, suppose LV1 ∗ A = 0. Then applying (−) ∗ A to the localization

triangle

ΓV1 −→ 1 −→ LV1 −→ ΣΓV1

in T we deduce an isomorphism ΓV1 ∗ A
∼

−→ A. Thus A is in ΓVK so the two

subcategories of K in question are equal as claimed. As stated above this proves

ΓVK is localizing as the kernel of any exact coproduct preserving functor is a

localizing subcategory.

To see it is a submodule note that for X in T and A in ΓVK we have

X ∗ A ∼= X ∗ (ΓV1 ∗ A′)

∼= (X ⊗ ΓV1) ∗ A
′

∼= (ΓV1⊗X) ∗ A′

∼= ΓV1 ∗ (X ∗ A′).

Lemma 2.2.6. Suppose V is a Thomason subset of Spc T c. The subcategory ΓVK

and the subcategory

LVK := {A ∈ K | ∃A′ with A ∼= LV1 ∗ A′}
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give rise to a localization sequence

ΓVK // K //
ii LVKgg

and LVK is also a localizing T -submodule.

Proof. The statement that LVK is a submodule follows in exactly the same way

as for ΓVK in the proof of Lemma 2.2.5.

So let us demonstrate we have the claimed localization sequence. There is a

triangle in T

ΓV1 −→ 1 −→ LV1 −→ ΣΓV1

associated to V by definition (see Notation 2.2.4). For any A in K the action thus

gives us functorial triangles

ΓV1 ∗ A −→ A −→ LV1 ∗ A −→ ΣΓV1 ∗ A.

So to prove we have the desired localization sequence it is sufficient to demonstrate

LVK = ΓVK
⊥

by Lemma 3.1 of [20].

We first show LVK ⊇ ΓVK
⊥. Suppose A ∈ ΓVK

⊥ and consider the triangle

ΓV1 ∗ A −→ A −→ LV1 ∗ A −→ ΣΓV1 ∗ A.

By hypothesis the morphism ΓV1 ∗ A −→ A must be zero so the triangle splits

yielding

LV1 ∗ A ∼= A⊕ ΣΓV1 ∗ A.

As LVK is localizing it must contain ΓV1 ∗A i.e., there is some A′ in K such that

ΓV1 ∗ A ∼= LV1 ∗ A′. Hence there are isomorphisms

ΓV1 ∗ A ∼= ΓV1 ∗ (ΓV1 ∗ A) ∼= ΓV1 ∗ (LV1 ∗ A′) (2.1)

∼= (ΓV1⊗ LV1) ∗ A
′ ∼= 0 (2.2)

where we have used tensor orthogonality of the Rickard idempotents. Thus

LV1 ∗ A ∼= A is in LVK.

It remains to check the containment LVK ⊆ ΓVK
⊥. Let A be an object of

ΓVK and B an object of LVK. Observe that as A is in ΓVK and B is in LVK

we have LV1 ∗ A ∼= 0 and ΓV1 ∗ B ∼= 0. Indeed, by symmetry of the monoidal

structure on T the objects LV1 ∗ A and ΓV1 ∗ B lie in both ΓVK and LVK. It
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follows they must vanish by orthogonality of the tensor idempotents ΓV1 and LV1

as in (2.1) and (2.2) above. So for f ∈ Hom(A,B) we obtain via functoriality a

map of triangles

ΓV1 ∗ A
∼ //

��

A //

f

��

0

��
0 // B ∼

// LV1 ∗B

which shows f = 0. Hence

LVK ⊆ ΓVK
⊥

proving the equality of these two subcategories. As stated above this yields the

desired localization sequence by Lemma 3.1 of [20].

Notation 2.2.7. We will be somewhat slack with notation and often write, for

A in K, ΓVA rather than ΓV1∗A when it is clear from the context what we mean.

When working with objects X of T we will use the idempotent notation for the

localization and acyclization functors, e.g. ΓV1 ⊗ X, so no confusion should be

possible.

The next lemma is the first of several results showing rigidly-compactly gen-

erated tensor triangulated categories are not just lovely categories in their own

right, but they also act well on other compactly generated categories.

Lemma 2.2.8. Suppose T ×K
∗

−→ K is an action where T is rigidly-compactly

generated and K is compactly generated. Then the action restricts to an action

at the level of compact objects T c ×Kc ∗
−→ Kc.

Proof. Let t be a compact object of T . As T c is rigid the object t admits a strong

dual i.e., there is an object t∨ together with morphisms

ηt : 1 −→ t∨ ⊗ t and ǫt : t⊗ t∨ −→ 1

such that the composite

t
ρ−1
t // t⊗ 1

t⊗ηt // t⊗ (t∨ ⊗ t)
α // (t⊗ t∨)⊗ t

ǫt⊗t // 1⊗ t
λt // t

where ρt, λt, and α are the right and left unitors and the associator for T , is the

identity and similarly for t∨. Using these maps together with the unitor l and

associator a for the action we define natural transformations

η′t : idK
l−1

// 1∗
ηt∗ // (t∨ ⊗ t)∗ // t∨ ∗ t∗
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and

ǫ′t : t ∗ t∨∗ // (t⊗ t∨)∗
ǫt∗ // 1∗

l // idK

which we claim are the unit and counit of an adjunction. In order to prove this

it is sufficient to verify that the composites

t∗
t∗η′t // t ∗ t∨ ∗ t∗

ǫ′tt∗ // t∗ and t∨∗
η′tt

∨∗
// t∨ ∗ t ∗ t∨

t∨∗ǫ′t // t∨∗

are the respective identity natural transformations (see for instance [49] IV.1

Theorem 2). In fact these are precisely the identity composites corresponding to

the existence of strong duals in T applied to K. This is easily checked using the

compatibility conditions required for T to act on K.

Thus η′t and ǫ′t give the desired adjunction. In particular, t∗ has a coproduct

preserving right adjoint and so by [60] Theorem 5.1 it must send compact objects

to compact objects.

Of course there are other situations in which this is true, although one has to

assume more.

Lemma 2.2.9. Let T be a (not necessarily rigidly) compactly generated tensor

triangulated category acting on a compactly generated triangulated category K. If

there exists a set of compact generators {xi}i∈I for T such that xi ∗ Kc ⊆ Kc

for each i ∈ I then the action of T on K restricts to an action of T c on Kc.

In particular, if the unit object 1 of T is compact and generates T the action

restricts.

Proof. The argument is standard: as the action is exact in each variable the

subcategory of T c which acts on Kc is thick and by assumption it contains a

generating set.

Our next lemma is a relative version of Miller’s Theorem (see [56] or [40]

Theorem 3.3.3).

Lemma 2.2.10. Suppose T is a (not necessarily rigidly) compactly generated

tensor triangulated category which acts on a compactly generated triangulated

category K and that C is a thick T c-submodule of Kc. Then 〈C〉loc is a localizing

T -submodule of K.

Proof. We first show 〈C〉loc is a T c-submodule. Let L be the full subcategory of

objects A of 〈C〉loc such that T c ∗A ⊆ 〈C〉loc. Then C ⊆ L as it is a T c-submodule

by hypothesis. Since 〈C〉loc is localizing and ∗ is biexact and preserves coproducts



22 CHAPTER 2. ACTIONS IN TENSOR TRIANGULAR GEOMETRY

in the second variable it is straightforward to see L is a localizing subcategory.

Thus, as it contains C, we have L = 〈C〉loc which proves the claim.

We now complete the proof by showing 〈C〉loc is also closed under the action of

T . ConsiderM the full subcategory of objectsX of T such thatX ∗ 〈C〉loc ⊆ 〈C〉loc.

We have just seen 〈C〉loc is a T c-submodule so T c ⊆ M. As above, since ∗ is

biexact and coproduct preserving in the first variable and 〈C〉loc is localizing, it

follows that M is a localizing subcategory. Hence M = T as it contains the

compacts. Thus 〈C〉loc is a localizing T -submodule as claimed.

We are now ready to demonstrate a general result (we do not assume T

rigidly-compactly generated) on compact generation of subcategories produced

via actions. It implies compact generation of subcategories of the form ΓVK for

V a Thomason subset of Spc T c.

Proposition 2.2.11. Suppose T acts on K, with both T and K compactly gen-

erated, in such a way that the action restricts to one of T c on Kc (e.g., T is

rigidly-compactly generated). Then given a ⊗-ideal L ⊆ T generated (as a local-

izing subcategory) by compact objects of T and a subcategory M ⊆ K generated by

objects of Kc the subcategory L∗M is also generated, as a localizing subcategory,

by compact objects of K.

Proof. Let us fix generating sets {xi}i∈I for L and {aj}j∈J for M where the xi

and aj lie in T c and Kc respectively. By Lemma 2.1.14 we have equalities of

subcategories of K

L ∗M = 〈xi | i ∈ I〉⊗ ∗ 〈aj | j ∈ J〉loc = 〈xi ∗ aj | i ∈ I, j ∈ J〉∗

where by hypothesis each xi ∗ aj is a compact object of K.

Let us denote by G the smallest thick T c-submodule of Kc containing the

set of objects {xi ∗ aj}i∈I,j∈J . Lemma 2.2.10 tells us the localizing subcategory

N = 〈G〉loc is a T -submodule. We claim that L ∗M = N . Since L ∗M contains

{xi ∗ aj}i∈I,j∈J and is a localizing and hence thick T -submodule it contains G.

Thus N ⊆ L ∗M.

On the other hand N is a T -submodule containing G and so certainly contains

the set of objects {xi ∗aj}i∈I,j∈J . Hence it is a localizing T -submodule containing

a generating set (as a localizing T -submodule) for L∗M and so contains L∗M.

It follows that N = L ∗M. In particular, L ∗M has a generating set of objects

compact in K obtained by taking a skeleton for G ⊆ Kc.
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Remark 2.2.12. We get more from the proof of this proposition when T is

generated by the tensor unit. In this case all localizing and thick subcategories

are closed under the action of T and T c respectively so given compact generating

sets for L and M, we get an explicit generating set for L∗M. Indeed we showed

that if L is generated by objects {xi}i∈I of T c and M is generated by objects

{aj}j∈J of Kc then L∗M has a generating set {xi ∗ aj}i∈I,j∈J of objects compact

in K.

Corollary 2.2.13. Suppose T is a rigidly-compactly generated tensor triangu-

lated category acting on a compactly generated triangulated category K and that

V is a Thomason subset of Spc T c. Then the subcategory

ΓVK = {A ∈ K | ∃A′ with A ∼= ΓV1 ∗ A′}

is generated by compact objects of K.

Proof. By the proposition we have just proved it is sufficient to make the identi-

fication ΓVK = ΓVT ∗ K. If X is an object of ΓVT then there is an isomorphism

X ∼= ΓV1⊗X. Thus we have

ΓVT ∗ K = 〈X ∗ A | X ∈ ΓVT , A ∈ K〉∗

= 〈ΓV1 ∗ (X ∗ A) | X ∈ ΓVT , A ∈ K〉∗

= 〈ΓV1 ∗ A | A ∈ K〉∗.

Closing the generators of this last submodule under isomorphisms gives ΓVK

which, by Lemma 2.2.5, is a localizing T -submodule. Thus ΓVK = ΓVT ∗ K and

we can apply the last proposition to complete the proof.

We now define the functors which give rise to supports on K relative to (T , ∗).

Definition 2.2.14. For every x ∈ Spc T c we define subsets of the spectrum

V(x) = {x}

and

Z(x) = {y ∈ Spc T c | x /∈ V(y)}.

Both of these subsets are specialization closed but they are not necessarily Thoma-

son. In the case that they are both Thomason we define a ⊗-idempotent

Γx1 = (ΓV(x)1⊗ LZ(x)1).



24 CHAPTER 2. ACTIONS IN TENSOR TRIANGULAR GEOMETRY

In keeping with previous notation we will sometimes write ΓxA instead of Γx1∗A

for objects A of K. We recall from [11] Corollary 7.5 that the idempotent functors

Γx1 ⊗ (−) on T for x ∈ Spc T c only depend on x and not on the choice of

Thomason subsets W ,V satisfying V \ {V ∩ W} = {x} that we use to obtain

them via ΓV1⊗LW1 (as in Theorem 6.2 of [13]). Thus, with T acting on K, the

functors Γx : K −→ K also only depend on x. In other words we have:

Lemma 2.2.15. Let x ∈ Spc T c and suppose V and W are Thomason subsets of

Spc T c such that V \ (V ∩W) = {x}. Then there are natural isomorphisms

(LW1⊗ ΓV1) ∗ (−) ∼= Γx
∼= (ΓV1⊗ LW1) ∗ (−).

If such sets exist for x ∈ Spc T c let us follow the terminology of [11] and call

x visible. By [11] Corollary 7.14 every point is visible in our sense if the spectrum

of T c is noetherian. We denote by Vis T c the spectrum of visible points of T .

Remark 2.2.16. The fact that certain points are “invisible” is rather unsatis-

factory. It should be possible to give a refined notion of the spectrum for any

compactly generated tensor triangulated category T which agrees with Spc T c

when Spc T c is noetherian. A step toward realizing this is given in [67]; the point

is that one would like to work with localizing prime ⊗-ideals but first one needs

to know (when) there is a set of such.

Notation 2.2.17. Following previous notation we use ΓxK, for x ∈ Spc T c, to

denote the essential image of Γx1 ∗ (−). It is a T -submodule as for any X ∈ T

and A ∈ ΓxK

X ∗ A ∼= X ∗ (Γx1 ∗ A′) ∼= Γx1 ∗ (X ∗ A′)

for some A′ ∈ K.

We can define supports taking values in the set of visible points of Spc T c.

Definition 2.2.18. Given A in K we define the support of A to be the set

supp(T ,∗) A = {x ∈ Vis T c | ΓxA 6= 0}.

When the action in question is clear we will omit the subscript from the notation.

Remark 2.2.19. We are now in a position to make the connection between our

machinery and the machinery of Benson, Iyengar, and Krause more transparent.

Let us ponder the case T = D(R) where R is a noetherian ring. In this case
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K is R-linear so the theory developed in [13] applies. By [13] Theorem 6.4 the

subcategories giving rise to supports in the sense of Benson, Iyengar, and Krause

are generated by certain Koszul objects: if V ⊆ SpecR is specialization closed

then their subcategory KV is easily seen to be generated by the objects

{K(p) ∗ a | a ∈ Kc, p ∈ V}.

As {ΣiK(p) | p ∈ V , i ∈ Z} is a generating set for ΓVD(R) we see, by Remark

2.2.12 and the corollary following it, that the localizing subcategories KV and

ΓVK agree. Thus our support functors are precisely those of Benson, Iyengar,

and Krause in the case that the derived category of a noetherian ring acts.

Proposition 2.2.20. The support assignment supp(T ,∗) satisfies the following

properties:

(1) given a triangle

A −→ B −→ C −→ ΣA

in K we have suppB ⊆ suppA ∪ suppC;

(2) for any A in K and i ∈ Z

suppA = suppΣiA;

(3) given a set-indexed family {Aλ}λ∈Λ of objects of K there is an equality

supp
∐

λ

Aλ =
⋃

λ

suppAλ;

(4) the support satisfies the separation axiom i.e., for every specialization closed

subset V ⊆ Vis T c and every object A of K

suppΓV1 ∗ A = suppA ∩ V

suppLV1 ∗ A = suppA ∩ (Vis T c \ V).

Proof. As Γx1 ∗ (−) is a coproduct preserving exact functor (1), (2), and (3)

are immediate. To see the separation axiom holds suppose V ⊆ Vis T c is a

specialization closed subset and let A be an object of K. Then

Γx1 ∗ (ΓV1 ∗ A) ∼= (Γx1⊗ ΓV1) ∗ A

= (ΓW1⊗ LY1⊗ ΓV1) ∗ A
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where W and Y are Thomason subsets such that W \ (W ∩ Y) = {x}. If x ∈ V

the subsets W ∩ V and Y also satisfy the conditions of Lemma 2.2.15 i.e.,

W ∩ V \ (W ∩ V ∩ Y) = {x}.

By [11] Proposition 3.11 ΓW1⊗ ΓV1 = ΓW∩V1. So in this case

Γx1 ∗ ΓV1 ∗ A ∼= (ΓW∩V1⊗ LY1) ∗ A ∼= Γx1 ∗ A.

If x /∈ V then W ∩ V is contained in Y . It follows that ΓW∩VT ⊆ ΓYT so, using

standard facts about acyclization and localization functors e.g. [13] Lemma 3.4,

Γx1 ∗ ΓV1 ∗ A ∼= 0.

This proves suppΓV1 ∗ A = suppA ∩ V . One proves the analogue for LV1 ∗ A

similarly.

Corollary 2.2.21. Let x be a visible point of Spc T c. Then, for T acting on

itself, suppΓx1 = {x}. We also have that for distinct points x1, x2 of Vis T c the

tensor product Γx11⊗ Γx21 vanishes.

Proof. Let V and W be Thomason subsets giving rise to Γx1. Statement (4) of

the proposition implies

suppΓx1 = supp(ΓV1⊗ (LW1⊗ 1))

= V ∩ supp(LW1⊗ 1)

= V ∩ (Vis T c \W) ∩ supp1

= V ∩ (Vis T c \W) ∩ Vis T c

= {x}

which proves the first part of the corollary.

For the second statement recall from [11] Remark 7.6 that Γx11 ⊗ Γx21 is

isomorphic to Γ∅1. Given any Thomason subset V we have

Γ∅1 ∼= ΓV1⊗ LV1 ∼= 0,

by [11] Corollary 7.5, which shows the tensor product in question vanishes as

claimed.

Finally we can in this generality define a pair of assignments between visible

subsets of Spc T c and localizing submodules of K.
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Definition 2.2.22. We say a subset W ⊆ Spc T c is visible if every x ∈ W

is a visible point or equivalently if W ⊆ Vis T c. There are order preserving

assignments
{

visible

subsets of Spc T c

}

τ //
oo

σ

{

localizing submodules of K
}

where both collections are ordered by inclusion, for a localizing submodule L we

set

σ(L) = suppL = {x ∈ Vis T c | ΓxL 6= 0}

and

τ(W ) = {A ∈ K | suppA ⊆ W}.

Both of these are well defined; this is clear for σ and for τ it follows from Propo-

sition 2.2.20.

2.3 Homotopy Colimits and the Local-to-Global

Principle

Throughout this section we fix an action T × K
∗

−→ K where T is a rigidly-

compactly generated tensor triangulated category and K is compactly generated.

Furthermore, we assume Spc T c is a noetherian topological space so that special-

ization closed subsets are the same as Thomason subsets. All submodules are

again assumed to be localizing.

We begin by generalizing the local-to-global principle of [17].

Definition 2.3.1. We say T × K
∗

−→ K satisfies the local-to-global principle if

for each A in K

〈A〉∗ = 〈ΓxA | x ∈ Spc T c〉∗.

Remark 2.3.2. In the case that every localizing subcategory is also a

T -submodule we recover the Benson-Iyengar-Krause local-to-global principle.

The local-to-global principle has the following rather pleasing consequences

for the assignments σ and τ of Definition 2.2.22.

Lemma 2.3.3. Suppose the local-to-global principle holds for the action of T on

K and let W be a subset of Spc T c. Then

τ(W ) = 〈ΓxK | x ∈ W ∩ σK〉∗.
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Proof. By the local-to-global principle we have for every object A of K an equality

〈A〉∗ = 〈ΓxA | x ∈ Spc T c〉∗.

