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Abstract

We introduce a relative version of Balmer’s tensor triangular geometry by con-
sidering the action of a tensor triangulated category on another triangulated
category. Several of Balmer’s results are extended to this relative setting giving
rise to, among other things, a theory of supports for objects of a category upon
which a tensor triangulated category acts.

In the case that a rigidly-compactly generated tensor triangulated category
acts on a compactly generated category we describe a version of the local-to-
global principle of Benson, Iyengar, and Krause, and a relative version of the
telescope conjecture. We prove the local-to-global principle holds quite generally
which is new even in the case that a tensor triangulated category acts on itself as
in Balmer’s theory. We are also able to give sufficient conditions for the relative
telescope conjecture to hold.

As an application we study the stable injective category of a noetherian sep-
arated scheme X, as introduced by Krause, in terms of an action of the derived
category D(X). We give a complete classification of the localizing subcategories
of this category in the case that X is the spectrum of a hypersurface ring and
prove that the telescope conjecture holds. Our methods allow us to extend these
results, suitably modified, to certain complete intersection schemes of arbitrary

codimension.
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Notation and terminology

Unless explicitly mentioned otherwise all rings are commutative, unital and
noetherian.
We index our complexes cohomologically so a complex X of R-modules is of
the form
= X X XY X X

the exception being when speaking of complete resolutions as in Definition 4.1.1
where mixed indexing is used.

For a ring R we denote by R-Mod the category of R-modules and by R-mod
the category of finitely generated R-modules. For a scheme X we denote by
QCoh X and Coh X the categories of quasi-coherent and coherent Ox-modules
respectively. For an abelian category A we follow standard notation and de-
note by D(A) the unbounded derived category of A, by D°(A) the bounded
derived category, by DT (A) the derived category of cohomologically bounded be-
low complexes, and by D~(A) the derived category of cohomologically bounded
above complexes. We denote by DP*"f(R) C D(R-Mod) the subcategory of perfect
complexes i.e., the compact objects of the unbounded derived category.

We denote by Inj R, Proj R, and Flat R respectively the full subcategories of
injective, projective, and flat R-modules, and for a scheme X by Inj X and Flat X
the categories of injective and flat quasi-coherent O x-modules.

For an R-module M we use pdy M and idg M to denote the projective and
injective dimension of M.

We will denote the suspension functor of a triangulated category by >; we use
this notation for the suspension functor of all triangulated categories concerned

but this should not cause any confusion.

X1






Chapter 1

Introduction

Triangulated categories, introduced by Verdier [70] and by Dold and Puppe [31]
(but without Verdier’s octahedral axiom), permeate modern mathematics. Their
utility has been demonstrated in algebraic geometry, motivic theory, homotopy
theory, modular representation theory, and noncommutative geometry: the the-
ory of Grothendieck duality ([38], [43], [57], [60], [62]), Voevodsky’s motivic cat-
egory ([54], [6]), Devinatz, Hopkins, and Smith’s work on tensor nilpotence [30],
support varieties and the extension of complexity to infinitely generated repre-
sentations ([27], [14], [15]), and recent work on the Baum-Connes conjecture [29]
respectively are striking examples of the applications of triangulated categories

in these areas.

In each of these areas one often has the good fortune to have more than just
a triangulated category. Indeed, usually the triangulated categories arising are
naturally tensor triangulated categories: we say (T,®,1) is tensor triangulated
if T is a triangulated category and (®, 1) is a symmetric monoidal structure on
T such that ® is exact in each variable and preserves any coproducts 7 might
possess. This is a very rich structure and exploiting the monoidal product leads
to many beautiful results such as the work of Neeman [59] and Thomason [69] on
the classification of thick subcategories of derived categories of perfect complexes

in algebraic geometry.

Tensor triangular geometry, developed by Paul Balmer [7], [9], [8], [11], asso-
ciates to any essentially small tensor triangulated category (7, ®, 1) a topological
space Spc T, the spectrum of 7. The spectrum comes with a universal, tensor
compatible, support theory which assigns to objects of T closed subsets of the
spectrum. This generalizes the homological support for derived categories of

sheaves in algebraic geometry and the support varieties attached to representa-
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tions in modular representation theory. One obtains from this support theory a
classification of certain ®-ideals which unifies classifications occurring in algebraic
geometry, modular representation theory, and algebraic topology.

So far we have only mentioned the topology of Spc7. In the case that T is
rigid i.e., every object of 7 admits a strong dual, the spectrum can be endowed
with a sheaf of rings making it a locally ringed space. This construction essentially
embeds algebraic geometry into tensor triangular geometry; the derived category
of quasi-coherent sheaves on a quasi-compact quasi-separated scheme X does not
generally contain enough information to reconstruct X (cf. [24] and [19]), but
together with the left derived tensor product one can recover X via the spectrum
of the perfect complexes.

Now suppose (T, ®, 1) is a compactly generated tensor triangulated category
and the compact objects form a tensor subcatgory. In [11] Balmer and Favi
have used tensor idempotents built from support data on the spectrum Spc 7€ of
the compact objects T¢ to extend Balmer’s notion of supports to 7. A related
construction due to Benson, Iyengar, and Krause [13] takes as input an R-linear
compactly generated triangulated category IC, where R is a (graded) commutative
noetherian ring, and assigns supports valued in Spec R to objects of K. In the
first part of this thesis we develop relative tensor triangular geometry by allowing
a tensor triangulated category 7 to act on K i.e., there is a biexact functor
T x K — K which is compatible with the monoidal structure on 7 and associa-
tive and unital in the appropriate senses. This can be viewed as a categorification
of the work of Benson, Iyengar, and Krause; for instance, letting R be a commu-
tative noetherian ring, an action of the unbounded derived category D(R) yields
the same support theory as the support construction of [13]. By construction
it specializes to the theory of Balmer and Favi when a tensor triangulated cate-
gory acts on itself in the obvious way. Thus the notion of action provides a link
between these two theories of supports and we are able to extend many of the
important results of both theories to the case of actions.

Let us fix compactly generated triangulated categories 7 and K. Further-
more, suppose 7 carries a compatible symmetric monoidal structure (7, ®,1) so
that the compact objects form a rigid tensor triangulated subcategory (7°¢, ®, 1)
whose spectrum Spc 7 is a noetherian topological space (these hypotheses are
not necessary for all of the results we quote but are chosen for simplicity). We
recall that 7€ is rigid if for all  and y in T¢, setting ¥ = hom(x, 1), the natural
map

r¥ ®y — hom(z,y)



is an isomorphism, where hom(—, —) denotes the internal hom which is guar-
anteed to exist in this case by Brown representability. In Chapter 2 we give a
definition of a left action of 7 on KC. This amounts to giving a functor 7 x . — K
satisfying certain compatibility conditions. To each specialization closed subset
Y C SpcT¢ and each point x € SpcT* we associate ®-idempotent objects I'y,1
and I';1 of T as in [11]. The object I'y1 is the idempotent corresponding to
acyclization with respect to the smashing subcategory generated by the compact
objects supported in ¥V and we denote by Ly 1 the idempotent corresponding to
localization at this category. Then I';1 is defined to be I'y ;)1 ® Lz(;)1 where

V(z)={z} and Z(z)={yeSpcT* |z ¢ V(y)}.
We prove in Lemmas 2.2.5 and 2.2.6 that each specialization closed subset V
yields a localization sequence

'y Ly
2 //C\\ by

where I'y/C is the essential image of I'y1 % (—). Furthermore, I'y/C is generated
by objects of K¢ by Corollary 2.2.13. The idempotents I',1 give rise to supports
on K with values in Spc7¢: for an object A of K we set

supp A ={z € SpcT“| ;1% A +#0}.

In good situations the subcategories I'yK and Ly consist precisely of those
objects whose support is in ¥V and SpcT¢\ V respectively and the associated
localization triangles decompose objects into a piece supported in each of these
subsets; this last fact is proved in Proposition 2.2.20 together with other desirable
properties of the support.

The local-to-global principle, originally introduced in [17] in the context of ring
actions on triangulated categories, allows one to reduce classification problems to
considering local pieces of a triangulated category. We introduce the following

version for actions of triangulated categories:

Definition (2.3.1). We say 7 x K — K satisfies the local-to-global principle if
for each A in K
(A), = (T, A | x € SpcT,

where (A), and (I';A | € SpcT¢). are the smallest localizing subcategories of
IC containing A or the ', A respectively and closed under the action of T .

Our main result concerning the local-to-global principle is that, assuming 7

is sufficiently nice, it is only a property of 7 not of the action and it always holds.
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Theorem (2.3.9). Suppose T is a rigidly-compactly generated tensor triangu-
lated category with a model and that SpcT¢ is noetherian. Then the following

statements hold:

(1) The local-to-global principle holds for the action of T on itself;

(13) The associated support function detects vanishing of objects i.e., X € T is
zero if and only if supp X = O,

(1ii) For any chain {V;}icr of specialization closed subsets of SpeT¢ with union

V there is an isomorphism
I'vl = hocolim I'y, 1
where the structure maps are the canonical ones.

Furthermore, the relative versions of (i) and (i) hold for any action of T on a

compactly generated triangulated category IC.

In the penultimate section of Chapter 2 we explore a relative version of the
telescope conjecture. The telescope conjecture states that if £ is a localizing
subcategory of a compactly generated triangulated category 7T such that the
inclusion of £ admits a coproduct preserving right adjoint i.e., £ is smashing, then
L is generated by compact objects of 7. This is a general version of the conjecture
originally made for the stable homotopy category of spectra by Bousfield [22] and
Ravenel [65]. It is still open for the stable homotopy category, it is known to
be true for certain categories such as the derived category of a noetherian ring
(by [59]), and in the generality we have stated it the conjecture is actually false.
For instance Keller has given a counterexample in [45], although Krause in [47]
shows that a slightly weaker version of the conjecture does hold. Our version in

the relative setting is as follows:

Definition (2.4.1). We say the relative telescope conjecture holds for K with
respect to the action of T if every smashing 7-submodule & C K (this means S
is a localizing subcategory with an associated coproduct preserving localization
functor such that 7 x S — K factors via S ) is generated by compact objects
of IC.

We give sufficient conditions for the relative telescope conjecture to hold for
the action of 7 on K. In order to state one of our results let us introduce the
following assignments relating subsets of SpcT¢ and localizing submodules of K

i.e., those localizing subcategories of K stable under the action of 7.



Definition (2.2.22). There are order preserving assignments

T

<
g

{ subsets of SpcT*® } { localizing submodules of K }

where for a localizing submodule £ we set
(L) =supp L ={x € SpcT°|TI',1x L # 0}
for a subset W of SpcT°
TW)={A€ K| suppA C W}
and both the subsets and subcategories are ordered by inclusion.
Our theorem is:

Theorem (2.4.14). Suppose T is rigidly-compactly generated and has a model.
Let T act on a compactly generated triangulated category K so that the support
of any compact object of IC is a specialization closed subset of oIC and for each
irreducible closed subset V in oIC there exists a compact object whose support
1s precisely V. Furthermore, suppose the assignments o and T give a bijection
between localizing submodules of K and subsets of oK. Then the relative telescope
conjecture holds for IC i.e., every smashing T -submodule of K is generated by

objects compact in K.

Studying schemes via derived categories of sheaves has an auspicious his-
tory. The theory of Grothendieck duality, which we have already mentioned,
semiorthogonal decompositions, Fourier-Mukai transforms and applications to
birational geometry [21], [24], the Riemann-Hilbert correspondence [55], and the
study of singularities [26], [63] all give examples of important work couched in the
language of derived categories. It is this last example, the study of singularities,
which will be of most interest to us. Suppose X is a noetherian separated scheme.

Then one defines a category
Dgy(X) := D*(Coh X)/DP(X)

where D’(Coh X) is the bounded derived category of coherent sheaves on X
and DP(X) is the full subcategory of complexes locally isomorphic to bounded
complexes of finitely generated projectives, which measures the singularities of
X. In particular, Dg,(X) vanishes if and only if X is regular, it is related to

other measures of the singularities of X for example maximal Cohen-Macaulay
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modules (see [26]), and its properties reflect the severity of the singularities of X.
The particular category which will concern us is the stable injective category of

Krause [48], namely
S(X) = Ka(Inj X)

the homotopy category of acyclic complexes of injective quasi-coherent
Ox-modules. We call S(X) the singularity category of X. The singularity cate-
gory is a compactly generated triangulated category whose compact objects are
equivalent to Dg,(X) up to summands.

We show that the unbounded derived category of quasi-coherent sheaves of
Ox-modules, which we denote D(X), acts on the singularity category S(X).
Given an object E in D(X) one can replace E by a K-flat resolution and tensoring
this resolution with an acyclic complex of injectives again gives an acyclic complex
of injectives; as X is noetherian the tensor product of a flat quasi-coherent sheaf
and an injective quasi-coherent sheaf is injective and preservation of acyclicity
can be taken as the defining property of K-flat complexes. This gives rise to a
theory of supports for objects of S(X) and Dgy(X) taking values in X.

In Chapter 3 we treat the case X = Spec R the spectrum of a noetherian ring.
We first verify that the claimed action of D(R), the unbounded derived category
of R-modules, on S(R) = K,.(InjR) is in fact an action and demonstrate its
basic properties. In particular we use work of Greenlees [34] to give a concrete
description for the action of certain objects.

We next consider the assignments
o(L) =supp L = {p € Spec R | I',L # 0}

and

T(W)={A€ S(R)| suppA C W}

for a localizing subcategory £ C S(R) and a subset W C Spec R. It is proved
that, as one would expect, the support actually takes values in Sing R the sin-
gular locus of Spec R. The behaviour of the action of D(R) with respect to the
various functors connecting D(R), S(R), and K(InjR) is also discussed. The
main theorem of this chapter is a technical one proving that ¢ and 7 restrict to
bijections between certain localizing subcategories of S(R) and subsets of Sing R;
we do not state it here as the remainder of the thesis is dedicated to improving
this result as well as extending it to the non-affine case and sharper results are

obtained.



The focus of the fourth chapter is on proving the assignments o and 7 give
a complete classification of the localizing subcategories of S(R) when the ring R
is locally a hypersurface. This extends work of Takahashi [68] who has classified
thick subcategories of Dg,(R) when R is a local hypersurface. We are able to
extend this result to cover all localizing subcategories of S(R) as well as removing
the hypothesis that R be local by using the action of D(R):

Theorem (4.2.13). If R is a noetherian ring which is locally a hypersurface then

there 1s an order preserving bijection

T

{ subsets of Sing R } { localizing subcategories of S(R) } :

g
It follows that there are also order preserving bijections

specialization closed T, localizing subcategories of S(R)
subsets of Sing R 5

g

generated by objects of S(R)®

and

specialization closed . _ _
{ thick subcategories of Dgg(R) } .

subsets of Sing R )

Using the machinery of Chapter 2 we are also able to deduce the telescope
conjecture for S(R) when R is locally a hypersurface.

In Chapter 5 we approach the problem of understanding the structure of
S(X) where X is any noetherian separated scheme. We prove there is an action
of D(X) on S(X) and by working locally we extend our main results from the
affine case. In particular, as we show in Theorem 5.2.7 our result for hypersurface
rings extends to classify certain localizing subcategories of S(X) where X is a
noetherian separated scheme with only hypersurface singularities. For such X
subsets of the singular locus correspond to localizing subcategories of S(X) which
are stable under the action of D(X). As a corollary (5.2.9) we obtain a complete
classification of the localizing subcategories of S(X) when X can be expressed
as the zero scheme of a section of an ample line bundle on an ambient regular
scheme. As consequences we obtain proofs of the relative telescope conjecture
and the telescope conjecture respectively.

We end by considering locally complete intersection schemes which are not
necessarily hypersurfaces. By a theorem of Orlov [64], working over some fixed
base field, if X is a noetherian separated locally complete intersection scheme,

admitting a suitable embedding into a regular scheme with enough locally frees,
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the category Dgg(X) is equivalent to Dgg(Y') for a hypersurface Y which can be
given explicitly. We prove that this equivalence extends to the level of Krause’s
stable injective categories and are thus able to employ it in Theorem 5.3.8 to
reduce an aspect of the classification problem for such local complete intersection
schemes to the corresponding classification problem for hypersurfaces which we
have already solved. As a special case we are able to completely classify the local-
izing subcategories of S(R) when R is a local (non-abstract) complete intersection

ring over a field

Theorem (5.3.16). Suppose (R, m, k) is a local complete intersection of finite

type over a field. Then there are order preserving bijections

subsets of -
11 ]P)ZP(_)l { localizing subcategories of S(R) }
» o
peSing R

where c, is the codimension of the singularity at the closed point of R,. Further-

more, the telescope conjecture holds for S(R).

This gives a new proof of certain cases of a similar result for local complete

intersections announced by Iyengar [42].



Chapter 2

Actions in Tensor Triangular

Geometry

In recent work Paul Balmer has developed a notion of tensor triangular geometry
([7], [9], [11]) associating to an essentially small triangulated category with a
compatible tensor product (7, ®, 1) a topological space SpcT called the spectrum
of 7. The spectrum of T classifies certain ®-ideals of T in a spirit similar to the
classification of Thomason [69] in the case of the left derived tensor product on
DPef(X) for a quasi-compact quasi-separated scheme X .

Our aim here is to develop the corresponding theory of ‘modules’ in tensor tri-
angular geometry. Rather than working only with tensor triangulated categories
we consider actions of such categories on other triangulated categories. From this
we deduce structural information about the target. This can be regarded as a

‘categorified” version of some recent work of Benson, Iyengar, and Krause ([13],

[16], [17]).

2.1 A Candidate Definition

Before beginning we owe it to the reader to make explicit exactly what we mean
by tensor triangulated category. A tensor triangulated category (T,®,1) is a
triangulated category 7 together with a symmetric monoidal structure such that
the monoidal product ® is an exact functor in each variable. We also require that
® preserves whatever coproducts 7 might have. We do not assume any further
compatibility between the monoidal structure and the triangulation. We also do
not assume, unless explicitly stated, that the triangulated categories we deal with

are essentially small.
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Let us propose a definition of what it means for a tensor triangulated category
to act on another triangulated category. We define here the notion of left action
and express a sinistral bias by only considering left actions and referring to them

just as actions.

Definition 2.1.1. Let (7,®,1) be a tensor triangulated category and K a tri-

angulated category. A left action of T on K is a functor

x: T x K —K

which is exact in each variable, i.e. for all X € T and A € K the functors X * (—)
and (—) x A are exact (such a functor is called biezact), together with natural
isomorphisms

a: * (® xidg) — * (idy xx)

and
[: 1% L} ld]C

compatible with the biexactness of (—) * (—) and satisfying the following condi-

tions:

(1) The associator a satisfies the pentagon condition which asserts that the

following diagram commutes for all XY, Z in 7 and A in K

X x (Y % (ZxA))

X+*ay,z A ax,y,Z+A

X*x(Y®Z)xA) (X®RY)*(ZxA)
(XeYeZ2)xA (XeY)eZ)xA

where the bottom arrow is the associator of (7, ®, 1).

(2) The unitor [ makes the following squares commute for every X in 7 and A

in
X*(l*A)le;X*A 1*(X*A)M>X*A
aX,l,AT ilxm al,X,AT llX*A
(X@1)*A—=Xx A 1IX)*A—X=xA

where the bottom arrows are the right and left unitors of (7, ®,1).
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(3)

For every A in KC and r, s € Z the diagram

o 23A4N>ZT+SA
Z\L l(_l)'rs

Sr(1# D A) ——> x4

is commutative, where the left vertical map comes from exactness in the
second variable of the action, the bottom horizontal map is the unitor, and

the top map is given by the composite
STk SPA — Y (XL A) — ST (1 A) - S A
whose first two maps use exactness in both variables of the action.

The functor * distributes over coproducts whenever they exist i.e., for fam-
ilies of objects {X;}ier in 7 and {A4,};e; in K, and X in 7, A in K there

are natural isomorphisms
H (X, * A) ]_[ X;)

and
[J(x=4) = X«(J]4)
J J
whenever the coproducts concerned exist.

Remark 2.1.2. Given composable morphisms f, f' in 7 and ¢, ¢’ in K one has

(f' g f*xg)=(ffxdg)

by functoriality of 7 x K — K.