Thus

τ(W ) = 〈A | suppA ⊆ W 〉∗

= 〈ΓxA | A ∈ K, x ∈ W 〉∗

= 〈ΓxA | A ∈ K, x ∈ W ∩ σK〉∗

= 〈ΓxK | x ∈ W ∩ σK〉∗.

Proposition 2.3.4. Suppose the local-to-global principle holds for the action of

T on K and let W be a subset of Spc T c. Then there is an equality of subsets

στ(W ) = W ∩ σK.

In particular, τ is injective when restricted to subsets of σK.

Proof. With W ⊆ Spc T c as in the statement we have

στ(W ) = supp τ(W )

= supp〈ΓxK | x ∈ W ∩ σK〉∗,

the first equality by definition and the second by the last lemma. Thus

στ(W ) = W ∩ σK as claimed: by the properties of the support (Proposition

2.2.20) we have στ(W ) ⊆ W ∩σK and it must in fact be all of W ∩σK as x ∈ σK

if and only if ΓxK contains a non-zero object.

We will show that the local-to-global principle holds quite generally. Before

proceeding let us fix some terminology we will use throughout the section.

Definition 2.3.5. We will say T has a model when it occurs as the homotopy

category of a Quillen model category.

Our main interest in such categories is that the existence of a model provides

a good theory of homotopy colimits. For our purposes only directed homotopy

colimits are required. We begin by showing that, when T has a model, taking

the union of a chain of specialization closed subsets is compatible with taking the

homotopy colimit of the associated idempotents.
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Lemma 2.3.6. Suppose T has a model. Then for any chain {Vi}i∈I of special-

ization closed subsets of Spc T c with union V there is an isomorphism

ΓV1 ∼= hocolimΓVi
1

where the structure maps are the canonical ones.

Proof. As each Vi is contained in V there are corresponding inclusions for i < j

TVi
⊆ TVj

⊆ TV

which give rise to commuting triangles of canonical morphisms

ΓVi
1 //

""F
FFFFFFF

ΓV1

ΓVj
1

<<yyyyyyyy

We thus get an induced morphism from the homotopy colimit of the ΓVi
1 to ΓV1

which we complete to a triangle

hocolimI ΓVi
1 −→ ΓV1 −→ Z −→ ΣhocolimI ΓVi

1.

In order to prove the lemma it is sufficient to show that Z is isomorphic to the

zero object in T .

The argument in [23] extends to show localizing subcategories are closed un-

der directed homotopy colimits so this triangle consists of objects of ΓVT . By

definition ΓVT is the full subcategory of T generated by those objects of T c whose

support (in the sense of [7]) is contained in V . Thus Z ∼= 0 if for each compact

object k with supp k ⊆ V we have Hom(k, Z) = 0; we remark that there is no

ambiguity here as by [11] Proposition 7.17 the two notions of support, that of [7]

and [11], agree for compact objects. In particular the support of any compact

object is closed.

Recalling from [25] that Spc T c is spectral in the sense of Hochster [39] we see

supp k, by virtue of being closed, is a finite union of irreducible closed subsets.

We can certainly find an i ∈ I so that Vi contains the generic points of these

finitely many irreducible components which implies supp k ⊆ Vi by specialization

closure of the Vi.

Therefore, by adjunction, it is enough to show

Hom(k, Z) ∼= Hom(ΓVi
k, Z)

∼= Hom(k,ΓVi
Z)
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is zero. The vanishing of this hom-set is clear by construction so Z ∼= 0 and we

get the claimed isomorphism.

Lemma 2.3.7. Let P ⊆ Spc T c be given and suppose A is an object of K such

that ΓxA ∼= 0 for all x ∈ (Spc T c \ P ). If T has a model then A is an object of

the localizing subcategory

L = 〈ΓyK | y ∈ P 〉loc.

Proof. Let Λ ⊆ P(Spc T c) be the set of specialization closed subsets W such that

ΓWA is in L = 〈ΓyK | y ∈ P 〉loc. We first note that Λ is not empty. Indeed, as

T c is rigid the only compact objects with empty support are the zero objects by

[8] Corollary 2.5 so

T∅ = 〈t ∈ T c | supp(T ,⊗) t = ∅〉loc = 〈0〉loc

giving Γ∅A = 0 and hence ∅ ∈ Λ.

Since L is localizing, Lemma 2.3.6 shows the set Λ is closed under taking

increasing unions: as mentioned above the argument in [23] extends to show

that localizing subcategories are closed under directed homotopy colimits in our

situation. Thus Λ contains a maximal element Y by Zorn’s lemma. We claim

that Y = Spc T c.

Suppose Y 6= Spc T c. Then since Spc T c is noetherian Spc T c \ Y contains a

maximal element z with respect to specialization. We have

LY 1⊗ ΓY ∪{z}1 ∼= Γz1

as Y ∪ {z} is specialization closed by maximality of z and Lemma 2.2.15 tells

us that we can use any suitable pair of Thomason subsets to define Γz1. So

LY ΓY ∪{z}A ∼= ΓzA and by our hypothesis on vanishing either ΓzK ⊆ L or

ΓzA = 0. Considering the triangle

ΓY ΓY ∪{z}A

≀

��

// ΓY ∪{z}A // LY ΓY ∪{z}A

≀

��
ΓYA ΓzA

we see that in either case, since ΓYA is in L, that Y ∪ {z} ∈ Λ contradicting

maximality of Y . Hence Y = Spc T c and so A is in L.

Proposition 2.3.8. Suppose T has a model. Then the local-to-global principle

holds for the action of T on K. Explicitly for any A in K there is an equality of

T -submodules

〈A〉∗ = 〈ΓxA | x ∈ suppA〉∗.
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Proof. Observe that by Lemma 2.3.7 applied to the action

T × T
⊗

−→ T

we see T = 〈ΓxT | x ∈ Spc T c〉loc. Since ΓxT = 〈Γx1〉⊗ it follows that the set

of objects {Γx1 | x ∈ Spc T c} generates T as a localizing ⊗-ideal. By Lemma

2.1.14 given an object A ∈ K we get a generating set for T ∗ 〈A〉loc:

T ∗ 〈A〉loc = 〈Γx1 | x ∈ Spc T 〉⊗ ∗ 〈A〉loc = 〈ΓxA | x ∈ suppA〉∗.

But it is also clear that T = 〈1〉⊗ so, by Lemma 2.1.14 again,

T ∗ 〈A〉loc = 〈1〉⊗ ∗ 〈A〉loc = 〈A〉∗

and combining this with the other string of equalities gives

〈A〉∗ = T ∗ 〈A〉loc = 〈ΓxA | x ∈ suppA〉∗

which completes the proof.

We thus have the following theorem concerning the local-to-global principle

for actions of rigidly-compactly generated tensor triangulated categories.

Theorem 2.3.9. Suppose T is a rigidly-compactly generated tensor triangulated

category with a model and that Spc T c is noetherian. Then T satisfies the follow-

ing properties:

(i) The local-to-global principle holds for the action of T on itself;

(ii) The associated support theory detects vanishing of objects i.e., X ∈ T is

zero if and only if suppX = ∅;

(iii) For any chain {Vi}i∈I of specialization closed subsets of Spc T c with union

V there is an isomorphism

ΓV1 ∼= hocolimΓVi
1

where the structure maps are the canonical ones.

Furthermore, the relative versions of (i) and (ii) hold for any action of T on a

compactly generated triangulated category K.
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Proof. That (iii) always holds is the content of Lemma 2.3.6 and we have proved in

Proposition 2.3.8 that (i) holds. To see (i) implies (ii) observe that if suppX = ∅

for an object X of T then the local-to-global principle yields

〈X〉⊗ = 〈ΓxX | x ∈ Spc T c〉⊗ = 〈0〉⊗

so X ∼= 0.

Finally, we saw in Proposition 2.3.8 that the relative version of (i) holds. This

in turn implies (ii) for supports with values in Spc T c by the same argument as

we have used in the proof of (i)⇒(ii) above.

2.4 The Telescope Conjecture

We now explore a relative version of the telescope conjecture. We show that

for particularly nice actions T × K
∗

−→ K we can deduce the relative telescope

conjecture for K. We will denote by T a rigidly-compactly generated tensor

triangulated category with noetherian spectrum (although let us note that not

all of the results require rigidity or a noetherian spectrum) and by K a compactly

generated triangulated category on which T acts.

Definition 2.4.1. We say the relative telescope conjecture holds for K with re-

spect to the action of T if every smashing T -submodule S ⊆ K (we recall this

means S is a localizing submodule with an associated coproduct preserving lo-

calization functor) is generated by compact objects of K.

Remark 2.4.2. This reduces to the usual telescope conjecture if every localizing

subcategory of K is a submodule. It is also the usual telescope conjecture in the

case that a rigidly-compactly generated triangulated category acts on itself (see

[40] Definition 3.3.2).

Lemma 2.4.3. Suppose S ⊆ K is a smashing T -submodule. Then S⊥ is a

localizing T -submodule.

Proof. Let us denote by L the subcategory of those objects of T which send S⊥

to itself

L = {X ∈ T | X ∗ S⊥ ⊆ S⊥}.

As S is smashing the subcategory S⊥ is a localizing subcategory of K (see for

example [46] Proposition 5.5.1). Thus L is a localizing subcategory of T by the

standard argument.
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If x is a compact object of T then, as we have assumed T rigidly-compactly

generated, the object x is strongly dualizable. By Lemma 2.2.8 the functor x∗(−)

has a right adjoint x∨ ∗ (−) so given B in S⊥ we have, for every A in S,

0 = Hom(x ∗ A,B) ∼= Hom(A, x∨ ∗B),

where the first hom-set vanishes due to the fact that S is a submodule so x ∗ A

is an object of S. Hence x∨ ∗ B is an object of S⊥ for every x in T c. As taking

duals of compact objects in T is involutive this implies that every object of T c

sends S⊥ to S⊥. Thus T c is contained in the localizing subcategory L yielding

the equality L = T . Hence every object X of T satisfies X ∗ S⊥ ⊆ S⊥ so that

S⊥ is a localizing T -submodule of K.

Definition 2.4.4. Let M be a localizing T -submodule of K. We define a sub-

category TM of T by

TM = {X ∈ T | X ∗ K ⊆ M}.

Lemma 2.4.5. Suppose M is a localizing submodule of K. Then the subcategory

TM is a localizing ⊗-ideal of T .

Proof. The usual argument shows that TM is a localizing subcategory; as M

is localizing and the action is exact and coproduct preserving in both variables

one deduces triangle, suspension, and coproduct closure from the corresponding

properties of M.

It is also easily seen that TM is a ⊗-ideal. If X is an object of TM, Y is any

object of T , and A is in K

(Y ⊗X) ∗ A ∼= (X ⊗ Y ) ∗ A ∼= X ∗ (Y ∗ A)

which lies in M as X ∗ K ⊆ M. Thus Y ⊗X lies in TM.

Hypotheses 2.4.6. We now, and for the rest of this section unless otherwise

stated, ask more of T and K: we suppose T has a model, so Theorem 2.3.9

applies, and that the assignments σ and τ of Definition 2.2.22 provide a bijection

between subsets of σK ⊆ Spc T c (which we give the subspace topology throughout)

and localizing T -submodules of K. In particular, for any localizing submodule M

of K there is an equality

M = τ(σM) = {A ∈ K | suppA ⊆ σM}.
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Lemma 2.4.7. Suppose M is a localizing T -submodule of K. Then there is an

equality of subcategories

M = TM ∗ K.

Proof. By Lemma 2.3.3 and τ(σM) = M we have

M = 〈ΓxK | x ∈ σM〉∗.

So by definition of TM the objects Γx1 for x ∈ σM lie in TM. Thus M ⊆ TM ∗K.

That TM ∗ K ⊆ M is immediate from the definition of TM giving the claimed

equality.

Proposition 2.4.8. Suppose T satisfies the telescope conjecture and let S ⊆ K

be a smashing T -submodule. If the inclusion TS −→ T admits a right adjoint

and

(TS)
⊥ = TS⊥

then S is generated by compact objects of K.

Proof. The subcategory S is, by assumption, a localizing submodule and as it

is smashing S⊥ is also a localizing submodule by Lemma 2.4.3. Thus Lemma

2.4.5 yields that both TS and TS⊥ are localizing ⊗-ideals of T . By hypothesis

the ⊗-ideals TS and (TS)
⊥ = TS⊥ fit into a localization sequence. Hence TS is

a smashing subcategory of T (this is well known, see for example [11] Theorem

2.13). As the telescope conjecture is assumed to hold for T the subcategory TS is

generated by objects of T c. By Lemma 2.4.7 there is an equality of submodules

S = TS ∗ K

which implies that S is generated by compact objects of K: by Proposition 2.2.11,

since T is rigidly-compactly generated and TS is generated by objects of T c, the

subcategory TS ∗ K is generated by objects of Kc.

Lemma 2.4.9. Let M be a localizing submodule of K and let W be a subset of

Spc T c such that W ∩ σK = σM. Then there is a containment of ⊗-ideals of T

TM ⊇ TW = {X ∈ T | suppX ⊆ W}

and

TW ∗ K = M.
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Proof. It follows from the good properties of the support that TW is a localizing

⊗-ideal of T . Let X be an object of TW , let A be an object of K and let x be a

point in Spec T c. We have isomorphisms

Γx1 ∗ (X ∗ A) ∼= (Γx1⊗X) ∗ A ∼= X ∗ (Γx1 ∗ A).

The object Γx1 ⊗ X is zero if x is not in W and Γx1 ∗ A ∼= 0 if x /∈ σK so we

see suppX ∗ A is contained in σM. Thus X ∗ A is an object of M = τσM. It

follows that X is in TM and hence TW ⊆ TM.

As suppΓx1 = {x} for x ∈ Spc T c by Corollary 2.2.21 we have Γx1 ∈ TW for

x ∈ σM. By the local-to-global principle (Theorem 2.3.9) and τ(σM) = M we

have

M = 〈ΓxK | x ∈ σM〉∗

so TW ∗ K ⊇ M. We proved above that TW ⊆ TM which gives TW ∗ K ⊆ M.

Thus TW ∗ K = M.

Lemma 2.4.10. Suppose the support of any compact object of K is a specializa-

tion closed subset of σK. Then for any specialization closed subset V of Spc T c,

with complement U , the support of every compact object of LVK is specialization

closed in the complement U ∩ σK of V ∩ σK in σK (with the subspace topology).

Proof. Let us denote by π the quotient functor K −→ LVK. We assert it sends

compact objects to compact objects. To see this is the case recall ΓVK has a

generating set consisting of objects in Kc by Corollary 2.2.13 so π has a coproduct

preserving right adjoint. The functor π thus takes compact objects to compact

objects by Theorem 5.1 of [60].

Given any compact object l of LVK there exists an object k in Kc such that

l ⊕ Σl is isomorphic to πk by [61] Corollary 4.5.14. Thus

supp l = supp(l ⊕ Σl) = supp πk = suppLVk = supp k ∩ U

where this last equality is (4) of Proposition 2.2.20. Thus supp l is specialization

closed in U ∩ σK as supp k is is specialization closed in σK.

The next lemma is the key to our theorem on the relative telescope conjecture

for good actions. Before stating and proving it we recall from [7] Proposition 2.9

that the space Spc T c is T0; given points x, y ∈ Spc T c we have x = y if and only

if V(x) = V(y). In fact Spc T c is spectral in the sense of Hochster [39] so every

irreducible closed subset has a unique generic point.
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Lemma 2.4.11. Suppose the support of any compact object of K is a specializa-

tion closed subset of σK and that for each irreducible closed subset V ⊆ Spc T c

there exists a compact object of K whose support is precisely V ∩ σK. If x and y

are distinct points of σK with y ∈ V(x) then

〈Γy′K | y′ ∈ (V(x) ∩ U(y)) \ {x}〉loc * ΓxK
⊥

where U(y) = {y′ ∈ Spc T c | y ∈ V(y′)} is the complement of Z(y).

Proof. By hypothesis there is a compact object k of K satisfying

supp k = V(x) ∩ σK.

The object LZ(y)k is compact in LZ(y)K and has support

suppLZ(y)k = supp k ∩ (Spc T c \ Z(y)) ∩ σK = V(x) ∩ U(y) ∩ σK

by Proposition 2.2.20.

Suppose for a contradiction that

〈Γy′K | y′ ∈ (V(x) ∩ U(y)) \ {x}〉loc ⊆ ΓxK
⊥.

Consider the localization triangle for LZ(y)k

ΓZ(x)LZ(y)k −→ LZ(y)k −→ LZ(x)LZ(y)k −→ ΣΓZ(x)LZ(y)k.

We have, via Proposition 2.2.20,

suppLZ(x)LZ(y)k = U(x) ∩ V(x) ∩ U(y) ∩ σK = {x}

and

suppΣΓZ(x)LZ(y)k = Z(x) ∩ V(x) ∩ U(y) ∩ σK = (V(x) ∩ U(y) ∩ σK) \ {x}.

So, as the local-to-global principle holds, the morphism

LZ(x)LZ(y)k −→ ΣΓZ(x)LZ(y)k must be zero by our orthogonality assumption.

This forces the triangle to split giving

LZ(y)k ∼= LZ(x)LZ(y)k ⊕ ΓZ(x)LZ(y)k.

As LZ(y)k is compact in LZ(y)K it follows that LZ(x)LZ(y)k must also be compact.

But we have already seen that the support of LZ(x)LZ(y)k is {x} which is not

specialization closed in U(y)∩σK. This yields a contradiction as by Lemma 2.4.10

the compact objects in LZ(y)K have specialization closed support in U(y)∩σK.
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Lemma 2.4.12. Let S be a smashing T -submodule of K. Then

σS ∪ σS⊥ = σK and σS ∩ σS⊥ = ∅.

Proof. Suppose x is a point of σK satisfying x ∈ σS ∩ σS⊥. Then as we have

assumed σ and τ are inverse bijections and S⊥ is a localizing submodule by

Lemma 2.4.3 we would have

ΓxK ⊆ S ∩ S⊥ = 0.

This contradicts x ∈ σK as x is a point of σK if and only if ΓxK 6= 0.

We now show that every point of σK lies in either σS or σS⊥. Let x be a

point of σK and suppose x /∈ σS⊥. In particular ΓxK * S⊥ so there is an object

X of ΓxK with ΓSX 6= 0 where ΓS is the acyclization functor associated to S.

Consider the localization triangle for X associated to S

ΓSX −→ X −→ LSX −→ ΣΓSX.

Applying Γx we get another triangle

ΓxΓSX −→ ΓxX −→ ΓxLSX −→ ΣΓxΓSX.

Since x /∈ σS⊥ we have ΓxLSX ∼= 0. Hence

0 6= X ∼= ΓxX ∼= ΓxΓSX

so ΓxS is not the zero subcategory and x ∈ σS.

Lemma 2.4.13. Suppose the support of any compact object of K is a specializa-

tion closed subset of σK and that for each irreducible closed subset V in Spc T c

there exists a compact object of K whose support is precisely V ∩ σK. Let S ⊆ K

be a smashing T -submodule. Then the subset σS is specialization closed in σK.

Proof. We prove the lemma by contradiction. Let x be a point of σS and suppose

y is a point of V(x) ∩ σK which does not lie in σS. Then by the last lemma we

must have y ∈ σS⊥. We have assumed Spc T c is noetherian so there exists a

point x′ of σS ∩ U(y) which is maximal with respect to specialization. We thus

have

((V(x′) ∩ U(y)) \ {x′}) ∩ σS = ∅
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by virtue of the maximality of x′. From the previous lemma we deduce that

every point of ((V(x′) ∩ U(y)) \ {x′}) lies in σS⊥. As σ and τ are inverse there

are containments

Γx′K ⊆ S and 〈Γy′K | y′ ∈ (V(x′) ∩ U(y)) \ {x′}〉∗ ⊆ S⊥

the first as x ∈ σS and the second by what we have just shown. Taking orthog-

onals in the first containment and combining we deduce that

〈Γy′K | y′ ∈ (V(x′) ∩ U(y)) \ {x′}〉∗ ⊆ S⊥ ⊆ Γx′K⊥

contradicting Lemma 2.4.11 and completing the proof.

Theorem 2.4.14. Suppose the hypotheses of 2.4.6 hold, the support of any com-

pact object of K is a specialization closed subset of σK and that for each irreducible

closed subset V of Spc T c there exists a compact object whose support is precisely

V ∩ σK. Then the relative telescope conjecture holds for K i.e., every smashing

T -submodule of K is generated, as a localizing subcategory, by compact objects of

K.

Proof. Let S be a smashing submodule of K. Recall from Lemma 2.4.9 that there

is an equality

TW ∗ K = S (2.3)

for anyW ⊆ Spc T c whose intersection with σK is σS. By the lemma we have just

proved the subset σS is specialization closed in σK so we can find a specialization

closed subset W of Spc T c with W ∩ σK = σS. As W is specialization closed in

Spc T c the tensor ideal TW is generated by objects of T c. It then follows from

the equality (2.3) that S is generated by objects of Kc - this last statement is the

content of Proposition 2.2.11.

2.5 Working Locally

We now show that the support theory we have developed is compatible with

passing to quasi-compact open subsets of the spectrum; in particular, certain

properties can be checked locally on an open cover.

Let T be a rigidly-compactly generated tensor triangulated category such that

Spc T c is noetherian. We recall that, as Spc T c is noetherian, every open subset



2.5. WORKING LOCALLY 39

is quasi-compact. Let U be an open subset with closed complement Z. There is

an associated smashing localization sequence

ΓZT = TZ

i∗ //oo
i!

T
p∗ //oo
p∗

LZT = T (U)

where we have introduced the notation T (U) for the category on the right; we feel

that this is worthwhile as when working locally it is better to keep open subsets

in mind rather than their closed complements. Both TZ and T (U) are tensor

ideals and we recall that by definition

i∗i
! = ΓZ1⊗ (−) and p∗p

∗ = LZ1⊗ (−).

By Thomason’s localization theorem (see for example [60] Theorem 2.1) the sub-

category of compact objects of T (U) is the idempotent completion of T c/T c
Z i.e.,

it is precisely the subcategory T c(U) of Balmer. By [8] Proposition 2.15 the

category T c(U) is a rigid tensor category and so T (U) is a rigidly-compactly

generated tensor triangulated category. We also wish to remind the reader that

Spc T c(U) is naturally isomorphic to U by [10] Proposition 1.11. The quotient

functor p∗ is monoidal and we will denote by 1U the tensor unit p∗1 of T (U).

We will use the notation introduced above throughout this section and it will

be understood that U carries the subspace topology. The category T (U) acts on

itself giving rise to a support theory; in order to avoid confusion we will include 1U

in the notation for acyclization, localization, and support functors this gives rise

to, T (U) in the notation for the associated subcategories, and write the support

as suppT (U).

Let us now recall that p∗ behaves nicely with respect to tensor idempotents

in T .

Lemma 2.5.1. Let V ⊆ Spc T c be specialization closed. Then

p∗ΓV1 ∼= ΓV∩U1U and p∗LV1 ∼= LV∩U1U .

Proof. This is just a different way of stating [11] Corollary 6.5.

We next show the projection formula holds in this generality.

Lemma 2.5.2. Suppose X ∈ T and Y ∈ T (U). Then there is an isomorphism

X ⊗ p∗Y ∼= p∗(p
∗X ⊗ Y ).



40 CHAPTER 2. ACTIONS IN TENSOR TRIANGULAR GEOMETRY

Proof. As Y is in T (U) we have p∗p∗Y ∼= Y and hence

p∗Y ∼= p∗p
∗p∗Y ∼= LZ1⊗ p∗Y.

From this we see

ΓZ1⊗X ⊗ p∗Y ∼= X ⊗ ΓZ1⊗ p∗Y

∼= X ⊗ ΓZ1⊗ LZ1⊗ p∗Y

∼= 0

showing X ⊗ p∗Y is in the image of p∗. Using this we deduce that

p∗(p
∗X ⊗ Y ) ∼= p∗(p

∗X ⊗ p∗p∗Y )

∼= p∗p
∗(X ⊗ p∗Y )

∼= LZ1⊗X ⊗ p∗Y

∼= X ⊗ p∗Y

which is the claimed isomorphism.

It follows easily from these facts that one can work locally when considering

the subcategories ΓxT for x ∈ Spc T c.

Proposition 2.5.3. For all x ∈ U there is an isomorphism

p∗Γx1U
∼= Γx1.

Proof. To see this is the case just note there are isomorphisms

p∗Γx1U
∼= p∗(ΓV(x)∩U1U ⊗ LZ(x)∩U1U)

∼= p∗(p
∗ΓV(x)1⊗ p∗LZ(x)1)

∼= p∗p
∗(ΓV(x)1⊗ LZ(x)1)

∼= LZΓx1

∼= Γx1

where we have used Lemma 2.5.1 for the second isomorphism and the fact that

Γx1 ∈ LZT = T (U) for the final isomorphism.

Proposition 2.5.4. For all x ∈ U the functor p∗ induces an equivalence

ΓxT
p∗ //

oo
p∗

ΓxT (U) .
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Proof. The essential image of p∗ restricted to ΓxT is ΓxT (U) as we have isomor-

phisms

p∗(Γx1⊗ A) ∼= p∗Γx1⊗ p∗A

∼= p∗p∗Γx1U ⊗ p∗A

∼= Γx1U ⊗ p∗A

where A is any object of T and we have used the Proposition we have just proved

for the second isomorphism.

If X is in T we have, using the projection formula,

p∗(Γx1U ⊗ p∗X) ∼= p∗Γx1U ⊗X ∼= Γx1⊗X

showing the essential image of p∗ restricted to ΓxT (U) is ΓxT .

Finally, as p∗ is fully faithful we have p∗p∗ ∼= idT (U) and p∗p
∗ ∼= idim p∗ . From

what we have just shown it is clear that this equivalence restricts to give the

equivalence in the statement of the proposition.

Let us now fix some action of T on a compactly generated triangulated cat-

egory K and consider the relative version. For U ⊆ Spc T c as above we have a

smashing localization sequence

ΓZK
j∗ //oo
j!

K
q∗ //oo
q∗

LZK = K(U)

by Lemma 2.2.6 and Corollary 2.2.13, where

j∗j
! = ΓZ1 ∗ (−) and q∗q

∗ = LZ1 ∗ (−).

Our first observation is that T (U) acts on K(U) in a way which is compatible

with the quotient functors.

Proposition 2.5.5. There is an action of T (U) on K(U) defined by commuta-

tivity of the diagram

T × K
p∗×q∗ //

∗

��

T (U)×K(U)

∗U
��

K
q∗

// K(U).



42 CHAPTER 2. ACTIONS IN TENSOR TRIANGULAR GEOMETRY

Proof. As in the diagram we define the action of T (U) on K(U) by setting, for

X ∈ T and A ∈ K,

p∗X ∗U q∗A = q∗(X ∗ A)

and similarly for morphisms. This is well defined as if X ′ ∈ T , A′ ∈ K with

p∗X ∼= p∗X ′ and q∗A ∼= q∗A′ then

q∗(p
∗X ∗U q∗A) = q∗q

∗(X ∗ A)

= LZ(X ∗ A)

∼= LZX ∗ LZA

∼= LZX
′ ∗ LZA

′

∼= q∗(p
∗X ′ ∗U q∗A′)

which implies p∗X ∗U q∗A ∼= p∗X ′ ∗U q∗A′.

The associator and unitor are defined by the diagrams

(p∗X ⊗ p∗Y ) ∗U q∗A
aU
∼

// p∗X ∗U (p∗Y ∗U q∗A)

q∗((X ⊗ Y ) ∗ A) ∼

q∗a
// q∗(X ∗ (Y ∗ A))

and

1U ∗U q∗A
lU
∼

// q∗A

q∗(1 ∗ A) ∼

q∗l
// q∗A

respectively for X, Y ∈ T and A ∈ K. It is easily verified that ∗U fulfils the

necessary conditions to be an action.

We next prove the relative analogue of Proposition 2.5.4:

Proposition 2.5.6. For x ∈ U there is an equivalence

ΓxK
q∗ //

oo
q∗

ΓxK(U) .

Proof. The category ΓxK is contained in q∗K(U) so q∗ is fully faithful when

restricted to ΓxK. It just remains to note that for A ∈ K

q∗(Γx1 ∗ A) = p∗Γx1 ∗U q∗A ∼= Γx1U ∗U q∗A

so that q∗ΓxK = ΓxK(U).
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Remark 2.5.7. In particular, the last proposition implies that from an open

cover Spc T c = ∪n
i=1Ui we get an open cover

σK = ∪n
i=1σK(Ui).

Now let us fix some cover Spc T c = ∪n
i=1Ui by open subsets and denote the

projections from K to K(Ui) by q∗i . We will prove two results showing that one can

deduce information about K from the corresponding statements for the K(Ui).

First let us show that compact objects having (specialization) closed support is

local in this sense.

Lemma 2.5.8. Suppose that for all 1 ≤ i ≤ n and a ∈ K(Ui) compact the subset

suppT (Ui)
a is (specialization) closed in Ui. Then for all b ∈ Kc the subset supp b

is (specialization) closed in Spc T c.

Proof. Let b be compact in K. Then

supp b = ∪n
i=1(supp b ∩ Ui)

= ∪n
i=1{x ∈ Ui | Γx1U ∗U q∗i b 6= 0}

= ∪n
i=1 suppT (Ui)

q∗i b

as we have

Γx1U ∗U q∗i b = q∗i (Γxb) 6= 0

if and only if x is in supp b ∩ Ui. Now q∗i sends compacts to compacts as the

associated localization is smashing, so by hypothesis each suppT (Ui)
q∗i b is (spe-

cialization) closed in Ui. Thus supp b is (specialization) closed in Spc T c.

Remark 2.5.9. It is worth noting from the proof that for any A ∈ K there is an

equality

suppA = ∪n
i=1 suppT (Ui)

q∗iA.

Finally we show it is also possible to check that σK classifies localizing T -

submodules locally. It is easily seen that, provided T satisfies the local-to-global

principle, a bijection between subsets of σK and the collection of localizing sub-

modules of K is equivalent to each of the ΓxK being minimal in the following

sense (cf. [17] Section 4 and our Lemma 2.3.3):

Definition 2.5.10. We say a localizing submodule L ⊆ K is minimal if it has

no proper and non-trivial localizing submodules.
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By Proposition 2.3.4 we have that σ is left inverse to τ . To see τ is an inverse

to σ one just needs to note that if the ΓxK are minimal then the local-to-global

principle completely determines any localizing submodule in terms of its support.

In fact the converse is also true: such a bijection is easily seen to imply that the

ΓxK are minimal. Thus the following theorem should not come as a surprise.

Theorem 2.5.11. Suppose T has a model and that for i = 1, . . . , n the action of

T (Ui) on K(Ui) yields bijections

{

subsets of σK(Ui)
} τ //

oo
σ

{

localizing submodules of K(Ui)
}

.

Then σ and τ give a bijection

{

subsets of σK
} τ //

oo
σ

{

localizing submodules of K
}

.

Proof. By the discussion before the theorem it is sufficient to check that ΓxK is

minimal for each x ∈ σK. But for any such x there exists an i such that x ∈ Ui

and by Proposition 2.5.6 the subcategory ΓxK is equivalent to ΓxK(Ui). This

latter category is a minimal T (Ui)-submodule by hypothesis and by the diagram

of Proposition 2.5.5 this implies it is also minimal with respect to the action of

T .



Chapter 3

The Singularity Category of a

Ring

We begin by introducing, for a ring R, an infinite completion S(R), as in Krause’s

[48], of the usual singularity category DSg(R) ([26], [63]). This completion has a

natural action of the unbounded derived category of R. We can thus bring the

machinery we have developed to bear on the problem of determining the structure

of the lattice of localizing subcategories of S(R). We obtain a complete classifi-

cation for rings which are locally hypersurfaces extending work of Takahashi [68]

and removing the hypothesis that R be essentially of finite type over a field from

the hypersurface case of a result reported by Iyengar [42].

3.1 Preliminaries

Throughout R denotes a commutative noetherian ring with unit.

Given a ring R we set

DSg(R) = Db(R-mod)/Dperf(R).

This category, usually called the singularity category, provides a measure of the

singularities of the scheme SpecR. Throughout we will prefer to work with an

infinite completion of DSg(R) and will reserve the term singularity category for

this larger category:

Theorem 3.1.1 ([48] Theorem 1.1). Let R be a ring.

45
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(1) There is a recollement

S(R-Mod) I // K(InjR)
Q //

Iρ

ll

Iλ
ss

D(R-Mod)

Qρ

kk

Qλ
ss

where each functor is right adjoint to the one above it. We call S(R-Mod) =

Kac(InjR), the homotopy category of acyclic complexes of injective R-modules,

the singularity category of R.

(2) The triangulated category K(InjR) is compactly generated, and Q induces

an equivalence

K(InjR)c −→ Db(R-mod).

(3) The sequence

D(R-Mod)
Qλ // K(InjR)

Iλ // S(R-Mod)

is a localization sequence. Therefore S(R-Mod) is compactly generated, and

Iλ ◦Qρ induces (up to direct factors) an equivalence

DSg(R) −→ S(R-Mod)c.

Notation 3.1.2. As in the theorem we call S(R-Mod) the singularity category of

R and we shall denote it by S(R). By (3) of the theorem S(R) contains DSg(R).

The closure under summands of DSg(R) in S(R) is S(R)c, the thick subcategory

of compact objects, so it is reasonable to call S(R) the singularity category.

Remark 3.1.3. Krause’s theorem is more general than the version we state

here. In particular, it covers the case of quasi-coherent sheaves on a noetherian

separated scheme which we shall treat in Chapter 5.

Before continuing let us briefly remind the reader of Matlis’ classification of

indecomposable injective R-modules [51]. Given an R-module M we denote by

E(M) (or ER(M) if the ring is not clear from the context) the injective envelope

of M .

Theorem 3.1.4. Given any prime ideal p ∈ SpecR the injective module E(R/p)

is indecomposable and every indecomposable injective R-module has this form for

a unique prime ideal.

Let I be an injective R-module. Then I decomposes as a direct sum of inde-

composable injective R-modules. This decomposition is unique in the sense that

for each prime ideal p the cardinality of the summands isomorphic to E(R/p)

depends only upon E and p.
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3.2 An Action of D(R)

We prove that the unbounded derived category of R, denoted here by D(R), acts

on the singularity category S(R).

First let us recall the following result originally proved for the homotopy

category of spectra in [50].

Theorem 3.2.1. Suppose T is a compactly generated triangulated category and

H is a coproduct preserving homological functor on T i.e., H is a functor to

an abelian category taking coproducts to coproducts and triangles to long exact

sequences. Then the full subcategory

ker(H) = {X ∈ T | H(ΣiX) = 0 ∀ i ∈ Z}

is strictly localizing i.e., it is a localizing subcategory of T and its inclusion admits

a right adjoint.

Proof. Margolis’ original proof carries over to the case of any compactly generated

triangulated category; see for example [46] Theorem 7.5.1 which generalizes this

even further.

Let us consider E =
∐

λ Eλ where Eλ runs through a set of representatives

for the isomorphism classes of compact objects in S(R). Denote by K(FlatR)

the homotopy category of complexes of flat R-modules. We define a homological

functor H : K(FlatR) −→ Ab by setting for X in K(FlatR)

H(X) = H0(X ⊗R E).

This is a coproduct preserving homological functor since we are merely composing

the exact coproduct preserving functor (−)⊗R E with the coproduct preserving

homological functor H0 (where we work inside of K(R)).

We recall some facts from [58] in the following definition.

Definition 3.2.2. A complex X in K(FlatR) is pure acyclic if it is exact and

has flat syzygies. Such complexes form a triangulated subcategory of K(FlatR)

which we denote by Kpac(FlatR) and we say that a morphism with pure acyclic

mapping cone is a pure quasi-isomorphism.

We also wish to remind the reader that since R is noetherian the tensor

product of a complex of flats with a complex of injectives is again a complex

of injectives and that tensoring a pure acyclic complex of flats with a complex
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of injectives yields a contractible complex (this second fact is [62] Corollary 9.7

(i)). Thus the category of pure acyclic complexes Kpac(FlatR) is contained in

the kernel of H.

Definition 3.2.3. With notation as above we denote by A⊗(InjR) the quotient

ker(H)/Kpac(FlatR). As we are about to show this is the category of complexes

of flat modules which act on S(R) in a way that is not automatically trivial.

Lemma 3.2.4. An object X of K(FlatR) lies in ker(H) if and only if the exact

functor

X ⊗R (−) : K(InjR) −→ K(InjR)

restricts to

X ⊗R (−) : S(R) −→ S(R).

In particular, A⊗(InjR) consists of the pure quasi-isomorphism classes of objects

which act on S(R).

Proof. The object X is in ker(H) if and only if X⊗RE is acyclic so it is sufficient

to show that X ⊗R E is acyclic if and only if X ⊗R (−) preserves acyclicity of

complexes of injectives. The if part of this statement is trivial.

So supposeX⊗RE is acyclic. SinceX⊗R(−) preserves coproducts inK(InjR)

and acyclicity is preserved by extensions, suspension, and coproducts we deduce

that X ⊗R (−) preserves acyclicity of complexes in the localizing subcategory

〈E〉loc of K(InjR). But this is precisely S(R) since 〈E〉loc contains a compact

generating set: it is a localizing subcategory and hence closed under splitting

idempotents so contains all compact objects of the compactly generated category

S(R).

Restricting H to N(FlatR) = K(FlatR)/Kpac(FlatR) we obtain by Margolis’

theorem an adjoint pair

A⊗(InjR)
//

oo N(FlatR).

In particular A⊗(InjR) is well generated (this can be deduced from the statement

of the version of Margolis’ result in [46] 7.5.1).

We will restrict our attention to studying the action of a full subcategory

of A⊗(InjR), namely D(R). Of course we first need to show that D(R) has a

fully faithful embedding into A⊗(InjR) so this last comment makes sense. Before

checking this let us remind the reader of the notion of K-flatness.
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Definition 3.2.5. We say that a complex of flat R-modules F is K-flat provided

F ⊗R (−) sends quasi-isomorphisms to quasi-isomorphisms (or equivalently if

F ⊗R X is an exact complex for any exact complex of R-modules X).

Lemma 3.2.6. There is a fully faithful, exact, coproduct preserving functor

D(R) −→ A⊗(InjR).

Proof. There is, by Theorem 5.5 of [57], a fully faithful exact coproduct preserving

functor D(R) −→ N(FlatR) given by taking K-flat resolutions and inducing an

equivalence

D(R) ∼= ⊥Nac(FlatR).

This functor factors via A⊗(InjR) since K-flat complexes send acyclics to acyclics

under the tensor product.

Proposition 3.2.7. The embedding D(R) −→ A⊗(InjR) defines an action of

D(R) on S(R)

D(R)× S(R)
⊙

−→ S(R)

in the sense of Definition 2.1.1.

Proof. Since one can view this as taking place inside K(R) biexactness follows

from the good properties of the tensor product and taking K-flat resolutions

(which are not unique in K(R) but are in N(FlatR) and so the choice of K-flat

resolution in K(R) does not matter once one tensors with something in S(R)).