Remark 2.1.3. It should be possible (at least in the essentially small case and

in the presence of an enhancement) to give a more natural definition in terms of

strong monoidal triangulated functors. This point of view will be pursued further

elsewhere.

We begin with a simple observation which we will use freely from now on

without reference.

Lemma 2.1.4. There are natural isomorphisms

07 *(=) 2 () * 0c =0

where 0 denotes the zero functor IK — K
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Proof. For any A in K the functor (—) * A is exact and so in particular it is
additive. Thus we must have O * A = 0. Similarly X * (—) is also additive for
each X in 7 so X * O = O. O

We now give an indication of the sense in which our actions may be regarded
as an enhancement of the actions introduced in [13]. In order to do this we first

need to recall the definition of the graded centre of a triangulated category.

Definition 2.1.5. Let T be a triangulated category. The graded centre (or central
ring) of T is the graded abelian group

ZX(T) =P 2"(T) = Pla: idr — " | of = (-1)"Sa}

where n ranges over the integers, which is given the structure of a graded com-

mutative ring by composition of natural transformations.

Remark 2.1.6. Using the words ring and group above is somewhat abusive as the
centre of 7 may not form a set (we do not assume 7 essentially small). However,
this is not a problem if one only wishes to consider the image of genuine rings in

the centre.

Lemma 2.1.7. An action T x K — K induces a morphism of rings
End% (1) — Z7(K).

Proof. Given f € Hom(1,3'1) we send it to the natural transformation whose

component at A € K is
~ fxla . ~ .
A—1xA—=Y"1x A—=Y'A.

This is natural by our coherence conditions. It is a standard fact that the graded
endomorphism ring of the unit is graded commutative from which it is straight-

forward that this is a map of graded commutative rings. O]

Thus provided End’-(1) is noetherian one is in a position to apply the ma-
chinery of Benson, Iyengar, and Krause. In fact this is discussed in Section 8 of
[13] for the case of tensor triangulated categories acting on themselves and it is
shown in Section 9 that for the derived category of a noetherian ring one recovers
the classical notion of supports from their construction. Thus it agrees with the

action of D(R) on itself which also gives the usual supports.
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We would like to view I as a module over 7 and from now on we will use the
terms module and action interchangeably. There are of course, depending on the

context, natural notions of 7-submodule.

Definition 2.1.8. Let £ C K be a thick (localizing) subcategory. We say L is a
(localizing) T -submodule of K if the functor

TxL-5K

factors via L i.e., L is closed under the action of 7. We note that in the case
IC =T acts on itself by ® this gives the notion of a (localizing) ®-ideal of 7. By

a smashing or compactly generated submodule we mean the obvious things.

Notation 2.1.9. For a collection of objects {A, | A € A} in K we denote by
(Ax | A e D).

the smallest (localizing) 7 -submodule of K containing the A,.
For (localizing) thick subcategories £ C Tand M C K we set

LxaM=(XxA|XeL AeM),.

There is some ambiguity in the notation as we do not clutter it by distinguishing
between the localizing and thick cases and so we take care to make it clear which
we mean. However, this is not a serious problem in any case as in general if there

are sufficient coproducts submodules will always be localizing.

The operation of forming such submodules is well behaved. The results below
show that it commutes with the action in an appropriate sense. Most important
for us is the fact that given generating sets for £ C 7 and M C K we obtain a

generating set for £ x M as a submodule.

Lemma 2.1.10. Suppose Z C T is a thick ®-ideal. Then there is an equality of

subcategories of K
TxK = <X*A ’ X GZ,AGK)thiCk.
The obvious analogue holds for localizing submodules.

Proof. Let us set
(X*xA|XeZ, A Kk =L
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and denote by M C L the full subcategory of £ consisting of those objects B
such that Y x B € L for every Y € T. Then for every X € Z and A € K the
object X x A lies in M. Indeed, we have for any object Y of T

Vx(X+xA)2(YRX)xA

which is one of the generators given for £ as Y ® X is an object of Z. To see
that M is closed under suspension observe that for B € M and Y € T it holds

by the exactness properties of the action that
Y«xYXYB=YY xB

where XY % B € L by the defining property of M. It is closed under finite
biproducts as the action commutes with the biproduct in I and by assumption
L is closed under biproducts. Similar considerations show that M is closed
under summands and triangles. Thus M = L as we have shown M is a thick
subcategory containing the generators of £. By construction 7 x M C L and
combining this with the equality M = L shows L is a 7T-submodule of . In
particular, it is already the smallest thick submodule containing the specified
objects so agrees with Z * IC.

In the case of localizing ideals and submodules coproduct closure is easy to

deduce from the fact that we require the action to commute with coproducts in
both 7 and K. H

Remark 2.1.11. We only state and prove Lemmas 2.1.12, 2.1.13, and 2.1.14
for localizing subcategories and modules as we will mostly be concerned with
categories having enough coproducts. Of course one can replace localizing by

thick everywhere and the corresponding results hold.

Lemma 2.1.12. Formation of localizing subcategories commutes with the action,
i.e., given a set of objects {X;}ier of T and a set of objects {A;};es of K

(X*A| Xe(X;|i€ o A€(A;|JE Jochoc = (Xi*xAj |1 €1,j€E J)oc.

Proof. Denote the category on the left by £ and the one on the right by M. It
is clear M C L as each X; * A; is in L. For the converse it is sufficient to check

that M contains generators for £. For each j € J define a subcategory
T,={XeT|Xx*xA € M}.

The subcategory 7; is localizing as (—) * A; is an exact coproduct preserving

functor and the subcategory M is localizing. As, by definition, X; * A, is in M
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for all i € I each X; lies in 7;. So for any X in (X; | ¢ € I)j,c we have X in 7.
In particular, X * A; lies in M for each such X and all j € J.

Now consider the subcategory
{AeK|XxAeM forall X € (X;|i€ o}

It is localizing as M is so and by what we have just seen it contains the A; for
j € J. Thus it contains (A; | j € J)iee so for every X in (X; | i € I)j,. and every
Ain (A; | j € J)ioc we have X x A in M. Hence M contains generators for £
which gives the equality £ = M. m

Lemma 2.1.13. Given collections of objects {X;}icr of T and {A;}jes of K there

s an equality of submodules
(Xi [ € Thoe * (Aj [ J € Jhoe = (Xi | i € g x (Aj | j € J)oc-
Proof. 1t is clear that

(Xi | i€ Dhoo* (A5 1) € Jhoe C(Xi | i€ D) x (Y]] € Jhoc.

To see there is an inclusion in the other direction note that by definition and
Lemma 2.1.10 the subcategory (7 ® (X)ioc) * (A;)10c can be written as

(WA |We(ZoX | ZeT,X" € (X))o, A’ € (A))10c)

where we drop the indexing sets for brevity of notation. By Lemma 2.1.12 we

can rewrite this as
<(Z®X’) * A]’ | Z € T, X' € <Xi>loc>*'

Each of the generators in the above presentation can be rewritten in the form
Z % (X'* A;) via the associator. In particular each of the generators is an object

of the localizing submodule (X;)ioc * (A;)10c SO
(T® <Xi>loc) * <Aj>loc g <Xi>1oc * <Aj>loc-

It just remains to observe that since (7 ® (X;)oc) is a localizing ®-ideal of T
containing the X, it must contain the ®-ideal they generate. This gives the

desired containment
(Xi |1 € Ihoex (Aj 17 € Jhoe 2(Xi | i€ DNg*(Y; | J € Jhoc

and completes the proof. ]
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We can now give a version of Lemma 2.1.12 for submodules.

Lemma 2.1.14. Formation of localizing T -submodules commutes with the action
i.e., given a set of objects {X;}ier of T and a set of objects {A;}jes of K we have

<Xl‘ZEI>®*<AJ’j€J>10C:<X,L’Z€[>IOC*<A]|jEJ>]OC
—(X;xA;|ielje ).

Proof. The first equality is Lemma 2.1.13. The second follows from Lemma 2.1.12
as it identifies the smallest localizing subcategories containing generators (as sub-
modules) for the submodules in question and hence the smallest submodules con-

taining these generating sets. O

We record here the following trivial observation which turns out to be quite

useful.

Lemma 2.1.15. If T is generated as a localizing subcategory by the tensor unit

1 then every localizing subcategory of K is a T -submodule.

Proof. Let £ C K be a localizing subcategory and set
T-={XeT|XxLCL}

Now note that as 7% contains 1 and is localizing 7~ must be equal to 7. m

2.2 The Case of Rigidly-Compactly Generated

Tensor Triangulated Categories

We now restrict ourselves to the case that (7, ®, 1) is a rigidly-compactly gener-
ated tensor triangulated category (unless explicitly mentioned otherwise) acting
on a compactly generated K. Actions of such categories have several desirable
properties and we can extend much of the machinery developed in [11], [13], and

[17] to this setting. First let us make explicit our hypotheses on 7.

Definition 2.2.1. A rigidly-compactly generated tensor triangulated category is
a compactly generated tensor triangulated category (as usual the monoidal struc-
ture is assumed to be symmetric, biexact, and preserve coproducts so that 7 has
an internal hom by Brown representability which we denote by hom(—, —)) such

that 7°¢, the (essentially small) subcategory of compact objects, is a rigid tensor
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triangulated subcategory. We recall that 7¢ is a rigid tensor triangulated subcat-
egory if the monoidal structure and internal hom restrict to 7¢ (in particular the
unit object 1 must be compact), and for all  and y in T¢, setting ¥ = hom(z, 1),

the natural map

¥ ®y — hom(z,y)

is an isomorphism. In particular such categories are unital algebraic stable ho-

motopy categories in the sense of [40] Definition 1.1.4.

In the case that 7 is rigidly-compactly generated we can use Spc T ¢, as defined
in [7], in order to define a theory of supports by using the ®-ideals of 7 generated
by objects of T¢ which provide us with many Rickard idempotents as in [11].

Our first task is to show that if such a 7 acts on a compactly generated
triangulated category K that we can transfer compactly generated subcategories
across this action: from Rickard idempotents on 7 we can obtain localization
sequences on K where each of the categories involved is compactly generated by
compact objects of K. Before proceeding let us fix some notation and recall the

definition of Thomason subsets.

Convention 2.2.2. Throughout this subsection all submodules will be localizing

unless explicitly mentioned otherwise.

Definition 2.2.3. Suppose that X is a topological space. A subset V C X is a
Thomason subset if it is of the form V = U, V; where each V; is a closed subset of

X with quasi-compact complement.

Notation 2.2.4. Given a Thomason subset V C Spc7* we denote by 7,5 the
thick subcategory of compact objects supported, in the sense of [7], on V. We let
Ty be the localizing subcategory generated by 7,5 and note that 7y is smashing as
it is generated by compact objects of 7. In particular there are associated Rickard
idempotents which we denote by I'y1 and Lyl with the property that under
the tensor product they give rise to the smashing acyclization and localization
functors corresponding to 7y (see for example [11] Theorem 2.13). It follows that
they are ®-orthogonal by the usual properties of localization and acyclization

functors. We will also sometimes write I'),7 for the category associated to V.

We now prove that from a Thomason subset of Spc7¢ we can produce a pair
of compactly generated subcategories of K. We do this via a series of relatively

straightforward lemmas.
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Lemma 2.2.5. Suppose V C SpcT° is a Thomason subset. Then the subcategory
'yK:={AeK|3A with A=Ty1x A}
15 a localizing T -submodule.

Proof. We begin by showing I'y,K is localizing. It is sufficient to show that
[VIC = ker Lyl x (—),

as the kernel of any exact coproduct preserving functor is a localizing subcategory.
By [11] Theorem 3.5 the subcategory I'y,T of T is precisely the essential image,
im(I'y1 ® (—)), of tensoring with I'y,1 and the corresponding idempotents are
tensor orthogonal i.e., I'y1 ® Lyl = 0. So if A is in I'yK then

LV]- x A Lv]_ * (FV]- * A,)
= (Lv]. X FV].) x A’
=0
showing
IyIC C ker Lyl x (—).

Conversely, suppose Lyl * A = 0. Then applying (—) * A to the localization
triangle
Ivi—1— LV]- — Iyl

in 7 we deduce an isomorphism I'y1 * A —+ A. Thus A is in I'yK so the two
subcategories of K in question are equal as claimed. As stated above this proves
'V is localizing as the kernel of any exact coproduct preserving functor is a
localizing subcategory.

To see it is a submodule note that for X in 7 and A in ',/ we have

X*x A2 X x(Ty1xA)
[

Lemma 2.2.6. Suppose V is a Thomason subset of SpcT¢. The subcategory I'yKC
and the subcategory

LyK = {A € K| 3A with A= L)1+ A’}
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give rise to a localization sequence

v LyK
v - K ~_____

and LK is also a localizing T -submodule.

Proof. The statement that Ly, is a submodule follows in exactly the same way
as for I'y,KC in the proof of Lemma 2.2.5.
So let us demonstrate we have the claimed localization sequence. There is a
triangle in 7
'l —1— Lyl — XI'y1

associated to V by definition (see Notation 2.2.4). For any A in K the action thus

gives us functorial triangles
M'visA— A— Lyl x A — XI'y1 % A
So to prove we have the desired localization sequence it is sufficient to demonstrate
LyK =TyK*

by Lemma 3.1 of [20].
We first show Ly D I'yK*. Suppose A € I'yKL and consider the triangle

By hypothesis the morphism I'y1 * A — A must be zero so the triangle splits
yielding

As LyK is localizing it must contain I'y;1 % A i.e., there is some A’ in IC such that

I'yvl« A= Ly1x A’. Hence there are isomorphisms

where we have used tensor orthogonality of the Rickard idempotents. Thus
Lylx A= Aisin LykK.

It remains to check the containment LyK C I'vKt. Let A be an object of
I'yKC and B an object of Ly,KC. Observe that as A is in 'y and B is in LyK
we have Lyl x A =2 0 and I'y1 * B 2 0. Indeed, by symmetry of the monoidal
structure on 7 the objects Lyl x A and I'y1 % B lie in both I'v/C and LyKC. It
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follows they must vanish by orthogonality of the tensor idempotents I'y,1 and L1
as in (2.1) and (2.2) above. So for f € Hom(A, B) we obtain via functoriality a

map of triangles

FV]_*A = A 0
R
0 B = Lvl*B

which shows f = 0. Hence
LyK CTyKH

proving the equality of these two subcategories. As stated above this yields the
desired localization sequence by Lemma 3.1 of [20].

]

Notation 2.2.7. We will be somewhat slack with notation and often write, for
Ain IC, I'y A rather than I'y1 % A when it is clear from the context what we mean.
When working with objects X of T we will use the idempotent notation for the
localization and acyclization functors, e.g. I'y1 ® X, so no confusion should be

possible.

The next lemma is the first of several results showing rigidly-compactly gen-
erated tensor triangulated categories are not just lovely categories in their own

right, but they also act well on other compactly generated categories.

Lemma 2.2.8. Suppose T x K — K is an action where T is rigidly-compactly
generated and K is compactly generated. Then the action restricts to an action
at the level of compact objects T¢ x K¢ — K¢.

Proof. Let t be a compact object of T. As T¢ is rigid the object t admits a strong

dual i.e., there is an object tV together with morphisms
m:l—t'®t and :t@t! —1

such that the composite

pi @

t*>t®1*>t®(tv®t)*a>(t®tv)®t€t®t At

1®1 t

where p;, A\;, and « are the right and left unitors and the associator for T, is the
identity and similarly for ¢¥. Using these maps together with the unitor [ and

associator a for the action we define natural transformations

Ne*

1
nhe ide = 16— (1Y @ )% — ¥ & tx
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and

62: t*tv*ﬂ(t®tv)*i>1**l>idlc
which we claim are the unit and counit of an adjunction. In order to prove this
it is sufficient to verify that the composites

) €tk nytYx tVxe,
tk — >t stV stx——>1tx and Vs ——1tV xtxt’ —>tVx

are the respective identity natural transformations (see for instance [49] IV.1
Theorem 2). In fact these are precisely the identity composites corresponding to
the existence of strong duals in 7 applied to K. This is easily checked using the
compatibility conditions required for 7 to act on K.

Thus 7, and €, give the desired adjunction. In particular, ¢x has a coproduct
preserving right adjoint and so by [60] Theorem 5.1 it must send compact objects

to compact objects. O]

Of course there are other situations in which this is true, although one has to

assuine maore.

Lemma 2.2.9. Let T be a (not necessarily rigidly) compactly generated tensor
triangulated category acting on a compactly generated triangulated category K. If
there exists a set of compact generators {x;}ic; for T such that x; x K¢ C K€
for each i € I then the action of T on K restricts to an action of T¢ on K°.
In particular, if the unit object 1 of T is compact and generates T the action

restricts.

Proof. The argument is standard: as the action is exact in each variable the
subcategory of T¢ which acts on K¢ is thick and by assumption it contains a

generating set. O

Our next lemma is a relative version of Miller’'s Theorem (see [56] or [40]
Theorem 3.3.3).

Lemma 2.2.10. Suppose T is a (not necessarily rigidly) compactly generated
tensor triangulated category which acts on a compactly generated triangulated
category KC and that C is a thick T¢-submodule of K¢. Then (C)ioe is a localizing
T -submodule of K.

Proof. We first show (C)joc is a T¢submodule. Let £ be the full subcategory of
objects A of (C)oc such that T¢x A C (C)oe. Then C C L as it is a T *-submodule

by hypothesis. Since (C)o. is localizing and * is biexact and preserves coproducts
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in the second variable it is straightforward to see L is a localizing subcategory.
Thus, as it contains C, we have £ = (C), which proves the claim.

We now complete the proof by showing (C)j, is also closed under the action of
T . Consider M the full subcategory of objects X of T such that X * (C)ioc € (C)ioc-
We have just seen (C)ioc is a T -submodule so 7¢ C M. As above, since * is
biexact and coproduct preserving in the first variable and (C) is localizing, it
follows that M is a localizing subcategory. Hence M = T as it contains the

compacts. Thus (C)ec is a localizing T-submodule as claimed. O

We are now ready to demonstrate a general result (we do not assume T
rigidly-compactly generated) on compact generation of subcategories produced
via actions. It implies compact generation of subcategories of the form I'v,K for
) a Thomason subset of Spc T°.

Proposition 2.2.11. Suppose T acts on K, with both T and IC compactly gen-
erated, in such a way that the action restricts to one of T¢ on K¢ (e.g., T is
rigidly-compactly generated). Then given a ®-ideal L C T generated (as a local-
izing subcategory) by compact objects of T and a subcategory M C K generated by
objects of K¢ the subcategory L x M is also generated, as a localizing subcategory,

by compact objects of IC.

Proof. Let us fix generating sets {z;};e; for £ and {a;};e; for M where the z;
and a; lie in 7° and K¢ respectively. By Lemma 2.1.14 we have equalities of

subcategories of IC
ﬁ*M:<xl|Z€I>®*<GJ ’]€J>1OC=<IEZ*CL]’ZE[,]€J>*

where by hypothesis each z; * a; is a compact object of K.

Let us denote by G the smallest thick 7°-submodule of K¢ containing the
set of objects {x; * a;}ier jes. Lemma 2.2.10 tells us the localizing subcategory
N = (G)1oc is a T-submodule. We claim that £« M = N. Since £ * M contains
{z; * a;}ierjes and is a localizing and hence thick 7T-submodule it contains G.
Thus N C L * M.

On the other hand NV is a T-submodule containing G and so certainly contains
the set of objects {z; *a;}icr jes. Hence it is a localizing T-submodule containing
a generating set (as a localizing T-submodule) for £ % M and so contains £ % M.
It follows that N = £ * M. In particular, £ * M has a generating set of objects
compact in K obtained by taking a skeleton for G C K°. m
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Remark 2.2.12. We get more from the proof of this proposition when 7T is
generated by the tensor unit. In this case all localizing and thick subcategories
are closed under the action of 7 and T° respectively so given compact generating
sets for £ and M, we get an explicit generating set for £ M. Indeed we showed
that if £ is generated by objects {z;};cr of T¢ and M is generated by objects
{a;};es of K¢ then £ % M has a generating set {x; * a; }ier jes of objects compact
in C.