For A,B in D(R) and X in S(R) we have natural isomorphisms

(A⊗L B)⊙X ∼= A⊙ (B ⊙X)

since one obtains a K-flat resolution for A ⊗L B by tensoring K-flat resolutions

for A and B and taking K-flat resolutions is functorial modulo pure acyclics.

Taking K-flat resolutions preserves coproducts as in the statement of the lemma

so that (−)⊙ (−) is coproduct preserving in both variables. The stalk complex R

concentrated in degree 0 is already K-flat and gives the unit for the action. The

associativity and unit conditions then follow from those of the tensor product of

complexes.

Remark 3.2.8. Recall that every complex inK−(FlatR), the homotopy category

of bounded above complexes of flat R-modules, is K-flat. Thus when acting by

the subcategory K−(FlatR) there is an equality ⊙ = ⊗R.
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3.3 First Properties of the Action

We begin by recalling some facts about the tensor triangulated category

(D(R),⊗, R) (we use ⊗ to denote the left derived tensor product). The category

D(R) is rigidly-compactly generated: {ΣiR | i ∈ Z} is a generating set, so

the tensor unit is not only compact it also generates, and the compact objects

Dperf(R) are a rigid tensor subcategory. The spectrum of the compact objects

SpcDperf(R) is canonically isomorphic to SpecR (by [59]) and we will identify

these spaces. It is well known that D(R) has a model so Theorem 2.3.9 applies to

D(R). The support gives a complete classification of the localizing subcategories

of D(R) by [59], with the specialization closed subsets of SpecR corresponding

to subcategories generated by objects of Dperf(R).

Notation 3.3.1. We follow the conventions of Chapter 2 and denote, for

V ⊆ SpecR specialization closed, the associated Rickard idempotents by ΓVR and

LVR. For an object X of S(R) we often write ΓVX for ΓVR⊙X and we denote

the associated subcategory of S(R) by ΓVS(R). For a prime ideal p ∈ SpecR we

denote by ΓpR the associated object ΓV(p)R⊗ LZ(p)R.

The support assignment supp(D(R),⊙) taking values in SpecR will simply be

denoted by supp.

It is possible to give an explicit description of the Rickard idempotents asso-

ciated to certain specialization closed subsets of SpecR. First we fix notation for

the relevant complexes of R-modules and specialization closed subsets of SpecR.

Definition 3.3.2. Given an element f ∈ R we define the stable Koszul complex

K∞(f) to be the complex concentrated in degrees 0 and 1

· · · −→ 0 −→ R −→ Rf −→ 0 −→ · · ·

where the only non-zero morphism is the canonical map to the localization. Given

a sequence of elements f = {f1, . . . , fn} of R we set

K∞(f) = K∞(f1)⊗ · · · ⊗K∞(fn).

We define the Ĉech complex of f to be the suspension of the kernel of the canonical

morphism K(f) −→ R. This is a degreewise split epimorphism and so we get a

triangle in K(A)

K∞(f) −→ R −→ Č(f) −→ ΣK∞(f).
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Explicitly we have

Č(f)t =
⊕

i0<···<it

Rfi0 ···fit

for 0 ≤ t ≤ n−1 andK∞(f) is degreewise the same complex desuspended and with

R in degree 0. For an ideal I of R we define K(I) and Č(I) by choosing a set of

generators for I; the complex obtained is independent of the choice of generators

up to quasi-isomorphism in D(R) and hence up to pure quasi-isomorphism in

A⊗(InjR). We note that these complexes are K-flat.

Notation 3.3.3. We fix the notation we will use for the subsets of SpecR of

interest to us. Let

Z(p) = {q ∈ SpecR | q * p}

and denote its complement by

U(p) = {q ∈ SpecR | q ⊆ p}.

The other main collection of specialization closed subsets we will be interested in

are the usual closed subsets associated to primes, namely

V(p) = {q ∈ SpecR | p ⊆ q}.

In several cases there are explicit descriptions of the Rickard idempotents

corresponding to these specialization closed subsets.

Proposition 3.3.4. For an ideal I ⊆ R and p ∈ SpecR a prime ideal there are

natural isomorphisms in D(R):

(1) ΓV(I)R ∼= K∞(I);

(2) LV(I)R ∼= Č(I);

(3) LZ(p)R ∼= Rp.

In particular the objects ΓpR = ΓV(p)R⊗ LZ(p)R giving rise to supports on D(R)

and S(R) are naturally isomorphic to K∞(p)⊗Rp.

Proof. Statements (1) and (2) are special cases of [34] Lemma 5.8. For the third

statement simply observe that the full subcategory of complexes with homological

support in U(p) is the essential image of the inclusion of D(Rp).

We are now in a position to obtain, very cheaply, some first results about

the singularity category and the action of D(R) on it. We first observe that all

localizing subcategories of S(R) are D(R)-submodules.
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Lemma 3.3.5. Every localizing subcategory L of S(R) is stable under the action

of D(R).

Proof. As D(R) is generated by the tensor unit Lemma 2.1.15 applies.

We already observed that Theorem 2.3.9 applies to D(R). This has the fol-

lowing consequence for S(R):

Proposition 3.3.6. Given an object X of S(R) there is an isomorphism X ∼= 0

if and only if suppX = ∅. We also have for each object X of S(R) an equality

〈X〉loc = 〈ΓpX | p ∈ suppX〉loc.

Proof. This is an immediate consequence of Lemma 3.3.5 and Theorem 2.3.9.

Using the explicit description in Proposition 3.3.4 of certain Rickard idempo-

tents in D(R) we are able to give representatives for the objects resulting from

their action on objects of S(R).

Proposition 3.3.7. For each object X of S(R) and ideal I ⊆ R the complex

ΓV(I)X is homotopic to a complex whose degree i piece is the summand of X i

consisting of those indecomposable injectives corresponding to primes in V(I).

Proof. Let us fix an ideal I and choose generators I = (f1, . . . , fn). By Proposi-

tion 3.3.4 we have

ΓV(I)X ∼= K∞(f1, . . . , fn)⊙X ∼= K∞(fn)⊙ (K∞(fn−1)⊙ · · · (K∞(f1)⊙X) · · · ).

We can thus reduce to the case that I = (f). By Proposition 3.3.4 again we have

LV((f))X ∼= Č(f)⊗R X ∼= Rf ⊗R X

where the last isomorphism uses the explicit description of the Ĉech complex

given in Definition 3.3.2. The canonical map X −→ Rf ⊗RX is a degreewise split

epimorphism in the category of chain complexes which fits into the localization

triangle

K∞(f)⊗R X −→ X −→ Rf ⊗R X −→ ΣK∞(f)⊗R X

in S(R). So up to homotopy K∞(f)⊙X is the kernel of this split epimorphism.

The kernel in each degree is precisely the summand consisting of those indecom-

posable injectives corresponding to primes in V(I) which proves the claim.
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3.4 Subsets versus Subcategories

Recall from Definition 2.2.22 that the action of D(R) on S(R) gives rise to order

preserving assignments

{

subsets of SpecR
} τ //

oo
σ

{

localizing subcategories of S(R)
}

where for a localizing subcategory L we set

σ(L) = suppL = {p ∈ SpecR | ΓpL 6= 0}

and

τ(W ) = {A ∈ S(R) | suppA ⊆ W}.

Here we have used Lemma 3.3.5 to replace submodules by localizing subcategories

and the fact that R is noetherian so that there are no complications with invisible

points. As D(R) satisfies the local-to-global principle one can say a little more.

Proposition 3.4.1. Given a subset W ⊆ SpecR there is an equality of subcate-

gories

τ(W ) = 〈ΓpS(R) | p ∈ W 〉loc.

Proof. This is just a restatement of Lemma 2.3.3.

We next note that, as one would expect, S(R) is supported on the singular

locus SingR of SpecR.

Lemma 3.4.2. There is a containment σS(R) ⊆ SingR.

Proof. If p ∈ SpecR is a regular point then S(Rp) = 0. Thus for any object X

of S(R)

ΓpX ∼= Rp ⊗R (ΓV(p)R⊙X) ∼= 0

as it is an acyclic complex of injective Rp-modules.

It is clear that D(R) also acts, by K-flat resolutions, on itself and on K(InjR).

It will be convenient for us to show that these actions are compatible with each

other and the action on S(R) in an appropriate sense. We write ⊗ for the action

of D(R) on itself and ⊙ for the action of D(R) on K(InjR) which extends the

action on S(R).
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Proposition 3.4.3. These actions of D(R) are compatible with the localization

sequence

D(R)
Qλ // K(InjR)

Iλ //

Q

jj S(R)

I

kk

in the sense that, up to natural isomorphism, the action commutes with each

of the functors in the diagram. Explicitly, for J ∈ K(InjR), X ∈ S(R), and

E,F ∈ D(R) we have isomorphisms

Q(E ⊙ J) ∼= E ⊗QJ , Qλ(E ⊗ F ) ∼= E ⊙QλF

I(E ⊙X) ∼= E ⊙ IX , Iλ(E ⊙ J) ∼= E ⊙ IλJ.

Proof. It is obvious that the inclusion I is compatible with the action of D(R).

As D(R) acts on K(InjR) via K-flat resolutions the action commutes with Q;

an object J of K(InjR) is quasi-isomorphic to QJ so for E ∈ D(R) the object

E ⊙ J computes the left derived tensor product.

To treat the other two functors let J be an object of K(InjR) and consider

the localization triangle

QλQJ −→ J −→ IIλJ −→ ΣQλQJ.

AsD(R) is generated by the tensor unitR every localizing subcategory ofK(InjR)

is stable under the action by Lemma 2.1.15. Thus for E ∈ D(R) we get a triangle,

E ⊙QλQJ −→ E ⊙ J −→ E ⊙ IIλJ −→ ΣE ⊙QλQJ,

where E ⊙ QλQJ ∈ QλD(R) and E ⊙ IIλJ is acyclic. Hence this triangle must

be uniquely isomorphic to the localization triangle for E ⊙ J giving

E ⊙QλQJ ∼= QλQ(E ⊙ J) and E ⊙ IIλJ ∼= IIλ(E ⊙ J).

We already know that the action commutes with Q and I so the remaining two

commutativity relations follow immediately.

We can also say something about compatibility with the right adjoint Qρ of

Q.

Lemma 3.4.4. Suppose E and F are objects of D(R) such that E has a bounded

flat resolution and F has a bounded below injective resolution. Then

E ⊙QρF ∼= Qρ(E ⊗ F ).
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Proof. Let Ẽ be a bounded flat resolution of E and recall that, by virtue of being

bounded, Ẽ is K-flat. In [48] Krause identifies Qρ with taking K-injective reso-

lutions, where the K-injectives are the objects of the colocalizing subcategory of

K(InjR) generated by the bounded below complexes of injectives (such resolu-

tions exist, see for example [18]). Thus QρF is a K-injective resolution of F and

so, as bounded below complexes of injectives are K-injective, we may assume it

is bounded below as it is homotopic to the bounded below resolution we have

required of F . We have QρF ∼= F in D(R) so there are isomorphisms in the

derived category

E ⊗ F ∼= E ⊗QρF ∼= Ẽ ⊗R QρF.

Hence in K(InjR) we have isomorphisms

Qρ(E ⊗ F ) ∼= Qρ(E ⊗QρF )

∼= Qρ(Ẽ ⊗R QρF )

∼= Ẽ ⊗R QρF

∼= E ⊙QρF

where the penultimate isomorphism is a consequence of the fact that Ẽ ⊗R QρF

is, by the assumption that Ẽ is bounded and QρF is bounded below, a bounded

below complex of injectives and hence K-injective.

Before proceeding let us record the following easy observation for later use.

Lemma 3.4.5. The diagram

D+(R)

��

IλQρ // S(R)

��
D+(Rp) IλQρ

// S(Rp),

where the vertical functors are localization at p ∈ SpecR, commutes.

Proof. The square

D+(R)

��

Qρ // K(InjR)

��
D+(Rp) Qρ

// K(InjRp),

is commutative by Lemma 3.4.4.
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To complete the proof it is sufficient to show that the square

K(InjR)

��

Iλ // S(R)

��
K(InjRp) Iλ

// S(Rp),

also commutes. This follows by observing that the square

K(InjR) S(R)Ioo

K(InjRp)

OO

S(Rp),

OO

I
oo

commutes and taking left adjoints, where we are using the fact that tensoring

and restricting scalars along R −→ Rp are both exact and preserve injectives so

give rise to an adjoint pair or functors between the relevant homotopy categories

of injectives and singularity categories.

Given these compatibilities it is not hard to see that σS(R) is precisely the

singular locus.

Proposition 3.4.6. For any p ∈ SingR the object ΓpIλQρk(p) is non-zero in

S(R). Thus ΓpS(R) is non-trivial for all such p yielding the equality

σS(R) = SingR.

Proof. Let p be a singular point of SpecR. Applying the last lemma we may

check that IλQρk(p) is non-zero over Rp. By [52] Section 18 Theorem 41 one has

pdRp
k(p) = gl. dimRp = ∞

so k(p) is finitely generated over Rp but not perfect. Theorem 3.1.1 then tells us

that IλQρk(p) is not zero in S(Rp).

We now show IλQρk(p) lies in ΓpS(R). By Proposition 3.4.3 there is an

isomorphism

ΓpR⊙ IλQρk(p) ∼= Iλ(ΓpR⊙Qρk(p)). (3.1)

As ΓpR ∼= K∞(p) ⊗ Rp (by Proposition 3.3.4) is a bounded K-flat complex and

the injective resolution of k(p) is certainly bounded below we can apply Lemma

3.4.4. This gives us isomorphisms

Iλ(ΓpR⊙Qρk(p)) ∼= IλQρ(ΓpR⊗ k(p)) ∼= IλQρk(p).

Combining these with (3.1) shows that, up to homotopy, ΓpR ⊙ (−) fixes the

non-zero object IλQρk(p) proving that ΓpS(R) is non-zero.
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It is thus natural to restrict the support and the assignments σ and τ to

subsets of the singular locus. This result then implies that the assignment τ

taking a subset of SingR to a localizing subcategory of S(R) is injective with left

inverse σ.

Corollary 3.4.7. For every W ⊆ SingR we have στ(W ) = W . In particular, τ

is injective when restricted to subsets of the singular locus.

Proof. By Proposition 2.3.4 the assignment τ is injective when restricted to

σS(R) = SingR and we have

στ(W ) = W ∩ SingR = W

which proves the corollary.

We now prove some results concerning generators for the subcategories pro-

duced via the action of D(R). This will allow us to describe the image of τ as

the localizing subcategories which contain certain objects.

The next lemma is an easy modification of an argument of Krause in [48]. We

give the details, including those straight from Krause’s proof, as it is clearer to

present them along with the modifications than to just indicate what else needs

to be checked.

Lemma 3.4.8. Let V be a specialization closed subset of SingR. The set of

objects

{ΣiIλQρR/p | p ∈ V , i ∈ Z}

is a generating set for ΓVS(R) consisting of objects which are compact in S(R).

Proof. Let X be a non-zero object of ΓVS(R). In particular X is a complex of

injectives satisfying HnX = 0 for all n ∈ Z. As X is not nullhomotopic we can

choose n such that ZnX is not injective. Consider the beginning of an augmented

minimal injective resolution of ZnX

0 // ZnX // E0(ZnX) // E1(ZnX).

Note that for q /∈ V the object Rq⊗ΓVR is zero inD(R) as the cohomology of ΓVR

is supported in V by definition. Thus for q /∈ V the complex Xq is nullhomotopic

by virtue of being in the essential image of ΓVR ⊙ (−). So ZnXq is injective

as a nullhomotopic complex is split exact. Since, for modules, localization at a
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prime sends minimal injective resolutions to minimal injective resolutions (see for

example [53] Section 18) for any such q it holds that E1(ZnX)q = 0. So writing

E1(ZnX) ∼=
⊕

i

E(R/pi)

we have p ∈ V for each distinct p occurring in the direct sum as otherwise it

would not vanish when localized (see for example [13] Lemma 2.1). Now fix some

p such that E(R/p) occurs in E1(ZnX). By [33] Theorem 9.2.4, as the injective

envelope of p occurs in E1(ZnX), we have

0 6= dimk(p) Ext
1(k(p), ZnXp) = dimk(p) Ext

1(R/p, ZnX)p.

In particular Ext1(R/p, ZnX) is non-zero. Using [48] Lemma 2.1 and the adjunc-

tion between I and Iλ there are isomorphisms

Ext1(R/p, ZnX) ∼= HomK(R-Mod)(R/p,Σn+1IX)

∼= HomK(InjR)(QρR/p,Σn+1IX)

∼= HomS(R)(Σ
−n−1IλQρR/p, X).

Thus the set in question is certainly generating and it consists of compact objects

by Theorem 3.1.1 (3).

Lemma 3.4.9. The object IλQρk(p) generates ΓpS(R) for every p ∈ SingR i.e,

ΓpS(R) = 〈IλQρk(p)〉loc.

Proof. By Lemma 3.4.8 we have an equality

ΓV(p)S(R) = 〈IλQρR/q | q ∈ V(p)〉loc.

Noticing that

ΓpS(R) = LZ(p)ΓV(p)S(R) = 〈LZ(p)R〉loc ⊙ ΓV(p)S(R)

we thus get, by Lemma 2.1.14, equalities

〈LZ(p)R〉loc ⊙ ΓV(p)S(R) = 〈Rp〉loc ⊙ 〈IλQρR/q | q ∈ V(p)〉loc

= 〈Rp ⊙ IλQρR/q | q ∈ V(p)〉loc

where we have used Proposition 3.3.4 to identify LZ(p)R with Rp. Hence, using

Proposition 3.4.3 and Lemma 3.4.4 to move the action by Rp past IλQρ, we obtain

equalities

ΓpS(R) = 〈IλQρ(Rp ⊗R/q) | q ∈ V(p)〉loc = 〈IλQρk(p)〉loc

completing the proof.
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Next we consider the behaviour of σ and τ with respect to the collection

of subcategories of S(R) generated by objects of S(R)c. These assignments are

sensitive to such subcategories. Indeed we already saw in Proposition 2.2.11

that the subcategory τ associates to a specialization closed subset of SingR is

generated by compact objects of S(R). Now let us demonstrate that, when R is

Gorenstein, the support of any compact object of S(R) is closed. We begin by

showing that it is sufficient to consider the images under IλQρ of finitely generated

R-modules when considering the supports of compact objects.

Lemma 3.4.10. Let x be a compact object of S(R). Then there exists a finitely

generated R-module M and integer i such that x⊕Σx is isomorphic to ΣiIλQρM .

In particular there is an equality

supp x = supp IλQρM.

Proof. By Theorem 3.1.1 IλQρ induces an equivalence up to summands between

DSg(R) and S(R)c so x⊕Σx is in the image of IλQρ by [61] Corollary 4.5.12. By

the argument of [63] Lemma 1.11 every object of DSg(R) is, up to suspension,

the image of a finitely generated R-module so we can find a finitely generated M

as claimed.

Since supp x = supp(x⊕Σx) by Proposition 2.2.20 and, by the same Proposi-

tion, suspending doesn’t change the support the last statement now follows.

Lemma 3.4.11. If x is an object of S(R)c then the set

{p ∈ SingR | LZ(p)R⊙ x 6= 0}

is closed in SpecR.

Proof. Clearly we may, by applying Lemma 3.4.10, suppose x is IλQρM where

M is a finitely generated R-module. By the compatibility conditions of 3.4.3 and

3.4.4 we have an isomorphism

LZ(p)R⊙ IλQρM ∼= IλQρMp

where LZ(p)R ∼= Rp by Proposition 3.3.4.