Corollary 2.2.13. Suppose T is a rigidly-compactly generated tensor triangu-
lated category acting on a compactly generated triangulated category IC and that

V is a Thomason subset of SpcT¢. Then the subcategory
I'yE={AeK|3JA with A=Ty1x A’}
s generated by compact objects of K.

Proof. By the proposition we have just proved it is sufficient to make the identi-
fication I'vK = T'yT * K. If X is an object of I'y,T then there is an isomorphism
X =2T'y1® X. Thus we have

VT «K=(X*xA| X elT,AeK).
=(Iyl1x(X*xA) | XelWVT,AeK),

Closing the generators of this last submodule under isomorphisms gives I'y/C
which, by Lemma 2.2.5, is a localizing 7-submodule. Thus I'py/C =TT * K and
we can apply the last proposition to complete the proof. [l

We now define the functors which give rise to supports on K relative to (7T, *).

Definition 2.2.14. For every = € Spc T we define subsets of the spectrum

and

Z(xz) ={y€SpcT |z ¢ V(y)}

Both of these subsets are specialization closed but they are not necessarily Thoma-

son. In the case that they are both Thomason we define a ®-idempotent

r,1= (Fy(x)]_ X Lg(m)l).
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In keeping with previous notation we will sometimes write ', A instead of I',1x A
for objects A of K. We recall from [11] Corollary 7.5 that the idempotent functors
I''1® (=) on T for z € SpcT*¢ only depend on z and not on the choice of
Thomason subsets W,V satisfying V \ {V N W} = {z} that we use to obtain
them via I'y1 ® Lyy1 (as in Theorem 6.2 of [13]). Thus, with 7 acting on K, the

functors I',: K — K also only depend on z. In other words we have:

Lemma 2.2.15. Let x € SpcT ¢ and suppose V and W are Thomason subsets of
SpcT¢ such that V\ (VNW) = {x}. Then there are natural isomorphisms

(Lywl@Tyl)* (—) 2T, 2 (T'yl @ Lyl) * (—).

If such sets exist for z € SpcT° let us follow the terminology of [11] and call
x visible. By [11] Corollary 7.14 every point is visible in our sense if the spectrum

of T°¢ is noetherian. We denote by Vis T° the spectrum of visible points of T .

Remark 2.2.16. The fact that certain points are “invisible” is rather unsatis-
factory. It should be possible to give a refined notion of the spectrum for any
compactly generated tensor triangulated category 7 which agrees with SpcT*°
when Spc 7€ is noetherian. A step toward realizing this is given in [67]; the point
is that one would like to work with localizing prime ®-ideals but first one needs

to know (when) there is a set of such.

Notation 2.2.17. Following previous notation we use I',/KC, for € SpcT¢, to
denote the essential image of I',1 % (—). It is a T-submodule as for any X € T
and A € I',K

X+ A2 X x(T,1xA) 2T, 1% (X xA)
for some A’ € K.

We can define supports taking values in the set of visible points of SpcT°.

Definition 2.2.18. Given A in K we define the support of A to be the set
supp(r. A ={r € VisT* | ', A # 0}.
When the action in question is clear we will omit the subscript from the notation.

Remark 2.2.19. We are now in a position to make the connection between our
machinery and the machinery of Benson, Iyengar, and Krause more transparent.

Let us ponder the case 7 = D(R) where R is a noetherian ring. In this case
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K is R-linear so the theory developed in [13] applies. By [13] Theorem 6.4 the
subcategories giving rise to supports in the sense of Benson, Iyengar, and Krause
are generated by certain Koszul objects: if V C Spec R is specialization closed

then their subcategory Ky, is easily seen to be generated by the objects
{K(p)*xalaeK peV}

As {3'K(p) | p € V,i € Z} is a generating set for T',D(R) we see, by Remark
2.2.12 and the corollary following it, that the localizing subcategories Ky, and
I'vIC agree. Thus our support functors are precisely those of Benson, Iyengar,

and Krause in the case that the derived category of a noetherian ring acts.

Proposition 2.2.20. The support assignment suppr ) satisfies the following

properties:

(1) given a triangle
A—B—C—%XA

in K we have supp B C supp A U supp C;
(2) for any A in K and i € Z

supp A = supp X' A;

(3) given a set-indexed family {Ax}aen of objects of K there is an equality

supp | [ Ax = | supp Ay;
A A

(4) the support satisfies the separation axiom i.e., for every specialization closed
subset V C VisT¢ and every object A of K

suppl'yl1x A=suppANY
supp Lyl x A =supp AN (VisT\ V).

Proof. As T',1 % (—) is a coproduct preserving exact functor (1), (2), and (3)
are immediate. To see the separation axiom holds suppose V C VisT°¢ is a

specialization closed subset and let A be an object of K. Then

[ 1x(Tyl*xA) = (T,10T)1)xA
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where W and ) are Thomason subsets such that W\ WNY)={z}. lfx €V
the subsets W NV and Y also satisfy the conditions of Lemma 2.2.15 i.e.,

wny\ownvny) = {z}.
By [11] Proposition 3.11 T'yy1 ® I'y1 = T'yyqp1. So in this case
FlxTplsx A Tyl ® Lyl)x A= T,1% A.

If x ¢V then WNV is contained in ). It follows that I'yyny7T C I'yT so, using
standard facts about acyclization and localization functors e.g. [13] Lemma 3.4,

I,1«I'yl«A=0.

This proves suppl'y1 x A = supp AN V. One proves the analogue for Lyl x A

similarly. O

Corollary 2.2.21. Let x be a visible point of SpcT¢. Then, for T acting on
itself, suppI',1 = {z}. We also have that for distinct points x1, x5 of VisT¢ the
tensor product I',,1 ® I';,, 1 vanishes.

Proof. Let V and W be Thomason subsets giving rise to I',1. Statement (4) of
the proposition implies

supp [';1 = supp(I'y1 ® (Ll ® 1))
=V Nsupp(Lywl®1)
=VnN((VisT°\ W) Nsuppl
=VN(VisT\W)NVisT*
= {z}

which proves the first part of the corollary.
For the second statement recall from [11] Remark 7.6 that I',;1 ® I';,1 is

isomorphic to ['yz1. Given any Thomason subset ) we have
g1 =Tyl Lyl =0,

by [11] Corollary 7.5, which shows the tensor product in question vanishes as
claimed. O]

Finally we can in this generality define a pair of assignments between visible

subsets of Spc7°¢ and localizing submodules of K.
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Definition 2.2.22. We say a subset W C SpcT¢ is wisible if every x € W
is a visible point or equivalently if W C Vis7T¢ There are order preserving

assignments

visible s ..
{ localizing submodules of I }
subsets of SpcT¢

[

where both collections are ordered by inclusion, for a localizing submodule £ we

set

o(L)=suppL ={x e VisT°|I,L # 0}

and
T(W)={Ae K| suppA C W}.

Both of these are well defined; this is clear for o and for 7 it follows from Propo-
sition 2.2.20.

2.3 Homotopy Colimits and the Local-to-Global
Principle

Throughout this section we fix an action 7 x K — K where T is a rigidly-
compactly generated tensor triangulated category and K is compactly generated.
Furthermore, we assume Spc T° is a noetherian topological space so that special-
ization closed subsets are the same as Thomason subsets. All submodules are
again assumed to be localizing.

We begin by generalizing the local-to-global principle of [17].

Definition 2.3.1. We say 7 x K —— K satisfies the local-to-global principle if
for each A in K
(), = (A | z € SpeT)..

Remark 2.3.2. In the case that every localizing subcategory is also a

T-submodule we recover the Benson-Iyengar-Krause local-to-global principle.

The local-to-global principle has the following rather pleasing consequences

for the assignments o and 7 of Definition 2.2.22.

Lemma 2.3.3. Suppose the local-to-global principle holds for the action of T on
KC and let W be a subset of SpcT¢. Then

T(W) =([.K |z e Wnaok)..
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Proof. By the local-to-global principle we have for every object A of K an equality
(A), =(I';A|x € SpcT°)..
Thus

T(W)=(A| suppA C W),

=T, A|AeK,zeW),

=T, A|Ae K,z eWnaok).
=

K| zeWnaok)..
O

Proposition 2.3.4. Suppose the local-to-global principle holds for the action of
T on K and let W be a subset of SpcT¢. Then there is an equality of subsets

or(W)=Wnok.
In particular, T is injective when restricted to subsets of okC.

Proof. With W C SpcT°¢ as in the statement we have

or(W) = supp (W)
= supp(l",.K | z € WNoK).,

the first equality by definition and the second by the last lemma. Thus
or(W) = W N oK as claimed: by the properties of the support (Proposition
2.2.20) we have o7(W) C WNoK and it must in fact be all of WNoK as x € o
if and only if I',K contains a non-zero object.

[

We will show that the local-to-global principle holds quite generally. Before

proceeding let us fix some terminology we will use throughout the section.

Definition 2.3.5. We will say T has a model when it occurs as the homotopy

category of a Quillen model category.

Our main interest in such categories is that the existence of a model provides
a good theory of homotopy colimits. For our purposes only directed homotopy
colimits are required. We begin by showing that, when 7 has a model, taking
the union of a chain of specialization closed subsets is compatible with taking the

homotopy colimit of the associated idempotents.
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Lemma 2.3.6. Suppose T has a model. Then for any chain {V;}icr of special-

ization closed subsets of SpcT¢ with union V there is an isomorphism
I'y1 = hocolim I'y, 1
where the structure maps are the canonical ones.

Proof. As each V) is contained in V there are corresponding inclusions for ¢ < j
Tv. €Ty, €Ty

which give rise to commuting triangles of canonical morphisms

Ty 1 Tyl

K3

N

Ty 1

J

We thus get an induced morphism from the homotopy colimit of the Iy, 1 to I'y1

which we complete to a triangle
hocolim;I'y,1 — I'y'1 — Z — Y hocolim; I'y, 1.

In order to prove the lemma it is sufficient to show that Z is isomorphic to the
zero object in T .

The argument in [23] extends to show localizing subcategories are closed un-
der directed homotopy colimits so this triangle consists of objects of I'y,7T. By
definition I'),7 is the full subcategory of T generated by those objects of 7¢ whose
support (in the sense of [7]) is contained in V. Thus Z = 0 if for each compact
object k with suppk C V we have Hom(k, Z) = 0; we remark that there is no
ambiguity here as by [11] Proposition 7.17 the two notions of support, that of [7]
and [11], agree for compact objects. In particular the support of any compact
object is closed.

Recalling from [25] that SpcT° is spectral in the sense of Hochster [39] we see
supp k, by virtue of being closed, is a finite union of irreducible closed subsets.
We can certainly find an ¢ € I so that V; contains the generic points of these
finitely many irreducible components which implies supp k& C V; by specialization
closure of the V.

Therefore, by adjunction, it is enough to show

Hom(k, Z) = Hom(T'y,k, Z)
= Hom(k,I'y, 2)
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is zero. The vanishing of this hom-set is clear by construction so Z = 0 and we

get the claimed isomorphism. O]

Lemma 2.3.7. Let P C SpcT¢ be given and suppose A is an object of IC such
that T, A =0 for all x € (SpcT°\ P). If T has a model then A is an object of
the localizing subcategory

L=(,K|ye€ Poc.

Proof. Let A C P(SpcT¢) be the set of specialization closed subsets W such that
F'wAisin L = (I'yK | y € P)io.. We first note that A is not empty. Indeed, as
T°¢ is rigid the only compact objects with empty support are the zero objects by
[8] Corollary 2.5 so

7-® = <t € 7-0 ‘ Supp(T,@) t= ®>loc = <O>loc

giving 'z A = 0 and hence @ € A.

Since L is localizing, Lemma 2.3.6 shows the set A is closed under taking
increasing unions: as mentioned above the argument in [23] extends to show
that localizing subcategories are closed under directed homotopy colimits in our
situation. Thus A contains a maximal element Y by Zorn’s lemma. We claim
that Y = SpcT°.

Suppose Y # SpcT¢. Then since Spc T¢ is noetherian Spe7¢\ Y contains a

maximal element z with respect to specialization. We have
Lyv1l® FYU{z}l =T1.,1

as Y U {z} is specialization closed by maximality of z and Lemma 2.2.15 tells
us that we can use any suitable pair of Thomason subsets to define I',1. So
LyTyug3A = T',A and by our hypothesis on vanishing either I'.,X C L or
I'A = 0. Considering the triangle

Iylyup A ——=Tyugn A —— Ly Dy A

zi lz
I'yA r.A

we see that in either case, since I'y A is in £, that Y U {z} € A contradicting
maximality of Y. Hence Y = SpcT7° and so A is in L. O

Proposition 2.3.8. Suppose T has a model. Then the local-to-global principle
holds for the action of T on K. Explicitly for any A in IC there is an equality of
T -submodules

(A)s = (I';A | z € supp A)...
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Proof. Observe that by Lemma 2.3.7 applied to the action
TxT 5T

we see T = (I, T | * € SpeT)pe. Since I',T = (I';1)g it follows that the set
of objects {I';1 | © € SpcT*} generates T as a localizing ®-ideal. By Lemma
2.1.14 given an object A € K we get a generating set for T * (A),.:

T # (A)oc = (I's1 | € Spe T * (A)oc = (I'zA | 2 € supp A)...
But it is also clear that 7 = (1)g so, by Lemma 2.1.14 again,
T (Ao = (L) * (A)oc = (A)s
and combining this with the other string of equalities gives
(A)e =T * (A)oc = (T2 A | z € supp A).

which completes the proof.
O

We thus have the following theorem concerning the local-to-global principle

for actions of rigidly-compactly generated tensor triangulated categories.

Theorem 2.3.9. Suppose T is a rigidly-compactly generated tensor triangulated
category with a model and that SpcT¢ is noetherian. Then T satisfies the follow-

g properties:
(1) The local-to-global principle holds for the action of T on itself;

(1) The associated support theory detects vanishing of objects i.e., X € T 1is
zero if and only if supp X = @;

(1ii) For any chain {V;}icr of specialization closed subsets of SpcT¢ with union

V there is an isomorphism
I'y1 = hocolim I'y, 1
where the structure maps are the canonical ones.

Furthermore, the relative versions of (i) and (i) hold for any action of T on a

compactly generated triangulated category K.
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Proof. That (iii) always holds is the content of Lemma 2.3.6 and we have proved in
Proposition 2.3.8 that (i) holds. To see (i) implies (ii) observe that if supp X = @
for an object X of T then the local-to-global principle yields

(X)e = (I'nX | 2 € Spe T%)g = (0)s

so X = 0.
Finally, we saw in Proposition 2.3.8 that the relative version of (i) holds. This
in turn implies (ii) for supports with values in Spc7° by the same argument as

we have used in the proof of (i)=-(ii) above. O

2.4 The Telescope Conjecture

We now explore a relative version of the telescope conjecture. We show that
for particularly nice actions 7 x K — K we can deduce the relative telescope
conjecture for K. We will denote by T a rigidly-compactly generated tensor
triangulated category with noetherian spectrum (although let us note that not
all of the results require rigidity or a noetherian spectrum) and by K a compactly

generated triangulated category on which 7 acts.

Definition 2.4.1. We say the relative telescope conjecture holds for K with re-
spect to the action of T if every smashing 7-submodule & C K (we recall this
means S is a localizing submodule with an associated coproduct preserving lo-

calization functor) is generated by compact objects of K.

Remark 2.4.2. This reduces to the usual telescope conjecture if every localizing
subcategory of K is a submodule. It is also the usual telescope conjecture in the

case that a rigidly-compactly generated triangulated category acts on itself (see
[40] Definition 3.3.2).

Lemma 2.4.3. Suppose S C K is a smashing T -submodule. Then St is a

localizing T -submodule.

Proof. Let us denote by £ the subcategory of those objects of 7 which send S+
to itself
L={XeT|X*xS" CS}

As S is smashing the subcategory St is a localizing subcategory of K (see for
example [46] Proposition 5.5.1). Thus L is a localizing subcategory of T by the

standard argument.
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If x is a compact object of T then, as we have assumed 7T rigidly-compactly
generated, the object z is strongly dualizable. By Lemma 2.2.8 the functor x*(—)

has a right adjoint 2 * (—) so given B in S we have, for every A in S,
0 = Hom(x * A, B) = Hom(A,z" * B),

where the first hom-set vanishes due to the fact that S is a submodule so x *x A
is an object of S. Hence x¥ * B is an object of S* for every z in 7¢. As taking
duals of compact objects in T is involutive this implies that every object of T¢
sends St to S*. Thus 7°¢ is contained in the localizing subcategory £ yielding
the equality £ = 7. Hence every object X of T satisfies X * S* C S+ so that
S+ is a localizing T-submodule of K. O

Definition 2.4.4. Let M be a localizing T-submodule of . We define a sub-
category Tpq of T by

Tu={XeT|X*KCM}.

Lemma 2.4.5. Suppose M is a localizing submodule of KC. Then the subcategory
Tam is a localizing ®-ideal of T .

Proof. The usual argument shows that Ty is a localizing subcategory; as M
is localizing and the action is exact and coproduct preserving in both variables
one deduces triangle, suspension, and coproduct closure from the corresponding
properties of M.

It is also easily seen that Ty, is a ®-ideal. If X is an object of Ty, Y is any
object of T, and A is in I

YoX)+AZ (XY)«A=Z X x (Y xA)
which lies in M as X « K C M. Thus Y ® X lies in Ty. O

Hypotheses 2.4.6. We now, and for the rest of this section unless otherwise
stated, ask more of T and K: we suppose T has a model, so Theorem 2.3.9
applies, and that the assignments o and T of Definition 2.2.22 provide a bijection
between subsets of ckC C SpeT¢ (which we give the subspace topology throughout)
and localizing T -submodules of K. In particular, for any localizing submodule M

of IC there is an equality

M=7(oM)={Ae€ K| suppA C o M}.
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Lemma 2.4.7. Suppose M is a localizing T -submodule of K. Then there is an
equality of subcategories

M =Ty *xK.
Proof. By Lemma 2.3.3 and 7(0. M) = M we have
M= (T,K|z€cM)..

So by definition of Ty, the objects I',1 for z € o M lie in Ty. Thus M C T * K.
That Ty * K € M is immediate from the definition of Ty giving the claimed
equality. O

Proposition 2.4.8. Suppose T satisfies the telescope conjecture and let S C K
be a smashing T -submodule. If the inclusion Ts — T admits a right adjoint

and

(Ts)" = Tse

then S is generated by compact objects of K.

Proof. The subcategory S is, by assumption, a localizing submodule and as it
is smashing St is also a localizing submodule by Lemma 2.4.3. Thus Lemma
2.4.5 yields that both 75 and Tg. are localizing ®-ideals of 7. By hypothesis
the ®-ideals Ts and (Tg)L = T fit into a localization sequence. Hence Tgs is
a smashing subcategory of T (this is well known, see for example [11] Theorem
2.13). As the telescope conjecture is assumed to hold for 7 the subcategory Tg is
generated by objects of 7¢ By Lemma 2.4.7 there is an equality of submodules

S=TsxK

which implies that S is generated by compact objects of K: by Proposition 2.2.11,
since T is rigidly-compactly generated and 7s is generated by objects of T¢, the
subcategory Ts * K is generated by objects of K¢. O

Lemma 2.4.9. Let M be a localizing submodule of K and let W be a subset of
Spc T€ such that W N ol = oM. Then there is a containment of ®-ideals of T

Tm2Tw={X €T |suppX C W}

and

Tw*]C:M.
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Proof. Tt follows from the good properties of the support that Ty is a localizing
®-ideal of T. Let X be an object of Ty, let A be an object of I and let x be a

point in Spec 7¢. We have isomorphisms
Folsx(XxA)ZT10 X))« A= X x(T,1xA).

The object I';1 ® X is zero if x is not in W and I';1 * A = 0 if = ¢ oK so we
see supp X * A is contained in oM. Thus X % A is an object of M = 7o M. It
follows that X is in Ty and hence Ty C Ty

As suppT',1 = {z} for z € SpcT* by Corollary 2.2.21 we have I',1 € Ty, for
xr € oM. By the local-to-global principle (Theorem 2.3.9) and 7(c M) = M we
have

M= (T,K |z €M),

so Tw * I DO M. We proved above that Ty C Ty which gives Ty x K C M.
Thus Ty * K = M. O

Lemma 2.4.10. Suppose the support of any compact object of K is a specializa-
tion closed subset of okC. Then for any specialization closed subset V of SpcT¢,
with complement U, the support of every compact object of LyIC is specialization

closed in the complement U N ol of VN ok in ok (with the subspace topology).

Proof. Let us denote by 7 the quotient functor K — Ly,K. We assert it sends
compact objects to compact objects. To see this is the case recall I'y,K has a
generating set consisting of objects in K¢ by Corollary 2.2.13 so 7 has a coproduct
preserving right adjoint. The functor m thus takes compact objects to compact
objects by Theorem 5.1 of [60].

Given any compact object [ of Ly/C there exists an object k in K¢ such that
[ @ Xl is isomorphic to wk by [61] Corollary 4.5.14. Thus

supp ! = supp(l & Xl) = supp 7k = supp Lyk = suppk NU

where this last equality is (4) of Proposition 2.2.20. Thus supp! is specialization

closed in U N oK as supp k is is specialization closed in o/C. n

The next lemma is the key to our theorem on the relative telescope conjecture
for good actions. Before stating and proving it we recall from [7] Proposition 2.9
that the space SpcT¢ is Tp; given points z,y € SpcT ¢ we have x = y if and only
if V(z) = V(y). In fact SpcT¢ is spectral in the sense of Hochster [39] so every

irreducible closed subset has a unique generic point.
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Lemma 2.4.11. Suppose the support of any compact object of K is a specializa-
tion closed subset of oIC and that for each irreducible closed subset V C SpcT*
there exists a compact object of KC whose support is precisely V N okC. If x and y
are distinct points of oIC with y € V(x) then

Ly |y € V() NUy)\ {ahhoe € T.KT
where U(y) = {y' € SpcT° |y € V(y')} is the complement of Z(y).
Proof. By hypothesis there is a compact object k of IC satisfying
suppk = V(z) Nok.
The object Lz, k is compact in Lz()K and has support
supp Lz)k = suppk N (Spc T\ Z(y)) NoK = V(z) NU(y) N oK

by Proposition 2.2.20.

Suppose for a contradiction that
Ly K1y € V(@) NUE))\ {zhhoe € T
Consider the localization triangle for Lz k
Lz@Lzyk — Lzyk — Lz Lzyk — Xz Lzg)k.
We have, via Proposition 2.2.20,
supp Lz Lzok =U(x) N V(x) NU(y) N oK = {x}
and
supp Xz Lzyk = Z(x) N V(x) NU(y) NoK = (V(z) NU(y) N oK) \ {z}.

So, as the local-to-global principle holds, the morphism
Lz Lzyk — XI'z@)Lzy)k must be zero by our orthogonality assumption.
This forces the triangle to split giving

Lzk = Lz Lzyk © I'z@)Lzy)k.

As Lz k is compact in Lz, K it follows that Lz(,) Lz, k must also be compact.
But we have already seen that the support of Lz)Lz)k is {#} which is not
specialization closed in U (y)No K. This yields a contradiction as by Lemma 2.4.10
the compact objects in L z(,)K have specialization closed support in U (y)No k. [



24. THE TELESCOPE CONJECTURE 37

Lemma 2.4.12. Let S be a smashing T -submodule of IKC. Then

ocSUcSt =K and oSNoSt=0.

Proof. Suppose x is a point of ¢/ satisfying x € ¢S N o¢S*+. Then as we have
assumed o and 7 are inverse bijections and St is a localizing submodule by

Lemma 2.4.3 we would have
r,Kcsnst=o.

This contradicts z € o/C as x is a point of oK if and only if I',/C # 0.

We now show that every point of oK lies in either 0S8 or 0S*. Let x be a
point of oK and suppose = ¢ ¢S+. In particular I', K ¢ S* so there is an object
X of I',K with I's X # 0 where I's is the acyclization functor associated to S.

Consider the localization triangle for X associated to &
s X — X — LgX — YI'sX.
Applying I', we get another triangle
rr’sX —oIr,X —TI,LsX — XI',I'sX.
Since z ¢ oS+ we have I',LsX = 0. Hence
0AX=2T, X 2T, IsX

so I',§ is not the zero subcategory and x € ¢S.
O

Lemma 2.4.13. Suppose the support of any compact object of K is a specializa-
tion closed subset of oK and that for each irreducible closed subset V in SpcT*
there exists a compact object of K whose support is precisely V Nok. Let S C K

be a smashing T -submodule. Then the subset oS is specialization closed in okC.

Proof. We prove the lemma by contradiction. Let x be a point of 0§ and suppose
y is a point of V(z) N o/C which does not lie in ¢S. Then by the last lemma we
must have y € 0S8+, We have assumed Spc 7 is noetherian so there exists a
point 2’ of ¢S NU(y) which is maximal with respect to specialization. We thus

have

(VE)nU) \{zH)NneS =2
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by virtue of the maximality of ’. From the previous lemma we deduce that
every point of (V(z') NU(y)) \ {2'}) lies in 6S*. As o and 7 are inverse there

are containments
IoKCS and (I',K|y € (V(E)nUy)\{z'}). €St

the first as € ¢S and the second by what we have just shown. Taking orthog-

onals in the first containment and combining we deduce that
(LyK 1y € V() nU(y) \{a}). € S CToK-

contradicting Lemma 2.4.11 and completing the proof.
O

Theorem 2.4.14. Suppose the hypotheses of 2.4.6 hold, the support of any com-
pact object of IKC is a specialization closed subset of okC and that for each irreducible
closed subset V of SpcT® there exists a compact object whose support is precisely
V Nok. Then the relative telescope conjecture holds for IC i.e., every smashing

T -submodule of IC is generated, as a localizing subcategory, by compact objects of

K.

Proof. Let S be a smashing submodule of K. Recall from Lemma 2.4.9 that there
is an equality

TW x =8 (23)

for any W C Spc T¢ whose intersection with ¢/C is ¢S. By the lemma we have just
proved the subset o8 is specialization closed in oK so we can find a specialization
closed subset W of Spc T with W N ok = oS5. As W is specialization closed in
Spc T°¢ the tensor ideal Ty is generated by objects of 7€ It then follows from
the equality (2.3) that S is generated by objects of K¢ - this last statement is the
content of Proposition 2.2.11. [

2.5 Working Locally

We now show that the support theory we have developed is compatible with
passing to quasi-compact open subsets of the spectrum; in particular, certain
properties can be checked locally on an open cover.

Let T be a rigidly-compactly generated tensor triangulated category such that

Spc 7€ is noetherian. We recall that, as Spc 7€ is noetherian, every open subset
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is quasi-compact. Let U be an open subset with closed complement Z. There is

an associated smashing localization sequence

i P
FZT=7}z;iTz%iLjT:7TU)
where we have introduced the notation 7 (U) for the category on the right; we feel
that this is worthwhile as when working locally it is better to keep open subsets
in mind rather than their closed complements. Both 77 and T (U) are tensor

ideals and we recall that by definition
ivit =Tz1® (=) and pop* =Lz1® (—).

By Thomason’s localization theorem (see for example [60] Theorem 2.1) the sub-
category of compact objects of T(U) is the idempotent completion of 7¢/T¥ i.e.,
it is precisely the subcategory T¢(U) of Balmer. By [8] Proposition 2.15 the
category T¢(U) is a rigid tensor category and so T (U) is a rigidly-compactly
generated tensor triangulated category. We also wish to remind the reader that
Spc T¢(U) is naturally isomorphic to U by [10] Proposition 1.11. The quotient
functor p* is monoidal and we will denote by 1 the tensor unit p*1 of T (U).
We will use the notation introduced above throughout this section and it will
be understood that U carries the subspace topology. The category T (U) acts on
itself giving rise to a support theory; in order to avoid confusion we will include 1
in the notation for acyclization, localization, and support functors this gives rise
to, 7(U) in the notation for the associated subcategories, and write the support

as suppr -
Let us now recall that p* behaves nicely with respect to tensor idempotents

in T.
Lemma 2.5.1. Let V C SpcT¢ be specialization closed. Then
P Tyl = Typly and p*Lyl = Lynyly.
Proof. This is just a different way of stating [11] Corollary 6.5. O
We next show the projection formula holds in this generality.

Lemma 2.5.2. Suppose X € T andY € T(U). Then there is an isomorphism

X@pY =Zp.(pX®Y).



40 CHAPTER 2. ACTIONS IN TENSOR TRIANGULAR GEOMETRY

Proof. As Y is in T(U) we have p*p,.Y =Y and hence
pY Zpp'p.Y = Lz1@p.Y.
From this we see

2XRIZ10 L1Qp.Y
=0

showing X ® p,Y is in the image of p,. Using this we deduce that

PP X ®Y) = p.(p"X @pp.Y)
= pp" (X @p.Y)
~1,10X®pY
=X QpY

which is the claimed isomorphism. [l

It follows easily from these facts that one can work locally when considering
the subcategories I', T for x € SpcT¢.

Proposition 2.5.3. For all x € U there is an isomorphism
Proof. To see this is the case just note there are isomorphisms

P21y =2 p(Ty@nvly @ Lz@noly)
= 0. (P Tyl ®p*Lz@w)1)
= pp” (Fy(x)l ® LZ(x)l)
= L;I,1
~T 1

where we have used Lemma 2.5.1 for the second isomorphism and the fact that
I'y1 € LT =T (U) for the final isomorphism. O

Proposition 2.5.4. For all x € U the functor p, induces an equivalence

r,7 —>T,T(U).

DPx
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Proof. The essential image of p* restricted to I', 7 is I, T (U) as we have isomor-

phisms

p(l1eA) =2pT,10p A
=p'p L1y ®p A
= F:le ®p*A

where A is any object of 7 and we have used the Proposition we have just proved
for the second isomorphism.

If X isin T we have, using the projection formula,
p(Telp @p'X) Zp 1y @ X =2T,10 X

showing the essential image of p, restricted to I', T (U) is T',T.
Finally, as p, is fully faithful we have p*p, = idy () and p.p* = idiyp,. From
what we have just shown it is clear that this equivalence restricts to give the

equivalence in the statement of the proposition. [l

Let us now fix some action of 7 on a compactly generated triangulated cat-
egory K and consider the relative version. For U C SpcT° as above we have a

smashing localization sequence

J q*
FZK:lc?LZIC =K(U)
j! *

by Lemma 2.2.6 and Corollary 2.2.13, where
Gojt =Tzl % (=) and q.q" = Lz1 % (—).

Our first observation is that 7 (U) acts on K(U) in a way which is compatible

with the quotient functors.

Proposition 2.5.5. There is an action of T(U) on K(U) defined by commuta-
tivity of the diagram

Tx K—2XC L T(U) x K(U)

* \L*U

K ; KU).
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Proof. As in the diagram we define the action of 7(U) on IC(U) by setting, for
X eTand Ae K,
P’X %y A =qg"(XxA)

and similarly for morphisms. This is well defined as if X' € T, A’ € K with
p*X 2 p* X' and ¢*A = ¢* A’ then
¢ (p" X xy ¢"A) = q.q" (X * A)
2 L,X % LzA
= LzXI * LzA/
= q.(p" X *v ¢ A')
which implies p*X xy ¢*A = p* X' %y q* A,

The associator and unitor are defined by the diagrams

(P*X @pY) *xy q*A aNU "X xy (p*Y xp ¢*A)
F(X®Y)xA) q:a (X * (Y x A))

and

1y xy A ZTU> q-A

¢(1xA) =g A

respectively for X, Y € T and A € K. It is easily verified that *; fulfils the

necessary conditions to be an action. [l
We next prove the relative analogue of Proposition 2.5.4:

Proposition 2.5.6. For x € U there is an equivalence

.
Ik T.KU).

qx

Proof. The category I'./KC is contained in ¢.K(U) so ¢* is fully faithful when
restricted to I',/C. It just remains to note that for A € K

T 1xA)=p T 1% A=, 1y *p A

so that ¢*T' . = T .K(U). O
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Remark 2.5.7. In particular, the last proposition implies that from an open

cover SpcT¢ = U} ,U; we get an open cover
ok = UL o K(U;).

Now let us fix some cover SpcT¢ = U ,U; by open subsets and denote the
projections from K to IC(U;) by ¢f. We will prove two results showing that one can
deduce information about K from the corresponding statements for the IC(U;).
First let us show that compact objects having (specialization) closed support is

local in this sense.

Lemma 2.5.8. Suppose that for all 1 <i <n and a € K(U;) compact the subset
SUPP7(y;) @ S (specialization) closed in U;. Then for all b € K¢ the subset supp b

is (specialization) closed in Spc TC.
Proof. Let b be compact in K. Then

supp b = Ui (suppb N U;)
=UL{z e Ui |1y *y q;b # 0}

= Ui SupPr(u,) ¢; 0

as we have
[y *y ;b = q; (I';b) # 0

it and only if = is in suppb N U;. Now ¢/ sends compacts to compacts as the
associated localization is smashing, so by hypothesis each suppz (g, ¢;b is (spe-

cialization) closed in U;. Thus supp b is (specialization) closed in Spe T°. ]

Remark 2.5.9. It is worth noting from the proof that for any A € K there is an
equality
supp A = U}, suppry,) ¢; A-

Finally we show it is also possible to check that o/C classifies localizing T-
submodules locally. It is easily seen that, provided 7 satisfies the local-to-global
principle, a bijection between subsets of 0/C and the collection of localizing sub-
modules of K is equivalent to each of the I',/C being minimal in the following

sense (cf. [17] Section 4 and our Lemma 2.3.3):

Definition 2.5.10. We say a localizing submodule £ C I is minimal if it has

no proper and non-trivial localizing submodules.
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By Proposition 2.3.4 we have that o is left inverse to 7. To see 7 is an inverse
to o one just needs to note that if the I',C are minimal then the local-to-global
principle completely determines any localizing submodule in terms of its support.
In fact the converse is also true: such a bijection is easily seen to imply that the

'K are minimal. Thus the following theorem should not come as a surprise.

Theorem 2.5.11. Suppose T has a model and that fori=1,...,n the action of
T (U;) on K(U;) yields bijections

{ subsets of okC(U;) } { localizing submodules of IKC(U;) }

Then o and T give a bijection

T

{ subsets of oIC } ; { localizing submodules of K }

Proof. By the discussion before the theorem it is sufficient to check that I', K is
minimal for each x € oK. But for any such x there exists an ¢ such that z € U;
and by Proposition 2.5.6 the subcategory I'.K is equivalent to I',/C(U;). This
latter category is a minimal 7 (U;)-submodule by hypothesis and by the diagram
of Proposition 2.5.5 this implies it is also minimal with respect to the action of

T, .



Chapter 3

The Singularity Category of a
Ring

We begin by introducing, for a ring R, an infinite completion S(R), as in Krause’s
[48], of the usual singularity category Dgg(R) ([26], [63]). This completion has a
natural action of the unbounded derived category of R. We can thus bring the
machinery we have developed to bear on the problem of determining the structure
of the lattice of localizing subcategories of S(R). We obtain a complete classifi-
cation for rings which are locally hypersurfaces extending work of Takahashi [68]
and removing the hypothesis that R be essentially of finite type over a field from
the hypersurface case of a result reported by Iyengar [42].

3.1 Preliminaries

Throughout R denotes a commutative noetherian ring with unit.

Given a ring R we set
Dsg(R) = D*(R-mod)/DP*™ (R).

This category, usually called the singularity category, provides a measure of the
singularities of the scheme Spec R. Throughout we will prefer to work with an
infinite completion of Dg,(R) and will reserve the term singularity category for

this larger category:

Theorem 3.1.1 ([48] Theorem 1.1). Let R be a ring.

45
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(1) There is a recollement

I Qx
T T P
S(R-Mod) — K(Inj R) D(R-Mod)
\I_/ 'MQ/

where each functor is right adjoint to the one above it. We call S(R-Mod) =
K..(Inj R), the homotopy category of acyclic complexes of injective R-modules,
the singularity category of R.

(2) The triangulated category K(Inj R) is compactly generated, and Q) induces
an equivalence
K(Inj R)* — D°(R-mod).

(3) The sequence
D(R-Mod) -2~ K (Inj R) —2~ S(R-Mod)

is a localization sequence. Therefore S(R-Mod) is compactly generated, and

I\ 0 Q, induces (up to direct factors) an equivalence

Dgy(R) — S(R-Mod)*.

Notation 3.1.2. As in the theorem we call S(R-Mod) the singularity category of
R and we shall denote it by S(R). By (3) of the theorem S(R) contains Dg,(R).
The closure under summands of Dg,(R) in S(R) is S(R)¢, the thick subcategory

of compact objects, so it is reasonable to call S(R) the singularity category.

Remark 3.1.3. Krause’s theorem is more general than the version we state
here. In particular, it covers the case of quasi-coherent sheaves on a noetherian
separated scheme which we shall treat in Chapter 5.

Before continuing let us briefly remind the reader of Matlis’ classification of
indecomposable injective R-modules [51]. Given an R-module M we denote by
E(M) (or Er(M) if the ring is not clear from the context) the injective envelope
of M.

Theorem 3.1.4. Given any prime ideal p € Spec R the injective module E(R/p)
18 indecomposable and every indecomposable injective R-module has this form for
a unique prime tdeal.

Let I be an injective R-module. Then I decomposes as a direct sum of inde-
composable injective R-modules. This decomposition is unique in the sense that
for each prime ideal p the cardinality of the summands isomorphic to E(R/p)
depends only upon E and p.
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3.2 An Action of D(R)

We prove that the unbounded derived category of R, denoted here by D(R), acts
on the singularity category S(R).
First let us recall the following result originally proved for the homotopy

category of spectra in [50].

Theorem 3.2.1. Suppose T is a compactly generated triangulated category and
H is a coproduct preserving homological functor on T i.e., H is a functor to
an abelian category taking coproducts to coproducts and triangles to long exact

sequences. Then the full subcategory
ker(H)={X €T |H(X'X)=0VicZ}

is strictly localizing i.e., it is a localizing subcategory of T and its inclusion admits

a right adjoint.

Proof. Margolis’ original proof carries over to the case of any compactly generated
triangulated category; see for example [46] Theorem 7.5.1 which generalizes this

even further. H

Let us consider £ = [[, £\ where E) runs through a set of representatives
for the isomorphism classes of compact objects in S(R). Denote by K(Flat R)
the homotopy category of complexes of flat R-modules. We define a homological
functor H: K(Flat R) — Ab by setting for X in K(Flat R)

H(X)=HX®rE).

This is a coproduct preserving homological functor since we are merely composing
the exact coproduct preserving functor (—) ®g E with the coproduct preserving
homological functor H° (where we work inside of K(R)).

We recall some facts from [58] in the following definition.

Definition 3.2.2. A complex X in K(Flat R) is pure acyclic if it is exact and
has flat syzygies. Such complexes form a triangulated subcategory of K (Flat R)
which we denote by K..(Flat R) and we say that a morphism with pure acyclic

mapping cone is a pure quasi-isomorphism.

We also wish to remind the reader that since R is noetherian the tensor
product of a complex of flats with a complex of injectives is again a complex

of injectives and that tensoring a pure acyclic complex of flats with a complex
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of injectives yields a contractible complex (this second fact is [62] Corollary 9.7
(i)). Thus the category of pure acyclic complexes Kp,c(Flat R) is contained in
the kernel of H.

Definition 3.2.3. With notation as above we denote by Ag(Inj R) the quotient
ker(H)/Kpac(Flat R). As we are about to show this is the category of complexes

of flat modules which act on S(R) in a way that is not automatically trivial.

Lemma 3.2.4. An object X of K(Flat R) lies in ker(H) if and only if the exact
functor

X ®r (=): K(InjR) — K(Inj R)

restricts to

X &g (—): S(R) — S(R).

In particular, Ag(Inj R) consists of the pure quasi-isomorphism classes of objects
which act on S(R).