By considering the diagram of Lemma 3.4.5 and noting that the module Mp

is finitely generated over Rp we see the object IλQρMp is zero precisely when Mp

has finite projective dimension.

Thus

{p ∈ SingR | LZ(p)R⊙ IλQρM 6= 0} = {p ∈ SingR | pdRp
Mp = ∞}

and this latter set is closed as M is finitely generated.
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Lemma 3.4.12. Let R be Gorenstein and let x be a compact object of S(R).

Then p ∈ SingR is in the support of x if and only if LZ(p)R⊙ x is not zero.

Proof. One direction is easy: if p ∈ supp x then

ΓpR⊙ x ∼= ΓV(p)R⊙ LZ(p)R⊙ x 6= 0

so LZ(p)R⊙ x is certainly not zero.

Now let us prove the converse. By Lemma 3.4.10 it is sufficient to prove

the result for IλQρM where M is a finitely generated R-module. So suppose

M is a finitely generated R-module of infinite projective dimension such that

the projection of Rp ⊗R M = Mp to S(Rp)
c is not zero, where this projection is

LZ(p)IλQρM by the compatibility conditions of 3.4.3 and 3.4.4. In particular Mp

also has infinite projective dimension.

As Rp is Gorenstein of finite Krull dimension Mp has, as an Rp-module, a

Gorenstein injective envelope G(Mp) by [33] Theorem 11.3.2 which fits into an

exact sequence

0 −→ Mp −→ G(Mp) −→ L −→ 0

where L has finite injective dimension (details about Gorenstein injectives and

Gorenstein injective envelopes can be found in Section 4.1.1). So for i sufficiently

large (i.e., exceeding the dimension of Rp) we have isomorphisms

HomS(R)(IλQρR/p,ΣiLZ(p)IλQρM)

∼= HomS(Rp)(IλQρk(p),Σ
iIλQρMp)

∼= HomS(Rp)(IλQρk(p),Σ
iIλQρG(Mp))

∼= ExtiRp
(k(p), G(Mp))

∼= ExtiRp
(k(p),Mp)

where the first isomorphism is by adjunction, the second by the identification

of a complete injective resolution for Mp with the defining complex of G(Mp)

(see Proposition 4.1.10 and Corollary 4.1.11, cf. [48] Section 7), the third by

[48] Proposition 7.10, and the last isomorphism by the finiteness of the injective

dimension of L.

From [33] Proposition 9.2.13 we learn that for q ⊆ q′ distinct primes with no

prime ideal between them that µj(q,Mp) 6= 0 implies that µj+1(q
′,Mp) 6= 0 where

µj(q,M) = dimk(q) Ext
j
Rq
(k(q),Mq)
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are the Bass invariants. AsMp is not perfect infinitely many of the Bass invariants

are non-zero and so in particular, as p is the maximal ideal of Rp, there are

infinitely many non-zero µj(p,Mp). Thus, taking i larger if necessary, we get that

0 6= ExtiRp
(k(p),Mp) ∼= HomS(R)(IλQρR/p,ΣiLZ(p)IλQρM).

Hence ΓV(p)LZ(p)IλQρM 6= 0 as by Lemma 3.4.8 the object IλQρR/p is one of the

generators for ΓV(p)S(R). It follows that p ∈ supp IλQρM as desired.

Proposition 3.4.13. Let R be Gorenstein. If x is a compact object of S(R) then

supp x is a closed subset of SingR.

Proof. By the last lemma

supp x = {p ∈ SingR | LZ(p)x 6= 0}

which is closed by Lemma 3.4.11.

Remark 3.4.14. If p ∈ SingR the proof of Lemma 3.4.12 gives the equality

supp IλQρR/p = V(p).

Indeed, as Rp is not regular the residue field k(p) must have an infinite free

resolution over Rp so if (R/p)q had finite projective dimension over R for q ∈ V(p)

one could localize to find a finite resolution for k(p) giving a contradication. Thus

supp IλQρR/p = {q ∈ SingR | LZ(q)IλQρR/p 6= 0}

which is precisely V(p).

It follows from this proposition and the compatibility of supports with ex-

tensions, coproducts, and suspensions (Proposition 2.2.20) that, provided R is

Gorenstein, for any localizing subcategory L ⊆ S(R) generated by objects of

S(R)c the subset σL ⊆ SingR is specialization closed. As mentioned above τ

sends specialization closed subsets to localizing subcategories of S(R) generated

by objects compact in S(R) so τ and σ restrict, i.e.:

Proposition 3.4.15. The assignments σ and τ restrict to well-defined functions

{

specialization closed

subsets of SingR

}

τ //
oo

σ

{

localizing subcategories of S(R)

generated by objects of S(R)c

}

.
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We are now ready to state and prove our first classification theorem for sub-

categories of the singularity category (cf. Theorem 7.5 [68]).

Theorem 3.4.16. Let R be a commutative Gorenstein ring. Then there are order

preserving bijections

{

subsets of SingR
} τ //

oo
σ

{

localizing subcategories L of S(R)

containing IλQρk(p) for p ∈ σ(L)

}

and

{

specialization closed

subsets of SingR

}

τ //
oo

σ











subcategories L of S(R)

generated by objects of S(R)c

and containing IλQρk(p) for p ∈ σ(L)











.

This second being equivalent to the bijection

{

specialization closed

subsets of SingR

}

//
oo











thick subcategories L of DSg(R)

such that Lp ⊆ DSg(Rp) contains k(p)

(up to summands)











.

Proof. We proved in Corollary 3.4.7 that στ(W ) = W for every subset W of

SingR. If L is a localizing subcategory then by the local-to-global principle

Theorem 2.3.9

L = 〈ΓpL | p ∈ σ(L)〉loc.

Given that IλQρk(p) lies in L for each p ∈ σ(L) we must have ΓpL = ΓpS(R) by

Lemma 3.4.9. Thus L = τσ(L) by Proposition 3.4.1.

The restricted assignments of the second claim make sense by Proposition

3.4.15 and it is a bijection by the same argument we have just used above.

The last bijection is a consequence of the second one together with Krause’s

result Theorem 3.1.1 (3) which identifies S(R)c, up to summands, with the sin-

gularity category DSg(R).



Chapter 4

Hypersurface Rings

The aim of this chapter is to strengthen Theorem 3.4.16 in the case where R is

locally a hypersurface. We prove that for such rings subsets of the singular locus

completely classify localizing subcategories of S(R). This allows us to deduce

that the telescope conjecture holds for S(R).

4.1 Preliminary Material on Commutative Al-

gebra

We give here a brief summary of some commutative algebra definitions and re-

sults. Specifically the theory of Gorenstein homological algebra and local com-

plete intersections. Our main reference for Gorenstein homological algebra is [33],

particularly Chapters 10 and 11.

4.1.1 Gorenstein Homological Algebra

Let us denote by R a noetherian ring.

Definition 4.1.1. An R-module G is Gorenstein injective if there exists an exact

sequence

E = · · · −→ E1 −→ E0 −→ E0 −→ E1 −→ · · ·

of injective R-modules such that Hom(I, E) is exact for every injective module

I and G = ker(E0 −→ E1) = Z0E is the zeroth syzygy of E. We say that the

complex E is totally acyclic and call it a complete resolution of G.

63
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Remark 4.1.2. Of course one can extend this definition to other abelian cate-

gories with enough injectives. For instance there is a notion of Gorenstein injective

sheaves on a scheme.

Definition 4.1.3. We denote by Ktac(InjR) the homotopy category of totally

acyclic complexes of injective R-modules. It is a full triangulated subcategory of

S(R) = Kac(InjR) and the two coincide when R is Gorenstein by [48] Proposition

7.13.

Let us recall the following two results concerning Gorenstein injective modules.

Proposition 4.1.4 ([33] Proposition 10.1.2). Let G be a Gorenstein injective

R-module. Then

Exti(I,G) = 0

for all i > 0 and injective modules I and either idR G = 0 or idR G = ∞.

Proposition 4.1.5 ([33] Corollary 11.2.2). Let R be a Gorenstein ring of finite

Krull dimension and G an R-module. The following are equivalent:

(1) G is Gorenstein injective;

(2) Exti(L,G) = 0 for all R-modules L with pdR L < ∞ and all i ≥ 1;

(3) Ext1(L,G) = 0 for all R-modules L with pdR L < ∞;

(4) Exti(I,G) = 0 for all injective R-modules I and i ≥ 1.

We now define envelopes with respect to a class of R-modules.

Definition 4.1.6. Let R be a ring and fix some class G of R-modules. A G-

preenvelope of an R-module M is a pair (G, f) where G is a module in G and

f : M −→ G is a morphism such that for any G′ ∈ G and f ′ ∈ Hom(M,G′) there

exists a morphism making the triangle

M
f //

f ′
  B

BB
BB

BB
B G

∃
���
�

�

G′

commute. We say that a preenvelope (G, f) is a G-envelope of M if, when we

consider the diagram

M
f //

f   A
AA

AA
AA

A G

∃
���
�

�

G
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every choice of morphism G −→ G making the triangle commute is an automor-

phism of G. When speaking of envelopes we shall omit the morphism from the

notation and refer to G as the G-envelope of M .

It is clear that G-envelopes, when they exist, are unique up to isomorphism. In

the case G = InjR, the class of injective R-modules, we see that the InjR-envelope

of an R-module is precisely its injective envelope. In the case G = GInjR, the

class of Gorenstein injective R-modules, we get the notion of Gorenstein injective

envelope. As every injective R-module is Gorenstein injective it can be shown

that whenever (G, f) is a Gorenstein injective envelope of M the morphism f is

injective.

Notation 4.1.7. For an R-module M we shall denote its Gorenstein injective

envelope, if it exists, by GR(M).

In many cases Gorenstein injective envelopes exist and have certain nice prop-

erties.

Theorem 4.1.8 ([33] 11.3.2, 11.3.3). If R is Gorenstein of Krull dimension n,

then every R-module M admits a Gorenstein injective envelope M −→ G such

that if

0 −→ M −→ G −→ L −→ 0

is exact then idR L ≤ n − 1 whenever n ≥ 1. Furthermore, idR M < ∞ if and

only if M −→ G is an injective envelope.

Proposition 4.1.9 ([33] 10.4.25, 11.3.9). Let R be a Gorenstein ring of finite

Krull dimension. Then the class of Gorenstein injective R-modules is closed

under small coproducts and summands and if Mi −→ Gi is a Gorenstein injective

envelope of the R-module Mi for each i ∈ I, then

⊕iMi −→ ⊕iGi

is a Gorenstein injective envelope.

Following the notation above we denote by GInjR the category of Gorenstein

injective R-modules. It is a Frobenius category i.e., it is an exact category with

enough projectives and enough injectives and the projective and injective objects

coincide. The exact structure comes from taking the exact sequences to be those

exact sequences of R-modules whose terms are Gorenstein injective. It is Frobe-

nius as every injective R-module is Gorenstein injective and by Proposition 4.1.4

injective R-modules are also projective in GInjR.
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The stable category of GInjR denoted GInjR is the category whose objects

are those of GInjR and whose hom-sets are

Hom(G,H) := HomGInjR(G,H)

= HomR(G,H)/{f | f factors via an injective module}.

This category is triangulated with suspension functor given by taking syzygies

of complete resolutions and triangles coming from short exact sequences (see for

example [37] Chapter 1 for details).

The following result shows that we can study part of the singularity category

S(R) by working with Gorenstein injective R-modules.

Proposition 4.1.10. For a noetherian ring R there is an equivalence

Ktac(InjR)
Z0

//oo
c

GInjR

where Z0 takes the zeroth syzygy of a complex of injectives and c sends a Goren-

stein injective R-module to a complete resolution.

Proof. The result is standard so we only sketch the proof. The functor c is well

defined since complete resolutions are unique up to homotopy equivalence, exist

by definition for every Gorenstein injective module, and morphisms of modules

lift uniquely up to homotopy to morphisms of complete resolutions. The zeroth

syzygy of any totally acyclic complex of injectives is by definition Gorenstein

injective. It is clear that, up to injectives, the Gorenstein injective R-module

obtained by applying Z0 to a totally acyclic complex of injectives only depends

on its homotopy class so that Z0 is well defined.

It is easy to check that the requisite composites are naturally isomorphic to

the corresponding identity functors.

For R Gorenstein every acyclic complex of injectives is totally acyclic by [48]

Proposition 7.13 so there is an equivalence between S(R) and GInjR. We thus

obtain an action of D(R) on GInjR via this equivalence and we use the same

notation to denote this action.

Corollary 4.1.11. Let R be a Gorenstein ring and M an R-module. There is

an isomorphism in GInjR

Z0IλQρM ∼= GR(M).
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Proof. By Theorem 4.1.8 there is a short exact sequence of R-modules

0 −→ M −→ GR(M) −→ L −→ 0

where L has finite projective dimension. Considering this as a triangle in D(R)

we obtain a triangle in GInjR

Z0IλQρM −→ Z0IλQρGR(M) −→ 0 −→ ΣZ0IλQρM

where L is sent to zero as it is a perfect complex when viewed as an object of

D(R). By [48] Corollary 7.14 the object Z0IλQρGR(M) is naturally isomorphic

to the image of GR(M) in GInjR under the canonical projection which proves

the claim.

4.1.2 Complete Intersections and Complexity

We now give a brief summary of certain invariants related to the growth of min-

imal free resolutions over local rings and their relation to local complete inter-

section rings. First of all let us recall the definition of the rings which will be of

most interest to us.

Definition 4.1.12. Let (R,m, k) be a noetherian local ring. We say R is a

complete intersection if its m-adic completion R̂ can be written as the quotient of

a regular ring by a regular sequence. The minimal length of the regular sequence

in such a presentation of R̂ is the codimension of R.

A not necessarily local ring R is a locally complete intersection if Rp is a

complete intersection for each p ∈ SpecR.

If R is a complete intersection of codimension 1 we say that it is a hypersurface.

Similarly if R is a complete intersection of codimension 1 when localized at each

prime of SpecR we say that R is locally a hypersurface.

Remark 4.1.13. Rings satisfying the conditions of the above definition are some-

times called abstract complete intersections to differentiate them from those local

rings which are quotients of regular rings by regular sequences without the need

to complete. We use the term complete intersection as in the definition above

and when we need to impose that R itself is a quotient of a regular ring by a

regular sequence it will be stated explicitly.

Remark 4.1.14. The property of being a complete intersection is stable under

localization. Furthermore, the property of being a complete intersection is in-

trinsic (cf. Theorem 4.1.15) and if (R,m, k) is a complete intersection then any
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presentation of R̂ as a quotient of a regular local ring has kernel generated by a

regular sequence.

Let (R,m, k) be a local ring. Given a finitely generated R-module M we

denote by βi(M) the ith Betti number of M

βi(M) = dimk Tori(M,k) = dimk Ext
i(M,k).

The asymptotic behaviour of the Betti numbers is expressed by the complexity

of M . For M in R-mod the complexity of M , cx(M), is defined to be

cx(M) = inf{c ∈ N | there exists a ∈ R such that βn(M) ≤ anc−1 for n ≫ 0}.

By a result of Gulliksen ([36] Theorem 2.3) the complexity of the residue field

k detects whether or not R is a complete intersection. In fact one can say slightly

more:

Theorem 4.1.15 ([1] Theorem 3). The following conditions on a local ring

(R,m, k) are equivalent:

(1) R is a complete intersection of codimension c;

(2) cx k = c;

(3) for every M a finitely generated R-module cxM ≤ c and some module has

complexity c.

Finally we recall how the complexity of a module changes under certain

changes of the base ring. This result together with further properties can be

found in [4] as Proposition 5.2.

Proposition 4.1.16. For a local ring (R,m, k) and a finitely generated R-module

M the following hold.

(1) Let R′ be another local ring and R −→ R′ a local flat morphism, then

cxR M = cxR′ M ⊗R R′.

(2) Let Q −→ R be a surjective local map of local rings whose kernel is generated

by a Q-regular sequence of length c. Then

cxQ M ≤ cxR M ≤ cxQ M + c.
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4.2 The Classification Theorem for Hypersur-

faces

Throughout this section (R,m, k) is a local Gorenstein ring unless otherwise spec-

ified. We consider the relationship between the categories S(R) and S(R/(x)) for

x a regular element. Our results allow us to classify the localizing subcategories

of S(R) in the case that R is a hypersurface ring.

By the classification result we have already proved in Theorem 3.4.16 together

with the fact that every localizing subcategory is closed under the action of D(R)

(Lemma 3.3.5) it is sufficient to consider subcategories of ΓpS(R). As in the

discussion before Theorem 2.5.11 a bijection between subsets of the singular locus

and the collection of localizing subcategories is equivalent to each of the ΓpS(R)

being minimal in the sense of Definition 2.5.10

Remark 4.2.1. Note that we can reduce to the case of local rings when studying

minimality. Indeed, suppose R is a noetherian ring and p ∈ SpecR. Then since

ΓpR⊗LZ(p)R ∼= ΓpR we can study ΓpS(R) in S(Rp) ⊆ S(R), the essential image

of LZ(p)R⊙ (−) ∼= Rp ⊗R (−).

We now prove several lemmas leading to a key proposition. The first two of

these lemmas are well known.

Lemma 4.2.2. Let x be a regular element of R. Then the quotient ring R/(x)

is also Gorenstein.

Proof. By the second injective change of rings theorem (see for example [44]

Theorem 205) we have

idR/(x) R/(x) ≤ idR R− 1 = dimR− 1.

Thus R/(x) has finite self-injective dimension so is Gorenstein as claimed.

Lemma 4.2.3. Let G be a Gorenstein injective R-module and x ∈ R an R-regular

element. Then G is x-divisible i.e., multiplication by x is surjective on G.

Proof. As x is regular we get a projective resolution of the R-module R/(x)

0 // R
x // R // R/(x) // 0.

Recall from Proposition 4.1.5 that Gorenstein injective modules are right Exti-

orthogonal to the modules of finite projective dimension for i ≥ 1. So applying

HomR(−, G) to the above short exact sequence yields an exact sequence

0 // HomR(R/(x), G) // G
x // G // 0
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which proves the claim.

Notation 4.2.4. We will consider D(R) to act on GInjR via the equivalence of

Proposition 4.1.10. Thus by ΓmG for G ∈ GInjR we mean the class represented

by the Gorenstein injective Z0Γmc(G).

Lemma 4.2.5. Let G be a Gorenstein injective R-module such that ΓmG 6= 0 in

the stable category. Then for all i ≥ 1

Exti(k,G) 6= 0.

Proof. For i ≥ 1 there are isomorphisms

Exti(k,G) ∼= Hom(IλQρk,Σ
iIλQρG)

∼= Hom(IλQρk,Σ
iΓmIλQρG)

∼= Exti(k,ΓmG)

where the first and last isomorphisms are via [48] Proposition 7.10, together with

Lemma 3.4.4 for the last isomorphism, and the middle one is by adjunction and

the fact that as R is local there is an equality ΓmR = ΓV(m)R of tensor idempotents

in D(R). By Proposition 3.3.7 the minimal complete resolution of ΓmG consists

solely of copies of E(k). Hence there is a representative for ΓmG which is m-

torsion and, as it represents a non-zero object in the stable category, of infinite

injective dimension. So using the isomorphisms above we see that the Ext’s are

nonvanishing as claimed: their dimensions give the cardinalities of the summands

of E(k) in each degree of a minimal injective resolution for our representative of

ΓmG ([33] 9.2.4).