Proof. The object X is in ker(H) if and only if X ®g E is acyclic so it is sufficient
to show that X ®g F is acyclic if and only if X ®p (—) preserves acyclicity of
complexes of injectives. The if part of this statement is trivial.

So suppose X ®pE is acyclic. Since X ® gr(—) preserves coproducts in K (Inj R)
and acyclicity is preserved by extensions, suspension, and coproducts we deduce
that X ®pg (—) preserves acyclicity of complexes in the localizing subcategory
(E)oc of K(InjR). But this is precisely S(R) since (E),. contains a compact
generating set: it is a localizing subcategory and hence closed under splitting

idempotents so contains all compact objects of the compactly generated category

S(R). O

Restricting H to N (Flat R) = K (Flat R)/K,..(Flat R) we obtain by Margolis’

theorem an adjoint pair
Ag(Inj R) N(Flat R).

In particular Ag(Inj R) is well generated (this can be deduced from the statement
of the version of Margolis’ result in [46] 7.5.1).

We will restrict our attention to studying the action of a full subcategory
of Ag(Inj R), namely D(R). Of course we first need to show that D(R) has a
fully faithful embedding into Ag (Inj R) so this last comment makes sense. Before

checking this let us remind the reader of the notion of K-flatness.
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Definition 3.2.5. We say that a complex of flat R-modules F' is K-flat provided
F ®g (—) sends quasi-isomorphisms to quasi-isomorphisms (or equivalently if

F ®r X is an exact complex for any exact complex of R-modules X).

Lemma 3.2.6. There is a fully faithful, exact, coproduct preserving functor
D(R) — Ag(Inj R).

Proof. There is, by Theorem 5.5 of [57], a fully faithful exact coproduct preserving
functor D(R) — N(Flat R) given by taking K-flat resolutions and inducing an
equivalence

D(R) = *+N,.(Flat R).

This functor factors via Ag(Inj R) since K-flat complexes send acyclics to acyclics

under the tensor product. O

Proposition 3.2.7. The embedding D(R) — Ag(Inj R) defines an action of
D(R) on S(R)
D(R) x S(R) - S(R)

in the sense of Definition 2.1.1.

Proof. Since one can view this as taking place inside K(R) biexactness follows
from the good properties of the tensor product and taking K-flat resolutions
(which are not unique in K(R) but are in N(Flat R) and so the choice of K-flat
resolution in K(R) does not matter once one tensors with something in S(R)).
For A, B in D(R) and X in S(R) we have natural isomorphisms

(AR*B)o X =2 A0 (BoX)

since one obtains a K-flat resolution for A ®% B by tensoring K-flat resolutions
for A and B and taking K-flat resolutions is functorial modulo pure acyclics.
Taking K-flat resolutions preserves coproducts as in the statement of the lemma
so that (—) ® (—) is coproduct preserving in both variables. The stalk complex R
concentrated in degree 0 is already K-flat and gives the unit for the action. The
associativity and unit conditions then follow from those of the tensor product of

complexes. [l

Remark 3.2.8. Recall that every complex in K~ (Flat R), the homotopy category
of bounded above complexes of flat R-modules, is K-flat. Thus when acting by
the subcategory K~ (Flat R) there is an equality ® = ®p.
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3.3 First Properties of the Action

We begin by recalling some facts about the tensor triangulated category
(D(R),®, R) (we use ® to denote the left derived tensor product). The category
D(R) is rigidly-compactly generated: {¥'R | i € Z} is a generating set, so
the tensor unit is not only compact it also generates, and the compact objects
DPet(R) are a rigid tensor subcategory. The spectrum of the compact objects
Spc DP(R) is canonically isomorphic to Spec R (by [59]) and we will identify
these spaces. It is well known that D(R) has a model so Theorem 2.3.9 applies to
D(R). The support gives a complete classification of the localizing subcategories
of D(R) by [59], with the specialization closed subsets of Spec R corresponding
to subcategories generated by objects of DP(R).

Notation 3.3.1. We follow the conventions of Chapter 2 and denote, for
VY C Spec R specialization closed, the associated Rickard idempotents by 'y, R and
LyR. For an object X of S(R) we often write I'y X for I'vR ® X and we denote
the associated subcategory of S(R) by I',S(R). For a prime ideal p € Spec R we
denote by I'yR the associated object I'yp) R ® Lz, 1.

The support assignment supp pgy,) taking values in Spec R will simply be
denoted by supp.

It is possible to give an explicit description of the Rickard idempotents asso-
ciated to certain specialization closed subsets of Spec R. First we fix notation for

the relevant complexes of R-modules and specialization closed subsets of Spec R.

Definition 3.3.2. Given an element f € R we define the stable Koszul complex
K« (f) to be the complex concentrated in degrees 0 and 1

o 00— R—Rf —0— -

where the only non-zero morphism is the canonical map to the localization. Given

a sequence of elements f = {f1,..., f,} of R we set
KOO(f) = Koo{fl) Q- ® KOO(fn)

We define the Cech complex of f to be the suspension of the kernel of the canonical
morphism K (f) — R. This is a degreewise split epimorphism and so we get a
triangle in K (A)

Ko(f) — R — C(f) — SK(f).



3.3. FIRST PROPERTIES OF THE ACTION 51

Explicitly we have

Cf)' = P Ry, -z,

o< <it
for 0 <t < n—1and K,(f) is degreewise the same complex desuspended and with
R in degree 0. For an ideal I of R we define K(I) and C(I) by choosing a set of
generators for I; the complex obtained is independent of the choice of generators
up to quasi-isomorphism in D(R) and hence up to pure quasi-isomorphism in
Ag(Inj R). We note that these complexes are K-flat.

Notation 3.3.3. We fix the notation we will use for the subsets of Spec R of

interest to us. Let
Z(p) ={qeSpecR|q ¢ p}
and denote its complement by

U(p) ={q € SpecR | g C p}.

The other main collection of specialization closed subsets we will be interested in

are the usual closed subsets associated to primes, namely

V(p) ={q € SpecR|p C q}.

In several cases there are explicit descriptions of the Rickard idempotents

corresponding to these specialization closed subsets.

Proposition 3.3.4. For an ideal I C R and p € Spec R a prime ideal there are

natural isomorphisms in D(R):
(1) Tvin R = Kuo(1);
(2) LyyR = C(I);
(3) LzpR = Ry

In particular the objects I'yR = T'yu)R® Lz R giving rise to supports on D(R)
and S(R) are naturally isomorphic to Ky (p) @ R,.

Proof. Statements (1) and (2) are special cases of [34] Lemma 5.8. For the third
statement simply observe that the full subcategory of complexes with homological

support in U(p) is the essential image of the inclusion of D(R,). O]

We are now in a position to obtain, very cheaply, some first results about
the singularity category and the action of D(R) on it. We first observe that all
localizing subcategories of S(R) are D(R)-submodules.
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Lemma 3.3.5. Every localizing subcategory L of S(R) is stable under the action
of D(R).

Proof. As D(R) is generated by the tensor unit Lemma 2.1.15 applies. O

We already observed that Theorem 2.3.9 applies to D(R). This has the fol-

lowing consequence for S(R):

Proposition 3.3.6. Given an object X of S(R) there is an isomorphism X =0
if and only if supp X = @. We also have for each object X of S(R) an equality

<X>100 = <FPX ‘ p € Supr>loc~
Proof. This is an immediate consequence of Lemma 3.3.5 and Theorem 2.3.9. [

Using the explicit description in Proposition 3.3.4 of certain Rickard idempo-
tents in D(R) we are able to give representatives for the objects resulting from
their action on objects of S(R).

Proposition 3.3.7. For each object X of S(R) and ideal I C R the complex
'y X is homotopic to a complexr whose degree i piece is the summand of X

consisting of those indecomposable injectives corresponding to primes in V(I).

Proof. Let us fix an ideal I and choose generators I = (f1,..., fn). By Proposi-

tion 3.3.4 we have

1-‘V(I)‘XV = Koo(fl; .- afn) OX= Km(fn) © (KOO(fn—l) ©--- (KOO(fl) @X) T )

We can thus reduce to the case that I = (f). By Proposition 3.3.4 again we have
Ly X 2 C(f)®r X 2 Ry @p X

where the last isomorphism uses the explicit description of the Cech complex
given in Definition 3.3.2. The canonical map X — R;y®pr X is a degreewise split
epimorphism in the category of chain complexes which fits into the localization
triangle

Ko(f)@pX — X — Ry @p X — YK (f) ®r X

in S(R). So up to homotopy K (f) ® X is the kernel of this split epimorphism.
The kernel in each degree is precisely the summand consisting of those indecom-

posable injectives corresponding to primes in V(I) which proves the claim. [



3.4. SUBSETS VERSUS SUBCATEGORIES 53

3.4 Subsets versus Subcategories

Recall from Definition 2.2.22 that the action of D(R) on S(R) gives rise to order

preserving assignments

T

{ subsets of Spec R } _

g

{ localizing subcategories of S(R) }

where for a localizing subcategory £ we set
o(L) =suppL = {p € Spec R | I',L # 0}

and
T(W)={A € S(R) | suppA C W}

Here we have used Lemma 3.3.5 to replace submodules by localizing subcategories
and the fact that R is noetherian so that there are no complications with invisible

points. As D(R) satisfies the local-to-global principle one can say a little more.

Proposition 3.4.1. Given a subset W C Spec R there is an equality of subcate-
gories

T(W) = (TpS(R) [ p € Wi,

Proof. This is just a restatement of Lemma 2.3.3.

]

We next note that, as one would expect, S(R) is supported on the singular

locus Sing R of Spec R.
Lemma 3.4.2. There is a containment 0 S(R) C Sing R.

Proof. If p € Spec R is a regular point then S(R,) = 0. Thus for any object X
of S(R)
[LXZR,@r TypROX)=0

as it is an acyclic complex of injective R,-modules. [

It is clear that D(R) also acts, by K-flat resolutions, on itself and on K (Inj R).
It will be convenient for us to show that these actions are compatible with each
other and the action on S(R) in an appropriate sense. We write ® for the action
of D(R) on itself and ® for the action of D(R) on K (InjR) which extends the
action on S(R).
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Proposition 3.4.3. These actions of D(R) are compatible with the localization

sequence

in the sense that, up to natural isomorphism, the action commutes with each
of the functors in the diagram. Explicitly, for J € K(InjR), X € S(R), and
E,F € D(R) we have isomorphisms

QEOJ)ZERQ] , QA(EQF)ZE®Q\F

I(EG@X)XE®IX , L(EOJ)XEGLJ

Proof. 1t is obvious that the inclusion [ is compatible with the action of D(R).
As D(R) acts on K(InjR) via K-flat resolutions the action commutes with @Q;
an object J of K(Inj R) is quasi-isomorphic to QJ so for £ € D(R) the object
E © J computes the left derived tensor product.

To treat the other two functors let J be an object of K(Inj R) and consider

the localization triangle

As D(R) is generated by the tensor unit R every localizing subcategory of K (Inj R)
is stable under the action by Lemma 2.1.15. Thus for £ € D(R) we get a triangle,

EoQ\QJ —E0J —E0ILJ] —YXEOQ\NQJ,

where ' © Q,QJ € Q\D(R) and E ® I1,J is acyclic. Hence this triangle must

be uniquely isomorphic to the localization triangle for £ © J giving
EoQQJ=2QQE®J) and EOILJZIL(EG®.J).

We already know that the action commutes with ) and I so the remaining two

commutativity relations follow immediately. O]

We can also say something about compatibility with the right adjoint @, of
Q.

Lemma 3.4.4. Suppose E and F are objects of D(R) such that E has a bounded

flat resolution and F' has a bounded below injective resolution. Then

E®Q,F~Q,E®F).
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Proof. Let E be a bounded flat resolution of E and recall that, by virtue of being
bounded, E is K-flat. In [48] Krause identifies Q, with taking K-injective reso-
lutions, where the K-injectives are the objects of the colocalizing subcategory of
K(Inj R) generated by the bounded below complexes of injectives (such resolu-
tions exist, see for example [18]). Thus @,F" is a K-injective resolution of F' and
so, as bounded below complexes of injectives are K-injective, we may assume it
is bounded below as it is homotopic to the bounded below resolution we have
required of F'. We have Q,F = F in D(R) so there are isomorphisms in the
derived category
E®QF2E®Q,F~2FE®zQ,F

Hence in K (Inj R) we have isomorphisms
QuERF)=Q,(FE®Q,F)
= QP(E QR QPF>
~ E®rQ,F
=E0QF

where the penultimate isomorphism is a consequence of the fact that £ ®p Q.F
is, by the assumption that E is bounded and Q,F is bounded below, a bounded
below complex of injectives and hence K-injective.

m

Before proceeding let us record the following easy observation for later use.

Lemma 3.4.5. The diagram

——S5(R)

L

D+(RP) m) S(Rp)7

where the vertical functors are localization at p € Spec R, commutes.

Proof. The square
D*(R) —~ K(Inj R)

| l

D (Ry) —5= K (Inj Ry),

is commutative by Lemma 3.4.4.
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To complete the proof it is sufficient to show that the square

K(InjR) —2~ S(R)

l l

K(Inj Ry) N S(Ry),
also commutes. This follows by observing that the square

K(Inj R) <—— S(R)

! !

K (Inj Rp)ﬁS(Rp%

commutes and taking left adjoints, where we are using the fact that tensoring
and restricting scalars along R — R, are both exact and preserve injectives so
give rise to an adjoint pair or functors between the relevant homotopy categories

of injectives and singularity categories. O]

Given these compatibilities it is not hard to see that o S(R) is precisely the

singular locus.

Proposition 3.4.6. For any p € Sing R the object I',1\Q,k(p) is non-zero in
S(R). Thus I'yS(R) is non-trivial for all such p yielding the equality

0S(R) = Sing R.

Proof. Let p be a singular point of Spec R. Applying the last lemma we may
check that I,Q,k(p) is non-zero over R,. By [52] Section 18 Theorem 41 one has

pdg, k(p) = gl.dim R, = oo

so k(p) is finitely generated over R, but not perfect. Theorem 3.1.1 then tells us
that 1,Q,k(p) is not zero in S(R,).
We now show 1,Q,k(p) lies in I';S(R). By Proposition 3.4.3 there is an
isomorphism
IR O NLQk(p) = LTy R O Quk(p)). (3.1)
As TR = K (p) ® R, (by Proposition 3.3.4) is a bounded K-flat complex and
the injective resolution of k(p) is certainly bounded below we can apply Lemma

3.4.4. This gives us isomorphisms

LTy R O Qpk(p)) = HQy(Fy R @ k(p)) = LQpk(p).

Combining these with (3.1) shows that, up to homotopy, I'yvR ® (—) fixes the
non-zero object 1\Q,k(p) proving that I',S(R) is non-zero. O]
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It is thus natural to restrict the support and the assignments ¢ and 7 to
subsets of the singular locus. This result then implies that the assignment 7
taking a subset of Sing R to a localizing subcategory of S(R) is injective with left

mverse o.

Corollary 3.4.7. For every W C Sing R we have oT(W) = W. In particular, T

15 injective when restricted to subsets of the singular locus.

Proof. By Proposition 2.3.4 the assignment 7 is injective when restricted to
0S(R) = Sing R and we have

or(W)=WnNSingR =W
which proves the corollary. O]

We now prove some results concerning generators for the subcategories pro-
duced via the action of D(R). This will allow us to describe the image of 7 as
the localizing subcategories which contain certain objects.

The next lemma is an easy modification of an argument of Krause in [48]. We
give the details, including those straight from Krause’s proof, as it is clearer to
present them along with the modifications than to just indicate what else needs
to be checked.

Lemma 3.4.8. Let V be a specialization closed subset of Sing R. The set of

objects
{S'LQ,R/p | peV,icZ}

is a generating set for T'y,S(R) consisting of objects which are compact in S(R).

Proof. Let X be a non-zero object of I',S(R). In particular X is a complex of
injectives satisfying H"X = 0 for all n € Z. As X is not nullhomotopic we can
choose n such that Z" X is not injective. Consider the beginning of an augmented

minimal injective resolution of Z"X
0—Z"X — E%(Z"X) — E*(Z"X).

Note that for q ¢ V the object R;®I'y, R is zero in D(R) as the cohomology of I'y, R
is supported in V by definition. Thus for q ¢ V the complex X, is nullhomotopic
by virtue of being in the essential image of 'vVR ® (—). So Z"X| is injective

as a nullhomotopic complex is split exact. Since, for modules, localization at a
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prime sends minimal injective resolutions to minimal injective resolutions (see for
example [53] Section 18) for any such q it holds that E'(Z"X), = 0. So writing

E'(2"X) = D E(R/p)

we have p € V for each distinct p occurring in the direct sum as otherwise it
would not vanish when localized (see for example [13] Lemma 2.1). Now fix some
p such that E(R/p) occurs in E'(Z"X). By [33] Theorem 9.2.4, as the injective

envelope of p occurs in E'(Z"X), we have
0 # dimy Ext' (k(p), 2" X,) = dimy) Ext' (R/p, Z"X),.

In particular Ext'(R/p, Z"X) is non-zero. Using [48] Lemma 2.1 and the adjunc-

tion between I and I, there are isomorphisms
Ext'(R/p, Z"X) = Hom(rwmoa)(R/p, X" X)
=~ Hom e( vy (Q,R/p, X" IX)
=~ Homgr) (X" ' LQ,R/p, X).

Thus the set in question is certainly generating and it consists of compact objects
by Theorem 3.1.1 (3). O

Lemma 3.4.9. The object 1,Q,k(p) generates I',S(R) for every p € Sing R i.e,
[pS(R) = (INQpk(P) ioc-
Proof. By Lemma 3.4.8 we have an equality
Ty S(R) = (Q,R/a | 4 € V(p))oc-
Noticing that
[pS(R) = LzIvp)S(R) = (Lzp) Ree © Ty S(R)
we thus get, by Lemma 2.1.14, equalities

(Lzp) R)oe © Ty S(R) = (Ry)ioc © (NQpR/a | 4 € V(P) o
= (Ry © LQ,R/a | a € V(P))oc

where we have used Proposition 3.3.4 to identify Lz R with R,. Hence, using
Proposition 3.4.3 and Lemma 3.4.4 to move the action by R, past 1,(),, we obtain

equalities

[pS(R) = (1\Qp(Ry ® R/a) | 4 € V(p))oe = (IxQpk(P)1oc

completing the proof. O
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Next we consider the behaviour of o and 7 with respect to the collection
of subcategories of S(R) generated by objects of S(R)¢. These assignments are
sensitive to such subcategories. Indeed we already saw in Proposition 2.2.11
that the subcategory 7 associates to a specialization closed subset of Sing R is
generated by compact objects of S(R). Now let us demonstrate that, when R is
Gorenstein, the support of any compact object of S(R) is closed. We begin by
showing that it is sufficient to consider the images under I,@), of finitely generated

R-modules when considering the supports of compact objects.

Lemma 3.4.10. Let x be a compact object of S(R). Then there ezists a finitely
generated R-module M and integer i such that x ®Xx is isomorphic to 3'1\Q,M.

In particular there is an equality

supp « = supp [, Q,M.
Proof. By Theorem 3.1.1 1)), induces an equivalence up to summands between
Dg(R) and S(R)¢ so x @ Xz is in the image of 1,Q, by [61] Corollary 4.5.12. By
the argument of [63] Lemma 1.11 every object of Dg,(R) is, up to suspension,
the image of a finitely generated R-module so we can find a finitely generated M
as claimed.
Since supp & = supp(x @ Xx) by Proposition 2.2.20 and, by the same Proposi-

tion, suspending doesn’t change the support the last statement now follows. [
Lemma 3.4.11. If x is an object of S(R)° then the set

{p eSingR | Lz ROz # 0}
is closed in Spec R.

Proof. Clearly we may, by applying Lemma 3.4.10, suppose z is I\Q,M where
M is a finitely generated R-module. By the compatibility conditions of 3.4.3 and

3.4.4 we have an isomorphism
LzpR O LQ,M = 1,Q,M,

where Lz R = R, by Proposition 3.3.4.
By considering the diagram of Lemma 3.4.5 and noting that the module M,
is finitely generated over R, we see the object I,Q),M, is zero precisely when M,

has finite projective dimension.
Thus

{peSingR| Lz RO LQ,M #0} = {p € Sing R | pdp, M, = oo}

and this latter set is closed as M is finitely generated. O]
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Lemma 3.4.12. Let R be Gorenstein and let x be a compact object of S(R).
Then p € Sing R is in the support of x if and only if Lz R © x is not zero.

Proof. One direction is easy: if p € suppx then
IW"ROx =Ty ROLzpyROx#0

so Lzp) R © x is certainly not zero.

Now let us prove the converse. By Lemma 3.4.10 it is sufficient to prove
the result for I\Q,M where M is a finitely generated R-module. So suppose
M is a finitely generated R-module of infinite projective dimension such that
the projection of R, ®x M = M, to S(R,)° is not zero, where this projection is
Lz I1,Q,M by the compatibility conditions of 3.4.3 and 3.4.4. In particular M,
also has infinite projective dimension.

As R, is Gorenstein of finite Krull dimension M, has, as an R,-module, a
Gorenstein injective envelope G(M,) by [33] Theorem 11.3.2 which fits into an

exact sequence

0— M, — G(M,) — L—0

where L has finite injective dimension (details about Gorenstein injectives and
Gorenstein injective envelopes can be found in Section 4.1.1). So for i sufficiently

large (i.e., exceeding the dimension of R,) we have isomorphisms

Homg(r) (I\Q,R/p, X' Lzp) QM)
= Homg(r,) (1@ k(p), Ei[/\QpMp)
= Homg(r,) (IQ,k(p), ' 1Q,G (M)
=~ Extl, (k(p), G(M,))
= Exti, (k(p), My)

where the first isomorphism is by adjunction, the second by the identification
of a complete injective resolution for M, with the defining complex of G(M,)
(see Proposition 4.1.10 and Corollary 4.1.11, cf. [48] Section 7), the third by
[48] Proposition 7.10, and the last isomorphism by the finiteness of the injective
dimension of L.

From [33] Proposition 9.2.13 we learn that for q C q' distinct primes with no
prime ideal between them that j;(q, M,) # 0 implies that p;1(q’, M,) # 0 where

pi(a, M) = dimyq) Ext}, (k(q), My)
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are the Bass invariants. As M, is not perfect infinitely many of the Bass invariants
are non-zero and so in particular, as p is the maximal ideal of R,, there are

infinitely many non-zero y;(p, M,). Thus, taking ¢ larger if necessary, we get that

0 # ExtiRp(k(p), M,) = Homg(r) (1\Q,R/p, X' Lz, LQ,M).

Hence I'yy) Lz 6ZQ,M # 0 as by Lemma 3.4.8 the object 1,Q,R/p is one of the
generators for I'y,)S(R). It follows that p € supp [,Q,M as desired. ]

Proposition 3.4.13. Let R be Gorenstein. If x is a compact object of S(R) then
supp x s a closed subset of Sing R.

Proof. By the last lemma

suppx = {p € Sing R | Lz« # 0}

which is closed by Lemma 3.4.11.

Remark 3.4.14. If p € Sing R the proof of Lemma 3.4.12 gives the equality

supp L@, R2/p = V(p).

Indeed, as R, is not regular the residue field k(p) must have an infinite free
resolution over R, so if (R/p), had finite projective dimension over R for q € V(p)

one could localize to find a finite resolution for k(p) giving a contradication. Thus

Supp [)\QpR/p = {q € Sing R | LZ(q)[AQpR/p 7& 0}
which is precisely V(p).

It follows from this proposition and the compatibility of supports with ex-
tensions, coproducts, and suspensions (Proposition 2.2.20) that, provided R is
Gorenstein, for any localizing subcategory £ C S(R) generated by objects of
S(R)° the subset oL C Sing R is specialization closed. As mentioned above 7
sends specialization closed subsets to localizing subcategories of S(R) generated

by objects compact in S(R) so 7 and o restrict, i.e.:

Proposition 3.4.15. The assignments o and T restrict to well-defined functions

specialization closed T localizing subcategories of S(R)
subsets of Sing R '

(e

generated by objects of S(R)®
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We are now ready to state and prove our first classification theorem for sub-

categories of the singularity category (cf. Theorem 7.5 [68]).

Theorem 3.4.16. Let R be a commutative Gorenstein ring. Then there are order

preserving bijections

<
g

{ bsets of Sing R } _ 7. | localizing subcategories L of S(R)
subsets of Sin
& containing 1\Q,k(p) forp € o(L)

and

B} subcategories L of S(R)
} generated by objects of S(R)®

0 and containing 1\Q,k(p) forp € o(L)

specialization closed
subsets of Sing R

This second being equivalent to the bijection

such that L, C Dg,(R,) contains k(p)

(up to summands)

-~

o thick subcategories L of Dgg(R)
specialization closed
{ subsets of Sing R }
Proof. We proved in Corollary 3.4.7 that or(W) = W for every subset W of
Sing R. If £ is a localizing subcategory then by the local-to-global principle
Theorem 2.3.9
L=TL|pe€ (L)

Given that 1\Q,k(p) lies in L for each p € (L) we must have I',L = I',S(R) by
Lemma 3.4.9. Thus £ = 70(L) by Proposition 3.4.1.

The restricted assignments of the second claim make sense by Proposition
3.4.15 and it is a bijection by the same argument we have just used above.

The last bijection is a consequence of the second one together with Krause’s
result Theorem 3.1.1 (3) which identifies S(R), up to summands, with the sin-
gularity category Dgg(R). O



Chapter 4
Hypersurface Rings

The aim of this chapter is to strengthen Theorem 3.4.16 in the case where R is
locally a hypersurface. We prove that for such rings subsets of the singular locus
completely classify localizing subcategories of S(R). This allows us to deduce
that the telescope conjecture holds for S(R).

4.1 Preliminary Material on Commutative Al-

gebra

We give here a brief summary of some commutative algebra definitions and re-
sults. Specifically the theory of Gorenstein homological algebra and local com-
plete intersections. Our main reference for Gorenstein homological algebra is [33],

particularly Chapters 10 and 11.

4.1.1 Gorenstein Homological Algebra

Let us denote by R a noetherian ring.

Definition 4.1.1. An R-module G is Gorenstein injective if there exists an exact

sequence

E=-..—E —E —E —E'"— ...

of injective R-modules such that Hom(/, F) is exact for every injective module
I and G = ker(E° — E') = ZF is the zeroth syzygy of E. We say that the

complex E is totally acyclic and call it a complete resolution of G.

63
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Remark 4.1.2. Of course one can extend this definition to other abelian cate-
gories with enough injectives. For instance there is a notion of Gorenstein injective

sheaves on a scheme.

Definition 4.1.3. We denote by Ki..(Inj R) the homotopy category of totally
acyclic complexes of injective R-modules. It is a full triangulated subcategory of
S(R) = K..(Inj R) and the two coincide when R is Gorenstein by [48] Proposition
7.13.

Let us recall the following two results concerning Gorenstein injective modules.

Proposition 4.1.4 ([33] Proposition 10.1.2). Let G be a Gorenstein injective
R-module. Then
Ext'(I,G) =0

for all i > 0 and injective modules I and either idg G =0 or idg G = o0.

Proposition 4.1.5 ([33] Corollary 11.2.2). Let R be a Gorenstein ring of finite

Krull dimension and G an R-module. The following are equivalent:
(1) G is Gorenstein injective;
(2) Ext'(L,G) =0 for all R-modules L with pdp L < oo and all i > 1;
(3) Ext*(L,G) = 0 for all R-modules L with pdp L < 0o;
(4) Ext'(I,G) =0 for all injective R-modules I and i > 1.

We now define envelopes with respect to a class of R-modules.

Definition 4.1.6. Let R be a ring and fix some class G of R-modules. A G-
preenvelope of an R-module M is a pair (G, f) where G is a module in G and
f: M — @G is a morphism such that for any G’ € G and f’ € Hom(M, G") there

exists a morphism making the triangle

M-t-c

|
\ 13
f v
G/

commute. We say that a preenvelope (G, f) is a G-envelope of M if, when we

consider the diagram
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every choice of morphism G — G making the triangle commute is an automor-
phism of G. When speaking of envelopes we shall omit the morphism from the

notation and refer to G as the G-envelope of M.

It is clear that G-envelopes, when they exist, are unique up to isomorphism. In
the case G = Inj R, the class of injective R-modules, we see that the Inj R-envelope
of an R-module is precisely its injective envelope. In the case G = GInj R, the
class of Gorenstein injective R-modules, we get the notion of Gorenstein injective
envelope. As every injective R-module is Gorenstein injective it can be shown
that whenever (G, f) is a Gorenstein injective envelope of M the morphism f is

injective.

Notation 4.1.7. For an R-module M we shall denote its Gorenstein injective

envelope, if it exists, by Ggr(M).

In many cases Gorenstein injective envelopes exist and have certain nice prop-

erties.

Theorem 4.1.8 ([33] 11.3.2, 11.3.3). If R is Gorenstein of Krull dimension n,
then every R-module M admits a Gorenstein injective envelope M — G such
that if

0—M —G—L—0

is exact then idg L < n — 1 whenever n > 1. Furthermore, idg M < oo if and

only if M — G is an injective envelope.

Proposition 4.1.9 ([33] 10.4.25, 11.3.9). Let R be a Gorenstein ring of finite
Krull dimension. Then the class of Gorenstein injective R-modules is closed
under small coproducts and summands and if M; — G; is a Gorenstein injective
envelope of the R-module M; for each v € I, then

©iM; — ©;G;
1s a Gorenstein injective envelope.

Following the notation above we denote by GInj R the category of Gorenstein
injective R-modules. It is a Frobenius category i.e., it is an exact category with
enough projectives and enough injectives and the projective and injective objects
coincide. The exact structure comes from taking the exact sequences to be those
exact sequences of R-modules whose terms are Gorenstein injective. It is Frobe-
nius as every injective R-module is Gorenstein injective and by Proposition 4.1.4

injective R-modules are also projective in GInj R.
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The stable category of GInj R denoted GInjR is the category whose objects

are those of GInj R and whose hom-sets are

Hom(G, H) := Homgmr(G, H)
= Homg(G, H)/{f | f factors via an injective module}.

This category is triangulated with suspension functor given by taking syzygies
of complete resolutions and triangles coming from short exact sequences (see for
example [37] Chapter 1 for details).

The following result shows that we can study part of the singularity category

S(R) by working with Gorenstein injective R-modules.

Proposition 4.1.10. For a noetherian ring R there is an equivalence
ZO
Kiac(Inj R) — GInj R

where Z° takes the zeroth syzyqy of a complex of injectives and ¢ sends a Goren-

stein injective R-module to a complete resolution.

Proof. The result is standard so we only sketch the proof. The functor ¢ is well
defined since complete resolutions are unique up to homotopy equivalence, exist
by definition for every Gorenstein injective module, and morphisms of modules
lift uniquely up to homotopy to morphisms of complete resolutions. The zeroth
syzygy of any totally acyclic complex of injectives is by definition Gorenstein
injective. It is clear that, up to injectives, the Gorenstein injective R-module
obtained by applying Z° to a totally acyclic complex of injectives only depends
on its homotopy class so that Z° is well defined.

It is easy to check that the requisite composites are naturally isomorphic to

the corresponding identity functors. O

For R Gorenstein every acyclic complex of injectives is totally acyclic by [48]
Proposition 7.13 so there is an equivalence between S(R) and GInjR. We thus
obtain an action of D(R) on GInjR via this equivalence and we use the same

notation to denote this action.

Corollary 4.1.11. Let R be a Gorenstein ring and M an R-module. There is

an isomorphism in GInjR

Z°LQ,M = Gr(M).
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Proof. By Theorem 4.1.8 there is a short exact sequence of R-modules
0— M — Gr(M) — L—0

where L has finite projective dimension. Considering this as a triangle in D(R)

we obtain a triangle in GInjR
ZOI)\QPM — ZOI)\QPGR(M) — 00— EZOI)\QPM

where L is sent to zero as it is a perfect complex when viewed as an object of
D(R). By [48] Corollary 7.14 the object Z°I,Q,Gr(M) is naturally isomorphic
to the image of Gr(M) in GInjR under the canonical projection which proves
the claim. O

4.1.2 Complete Intersections and Complexity

We now give a brief summary of certain invariants related to the growth of min-
imal free resolutions over local rings and their relation to local complete inter-
section rings. First of all let us recall the definition of the rings which will be of

most interest to us.

Definition 4.1.12. Let (R, m, k) be a noetherian local ring. We say R is a
complete intersection if its m-adic completion R can be written as the quotient of
a regular ring by a regular sequence. The minimal length of the regular sequence
in such a presentation of R is the codimension of R.

A not necessarily local ring R is a locally complete intersection if R, is a
complete intersection for each p € Spec R.

If R is a complete intersection of codimension 1 we say that it is a hypersurface.
Similarly if R is a complete intersection of codimension 1 when localized at each

prime of Spec R we say that R is locally a hypersurface.

Remark 4.1.13. Rings satisfying the conditions of the above definition are some-
times called abstract complete intersections to differentiate them from those local
rings which are quotients of regular rings by regular sequences without the need
to complete. We use the term complete intersection as in the definition above
and when we need to impose that R itself is a quotient of a regular ring by a

regular sequence it will be stated explicitly.

Remark 4.1.14. The property of being a complete intersection is stable under
localization. Furthermore, the property of being a complete intersection is in-

trinsic (cf. Theorem 4.1.15) and if (R, m, k) is a complete intersection then any
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presentation of R as a quotient of a regular local ring has kernel generated by a

regular sequence.

Let (R,m,k) be a local ring. Given a finitely generated R-module M we
denote by 5;(M) the ith Betti number of M

Bi(M) = dimy, Tor;(M, k) = dimy, Ext*(M, k).

The asymptotic behaviour of the Betti numbers is expressed by the complexity
of M. For M in R-mod the complezity of M, cx(M), is defined to be

cx(M) = inf{c € N | there exists a € R such that 8,(M) < an“' for n > 0}.

By a result of Gulliksen ([36] Theorem 2.3) the complexity of the residue field
k detects whether or not R is a complete intersection. In fact one can say slightly

more:

Theorem 4.1.15 ([1] Theorem 3). The following conditions on a local ring
(R,m, k) are equivalent:

(1) R is a complete intersection of codimension c;
(2) exk =c¢;

(3) for every M a finitely generated R-module cx M < ¢ and some module has

complexity c.

Finally we recall how the complexity of a module changes under certain
changes of the base ring. This result together with further properties can be

found in [4] as Proposition 5.2.

Proposition 4.1.16. For a local ring (R, m, k) and a finitely generated R-module
M the following hold.

(1) Let R’ be another local ring and R — R’ a local flat morphism, then

CXRM = CXRpR/ M XRnr R/.

(2) Let Q — R be a surjective local map of local rings whose kernel is generated

by a Q-regular sequence of length c. Then

cxg M <cxgM <cxoM +c.
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4.2 The Classification Theorem for Hypersur-

faces

Throughout this section (R, m, k) is a local Gorenstein ring unless otherwise spec-
ified. We consider the relationship between the categories S(R) and S(R/(x)) for
x a regular element. Our results allow us to classify the localizing subcategories
of S(R) in the case that R is a hypersurface ring.

By the classification result we have already proved in Theorem 3.4.16 together
with the fact that every localizing subcategory is closed under the action of D(R)
(Lemma 3.3.5) it is sufficient to consider subcategories of I',S(R). As in the
discussion before Theorem 2.5.11 a bijection between subsets of the singular locus
and the collection of localizing subcategories is equivalent to each of the I',S(R)

being minimal in the sense of Definition 2.5.10

Remark 4.2.1. Note that we can reduce to the case of local rings when studying
minimality. Indeed, suppose R is a noetherian ring and p € Spec R. Then since
IZR® Lz R = T'yR we can study I',S(R) in S(R,) C S(R), the essential image

We now prove several lemmas leading to a key proposition. The first two of

these lemmas are well known.

Lemma 4.2.2. Let z be a regular element of R. Then the quotient ring R/(x)

1s also Gorenstein.

Proof. By the second injective change of rings theorem (see for example [44]
Theorem 205) we have

idR/(m) R/(x) <idgR—1=dim R — 1.
Thus R/(z) has finite self-injective dimension so is Gorenstein as claimed. [

Lemma 4.2.3. Let G be a Gorenstein injective R-module and x € R an R-reqular

element. Then G is x-divisible i.e., multiplication by x is surjective on G.

Proof. As x is regular we get a projective resolution of the R-module R/(x)

T

0 R

R R/(z) —0.

Recall from Proposition 4.1.5 that Gorenstein injective modules are right Ext’-
orthogonal to the modules of finite projective dimension for ¢ > 1. So applying

Hompg(—, G) to the above short exact sequence yields an exact sequence

0 — Homg(R/(x), G) G—G 0
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which proves the claim. O

Notation 4.2.4. We will consider D(R) to act on GInjR via the equivalence of
Proposition 4.1.10. Thus by I',,G for G € GInjR we mean the class represented
by the Gorenstein injective Z°Tc(G).

Lemma 4.2.5. Let G be a Gorenstein injective R-module such that T'G # 0 in
the stable category. Then for all 1 > 1

Ext(k, G) # 0.
Proof. For ¢ > 1 there are isomorphisms

Ext'(k, G) 2 Hom(1,Q,k, X' 1,Q,G)
=~ Hom(1,Q,k, ¥ Tl Q,G)
>~ Ext'(k, ['nG)

where the first and last isomorphisms are via [48] Proposition 7.10, together with
Lemma 3.4.4 for the last isomorphism, and the middle one is by adjunction and
the fact that as R is local there is an equality 'y R = I'y(m) IR of tensor idempotents
in D(R). By Proposition 3.3.7 the minimal complete resolution of I',,G consists
solely of copies of E(k). Hence there is a representative for I'yG which is m-
torsion and, as it represents a non-zero object in the stable category, of infinite
injective dimension. So using the isomorphisms above we see that the Ext’s are
nonvanishing as claimed: their dimensions give the cardinalities of the summands

of E(k) in each degree of a minimal injective resolution for our representative of
LG ([33] 9.2.4). O

Lemma 4.2.6. Let G be a Gorenstein injective R-module such that I'yyG # 0
i the stable category, © € R a reqular element, and denote by M the R-module
Hompg(R/(z),G). Then idg M = oo = pdy M.

Proof. Recall from the proof of Lemma 4.2.3 that M fits into the short exact
sequence

0 M G——G 0.

Applying Hompg(k, —) gives a long exact sequence
0 — Hom(k, M) — Hom(k, G) — Hom(k, G) — Ext' (k, M) — - - -
where for 7« > 0 the maps

Exti(k, G) —s Exti(k, G)
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are multiplication by x (see for example [71] 3.3.6) and hence are all 0 as ([71]
Corollary 3.3.7) the Ext’(k, G) are k-vector spaces. Thus for i > 0 the morphisms

Ext'(k, M) — Ext'(k, G)

are surjective. By the last lemma the groups Ext’(k,G) are non-zero for i > 1.
Thus Ext’(k, M) # 0 for i > 1 so M necessarily has infinite injective dimension.
Since R is Gorenstein M must also have infinite projective dimension (see for
example [33] Theorem 9.1.10). O

Proposition 4.2.7. Let G be an object of I'wGInjR and suppose x is a reqular
element of R. Then (G)oe contains the image of a non-injective Gorenstein

injective envelope of an R/(x)-module.

Proof. By Lemmas 4.2.6 and 4.2.3 there is a short exact sequence of R-modules
0—M-—G--G—0

with M an R/(x)-module of infinite projective dimension over R. Applying
Z°1,Q, gives a triangle in (G)oc

Gr(M) — G — G — XGr(M)

where we use Corollary 4.1.11 to identify Z°1,@Q,M with the class of its Gorenstein
injective envelope. The module Gg(M) is not injective by Theorem 4.1.8 as

pdp M = oo (i.e., it is not in the kernel of 1,(),), which completes the proof. [

Suppose R is an artinian local hypersurface. Then necessarily R is, up to
isomorphism, of the form S/(z") for a discrete valuation ring S with z a uni-
formiser. In particular, R is an artinian principal ideal ring so by [41] Theorem
2 every R-module is a direct sum of cyclic R-modules. Using this fact we show
that GInjR is minimal when R is an artinian local hypersurface. This provides
the base case for our inductive argument that the maps of Theorem 3.4.16 are
bijections for any hypersurface ring without the requirement that the categories

in question contain certain objects.