Lemma 4.2.6. Let G be a Gorenstein injective R-module such that ΓmG 6= 0

in the stable category, x ∈ R a regular element, and denote by M the R-module

HomR(R/(x), G). Then idR M = ∞ = pdR M .

Proof. Recall from the proof of Lemma 4.2.3 that M fits into the short exact

sequence

0 // M // G
x // G // 0.

Applying HomR(k,−) gives a long exact sequence

0 // Hom(k,M) // Hom(k,G) // Hom(k,G) // Ext1(k,M) // · · ·

where for i ≥ 0 the maps

Exti(k,G) −→ Exti(k,G)
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are multiplication by x (see for example [71] 3.3.6) and hence are all 0 as ([71]

Corollary 3.3.7) the Exti(k,G) are k-vector spaces. Thus for i ≥ 0 the morphisms

Exti(k,M) −→ Exti(k,G)

are surjective. By the last lemma the groups Exti(k,G) are non-zero for i ≥ 1.

Thus Exti(k,M) 6= 0 for i ≥ 1 so M necessarily has infinite injective dimension.

Since R is Gorenstein M must also have infinite projective dimension (see for

example [33] Theorem 9.1.10).

Proposition 4.2.7. Let G be an object of ΓmGInjR and suppose x is a regular

element of R. Then 〈G〉loc contains the image of a non-injective Gorenstein

injective envelope of an R/(x)-module.

Proof. By Lemmas 4.2.6 and 4.2.3 there is a short exact sequence of R-modules

0 −→ M −→ G
x

−→ G −→ 0

with M an R/(x)-module of infinite projective dimension over R. Applying

Z0IλQρ gives a triangle in 〈G〉loc

GR(M) −→ G −→ G −→ ΣGR(M)

where we use Corollary 4.1.11 to identify Z0IλQρM with the class of its Gorenstein

injective envelope. The module GR(M) is not injective by Theorem 4.1.8 as

pdR M = ∞ (i.e., it is not in the kernel of IλQρ), which completes the proof.

Suppose R is an artinian local hypersurface. Then necessarily R is, up to

isomorphism, of the form S/(xn) for a discrete valuation ring S with x a uni-

formiser. In particular, R is an artinian principal ideal ring so by [41] Theorem

2 every R-module is a direct sum of cyclic R-modules. Using this fact we show

that GInjR is minimal when R is an artinian local hypersurface. This provides

the base case for our inductive argument that the maps of Theorem 3.4.16 are

bijections for any hypersurface ring without the requirement that the categories

in question contain certain objects.

Lemma 4.2.8. Suppose R is an artinian local hypersurface. Then the category

GInjR = ΓmGInjR is minimal.

Proof. Since R is 0-Gorenstein there is an equality R-Mod = GInjR, where

R-Mod is the stable category of the Frobenius category R-Mod, as every R-

module is Gorenstein injective by [33] Proposition 11.2.5 (4).
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As remarked above we have an isomorphism R ∼= S/(xn) where S is a discrete

valuation ring and x is a uniformiser. We also recalled that every R-module is a

coproduct of cyclic R-modules; this remains true in the stable category R-Mod.

Since the subcategory of compacts in R-Mod is precisely R-mod every object is

thus a coproduct of compact objects (so in particular R-Mod is a pure-semisimple

triangulated category cf. [12] Corollary 12.26). It follows that every localizing

subcategory of R-Mod is generated by objects of R-mod.

We deduce minimality from the existence of Auslander-Reiten sequences. For

each 1 ≤ i ≤ n− 1 there is an Auslander-Reiten sequence

0 // R/(xi)
f // R/(xi−1)⊕R/(xi+1)

g // R/(xi) // 0

where, using (−) to denote residue classes,

f(a) =

(

a

ax

)

and g

(

a

b

)

= ax− b.

So the smallest thick subcategory containing any non-zero compact object is all

of R-mod: every object is up to isomorphism a coproduct of the classes of cyclic

modules and the Auslander-Reiten sequences show that any cyclic module which

is non-zero in the stable category is a generator. Thus, as we observed above that

every localizing subcategory is generated by objects of R-mod, we see there are

no non-trivial localizing subcategories except for all of R-Mod so it is minimal as

claimed.

We next need a result that is essentially contained in [48] Section 6 but which

we reformulate in a way which is more convenient for our purposes. To prove

this lemma we need a very straightforward result which we include for the sake

of completeness.

Lemma 4.2.9. Suppose R and S are local rings and π : R −→ S is a surjection

with kernel generated by an R-regular sequence. Then the functor

π∗ : S-Mod −→ R-Mod

sends modules of finite projective dimension to modules of finite projective dimen-

sion.

Proof. We prove the result by induction on the length of the R-sequence {xi}
n
i=1

generating the kernel of π. Suppose first that S = R/(x) for an R-regular element
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x. The first change of rings theorem ([71] Theorem 4.3.3) gives for any S-module

M of finite projective dimension

pdR M = pdS M + 1

so π∗ sends modules of finite S-projective dimension to modules of finite R-

projective dimension as claimed.

Suppose the result holds for R-sequences of length strictly less than n and

let S = R/(x1, . . . , xn) where the sequence {x1, . . . , xn} is R-regular. Then, as

above, we deduce from the first change of rings theorem that for an S-module M

of finite S-projective dimension

pdR/(x1,...,xn−1)M = pdS M + 1.

Thus using the natural factorization of the functor π∗ via R/(x1, . . . , xn−1)-Mod

we are done by the inductive hypothesis.

Lemma 4.2.10. Suppose π : R −→ S is a surjective map of Gorenstein local

rings with kernel generated by an R-regular sequence. Then there is an induced

coproduct preserving exact functor

π∗ : GInjS −→ GInjR

which sends an object of GInjS to its GInjR-envelope.

Proof. Let us denote by ν the composite

ν : D(S)
π∗ // D(R)

IλQρ // S(R)
Z0

// GInjR .

Recall from [48] Corollary 5.5 and Example 5.6 that the composite

µ : R-Mod // D(R)
IλQρ // S(R)

where the functor R-Mod −→ D(R) is the canonical inclusion, preserves all

coproducts and annihilates all modules of finite projective dimension. Thus by

Lemma 4.2.9 the equal composites

GInjS //

π∗
%%KKKKKKKKKK
D(S) ν // GInjR

R-Mod
Z0µ

99sssssssss

must factor via the stable category GInjS. Indeed, as R is Gorenstein S is also

Gorenstein by Lemma 4.2.2. Thus injective S-modules have finite S-projective
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dimension and π∗ sends them to modules of finite R-projective dimension by the

last lemma. In particular S-injectives are killed by both composites. We get a

commutative diagram

GInjS //

p
$$I

II
II

II
II

I
D(S)

ν // GInjR

GInjS.

π∗

::uuuuuuuuu

The functors π∗, p, and Z0µ are all coproduct preserving: we have already noted

that µ preserves coproducts, Z0 is the equivalence of Proposition 4.1.10, and

it is easily seen that the projection p also preserves coproducts (the concerned

reader may consult [48] Corollary 7.14). As p is essentially surjective we see

that π∗ also preserves coproducts. Indeed, the top composite is equal to Z0µπ∗

which preserves coproducts and any coproduct of objects in GInjS is the image

under p of a coproduct of S-modules. Exactness follows similarly by noting that

the top composite sends short exact sequences to triangles as GInjS is an exact

subcategory of S-Mod and π∗ is exact.

The explicit description of π∗ is clear from the construction: by the commuta-

tivity of the diagram π∗ sends the image of an object M of GInjS to Z0IλQρπ∗M

which is precisely its Gorenstein injective envelope as an R-module by Corollary

4.1.11.

Remark 4.2.11. Given an S-module M we see from the above that, letting

GS(M) and GR(π∗M) denote its Gorenstein injective envelopes over S and R

respectively, there are isomorphisms in the stable category

π∗GS(M) ∼= GR(π∗GS(M)) ∼= GR(π∗M).

The first isomorphism is a consequence of the last lemma. The second isomor-

phism follows from Theorem 4.1.8 which provides us, after an application of π∗,

with a short exact sequence

0 −→ π∗M −→ π∗GS(M) −→ π∗L −→ 0

where π∗L has finite projective and injective dimension. Thus the R-Gorenstein

injective envelopes of π∗M and π∗GS(M) agree in GInjR which gives the second

isomorphism.

We are now ready to prove the theorem which gives us a complete classification

of the localizing subcategories of S(R) when R is a hypersurface.
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Theorem 4.2.12. If (R,m, k) is a hypersurface then ΓmGInjR is minimal.

Proof. We prove the theorem by induction on the dimension of R. In the case

dimR = 0 then R is an artinian hypersurface and GInjR is minimal by Lemma

4.2.8.

So suppose the theorem holds for hypersurfaces of dimension strictly less than

n and let dimR = n ≥ 1. Then as depthR = n ≥ 1 the maximal ideal m is not

contained in any of the associated primes or m2 so we can choose, by prime

avoidance, a regular element x not lying in m2. The quotient R/(x) is again a

hypersurface, for example one can see this by noting that the second deviations

agree ε2(R) = ε2(R/(x)) = 1 and the higher deviations vanish (see [2] section 7

for details).

Let us denote the projection R −→ R/(x) by π. By Proposition 4.2.7 for

every 0 6= G ∈ ΓmGInjR the subcategory 〈G〉loc contains a non-zero object in the

image of the functor π∗ of Lemma 4.2.10. The ring R/(x) has dimension n− 1 so

by the inductive hypothesis the category Γm/(x)GInjR/(x) is minimal.

The functor π∗ is exact and coproduct preserving by Lemma 4.2.10 so as 〈G〉loc

contains one object in the image of π∗ it must contain the whole image by min-

imality of Γm/(x)GInjR/(x). In particular 〈G〉loc contains GR(k) ∼= π∗GR/(x)(k).

This object generates ΓmGInjR by Z0 applied to the statement of Lemma 3.4.9.

Hence 〈G〉loc = ΓmGInjR so ΓmGInjR is minimal as claimed.

Using the other techniques we have developed this is enough to give a classi-

fication of the localizing subcategories of S(R) for R a not necessarily local ring

which is locally a hypersurface.

Theorem 4.2.13. If R is a noetherian ring which is locally a hypersurface then

there is an order preserving bijection

{

subsets of SingR
} τ //

oo
σ

{

localizing subcategories of S(R)
}

given by the assignments of Theorem 3.4.16. This restricts to the equivalent order

preserving bijections
{

specialization closed

subsets of SingR

}

τ //
oo

σ

{

localizing subcategories of S(R)

generated by objects of S(R)c

}

and
{

specialization closed

subsets of SingR

}

//
oo

{

thick subcategories of DSg(R)
}

.
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Proof. By Theorem 3.4.16 it is sufficient to check every localizing subcategory

L contains IλQρk(p) for each p ∈ SingR such that ΓpL 6= 0. As there are

equivalences

ΓpS(R) ∼= ΓpS(Rp)

each of the subcategories ΓpS(R) is minimal by Theorem 4.2.12 as each Rp is a

local hypersurface. Hence if ΓpL 6= 0 for a localizing subcategory L we must have

ΓpS(R) = ΓpL ⊆ L where the containment is a consequence of the closure of

localizing subcategories under the action of D(R) (Lemma 3.3.5). In particular

the generator IλQρk(p) of ΓpS(R) is an object of L. Thus the image of the

injection τ , namely those localizing subcategories L containing IλQρk(p) for each

p ∈ SingR such that ΓpL 6= 0, is in fact the set of all localizing subcategories.

This proves the first bijection.

As in Theorem 3.4.16 the second bijection is a consequence of the first and

Proposition 3.4.13 which states that compact objects have closed supports so σ of

a compactly generated subcategory is specialization closed. The third bijection

is equivalent to the second as by Theorem 3.1.1 (3) there is an equivalence up to

summands DSg(R) ∼= S(R)c so our restatement is a consequence of Thomason’s

localization theorem ([60] Theorem 2.1).

Remark 4.2.14. Our result implies Takahashi’s Theorem 7.6 of [68].

We can use this theorem to give a proof of the telescope conjecture for S(R)

when R is locally a hypersurface.

Theorem 4.2.15. If R is locally a hypersurface then the singularity category

S(R) satisfies the telescope conjecture i.e., every smashing subcategory of S(R) is

generated by objects of S(R)c.

Proof. As every localizing subcategory of S(R) is a D(R)-submodule by Lemma

3.3.5 and the D(R) action classifies the localizing subcategories of S(R) by The-

orem 4.2.13 the relative telescope conjecture (Definition 2.4.1) for this action

agrees with the usual telescope conjecture. Thus it is sufficient to verify that the

conditions of Theorem 2.4.14 hold.

The local-to-global principle holds for the action as Theorem 2.3.9 applies

to D(R). The support of every compact object of S(R) is specialization closed

by Proposition 3.4.13 and for every irreducible closed subset V(p) ⊆ SingR the

object IλQρR/p has support V(p) by Remark 3.4.14.

Thus the theorem applies and every smashing subcategory of S(R) is com-

pactly generated.



Chapter 5

The Singularity Category of a

Scheme

We now present global versions of our results for affine schemes. Using these

results we give a complete classification of the localizing subcategories of the

singularity category for local complete intersection rings and certain complete

intersection schemes over a base field. Throughout (unless explicitly mentioned

otherwise) we will denote by X a separated noetherian scheme. We will use the

following notation

D(X) := D(QCohX), S(X) := Kac(InjX) and K(X) := K(QCohX)

where QCohX is the category of quasi-coherent sheaves of OX-modules and InjX

is the category of injective quasi-coherent sheaves of OX-modules.

Remark. We have defined InjX to be the category of injective objects in QCohX,

but we could just as well have taken it to be the category of those injective ob-

jects in the category of all OX-modules which are quasi-coherent. This fact can be

found as Lemma 2.1.3 of [28]. We thus feel free to speak either of quasi-coherent

injective OX-modules or injective quasi-coherent OX-modules as they are the

same thing when X is (locally) noetherian which is the only case we consider.

We begin this section by showing that, as in the affine case, D(X) acts on

S(X). We can then apply the machinery developed in Section 2.3 together with

local arguments on X to globalise most of the results we have proved in the affine

case.

77
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5.1 An Action of D(X)

We recall that the machinery of [48], [58], and [57] works perfectly well in the

generality that X is a noetherian separated scheme (in fact the machinery in

each of these papers works in greater generality than we will use - the noetherian

separated case is the intersection of what is known with our interests). Let us

prove there is an action

D(X)× S(X)
⊙

−→ S(X)

as in the affine case.

Recall from [48] Corollary 5.4 that S(X) is a compactly generated triangulated

category. Consider E =
∐

λ Eλ where Eλ runs through a set of representatives

for the isomorphism classes of compact objects in S(X). We define a homological

functor H : K(FlatX) −→ Ab by setting, for F an object of K(FlatX),

H(F ) = H0(F ⊗OX
E)

where the tensor product is taken in K(X). This is a coproduct preserving ho-

mological functor since we are merely composing the exact coproduct preserving

functor (−)⊗OX
E with the coproduct preserving homological functor H0.

We again remind the reader of the notion of pure acyclicity. In [58] a complex

F in K(FlatX) is defined to be pure acyclic if it is exact and has flat syzygies.

Such complexes form a triangulated subcategory of K(FlatX) which we denote

by Kpac(FlatX) and we say that a morphism with pure acyclic mapping cone is a

pure quasi-isomorphism. We recall that when X is noetherian the tensor product

of a complex of flats with a complex of injectives is again a complex of injectives.

As in the affine case tensoring a pure acyclic complex of flats with an injective

complex yields a contractible complex. This can be checked locally using [62]

Corollary 9.7, see for example [57] Lemma 8.2. In particular every pure acyclic

complex lies in the kernel of H.

Definition 5.1.1. With notation as above we denote by A⊗(InjX) the quotient

ker(H)/Kpac(FlatX).

Lemma 5.1.2. An object F of K(FlatX) lies in ker(H) if and only if the exact

functor

F ⊗OX
(−) : K(InjX) −→ K(InjX)

restricts to

F ⊗OX
(−) : S(X) −→ S(X).
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In particular, A⊗(InjX) consists of the pure quasi-isomorphism classes of objects

which act on S(X).

Proof. The proof is essentially the same as the one given for Lemma 3.2.4; the

point is that E generates S(X).

Remark 5.1.3. Restricting H to N(FlatX) = K(FlatX)/Kpac(FlatX) we ob-

tain by Theorem 3.2.1 an adjoint pair

A⊗(InjX)
//

oo N(FlatX).

Lemma 5.1.4. There is a fully faithful, exact, coproduct preserving functor

D(X) −→ A⊗(InjX).

Proof. There is, by the proof of Theorem 5.5 of [57], a fully faithful, exact, coprod-

uct preserving functor D(X) −→ N(FlatX) given by taking K-flat resolutions

and inducing an equivalence

D(X) ∼= ⊥Nac(FlatX).

This functor given by taking resolutions factors via A⊗(InjX) since K-flat com-

plexes send acyclics to acyclics under the tensor product.

Remark 5.1.5. Taking K-flat resolutions and then tensoring gives an action

(−)⊙ (−) : D(X)× S(X) −→ S(X)

by an argument which is the same (mutatis mutandis) as the one given in Propo-

sition 3.2.7: K-flat resolutions are well behaved with respect to the tensor product

so the necessary compatibilities follow from those of the tensor product of com-

plexes.

The tensor triangulated category (D(X),⊗,OX) is rigidly-compactly gener-

ated. Thus we can apply all of the machinery we have developed for actions of

rigidly-compactly generated triangulated categories. In particular, recalling from

[69] that SpcD(X)c = SpcDperf(X) ∼= X, we can associate to every specialization

closed subset V of X a localization sequence of submodules

ΓVS(X) // S(X) //
kk

LVS(X)jj

where ΓVS(X) is generated by objects compact in S(R), by Corollary 2.2.13 and

Lemma 2.2.6. Since X is noetherian we get for every x ∈ X objects ΓxOX which
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allow us to define supports on S(X) with values in X. We also wish to note that

by Lemma 2.2.8 the action restricts to the level of compact objects

Dperf(X)× S(X)c
⊙

−→ S(X)c.

Finally as the category D(X) has a model Theorem 2.3.9 applies.

5.2 Subsets of X Versus Subcategories of S(X)

We are now in a position to demonstrate that what we have proved in the affine

case extends in a straightforward way to noetherian separated schemes via the

machinery of Section 2.5. As in Definition 2.2.22 we have assignments

{

subsets of X
} τ //

oo
σ

{

localizing D(X)-submodules of S(X)
}

where for a localizing submodule L we set

σ(L) = suppL = {x ∈ X | ΓxL 6= 0}

and for a subset W of X

τ(W ) = {A ∈ S(X) | suppA ⊆ W}.

In this section, unless stated otherwise, submodules are localizing submodules.

In order to apply our formalism to the situation of D(X) acting on S(X) we first

need to understand what the effect of restricting to an open subset of X is.

Before continuing let us remind the reader of some of the notation of Chapter

2. Given a specialization closed subset V ⊆ X we denote by DV(X) the smashing

subcategory generated by those compact objects whose support, in the sense

of [7], lies in V . We recall that the corresponding localization sequence gives

rise to the tensor idempotents ΓVOX and LVOX . For a closed subset Z of X

with complement U we denote the quotient D(X)/DZ(X) by either LZD(X) or

D(X)(U), as in Section 2.5. The action of D(X) on S(X) gives rise to an action

of D(X)(U) on S(X)(U) = LZS(X) as in Proposition 2.5.5.