Lemma 4.2.8. Suppose R is an artinian local hypersurface. Then the category
GInjR = I',GInjR is minimal.

Proof. Since R is 0-Gorenstein there is an equality R-Mod = GInjR, where
R-Mod is the stable category of the Frobenius category R-Mod, as every R-
module is Gorenstein injective by [33] Proposition 11.2.5 (4).
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As remarked above we have an isomorphism R = S/(2™) where S is a discrete
valuation ring and x is a uniformiser. We also recalled that every R-module is a
coproduct of cyclic R-modules; this remains true in the stable category R-Mod.
Since the subcategory of compacts in R-Mod is precisely R-mod every object is
thus a coproduct of compact objects (so in particular R-Mod is a pure-semisimple
triangulated category cf. [12] Corollary 12.26). It follows that every localizing
subcategory of R-Mod is generated by objects of R-mod.

We deduce minimality from the existence of Auslander-Reiten sequences. For

each 1 <i <n — 1 there is an Auslander-Reiten sequence
0— R/(a") ~~ R/(z") & R/ (") —= R/(z') —= 0

where, using (—) to denote residue classes,

f(@) = (;) and g(g) =ax — b.

So the smallest thick subcategory containing any non-zero compact object is all

of R-mod: every object is up to isomorphism a coproduct of the classes of cyclic
modules and the Auslander-Reiten sequences show that any cyclic module which
is non-zero in the stable category is a generator. Thus, as we observed above that
every localizing subcategory is generated by objects of R-mod, we see there are
no non-trivial localizing subcategories except for all of R-Mod so it is minimal as

claimed. O

We next need a result that is essentially contained in [48] Section 6 but which
we reformulate in a way which is more convenient for our purposes. To prove
this lemma we need a very straightforward result which we include for the sake

of completeness.

Lemma 4.2.9. Suppose R and S are local rings and m: R — S s a surjection

with kernel generated by an R-reqular sequence. Then the functor
T S-Mod — R-Mod

sends modules of finite projective dimension to modules of finite projective dimen-

SL0M.

Proof. We prove the result by induction on the length of the R-sequence {z;} ,
generating the kernel of 7. Suppose first that S = R/(z) for an R-regular element
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x. The first change of rings theorem ([71] Theorem 4.3.3) gives for any S-module

M of finite projective dimension

so m, sends modules of finite S-projective dimension to modules of finite R-
projective dimension as claimed.

Suppose the result holds for R-sequences of length strictly less than n and
let S = R/(x1,...,x,) where the sequence {x1,...,2,} is R-regular. Then, as
above, we deduce from the first change of rings theorem that for an S-module M

of finite S-projective dimension

,,,,,

Thus using the natural factorization of the functor 7, via R/(z1,...,z,—1)-Mod

we are done by the inductive hypothesis. O]

Lemma 4.2.10. Suppose m: R — S is a surjective map of Gorenstein local
rings with kernel generated by an R-reqular sequence. Then there is an induced

coproduct preserving exact functor
7y : GInjS — GInjR
which sends an object of GInjS to its GInj R-envelope.

Proof. Let us denote by v the composite

D9 S(R) 2~ GInjR .

D(R)
Recall from [48] Corollary 5.5 and Example 5.6 that the composite

) I)\Qp

p: R-Mod — D(R S(R)

where the functor R-Mod — D(R) is the canonical inclusion, preserves all
coproducts and annihilates all modules of finite projective dimension. Thus by

Lemma 4.2.9 the equal composites

GInj S D(S) —4=GInjR
x ZOM
R-Mod

must factor via the stable category GInjS. Indeed, as R is Gorenstein S is also

Gorenstein by Lemma 4.2.2. Thus injective S-modules have finite S-projective
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dimension and 7, sends them to modules of finite R-projective dimension by the
last lemma. In particular S-injectives are killed by both composites. We get a

commutative diagram

GInj S —— D(S) —= GInjR

S A

GInjS.

The functors 7, p, and Z°u are all coproduct preserving: we have already noted
that p preserves coproducts, Z° is the equivalence of Proposition 4.1.10, and
it is easily seen that the projection p also preserves coproducts (the concerned
reader may consult [48] Corollary 7.14). As p is essentially surjective we see
that m, also preserves coproducts. Indeed, the top composite is equal to Z%um,
which preserves coproducts and any coproduct of objects in GInjS' is the image
under p of a coproduct of S-modules. Exactness follows similarly by noting that
the top composite sends short exact sequences to triangles as GInj .S is an exact
subcategory of S-Mod and m, is exact.

The explicit description of m, is clear from the construction: by the commuta-
tivity of the diagram , sends the image of an object M of GInj S to Z°1,Q,m. M
which is precisely its Gorenstein injective envelope as an R-module by Corollary
4.1.11. m

Remark 4.2.11. Given an S-module M we see from the above that, letting
Gs(M) and Gg(m.M) denote its Gorenstein injective envelopes over S and R

respectively, there are isomorphisms in the stable category
&Gs(M) = GR(T('*GS(M)) = GR(W*M).

The first isomorphism is a consequence of the last lemma. The second isomor-
phism follows from Theorem 4.1.8 which provides us, after an application of ,,

with a short exact sequence
0 — mM — m.Gs(M) — 7L — 0

where 7, L has finite projective and injective dimension. Thus the R-Gorenstein
injective envelopes of m,M and m,Gs(M) agree in GInjR which gives the second

isomorphism.

We are now ready to prove the theorem which gives us a complete classification

of the localizing subcategories of S(R) when R is a hypersurface.
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Theorem 4.2.12. If (R, m, k) is a hypersurface then I'yGInjR is minimal.

Proof. We prove the theorem by induction on the dimension of R. In the case
dim R = 0 then R is an artinian hypersurface and GInjR is minimal by Lemma
4.2.8.

So suppose the theorem holds for hypersurfaces of dimension strictly less than
n and let dim R = n > 1. Then as depth R = n > 1 the maximal ideal m is not
contained in any of the associated primes or m? so we can choose, by prime
avoidance, a regular element z not lying in m?. The quotient R/(z) is again a
hypersurface, for example one can see this by noting that the second deviations
agree eo(R) = e2(R/(x)) = 1 and the higher deviations vanish (see [2] section 7
for details).

Let us denote the projection R — R/(x) by m. By Proposition 4.2.7 for
every 0 # G € I'nGInjR the subcategory (G)i,c contains a non-zero object in the
image of the functor 7, of Lemma 4.2.10. The ring R/(x) has dimension n — 1 so
by the inductive hypothesis the category I'y/)GInjR/(z) is minimal.

The functor 7, is exact and coproduct preserving by Lemma 4.2.10 so as (G1oc
contains one object in the image of 7, it must contain the whole image by min-
imality of I'n/)GInjR/(z). In particular (G)i.. contains Gr(k) = m.Gry@)(k).
This object generates I'y,GInjR by 7 applied to the statement of Lemma 3.4.9.
Hence (G)ioc = ['nGInjR so I'yGInjR is minimal as claimed. O

Using the other techniques we have developed this is enough to give a classi-
fication of the localizing subcategories of S(R) for R a not necessarily local ring

which is locally a hypersurface.

Theorem 4.2.13. If R is a noetherian ring which is locally a hypersurface then
there is an order preserving bijection

T

{ subsets of Sing R } { localizing subcategories of S(R) }

given by the assignments of Theorem 3.4.16. This restricts to the equivalent order

preserving bijections

specialization closed T localizing subcategories of S(R)
subsets of Sing R 5

[

generated by objects of S(R)®

and

{ specialization closed } .

subsets of Sing R - { thick subcategories of Dgg(R) } .
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Proof. By Theorem 3.4.16 it is sufficient to check every localizing subcategory
L contains 1,Q,k(p) for each p € Sing R such that I';L # 0. As there are
equivalences
PpS(R) = TpS(Ry)

each of the subcategories I';S(R) is minimal by Theorem 4.2.12 as each R, is a
local hypersurface. Hence if I',£ # 0 for a localizing subcategory £ we must have
I'yS(R) = I'yL C L where the containment is a consequence of the closure of
localizing subcategories under the action of D(R) (Lemma 3.3.5). In particular
the generator I1\Q,k(p) of I',S(R) is an object of £. Thus the image of the
injection 7, namely those localizing subcategories £ containing 1,Q),k(p) for each
p € Sing R such that I',£ # 0, is in fact the set of all localizing subcategories.
This proves the first bijection.

As in Theorem 3.4.16 the second bijection is a consequence of the first and
Proposition 3.4.13 which states that compact objects have closed supports so o of
a compactly generated subcategory is specialization closed. The third bijection
is equivalent to the second as by Theorem 3.1.1 (3) there is an equivalence up to
summands Dg,(R) = S(R)° so our restatement is a consequence of Thomason’s
localization theorem ([60] Theorem 2.1). O

Remark 4.2.14. Our result implies Takahashi’s Theorem 7.6 of [68].

We can use this theorem to give a proof of the telescope conjecture for S(R)

when R is locally a hypersurface.

Theorem 4.2.15. If R is locally a hypersurface then the singularity category
S(R) satisfies the telescope conjecture i.e., every smashing subcategory of S(R) is
generated by objects of S(R)C.

Proof. As every localizing subcategory of S(R) is a D(R)-submodule by Lemma
3.3.5 and the D(R) action classifies the localizing subcategories of S(R) by The-
orem 4.2.13 the relative telescope conjecture (Definition 2.4.1) for this action
agrees with the usual telescope conjecture. Thus it is sufficient to verify that the
conditions of Theorem 2.4.14 hold.

The local-to-global principle holds for the action as Theorem 2.3.9 applies
to D(R). The support of every compact object of S(R) is specialization closed
by Proposition 3.4.13 and for every irreducible closed subset V(p) C Sing R the
object I,Q,R/p has support V(p) by Remark 3.4.14.

Thus the theorem applies and every smashing subcategory of S(R) is com-

pactly generated. 0



Chapter 5

The Singularity Category of a

Scheme

We now present global versions of our results for affine schemes. Using these
results we give a complete classification of the localizing subcategories of the
singularity category for local complete intersection rings and certain complete
intersection schemes over a base field. Throughout (unless explicitly mentioned
otherwise) we will denote by X a separated noetherian scheme. We will use the

following notation
D(X):=D(QCoh X), S(X):=K,(InjX) and K(X):= K(QCohX)

where QCoh X is the category of quasi-coherent sheaves of O xy-modules and Inj X

is the category of injective quasi-coherent sheaves of Ox-modules.

Remark. We have defined Inj X to be the category of injective objects in QCoh X,
but we could just as well have taken it to be the category of those injective ob-
jects in the category of all O x-modules which are quasi-coherent. This fact can be
found as Lemma 2.1.3 of [28]. We thus feel free to speak either of quasi-coherent
injective Ox-modules or injective quasi-coherent Ox-modules as they are the

same thing when X is (locally) noetherian which is the only case we consider.

We begin this section by showing that, as in the affine case, D(X) acts on
S(X). We can then apply the machinery developed in Section 2.3 together with
local arguments on X to globalise most of the results we have proved in the affine

case.

7



78 CHAPTER 5. THE SINGULARITY CATEGORY OF A SCHEME

5.1 An Action of D(X)

We recall that the machinery of [48], [58], and [57] works perfectly well in the
generality that X is a noetherian separated scheme (in fact the machinery in
each of these papers works in greater generality than we will use - the noetherian
separated case is the intersection of what is known with our interests). Let us

prove there is an action
D(X) x S(X) -2 5(X)

as in the affine case.

Recall from [48] Corollary 5.4 that S(X) is a compactly generated triangulated
category. Consider £ = [[, E\ where F) runs through a set of representatives
for the isomorphism classes of compact objects in S(X). We define a homological
functor H: K (Flat X) — Ab by setting, for ' an object of K (Flat X),

H(F) = H(F ®0, E)

where the tensor product is taken in K(X). This is a coproduct preserving ho-
mological functor since we are merely composing the exact coproduct preserving
functor (—) ®o, F with the coproduct preserving homological functor H°.

We again remind the reader of the notion of pure acyclicity. In [58] a complex
F in K(Flat X) is defined to be pure acyclic if it is exact and has flat syzygies.
Such complexes form a triangulated subcategory of K (Flat X)) which we denote
by Kpac(Flat X) and we say that a morphism with pure acyclic mapping cone is a
pure quasi-isomorphism. We recall that when X is noetherian the tensor product
of a complex of flats with a complex of injectives is again a complex of injectives.
As in the affine case tensoring a pure acyclic complex of flats with an injective
complex yields a contractible complex. This can be checked locally using [62]
Corollary 9.7, see for example [57] Lemma 8.2. In particular every pure acyclic

complex lies in the kernel of H.

Definition 5.1.1. With notation as above we denote by Ag(Inj X) the quotient
ker(H)/Kpac(Flat X).

Lemma 5.1.2. An object F' of K(Flat X) lies in ker(H) if and only if the exact
functor

F®o, (—): K(InjX) — K(Inj X)

restricts to

F ®o, (—): S(X) — S(X).
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In particular, Ag(Inj X) consists of the pure quasi-isomorphism classes of objects
which act on S(X).

Proof. The proof is essentially the same as the one given for Lemma 3.2.4; the
point is that £ generates S(X).
O

Remark 5.1.3. Restricting H to N(Flat X)) = K (Flat X)/K,ac(Flat X) we ob-
tain by Theorem 3.2.1 an adjoint pair

Ag(Inj X) — N(Flat X).

Lemma 5.1.4. There is a fully faithful, exact, coproduct preserving functor
D(X) — Ag(Inj X).

Proof. There is, by the proof of Theorem 5.5 of [57], a fully faithful, exact, coprod-
uct preserving functor D(X) — N(Flat X) given by taking K-flat resolutions

and inducing an equivalence
D(X) =+ N, (Flat X).

This functor given by taking resolutions factors via Ag(Inj X) since K-flat com-

plexes send acyclics to acyclics under the tensor product. O

Remark 5.1.5. Taking K-flat resolutions and then tensoring gives an action
(=) ®(=): D(X) x S(X) — S(X)

by an argument which is the same (mutatis mutandis) as the one given in Propo-
sition 3.2.7: K-flat resolutions are well behaved with respect to the tensor product
so the necessary compatibilities follow from those of the tensor product of com-

plexes.

The tensor triangulated category (D(X),®,Ox) is rigidly-compactly gener-
ated. Thus we can apply all of the machinery we have developed for actions of
rigidly-compactly generated triangulated categories. In particular, recalling from
[69] that Spc D(X)¢ = Spc DP(X) = X | we can associate to every specialization
closed subset V of X a localization sequence of submodules

T,S(X) S(X) LyS(X)

D S S S

where I'),S(X) is generated by objects compact in S(R), by Corollary 2.2.13 and

Lemma 2.2.6. Since X is noetherian we get for every x € X objects I',Ox which
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allow us to define supports on S(X) with values in X. We also wish to note that

by Lemma 2.2.8 the action restricts to the level of compact objects
DP (X)) x §(X)° -2 S(X)°.

Finally as the category D(X) has a model Theorem 2.3.9 applies.

5.2 Subsets of X Versus Subcategories of S(X)

We are now in a position to demonstrate that what we have proved in the affine
case extends in a straightforward way to noetherian separated schemes via the

machinery of Section 2.5. As in Definition 2.2.22 we have assignments

T

{ subsets of X }

o

{ localizing D(X)-submodules of S(X) }

where for a localizing submodule £ we set
o(L)=suppL={r e X |, LF#0}
and for a subset W of X
T(W)={A€ S(X) | suppA C W}.

In this section, unless stated otherwise, submodules are localizing submodules.
In order to apply our formalism to the situation of D(X) acting on S(X) we first
need to understand what the effect of restricting to an open subset of X is.

Before continuing let us remind the reader of some of the notation of Chapter
2. Given a specialization closed subset ¥V C X we denote by Dy(X) the smashing
subcategory generated by those compact objects whose support, in the sense
of [7], lies in V. We recall that the corresponding localization sequence gives
rise to the tensor idempotents I'yOyx and LyOx. For a closed subset Z of X
with complement U we denote the quotient D(X)/Dz(X) by either L;D(X) or
D(X)(U), as in Section 2.5. The action of D(X) on S(X) gives rise to an action
of D(X)(U) on S(X)(U) = LzS(X) as in Proposition 2.5.5.

Lemma 5.2.1. Let U C X be an open set with complement Z = X \ U, and
let f: U — X be the inclusion. If E is an object of D(X) then the map
E — Rf.f*E agrees with the localization map E — LzE. In particular,
D(X)(U) is precisely D(U).
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Proof. By definition the smashing subcategory Dz(X) giving rise to Ly is the
localizing subcategory generated by the compact objects whose support is con-
tained in Z. The kernel of f* is the localizing subcategory generated by those
compact objects whose homological support is contained in Z by [66]. As these
two notions of support coincide for compact objects of D(X) (see for example [7]

Corollary 5.6) the lemma follows immediately. O

We recall from [48] Theorems 1.5 and 6.6 that for f: U — X an open

immersion we obtain an adjoint pair of functors

f*
S(X) <T7' S(U).
These functors are easily seen to be, using the classification of injective quasi-
coherent sheaves on a locally noetherian scheme (see for example [28] Lemma

2.1.5), just the usual pullback and pushforward of complexes.

Lemma 5.2.2. With notation as in Lemma 5.2.1 suppose U C X is an open
affine and let A be an object of S(X). Then the natural map A — f.f*A agrees
with A — Lz A. In particular, S(X)(U) is canonically identified with S(U).

Proof. Since f: U — X is an affine morphism we have that f.: D(U) — D(X)
is exact and R f, = f.. The map A — LzA is, by definition, obtained by taking
the morphism Oy — L;zOx in D(X) and tensoring with A € S(X). By Lemma
5.2.1 the map Oy — LzOx is just Ox — f.Oy, which is a map of K-flat
complexes. Thus the map A — Lz A is

A — [0y ®ox A= [(Ou Qo [7A) = [ [ A,

where the first isomorphism is by the projection formula, completing the proof.
O

Now we are in business: we know that for an open affine U = Spec R in X
the construction of Section 2.5 gives us D(R) acting on S(R). It just remains to

verify that this is the action we expect.

Lemma 5.2.3. Suppose U is an open subscheme of X with inclusion f: U — X.
Then the diagram

I

D(X) x S(X) D(U) x S(U)
S(X) I S(U)

commutes up to natural isomorphism.
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Proof. By virtue of being an open immersion f* sends K-flat complexes to K-flat
complexes and commutes with taking K-flat resolutions. Thus, as f* commutes
with tensor products up to natural isomorphism, resolving by a K-flat, tensoring,
and then pulling back agrees with pulling back, resolving and then tensoring (up

to natural isomorphism). So the square is commutative as claimed. ]

This is the diagram of Proposition 2.5.5, so it follows that the action ©y of
said proposition is precisely our old friend ®. Thus we can use the machinery
we have developed to obtain a classification of the localizing D(X)-submodules

of S(X) when X is locally a hypersurface.

Lemma 5.2.4. There is an equality 0S(X) = Sing X i.e., for any x € X the
subcategory T',S(X) is non-trivial if and only if x € Sing X .

Proof. Let U?_,U; be an open affine cover of X. By Remark 2.5.7 the subset
0S(X) is the union of the ¢ S(U;). Thus it is sufficient to note that x € U; lies in
Sing X if and only if it lies in Sing U; and invoke Proposition 3.4.6 which tells us

that 0S(U;) = Sing U;. O

Proposition 5.2.5. If X is a Gorenstein separated scheme then every compact
object of S(X) has closed support.

Proof. We proved that for any open affine U; the compact objects of S(U;) have
closed support in Proposition 3.4.13. The result then follows by covering X by
open affines and applying Lemma 2.5.8. m

Remark 5.2.6. It follows that the support of any triangulated subcategory gen-
erated by compact objects of S(X) is a specialization closed subset of Sing X.