Lemma 5.2.1. Let U ⊆ X be an open set with complement Z = X \ U , and

let f : U −→ X be the inclusion. If E is an object of D(X) then the map

E −→ Rf∗f
∗E agrees with the localization map E −→ LZE. In particular,

D(X)(U) is precisely D(U).
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Proof. By definition the smashing subcategory DZ(X) giving rise to LZ is the

localizing subcategory generated by the compact objects whose support is con-

tained in Z. The kernel of f ∗ is the localizing subcategory generated by those

compact objects whose homological support is contained in Z by [66]. As these

two notions of support coincide for compact objects of D(X) (see for example [7]

Corollary 5.6) the lemma follows immediately.

We recall from [48] Theorems 1.5 and 6.6 that for f : U −→ X an open

immersion we obtain an adjoint pair of functors

S(X)
f∗

//oo
f∗

S(U).

These functors are easily seen to be, using the classification of injective quasi-

coherent sheaves on a locally noetherian scheme (see for example [28] Lemma

2.1.5), just the usual pullback and pushforward of complexes.

Lemma 5.2.2. With notation as in Lemma 5.2.1 suppose U ⊆ X is an open

affine and let A be an object of S(X). Then the natural map A −→ f∗f
∗A agrees

with A −→ LZA. In particular, S(X)(U) is canonically identified with S(U).

Proof. Since f : U −→ X is an affine morphism we have that f∗ : D(U) −→ D(X)

is exact and Rf∗ = f∗. The map A −→ LZA is, by definition, obtained by taking

the morphism OX −→ LZOX in D(X) and tensoring with A ∈ S(X). By Lemma

5.2.1 the map OX −→ LZOX is just OX −→ f∗OU , which is a map of K-flat

complexes. Thus the map A −→ LZA is

A −→ f∗OU ⊗OX
A ∼= f∗(OU ⊗OU

f ∗A) ∼= f∗f
∗A,

where the first isomorphism is by the projection formula, completing the proof.

Now we are in business: we know that for an open affine U ∼= SpecR in X

the construction of Section 2.5 gives us D(R) acting on S(R). It just remains to

verify that this is the action we expect.

Lemma 5.2.3. Suppose U is an open subscheme of X with inclusion f : U −→ X.

Then the diagram

D(X)× S(X)

⊙
��

f∗×f∗

// D(U)× S(U)

⊙
��

S(X)
f∗

// S(U)

commutes up to natural isomorphism.



82 CHAPTER 5. THE SINGULARITY CATEGORY OF A SCHEME

Proof. By virtue of being an open immersion f ∗ sends K-flat complexes to K-flat

complexes and commutes with taking K-flat resolutions. Thus, as f ∗ commutes

with tensor products up to natural isomorphism, resolving by a K-flat, tensoring,

and then pulling back agrees with pulling back, resolving and then tensoring (up

to natural isomorphism). So the square is commutative as claimed.

This is the diagram of Proposition 2.5.5, so it follows that the action ⊙U of

said proposition is precisely our old friend ⊙. Thus we can use the machinery

we have developed to obtain a classification of the localizing D(X)-submodules

of S(X) when X is locally a hypersurface.

Lemma 5.2.4. There is an equality σS(X) = SingX i.e., for any x ∈ X the

subcategory ΓxS(X) is non-trivial if and only if x ∈ SingX.

Proof. Let ∪n
i=1Ui be an open affine cover of X. By Remark 2.5.7 the subset

σS(X) is the union of the σS(Ui). Thus it is sufficient to note that x ∈ Ui lies in

SingX if and only if it lies in SingUi and invoke Proposition 3.4.6 which tells us

that σS(Ui) = SingUi.

Proposition 5.2.5. If X is a Gorenstein separated scheme then every compact

object of S(X) has closed support.

Proof. We proved that for any open affine Ui the compact objects of S(Ui) have

closed support in Proposition 3.4.13. The result then follows by covering X by

open affines and applying Lemma 2.5.8.

Remark 5.2.6. It follows that the support of any triangulated subcategory gen-

erated by compact objects of S(X) is a specialization closed subset of SingX.

We are now ready to state our first theorem concerning the singularity cate-

gories of schemes with hypersurface singularities.

Theorem 5.2.7. Suppose X is a noetherian separated scheme with only hyper-

surface singularities. Then there is an order preserving bijection

{

subsets of SingX
} τ //

oo
σ

{

localizing submodules of S(X)
}

given by the assignments discussed before Lemma 5.2.3. This restricts to the

equivalent bijections
{

specialization closed

subsets of SingX

}

τ //
oo

σ

{

submodules of S(X) generated

by objects of S(X)c

}
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and
{

specialization closed

subsets of SingX

}

//
oo

{

thick Dperf(X)-submodules of DSg(X)
}

.

Proof. The first bijection is an application of Theorem 4.2.13 and Theorem 2.5.11

to an open affine cover of X together with the observation of Lemma 5.2.4 that

σS(X) = SingX. To see that the first bijection restricts to the second recall

from Proposition 5.2.5 that compact objects of S(X) have specialization closed

support. The statement now follows immediately from what we have already

proved and using [48] Theorem 1.1 (this is the general form of Theorem 3.1.1,

which as we remarked also applies mutatis mutandis to noetherian separated

schemes) it is easily deduced that the second and third bijections are equivalent.

It is natural to ask when one can strengthen this result to a complete clas-

sification of the localizing subcategories of S(X). We now prove that if X is a

hyperplane section of a regular scheme then every localizing subcategory of S(X)

is closed under the action of D(X). This gives a complete description of the

lattice of localizing subcategories of S(X) for such schemes.

Let T be a regular separated noetherian scheme of finite Krull dimension and

let L be an ample line bundle on T . Suppose t ∈ H0(T, L) is a section giving rise

to an exact sequence

0 −→ L−1 t∨
−→ OT −→ OX −→ 0

which defines a hypersurface X
i

−→ T . The scheme X is a noetherian separated

scheme with hypersurface singularities so our theorem applies to classify localizing

D(X)-submodules of S(X). The key observation in strengthening this result is

the following easy computation.

Lemma 5.2.8. Let F ∈ D(X) be a quasi-coherent sheaf concentrated in degree

zero. There is an isomorphism in S(X)

IλQρ(F ⊗ i∗L−1) ∼= Σ−2IλQρF.

Proof. By the way we have defined X the coherent OT -module OX comes with a

flat resolution

0 −→ L−1 t∨
−→ OT −→ OX −→ 0.

Thus the complex Li∗i∗F has two non-zero cohomology groups namely

H0(Li∗i∗F ) ∼= F and H−1(Li∗i∗F ) ∼= F ⊗OX
i∗L−1.
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As the scheme T is regular of finite Krull dimension the object i∗F of D(T )

is locally isomorphic to a bounded complex of projectives. Hence Li∗i∗F is also

locally isomorphic to a bounded complex of projectives. In particular, since being

the zero object is local in S(X) by Lemma 5.2.2 and the local-to-global principle,

we have IλQρLi
∗i∗F ∼= 0. The standard t-structure on D(X) gives a triangle

ΣF ⊗OX
i∗L−1 −→ Li∗i∗F −→ F −→ Σ2F ⊗OX

i∗L−1.

Thus applying IλQρ to this triangle yields an isomorphism

IλQρF ∼= IλQρΣ
2F ⊗OX

i∗L−1

in S(X) i.e., IλQρ(F ⊗OX
i∗L−1) ∼= Σ−2IλQρF .

Let us write i∗Ln for the tensor product of n copies of i∗L. By Proposition

3.4.3 and Lemma 3.4.4 twisting by i∗Ln and applying IλQρ to a sheaf F commute

up to natural isomorphism. We thus have isomorphisms

i∗Ln ⊙ IλQρF ∼= IλQρ(F ⊗OX
i∗Ln) ∼= Σ2nIλQρF

in S(X).

Corollary 5.2.9. Let X be as above. Then there are order preserving bijections

{

subsets of SingX
} τ //

oo
σ

{

localizing subcategories of S(X)
}

and
{

specialization closed

subsets of SingX

}

τ //
oo

σ











localizing subcategories

of S(X) generated by

objects of S(X)c











.

Proof. As X is a locally complete intersection in the regular scheme T it is cer-

tainly Gorenstein. In particular it has a dualising complex so by [58] (Proposition

6.1 and Theorem 4.31) every complex in S(X) is totally acyclic. Thus [48] Propo-

sition 7.13 applies telling us that every object of S(X) is the image, under IλQρ,

of a Gorenstein injective sheaf on X.

Let L ⊆ S(X) be a localizing subcategory and suppose A is an object of L.

Then there exists a Gorenstein injective sheaf G such that A ∼= IλQρG by the

discussion above. There are isomorphisms

Σmi∗Ln ⊙ A ∼= Σmi∗Ln ⊙ IλQρG ∼= ΣmIλQρ(G⊗ i∗Ln)

∼= Σm+2nIλQρG

∼= Σm+2nA
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where we can interchange the action of i∗Ln and IλQρ as in the discussion before

the proposition.

As L is ample on T the line bundle i∗L is ample on X so the set of objects

{Σmi∗Ln | m,n ∈ Z}

is a compact generating set for D(X), see for example 1.10 of [60]. We have just

seen L is stable under the action of each of the generators. Thus the full subcat-

egory of D(X) consisting of objects whose action sends L to itself is localizing,

as L is localizing, and contains a generating set so must be all of D(X). This

proves L is a submodule as claimed.

Remark 5.2.10. The action of i∗L can be viewed in the context of the degree 2

periodicity operator of Gulliksen [35] (see also [32] and [5]). As i∗L is invertible

in D(X) one can consider, as in [9], the graded commutative ring

E∗
i∗L =

⊕

j∈Z

Hom(OX , i
∗Lj)

with multiplication defined by sending (OX −→ i∗Lj,OX −→ i∗Lk) to the com-

posite

OX

��

// i∗Lj+k

i∗Lj ∼ // i∗Lj ⊗OX
// i∗Lj ⊗ i∗Lk.

≀

OO

In analogy with Lemma 2.1.7 the degree j elements of the ring E∗
i∗L act on S(X)

by natural transformations idS(X) −→ i∗Lj ⊗ (−). In particular, in the above

situation Lemma 5.2.8 implies that E∗
i∗L acts via the even part of the central ring

Z(S(X)) (see Definition 2.1.5).

To end the section we show that our relative version of the telescope conjecture

(Definition 2.4.1) holds for the action of D(X) on S(X) when X is any separated

noetherian scheme with hypersurface singularities.

Lemma 5.2.11. Let X be a Gorenstein separated scheme. For any irreducible

closed subset V ⊆ SingX there exists a compact object of S(X)c whose support

is precisely V, namely IλQρOV where OV is the structure sheaf associated to the

reduced induced structure on V.

Proof. Let V be an irreducible closed subset of SingX as in the statement. We

have claimed the object IλQρOV of S(X)c has the desired support. To see this let
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X be covered by open affine subschemes {Ui}
n
i=1 where Ui

∼= SpecRi. The restric-

tion OVi
of OV to Ui is the sheaf associated to R/pi where V(pi) = Vi = V ∩ Ui.

By Remark 2.5.9

supp IλQρOV =
n
⋃

i=1

supp IλQρOVi

=
n
⋃

i=1

supp IλQρR/pi

=
n
⋃

i=1

Vi

= V

where the second last equality comes from Remark 3.4.14.

Theorem 5.2.12. Let X be a noetherian separated scheme with hypersurface

singularities. Then the action of D(X) on the singularity category S(X) satisfies

the relative telescope conjecture i.e., every smashing D(X)-submodule of S(X) is

generated by objects of S(X)c. In particular, if X is a hypersurface defined by

a section of an ample line bundle on some ambient regular separated noetherian

scheme T as above then S(X) satisfies the usual telescope conjecture.

Proof. The result is an application of Theorem 2.4.14. We have seen in Theorem

5.2.7 that D(X)-submodules are classified by SingX via the assignments σ and τ .

By Proposition 5.2.5 compact objects of S(X) have specialization closed support.

Finally, we have proved in the last lemma that every irreducible closed subset of

SingX can be realised as the support of a compact object.

Thus the conditions of Theorem 2.4.14 are met for the action of D(X) on

S(X) and it follows that the relative telescope conjecture holds. In the case

Corollary 5.2.9 applies this reduces to the usual telescope conjecture.

5.3 A General Classification Theorem

We are now ready to prove a version of Theorem 5.2.7 valid in higher codimension.

Our strategy is to reduce to the hypersurface case so we may deduce the result

from what we have already proved. Let us begin by fixing some terminology and

notation for the setup we will be considering following Section 2 of [64].

Throughout this section by a complete intersection ring we mean a ring R such

that there is a regular ring Q and a surjection Q −→ R with kernel generated by a



5.3. A GENERAL CLASSIFICATION THEOREM 87

regular sequence. A locally complete intersection scheme X is a closed subscheme

of a regular scheme such that the corresponding sheaf of ideals is locally generated

by a regular sequence. All schemes considered from this point onward are over

some fixed base field and are assumed to have enough locally free sheaves. Let T

be a separated regular noetherian scheme of finite Krull dimension and E a vector

bundle on T of rank c. For a section t ∈ H0(T, E) we denote by Z(t) the zero

scheme of t. We recall that Z(t) can be defined globally by the exact sequence

E∨ t∨ // OT
// OZ(t)

// 0.

It can also be defined locally by taking a cover X = ∪iUi trivializing E via

fi : E|Ui

∼
−→ O⊕c

Ui
and defining an ideal sheaf I (s) by

I (t)|Ui
= (fi(t)1, . . . , fi(t)c).

We say that the section t is regular if the ideal sheaf I (t) is locally generated by

a regular sequence. Thus the zero scheme Z(t) of a regular section t is a locally

complete intersection in T of codimension c. In our situation t is regular if and

only if codimZ(t) = rk E = c (cf. [52] 16.B).

Let T and E be as above and let t ∈ H0(T, E) be a regular section with zero

scheme X. Denote by NX/T the normal bundle of X in T . There are projective

bundles P(E∨) = T ′ and P(N ∨
X/T ) = Z with projections which we denote q and

p respectively. Associated to these projective bundles are canonical line bundles

OE(1) and ON (1) together with canonical surjections

q∗E −→ OE(1) and p∗NX/S −→ ON (1).

The section t induces a section t′ ∈ H0(T ′,OE(1)) and we denote its divisor of

zeroes by Y . The natural closed immersion Z −→ T ′ factors via Y . To summarize

there is a commutative diagram

Z = P(N ∨
X/T )

i //

p

��

Y
u //

π

%%J
JJJJJJJJJJJ P(E∨) = T ′

q

��
X

j
// T.

(5.1)

This gives rise to functors Si∗ : S(Z) −→ S(Y ) and Sp∗ : S(X) −→ S(Z) by [48]

Theorem 1.5 and Theorem 6.6 respectively. Orlov proves the following theorem

in Section 2 of [64]:
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Theorem 5.3.1. Let T, T ′, X, and Y be as above. Then the functor

ΦZ := i∗p
∗ : Db(CohX) −→ Db(CohY )

induces an equivalence of triangulated categories

ΦZ : DSg(X) −→ DSg(Y ).

Remark 5.3.2. Recently Dima Arinkin has used Orlov’s theorem to define a

notion of support for objects of DSg(X). His definition agrees with the one

obtained by allowing Dperf(Y ) to act on DSg(X) via the above equivalence (using

a notion of support as in Balmer’s [7]) and the one we will construct below.

We wish to show this equivalence extends to the infinite completions S(X)

and S(Y ); it is natural to ask if the theorem extends and considering the larger

categories allows us to bring the machinery we have developed to bear. In or-

der to show the equivalence extends we demonstrate that it is compatible with

the functor Si∗Sp
∗, induced by i and p as in Section 6 of [48], via IλQρ. Gen-

eral nonsense about triangulated categories then implies Si∗Sp
∗ must also be an

equivalence.

Notation 5.3.3. We will frequently be concerned below with commuting dia-

grams involving the functors of the general version of Theorem 3.1.1 ([48] Theo-

rem 1.1) for pairs of schemes. As in [48] we will tend not to clutter the notation

by indicating which scheme the various functors correspond to as it is always

identifiable from the context.

Lemma 5.3.4. Let i : Z −→ Y be a regular closed immersion i.e., the ideal sheaf

on Y defining Z is locally generated by a regular sequence, where Z and Y are

noetherian separated schemes. Then the functor

R̂i∗ : K(InjZ) −→ K(InjY )

of [48] Theorem 1.4 has a coproduct preserving right adjoint K(i!) and sends

compact objects to compact objects.

Proof. Since i is a closed immersion we have an adjunction at the level of cate-

gories of quasi-coherent sheaves

QCohZ
i∗ //oo
i!

QCohY.
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The right adjoint i! sends injectives to injectives as i∗ is exact.

These functors give an adjunction

K(QCohZ)
K(i∗) //oo
K(i!)

K(QCohY )

and K(i!) restricts to a functor from K(InjY ) −→ K(InjZ). We claim that this

restricted functor is the right adjoint of R̂i∗. Recall that R̂i∗ is defined by the

composite

K(InjZ) J // K(QCohZ)
K(i∗) // K(QCohY )

Jλ // K(InjY )

where J is the inclusion and Jλ is left adjoint to the corresponding inclusion for

Y . For A ∈ K(InjZ) and B ∈ K(InjY ) there are isomorphisms

Hom(R̂i∗A,B) = Hom(JλK(i∗)JA,B)

∼= Hom(JA,K(i!)JB)

∼= Hom(JA, JK(i!)B)

∼= Hom(A,K(i!)B)

the first equality by definition, the third isomorphism JK(i!) ∼= K(i!)J as K(i!)

sends complexes of injectives to complexes of injectives, and the fourth isomor-

phism as J is fully faithful. This proves that the right adjoint to R̂i∗ is induced

by K(i!) as claimed.

To complete the proof note that i! preserves coproducts. The functorK(i!) and

hence the right adjoint of R̂i∗ are thus also coproduct preserving. It now follows

from [60] Theorem 5.1 that R̂i∗ sends compact objects to compact objects.

Thus from [48], namely the first diagram of Theorem 6.1 and Remark 3.8, we

deduce, whenever i is a regular closed immersion, a commutative square

Db(CohZ)

i∗
��

Qρ

∼
// Kc(InjZ)

R̂i∗
��

Db(CohY )
∼

Qρ

// Kc(InjY ).

(5.2)

Lemma 5.3.5. Let Z and Y be Gorenstein separated schemes and suppose

i : Z −→ Y is a regular closed immersion. Then the functor K(i!) sends acyclic

complexes of injectives to acyclic complexes of injectives.



90 CHAPTER 5. THE SINGULARITY CATEGORY OF A SCHEME

Proof. As i is a regular closed immersion i∗ sends perfect complexes to perfect

complexes. Thus Ri! : D(Y ) −→ D(Z) preserves coproducts by [60] Theorem

5.1 so is isomorphic to Li∗(−) ⊗Ri!OY by ibid. Theorem 5.4. The scheme Y is

Gorenstein so Ri!OY is a dualizing complex on Z. As Z is also Gorenstein the

dualizing complex Ri!OY is (at least on each connected component) a suspension

of an invertible sheaf. Thus we can choose n ∈ Z so that Hj(Ri!F ) = 0 for every

quasi-coherent sheaf F on Y and j > n as Li∗(F ) is always bounded above.

If A is an acyclic complex of injectives then the truncation

0 −→ A0 −→ A1 −→ A2 −→ · · ·

is an injective resolution of B = ker(A0 −→ A1). Thus applying K(i!) to this

truncation computes Ri!B so the resulting complex is acyclic above degree n. By

taking suspensions we deduce that K(i!)A is in fact acyclic everywhere and we

have already noted that i! preserves injectivity as it has an exact left adjoint.

Remark 5.3.6. As the notation in the last two lemmas indicates they apply to

the situation we are interested in, namely the one given at the start of the section:

the morphism i : Z −→ Y is a regular closed immersion. Let us indicate why this

is the case. Pick some open affine subscheme SpecQ of T , with preimage in X

isomorphic to SpecR, on which E is trivial and such that the kernel of Q −→ R

is generated by the regular sequence {q1, . . . , qc}. We get a diagram of open

subschemes of the diagram (5.1)

Pc−1
R

i //

p

��

Y ′ u //

π

##F
FF

FF
FF

FF
F

Pc−1
Q

q

��
SpecR

j
// SpecQ.

The hypersurface Y ′ is defined by the section t′ =
∑c

i=1 qixi of OPc−1
Q

(1), where

the xi are a basis for the global sections of OPc−1
Q

. Let z be a point in the cth

standard open affine Ac−1
R in Pc−1

R (we choose this open affine for ease of notation,

little changes if z lies in another standard open affine) and consider the local

maps of local rings

OT ′,ui(z)
α

−→ OY,i(z)
β

−→ OZ,z.

We wish to show that ker β is generated by a regular sequence. Note that both α

and βα have kernels generated by regular sequences: the kernel of α is generated

by the image of s = q1x1 + · · ·+ qc−1xc−1 + qc in OT ′,ui(z) and the kernel of βα is

generated by the image of the regular sequence {q1, . . . , qc}.



5.3. A GENERAL CLASSIFICATION THEOREM 91

It is clear that the image of {q1, . . . , qc−1, s} is a regular sequence in OT ′,ui(z)

and as this ring is local and noetherian we may permute the order of the el-

ements in this sequence and it remains regular by [53] Theorem 16.3. Thus

{s, q1, . . . , qc−1} is a regular sequence in OT ′,ui(z). It follows that the image of

{q1, . . . , qc−1} is a regular sequence in OY,i(z) and it generates the kernel of β.

Thus i is a regular closed immersion as claimed.

So we have an adjoint pair of functors

K(InjZ)
R̂i∗ //oo
K(i!)

K(InjY )

which both send acyclic complexes to acyclic complexes: R̂i∗ by Theorem 1.5 of

[48] and K(i!) by Lemma 5.3.5. Thus they restrict to an adjoint pair

S(Z)
Si∗ //oo
Si!

S(Y ).

So we have a commutative square

S(Y ) I //

Si!

��

K(InjY )

K(i!)
��

S(Z)
I

// K(InjZ).

Taking left adjoints of the functors in this last square we get another commutative

diagram

K(InjZ)
Iλ //

R̂i∗
��

S(Z)

Si∗
��

K(InjY )
Iλ

// S(Y ).

By Lemma 5.3.4 the composite IλR̂i∗ sends compact objects to compact objects.

As Iλ sends compacts to compacts and is essentially surjective, up to summands,

on compacts we see that Si∗ must preserve compacts too. So restricting this

square to compact objects and juxtaposing with the square (5.2) we get a com-

mutative diagram

Db(CohZ)

i∗
��

Qρ

∼
// Kc(InjZ)

R̂i∗
��

Iλ // Sc(Z)

Si∗
��

Db(CohZ)
∼

Qρ

// Kc(InjY )
Iλ

// Sc(Y ).
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In particular, the functor i∗ : DSg(Z) −→ DSg(Y ) induced by i is compatible with

Si∗ under the embeddings of DSg(Z) and DSg(Y ) as the compact objects in S(Z)

and S(Y ).

Proposition 5.3.7. There is an equivalence of triangulated categories

Si∗Sp
∗ : S(X) −→ S(Y )

which when restricted to compact objects is Orlov’s equivalence.

Proof. We have just seen that the square

DSg(Z) //

i∗
��

S(Z)

Si∗
��

DSg(Y ) // S(Y )

commutes. By [48] Theorem 6.6 the square

DSg(X) //

p∗

��

S(X)

Sp∗

��
DSg(Z) // S(Z)

commutes. Putting this second square on top of the first the equivalence ΦZ fits

into a commutative diagram

DSg(X) //

ΦZ ≀
��

S(X)

Si∗Sp∗

��
DSg(Y ) // S(Y ).

Hence Si∗Sp
∗ is a coproduct preserving exact functor between compactly gen-

erated triangulated categories inducing an equivalence on compact objects. It

follows from abstract nonsense that it must be an equivalence.

We have thus reduced the problem of understanding S(X) to that of under-

standing S(Y ). The scheme Y is locally a hypersurface as it is a locally complete

intersection in the regular scheme T ′ and has codimension 1. Theorem 5.2.7 thus

applies and we have the following theorem, where we use the notation introduced

at the beginning of the section.
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Theorem 5.3.8. The category D(Y ) acts on S(X) via the equivalence

S(X) ∼= S(Y ) giving order preserving bijections

{

subsets of Sing Y
} τ //

oo
σ

{

localizing D(Y )-submodules of S(X)
}

and

{

specialization closed

subsets of Sing Y

}

τ //
oo

σ











localizing D(Y )-submodules

of S(X) generated by

objects of S(X)c











.

Furthermore if the line bundle OE(1) is ample, for example if S is affine, then ev-

ery localizing subcategory of S(X) is a D(Y )-submodule so one obtains a complete

classification of the localizing subcategories of S(X).

Proof. Let us denote the equivalence S(X)
∼

−→ S(Y ) by Ψ. We define an action

of D(Y ) on S(X) by setting, for E ∈ D(Y ) and A ∈ S(X)

E�A = Ψ−1(E ⊙ΨA).

It is easily checked that this is in fact an action.

The equivalence Ψ sends localizing subcategories (generated by objects of

S(X)c) to localizing subcategories (generated by objects of S(Y )c). A localizing

subcategory L ⊆ S(X) is a D(Y )-submodule if and only if for every E ∈ D(Y )

E�L = Ψ−1(E ⊙ΨL) ⊆ L

if and only if E ⊙ΨL ⊆ ΨL. In other words L is a D(Y )-submodule if and only

if ΨL is a D(Y )-submodule. Thus the theorem follows from Theorem 5.2.7 as Y

is locally a hypersurface.

The last statement is a consequence of Corollary 5.2.9.

Corollary 5.3.9. The relative telescope conjecture holds for the action of D(Y )

on S(X). In particular if OE(1) is ample then the usual telescope conjecture holds

for S(X).

Proof. This is immediate from the corresponding statements for the action of

D(Y ) on S(Y ) given in Theorem 5.2.12.
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5.3.1 Embedding Independence

To prove Theorem 5.3.8 we have relied on the choice of some ambient scheme

T , vector bundle E , and a regular section t of E . Thus it is not clear that the

support theory one produces, via the hypersurface Y associated to this data, is

independent of the choices we have made. We now show this is in fact the case:

the choices one makes do not matter as far as the support theory is concerned.

The setup will be exactly the same as previously, except we will have two

possibly different regular noetherian separated schemes of finite Krull dimension

T1 and T2 each carrying a vector bundle Ei with a regular section ti for i = 1, 2

such that

Z(t1) ∼= X ∼= Z(t2).

Thus there are, by Proposition 5.3.7, two equivalences

Ψ1 : S(X) −→ S(Y1) and Ψ2 : S(X) −→ S(Y2)

giving rise to a third equivalence S(Y1)
∼

−→ S(Y2) which we shall denote by Θ.

We first treat the case in which both OE1(1) and OE2(1) are ample.

Lemma 5.3.10. Suppose OEi(1) is ample for i = 1, 2. Then there is a homeo-

morphism

θ : Sing Y1 −→ Sing Y2

such that for any A in S(Y1) we have

θ suppA = suppΘA.

In particular the two support theories for S(X) obtained via the actions of D(Y1)

and D(Y2) coincide up to this homeomorphism.

Proof. We first define θ and show it is a bijection. Let y be a point of Sing Y1. By

Theorem 5.3.8 the subcategory ΓyS(Y1) is a minimal localizing subcategory. Thus

its essential image ΘΓyS(Y1) is a minimal localizing subcategory of S(Y2). So by

Corollary 5.2.9 the subcategory ΘΓyS(Y1) is necessarily of the form Γθ(y)S(Y2).

This defines a function θ : Sing Y1 −→ Sing Y2 which is a bijection as Θ is an

equivalence.

Let us now show that θ is compatible with supports. If A is an object of S(Y1)

then by Corollary 5.2.9 and Theorem 2.3.9 we have

〈A〉loc = 〈ΓyS(Y1) | y ∈ suppA〉loc.
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Applying Θ gives two sets of equalities, namely

Θ〈A〉loc = 〈ΘA〉loc = 〈ΓwS(Y2) | w ∈ suppΘA〉loc

and

Θ〈A〉loc = Θ〈ΓyS(Y1) | y ∈ suppA〉loc

= 〈Γθ(y)S(Y2) | y ∈ suppA〉loc.

We thus obtain θ suppA = suppΘA which shows that θ respects the support.

Finally, let us show that θ is a homeomorphism. Let V be a closed subset of

Sing Y1. Then it follows from Lemma 5.2.11 that there exists a compact object c

in S(Y1) whose support is V . Hence

θV = θ supp c = suppΘc

is closed by Proposition 5.2.5 as Θ is an equivalence and so preserves compactness.

The whole argument works just as well reversing the roles of Y1 and Y2 so θ−1 is

also closed and thus θ is a homeomorphism.

By working locally we are now able to extend this to arbitrary X admitting

a suitable embedding.

Proposition 5.3.11. Suppose we are given regular noetherian separated schemes

of finite Krull dimension T1 and T2 each carrying a vector bundle Ei with a regular

section ti for i = 1, 2 such that

Z(t1) ∼= X ∼= Z(t2).

Then there is a homeomorphism θ : Sing Y1 −→ Sing Y2 satisfying

θ suppA = suppΘA

for any A in S(Y1). In particular the two support theories for S(X) obtained via

the actions of D(Y1) and D(Y2) coincide up to this homeomorphism.

Proof. Let {W j
1}

n
j=1 and {W k

2 }
m
k=1 be open affine covers of T1 and T2. Denote

by {U j
1}

n
j=1 and {Uk

2 }
m
k=1 the two open affine covers of X obtained by restriction.

For any of the open affines W l
i we may consider Ei|W l

i
and ti|W l

i
; the zero scheme

of ti|W l
i
is precisely the open subscheme U l

i so each of the opens in the two covers

satisfies the set up for Proposition 5.3.7 to apply. We denote by Y l
i the associated



96 CHAPTER 5. THE SINGULARITY CATEGORY OF A SCHEME

hypersurface. Furthermore, as W l
i is affine the canonical line bundle on P(Ei|∨W l

i

)

is ample so Lemma 5.3.10 applies.

Now fix one of the U j
1 ⊆ X and cover it by the open affines U jk

12 = U j
1 ∩ Uk

2

for k = 1, . . . ,m. There are diagrams

S(U j
1 )

Ψj
1

∼
// S(Y j

1 )

S(U jk
12 )

::uuuuuuuuu

$$I
IIIIIIII

S(Uk
2 )

Ψk
2

∼
// S(Y k

2 )

where the equivalences are the restrictions of Ψ1 and Ψ2 and the diagonal maps

are inclusions. We thus get an equivalence

Θjk : Ψj
1S(U

jk
12 ) −→ Ψk

2S(U
jk
12 )

restricting Θ, and so as in Lemma 5.3.10 a support preserving homeomorphism

θjk : Sing Y jk
1 −→ Sing Y jk

2

where Y jk
1 is the subset corresponding to Ψj

1S(U
jk
12 ) and Y jk

2 corresponds to

Ψk
2S(U

jk
12 ).

We have produced support preserving homeomorphisms θjk for each

j = 1, . . . , n and k = 1, . . . ,m and the Y jk
i cover the singular locus of Yi for

i = 1, 2. It just remains to note that these glue to the desired homeomorphism

Sing Y1 −→ Sing Y2; the required compatibility on overlaps is immediate as the

θjk are defined via restrictions of Θ.

5.3.2 Local Complete Intersection Rings

Let us now restrict our attention to the case of local complete intersection rings

over some fixed base field. Theorem 5.3.8 applies in this case and we will ex-

plicitly describe the singular locus of the associated hypersurface Y ; this can be

done working with any choice of embedding as the associated support theory is

invariant by the last subsection.

Suppose (R,m, k) is a local complete intersection of codimension c i.e., R is

the quotient of a regular local ring Q by an ideal generated by a regular sequence

and

cxR k = dimk m/m2 − dimR = c.
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Replacing Q by a quotient if necessary we may assume that the kernel of Q −→ R

is generated by a regular sequence of length precisely c. To see this is the case

suppose the kernel is generated by a regular sequence {q1, . . . , qr} with r > c.

Then by considering the effect on the embedding dimension and the dimension of

successive quotients by the qi we see that r − c of the qi must lie in n \ n2 where

n is the maximal ideal of Q. By [53] Theorem 16.3 any permutation of the qi is

again a regular sequence so we may rearrange to first take the quotient by the

r − c of the qi not in n2. This quotient is again regular, surjects onto R and this

surjection has kernel generated by a regular sequence of length c.

Set X = SpecR, T = SpecQ, E = O⊕c
T , and t = (q1, . . . , qc) where the qi are

a regular sequence generating the kernel of Q −→ R. Let Y be the hypersurface

defined by the section Σc
i=1qixi of OPc−1

Q
(1) where the xi are a basis for the free

Q-module H0(Pc−1
Q ,OPc−1

Q
(1)). In summary we are concerned with the following

commutative diagram

Pc−1
R

i //

p

��

Y
u //

π

!!B
BB

BB
BB

BB
Pc−1
Q

q

��
X

j
// T.

Let us first make the following trivial observation about the singular locus of

Pc−1
R .

Lemma 5.3.12. There is an equality

SingPc−1
R = p−1 SingR.

Now we show that the singular locus of Y can not be any bigger than the

singular locus of Pc−1
R .

Lemma 5.3.13. The singular locus of Y , Sing Y , is contained in i(SingPc−1
R ).

Proof. We first show the singular locus of Y is contained in the image of i. The

image of i is precisely Y ∩ q−1X, so we want to show that away from q−1X the

scheme Y is regular. Let p ∈ T \ X, so the section t = (q1, . . . , qc) is not zero

at k(p). Thus in a neighbourhood of any point of q−1(p) the section defining

Y ∩ q−1(p) is just a linear polynomial with invertible coefficients and so Y is

regular along its intersection with q−1(p). Thus Sing Y ⊆ i(Pc−1
R ) as claimed.

Next let us prove that Sing Y is in fact contained in i(SingPc−1
R ). Given

z ∈ Pc−1
R such that i(z) ∈ Sing Y we need to show z ∈ SingPc−1

R . By Remark

5.3.6 the surjection

OY,i(z) −→ OPc−1
R

,z
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has kernel generated by a regular sequence. Thus Proposition 4.1.16 applies

yielding

cx O
P
c−1
R

,z
k(z) ≥ cx OY,i(z)

i∗k(z) = cx OY,i(z)
k(i(z)) > 0

where we have also used Theorem 4.1.15, so z ∈ SingPc−1
R .

In fact the part of the singular locus of Y corresponding to m can not be any

smaller than p−1(m) either.

Lemma 5.3.14. Every point in ip−1(m) is contained in Sing Y .

Proof. By Lemma 5.3.12 every point in p−1(m) is singular in Pc−1
R . Consider for

z ∈ p−1(m) the local maps

OPc−1
Q ,ui(z)

α
−→ OY,i(z)

β
−→ OPc−1

R ,z

where the kernel of each of these morphisms and the composite is generated by

a regular sequence (see Remark 5.3.6). We have assumed Q −→ R minimal i.e.,

the elements qi occuring in the regular sequence generating the kernel all lie in

n2 where n is the maximal ideal of Q. Thus as z lies over m the image of each qi

is in the square of the maximal ideal of OPc−1
Q

,ui(z).

By passing to a standard open affine in Pc−1
Q containing ui(z) (and reordering

the qi if necessary) we see that the morphism α has kernel generated by the image

of
∑c−1

i=1 qixi+ qc where the xi are now coordinates on Ac−1
Q . As the image of each

qi is in the square of the maximal ideal of OPc−1
Q ,ui(z) the element

∑c−1
i=1 qixi + qc

defining OY,i(z) must also lie in the square of the maximal ideal. Hence i(z) lies

in Sing Y .

It follows from this that supp(D(Y ),�) ΓmS(R) = Pc−1
k . By Lemma 3.4.9 the

object IλQρk generates ΓmS(R). Thus its image under i∗p
∗, which is precisely

IλQρ of the structure sheaf of ip
−1(m) with the reduced induced scheme structure,

generates Si∗Sp
∗ΓmS(R). By Lemma 5.2.11 this generating object has support,

with respect to the D(Y ) action on S(Y ), precisely ip−1(m). Thus, identifying

the topological spaces Pc−1
k and ip−1(m), we see ΓmS(R) has the claimed support.

We now show the singular locus of Y is composed completely of such projective

pieces with dimensions corresponding to the complexities of the residue fields of

the points in SingR.

Proposition 5.3.15. As a set the singular locus of Y is

Sing Y ∼=
∐

p∈SingR

Pcp−1

k(p)

where cp = cxRp
k(p) is the codimension of Rp.
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Proof. We can write Sing Y , using the classification of Theorem 5.3.8, as

Sing Y ∼=
∐

p∈SingR

supp(D(Y ),�) ΓpS(R).

Again using the classification theorem and the independence results of the pre-

vious subsection we may compute the D(Y )-support of ΓpS(R) = ΓpS(Rp) over

Rp. By the discussion before the proposition this is precisely Pcp−1

k(p) .

This gives the following refined version of Theorem 5.3.8 for local complete

intersection rings.

Corollary 5.3.16. Suppose (R,m, k) is a local complete intersection of finite type

over a field. Then there are order preserving bijections







subsets of
∐

p∈SingR

Pcp−1

k(p)







τ //
oo

σ

{

localizing subcategories of S(R)
}

and
{

specialization closed

subsets of Sing Y

}

τ //
oo

σ











localizing subcategories

of S(R) generated by

objects of S(R)c











.

Furthermore the telescope conjecture holds for S(R).

Proof. We apply Theorem 5.3.8 setting X = SpecR, S = SpecQ, E = O⊕c
S , and

s = (q1, . . . , qc) where the qi are a regular sequence generating the kernel of

Q −→ R. The line bundle OE(1) is ample on Pc−1
Q so we obtain a complete classi-

fication of the localizing subcategories of S(R) in terms of Sing Y . By Proposition

5.3.15 the singular locus of Y is, as a set, precisely the given disjoint union of

projective spaces. The final statement is Corollary 5.3.9.

Remark 5.3.17. A similar result has been announced by Iyengar [42] for locally

complete intersection rings essentially of finite type over a field.

Remark 5.3.18. The support theory obtained here may be compared to results

of Avramov and Buchweitz [3]. They consider supports in the cone over the piece

of Sing Y corresponding to the closed point of SpecR after changing base to the

algebraic closure of k. As in their work our support theory has consequences for

cohomological vanishing which will be pursued in further work.
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(239):xii+253 pp. (1997), 1996. With a preface by Luc Illusie, Edited and

with a note by Georges Maltsiniotis.

[71] C. A. Weibel. An introduction to homological algebra, volume 38 of Cam-

bridge Studies in Advanced Mathematics. Cambridge University Press, Cam-

bridge, 1994.