We are now ready to state our first theorem concerning the singularity cate-

gories of schemes with hypersurface singularities.

Theorem 5.2.7. Suppose X is a noetherian separated scheme with only hyper-

surface singularities. Then there is an order preserving bijection

T

{ subsets of Sing X } { localizing submodules of S(X) }

given by the assignments discussed before Lemma 5.2.3. This restricts to the

equivalent bijections

subsets of Sing X ) by objects of S(X)°

g

{ specialization closed } T { submodules of S(X) generated }
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and

jalization closed N
specianza wn‘ crose { thick DP*(X)-submodules of Dgg(X) } .
subsets of Sing X )

Proof. The first bijection is an application of Theorem 4.2.13 and Theorem 2.5.11
to an open affine cover of X together with the observation of Lemma 5.2.4 that
0S(X) = Sing X. To see that the first bijection restricts to the second recall
from Proposition 5.2.5 that compact objects of S(X) have specialization closed
support. The statement now follows immediately from what we have already
proved and using [48] Theorem 1.1 (this is the general form of Theorem 3.1.1,
which as we remarked also applies mutatis mutandis to noetherian separated
schemes) it is easily deduced that the second and third bijections are equivalent.

[

It is natural to ask when one can strengthen this result to a complete clas-
sification of the localizing subcategories of S(X). We now prove that if X is a
hyperplane section of a regular scheme then every localizing subcategory of S(X)
is closed under the action of D(X). This gives a complete description of the
lattice of localizing subcategories of S(X) for such schemes.

Let T be a regular separated noetherian scheme of finite Krull dimension and
let L be an ample line bundle on T'. Suppose ¢t € H(T, L) is a section giving rise

to an exact sequence
\
0—L ' 50, —0x —0

which defines a hypersurface X 5 T. The scheme X is a noetherian separated
scheme with hypersurface singularities so our theorem applies to classify localizing
D(X)-submodules of S(X). The key observation in strengthening this result is

the following easy computation.

Lemma 5.2.8. Let F' € D(X) be a quasi-coherent sheaf concentrated in degree

zero. There is an isomorphism in S(X)
LQ,(F® L) = % 2,Q,F.

Proof. By the way we have defined X the coherent Op-module Ox comes with a
flat resolution

O—>L‘1L>OT—>OX—>O.

Thus the complex Li*i, F' has two non-zero cohomology groups namely

HY(Li*i,F) =2 F and H YLi*i,F) = F Qp, i*L"".
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As the scheme T is regular of finite Krull dimension the object i, F' of D(T)
is locally isomorphic to a bounded complex of projectives. Hence Li*i, F' is also
locally isomorphic to a bounded complex of projectives. In particular, since being
the zero object is local in S(X) by Lemma 5.2.2 and the local-to-global principle,
we have I)Q,Li*i, F' = 0. The standard t-structure on D(X) gives a triangle

SF ®oy i L7 — Li*i,F — F — Y*F ®0, i* L7
Thus applying I\, to this triangle yields an isomorphism
LQ,F = 1L,Q,%*F ®¢, i*L™*
in S(X) ie, LQ,(F ®o, i*L™) 2 X 2[Q,F. O

Let us write ¢*L"™ for the tensor product of n copies of *L. By Proposition
3.4.3 and Lemma 3.4.4 twisting by ¢*L" and applying 1,(), to a sheaf F' commute

up to natural isomorphism. We thus have isomorphisms
LM O LQ,F 2 LQ,(F ®0, i*L") 2 X" L,Q,F
in S(X).
Corollary 5.2.9. Let X be as above. Then there are order preserving bijections

{ subsets of Sing X } { localizing subcategories of S(X) }

and

r
—_—

of S(X) generated by
objects of S(X)°

-~

{ specialization closed

localizing subcategories
subsets of Sing X }

Proof. As X is a locally complete intersection in the regular scheme T' it is cer-
tainly Gorenstein. In particular it has a dualising complex so by [58] (Proposition
6.1 and Theorem 4.31) every complex in S(X) is totally acyclic. Thus [48] Propo-
sition 7.13 applies telling us that every object of S(X) is the image, under 1,Q,,
of a Gorenstein injective sheaf on X.

Let £ C S(X) be a localizing subcategory and suppose A is an object of L.
Then there exists a Gorenstein injective sheaf G such that A = I,Q,G by the

discussion above. There are isomorphisms
YL O A=EMTL 0 1Q,G =2 EMNLQ,(G®iTL"Y)
=~ Y LQ,G
o Em+2nA
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where we can interchange the action of ¢*L" and 1,(), as in the discussion before
the proposition.

As L is ample on T the line bundle ¢*L is ample on X so the set of objects
{E™*L" | m,n € Z}

is a compact generating set for D(X), see for example 1.10 of [60]. We have just
seen L is stable under the action of each of the generators. Thus the full subcat-
egory of D(X) consisting of objects whose action sends L to itself is localizing,
as L is localizing, and contains a generating set so must be all of D(X). This

proves L is a submodule as claimed. [l

Remark 5.2.10. The action of ¢*L can be viewed in the context of the degree 2
periodicity operator of Gulliksen [35] (see also [32] and [5]). As i*L is invertible

in D(X) one can consider, as in [9], the graded commutative ring

E;., = @D Hom(Ox,i* L))

JEZ.

with multiplication defined by sending (Ox — i*L?, Ox — i*L¥) to the com-

posite

Ox i*LITF
| 1
L —= ") ® Ox —=i"L) @ i*L*.
In analogy with Lemma 2.1.7 the degree j elements of the ring EY; act on S(X)
by natural transformations idg(xy — ¢*L’ ® (—). In particular, in the above

situation Lemma 5.2.8 implies that E}.; acts via the even part of the central ring
Z(S(X)) (see Definition 2.1.5).

To end the section we show that our relative version of the telescope conjecture
(Definition 2.4.1) holds for the action of D(X) on S(X) when X is any separated

noetherian scheme with hypersurface singularities.

Lemma 5.2.11. Let X be a Gorenstein separated scheme. For any irreducible
closed subset V C Sing X there exists a compact object of S(X)¢ whose support
is precisely V, namely 1)Q,0y where Oy, is the structure sheaf associated to the

reduced induced structure on V.

Proof. Let V be an irreducible closed subset of Sing X as in the statement. We
have claimed the object 1,Q,0y of S(X)¢ has the desired support. To see this let
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X be covered by open affine subschemes {U;}?_; where U; = Spec R;. The restric-
tion Oy, of Oy, to U; is the sheaf associated to R/p; where V(p;) =V, =V NU;.
By Remark 2.5.9

supp 1,Q,0yp = U supp 1,Q,0y,

=1

= |J supp 1,Q,R/p;

=1

:Uvi

=1

where the second last equality comes from Remark 3.4.14. [

Theorem 5.2.12. Let X be a noetherian separated scheme with hypersurface
singularities. Then the action of D(X) on the singularity category S(X) satisfies
the relative telescope conjecture i.e., every smashing D(X)-submodule of S(X) is
generated by objects of S(X)¢. In particular, if X is a hypersurface defined by
a section of an ample line bundle on some ambient reqular separated noetherian

scheme T as above then S(X) satisfies the usual telescope conjecture.

Proof. The result is an application of Theorem 2.4.14. We have seen in Theorem
5.2.7 that D(X)-submodules are classified by Sing X via the assignments o and 7.
By Proposition 5.2.5 compact objects of S(X) have specialization closed support.
Finally, we have proved in the last lemma that every irreducible closed subset of
Sing X can be realised as the support of a compact object.

Thus the conditions of Theorem 2.4.14 are met for the action of D(X) on
S(X) and it follows that the relative telescope conjecture holds. In the case

Corollary 5.2.9 applies this reduces to the usual telescope conjecture. O]

5.3 A General Classification Theorem

We are now ready to prove a version of Theorem 5.2.7 valid in higher codimension.
Our strategy is to reduce to the hypersurface case so we may deduce the result
from what we have already proved. Let us begin by fixing some terminology and
notation for the setup we will be considering following Section 2 of [64].
Throughout this section by a complete intersection ring we mean a ring R such

that there is a regular ring () and a surjection () — R with kernel generated by a
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regular sequence. A locally complete intersection scheme X is a closed subscheme
of a regular scheme such that the corresponding sheaf of ideals is locally generated
by a regular sequence. All schemes considered from this point onward are over
some fixed base field and are assumed to have enough locally free sheaves. Let T
be a separated regular noetherian scheme of finite Krull dimension and &£ a vector
bundle on T of rank c. For a section t € H°(T, &) we denote by Z(t) the zero
scheme of t. We recall that Z(t) can be defined globally by the exact sequence

eV AN Or — Oz —0.

It can also be defined locally by taking a cover X = U,;U; trivializing £ via
fit Elu, — OF° and defining an ideal sheaf . (s) by

I (t)

Ui — (fl<t>17 s 7fl(t)c)

We say that the section ¢ is regular if the ideal sheaf .# (t) is locally generated by
a regular sequence. Thus the zero scheme Z(t) of a regular section t is a locally
complete intersection in 7" of codimension c. In our situation ¢ is regular if and
only if codim Z(t) = 1k & = ¢ (cf. [52] 16.B).

Let T and € be as above and let t € H(T, ) be a regular section with zero
scheme X. Denote by Nx/r the normal bundle of X in T. There are projective
bundles P(EY) = 7" and P(Ny ) = Z with projections which we denote ¢ and
p respectively. Associated to these projective bundles are canonical line bundles

Og(1) and Opr(1) together with canonical surjections
q*é' — 05(1) and p*NX/S — ON(I)

The section ¢ induces a section ¢ € H°(T',O¢(1)) and we denote its divisor of
zeroes by Y. The natural closed immersion Z — T” factors via Y. To summarize

there is a commutative diagram

Z =P(NYp) ygw =T (5.1)
| ;

J

This gives rise to functors Si,: S(Z) — S(Y) and Sp*: S(X) — S(Z) by [48]
Theorem 1.5 and Theorem 6.6 respectively. Orlov proves the following theorem
in Section 2 of [64]:
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Theorem 5.3.1. Let T, 7', X, and Y be as above. Then the functor
®y, :=i,p*: D’(Coh X) — D’(CohY)
induces an equivalence of triangulated categories
Dz Deg(X) — Dgg(Y).

Remark 5.3.2. Recently Dima Arinkin has used Orlov’s theorem to define a
notion of support for objects of Dg,(X). His definition agrees with the one
obtained by allowing DP*(Y") to act on Dgy(X) via the above equivalence (using

a notion of support as in Balmer’s [7]) and the one we will construct below.

We wish to show this equivalence extends to the infinite completions S(X)
and S(Y); it is natural to ask if the theorem extends and considering the larger
categories allows us to bring the machinery we have developed to bear. In or-
der to show the equivalence extends we demonstrate that it is compatible with
the functor Si,Sp*, induced by i and p as in Section 6 of [48], via [,Q,. Gen-
eral nonsense about triangulated categories then implies S7,Sp* must also be an

equivalence.

Notation 5.3.3. We will frequently be concerned below with commuting dia-
grams involving the functors of the general version of Theorem 3.1.1 ([48] Theo-
rem 1.1) for pairs of schemes. As in [48] we will tend not to clutter the notation
by indicating which scheme the various functors correspond to as it is always

identifiable from the context.

Lemma 5.3.4. Leti: Z — Y be a reqular closed immersion i.e., the ideal sheaf
on'Y defining Z 1is locally generated by a reqular sequence, where Z and Y are

noetherian separated schemes. Then the functor
Ri,: K(Inj Z) — K(InjY)

of [48] Theorem 1.4 has a coproduct preserving right adjoint K(i') and sends

compact objects to compact objects.

Proof. Since 1 is a closed immersion we have an adjunction at the level of cate-

gories of quasi-coherent sheaves

QCoh Z == QCoh Y.

(2
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The right adjoint i' sends injectives to injectives as i, is exact.

These functors give an adjunction

K(QCoh Z) —= K(QCohY)
K (i)
and K (i') restricts to a functor from K(InjY) — K(Inj Z). We claim that this
restricted functor is the right adjoint of Ri,. Recall that Ri, is defined by the

composite

K(Inj Z) —2~ K(QCoh 2) XL K(QCoh Y) —2~ K(InjY)

where J is the inclusion and J) is left adjoint to the corresponding inclusion for
Y. For A€ K(InjZ) and B € K(InjY') there are isomorphisms

Hom(Ri, A, B) = Hom(J,K (i,)JA, B)
>~ Hom(JA, K(i')JB)
=~ Hom(JA, JK(i')B)
= Hom(A, K (i) B)

the first equality by definition, the third isomorphism JK (i) = K(i').J as K (i')
sends complexes of injectives to complexes of injectives, and the fourth isomor-
phism as J is fully faithful. This proves that the right adjoint to Ri, is induced
by K (i') as claimed.

To complete the proof note that ' preserves coproducts. The functor K (') and
hence the right adjoint of Ri, are thus also coproduct preserving. It now follows

from [60] Theorem 5.1 that Ri, sends compact objects to compact objects. [

Thus from [48], namely the first diagram of Theorem 6.1 and Remark 3.8, we

deduce, whenever i is a regular closed immersion, a commutative square

DP(Coh Z) —2~ K¢(Inj Z) (5.2)

D*(CohY) —5-= K*(InjY).

Lemma 5.3.5. Let Z and Y be Gorenstein separated schemes and suppose
i: Z — Y is a reqular closed immersion. Then the functor K(i') sends acyclic

complezes of injectives to acyclic complezes of injectives.
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Proof. As i is a regular closed immersion i, sends perfect complexes to perfect
complexes. Thus Ri': D(Y) — D(Z) preserves coproducts by [60] Theorem
5.1 so is isomorphic to Li*(—) ® Ri'Oy by ibid. Theorem 5.4. The scheme Y is
Gorenstein so Ri'Oy is a dualizing complex on Z. As Z is also Gorenstein the
dualizing complex Ri'Oy is (at least on each connected component) a suspension
of an invertible sheaf. Thus we can choose n € Z so that H(Ri'F) = 0 for every
quasi-coherent sheaf F' on Y and j > n as Li*(F') is always bounded above.

If A is an acyclic complex of injectives then the truncation
0— A" — A — A% — ...

is an injective resolution of B = ker(A° — A'). Thus applying K (i') to this
truncation computes Ri'B so the resulting complex is acyclic above degree n. By
taking suspensions we deduce that K(i')A is in fact acyclic everywhere and we

have already noted that i' preserves injectivity as it has an exact left adjoint. O

Remark 5.3.6. As the notation in the last two lemmas indicates they apply to
the situation we are interested in, namely the one given at the start of the section:
the morphism ¢: Z — Y is a regular closed immersion. Let us indicate why this
is the case. Pick some open affine subscheme Spec () of T, with preimage in X
isomorphic to Spec R, on which £ is trivial and such that the kernel of Q — R
is generated by the regular sequence {q,...,q.}. We get a diagram of open
subschemes of the diagram (5.1)

—1 7 u —1
P, Yy’ P

(RN

Spec R ; Spec Q.

The hypersurface Y’ is defined by the section ¢’ = > 7 | ¢;x; of (9%—1(1), where
the x; are a basis for the global sections of (’)%—1. Let z be a point in the cth
standard open affine Aﬁ{l in IP’%_I (we choose this open affine for ease of notation,
little changes if z lies in another standard open affine) and consider the local
maps of local rings

O1 ui(z) — Oyia) 2y Oz

We wish to show that ker 3 is generated by a regular sequence. Note that both «a
and fa have kernels generated by regular sequences: the kernel of « is generated
by the image of s = q1w1 + -+ + ge—1ZTc—1 + qc in Opv 442y and the kernel of Sa is
generated by the image of the regular sequence {qi,...,q.}.
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It is clear that the image of {¢1,...,¢.—1,s} is a regular sequence in Op y;(.)
and as this ring is local and noetherian we may permute the order of the el-
ements in this sequence and it remains regular by [53] Theorem 16.3. Thus
{s,q1,-..,qc—1} is a regular sequence in O y;(.). It follows that the image of
{¢1,...,qc—1} is a regular sequence in Oy, and it generates the kernel of f.

Thus ¢ is a regular closed immersion as claimed.

So we have an adjoint pair of functors

Ri,
K(njZ)—=K(InjY)
)
which both send acyclic complexes to acyclic complexes: Ri, by Theorem 1.5 of
[48] and K (i') by Lemma 5.3.5. Thus they restrict to an adjoint pair

So we have a commutative square

S(Y) -~ K(InjY)

o |

S(2) —— K (Inj 2).

Taking left adjoints of the functors in this last square we get another commutative
diagram
K(Inj Z) —2~ 8(2)

Ri l iSz'*

K(InjY) —=S(Y).

By Lemma 5.3.4 the composite I \Ri, sends compact objects to compact objects.
As I sends compacts to compacts and is essentially surjective, up to summands,
on compacts we see that Si, must preserve compacts too. So restricting this
square to compact objects and juxtaposing with the square (5.2) we get a com-

mutative diagram

DP(Coh Z) -2~ Ke(Inj Z) —2~ 5°(2)

(

D¥(Coh Z) 5= K*(Inj Y') — = S°(Y),
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In particular, the functor i,: Dgys(Z) — Dgg(Y) induced by i is compatible with
Si, under the embeddings of Dg,(Z) and Dg,(Y') as the compact objects in S(Z)
and S(Y).

Proposition 5.3.7. There is an equivalence of triangulated categories
Si,.Sp*: S(X) — S(Y)
which when restricted to compact objects is Orlov’s equivalence.

Proof. We have just seen that the square

Dsg(Z) —=5(2)

Dgg(Y) —=S(Y)
commutes. By [48] Theorem 6.6 the square

Dgg(X) — 5(X)

DSg(Z)*)S<Z)

commutes. Putting this second square on top of the first the equivalence ® fits

into a commutative diagram

Dgg(X) — 5(X)

3, iz \LSi*Sp*

Dge(Y) —=S(Y).

Hence S4,Sp* is a coproduct preserving exact functor between compactly gen-
erated triangulated categories inducing an equivalence on compact objects. It

follows from abstract nonsense that it must be an equivalence. [l

We have thus reduced the problem of understanding S(X) to that of under-
standing S(Y). The scheme Y is locally a hypersurface as it is a locally complete
intersection in the regular scheme 7" and has codimension 1. Theorem 5.2.7 thus
applies and we have the following theorem, where we use the notation introduced

at the beginning of the section.
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Theorem 5.3.8. The category D(Y') acts on S(X) via the equivalence
S(X) = S(Y) giving order preserving bijections

T

{ subsets of SingY } :

[

{ localizing D(Y')-submodules of S(X) }

and

B} localizing D(Y')-submodules
} of S(X) generated by

’ objects of S(X)°

specialization closed
subsets of SingY

Furthermore if the line bundle Og(1) is ample, for example if S is affine, then ev-
ery localizing subcategory of S(X) is a D(Y)-submodule so one obtains a complete

classification of the localizing subcategories of S(X).

Proof. Let us denote the equivalence S(X) — S(Y) by U. We define an action
of D(Y') on S(X) by setting, for £ € D(Y) and A € S(X)

FOA=TU"Y(E® TA).

It is easily checked that this is in fact an action.

The equivalence ¥ sends localizing subcategories (generated by objects of
S(X)°) to localizing subcategories (generated by objects of S(Y)¢). A localizing
subcategory £ C S(X) is a D(Y)-submodule if and only if for every E € D(Y)

EOL=V"YEOUL)CL

if and only if £ ® WL C WL. In other words £ is a D(Y')-submodule if and only
if WL is a D(Y)-submodule. Thus the theorem follows from Theorem 5.2.7 as Y
is locally a hypersurface.

The last statement is a consequence of Corollary 5.2.9. O

Corollary 5.3.9. The relative telescope conjecture holds for the action of D(Y)
on S(X). In particular if Og(1) is ample then the usual telescope conjecture holds

for S(X).

Proof. This is immediate from the corresponding statements for the action of
D(Y) on S(Y) given in Theorem 5.2.12. O
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5.3.1 Embedding Independence

To prove Theorem 5.3.8 we have relied on the choice of some ambient scheme
T, vector bundle £, and a regular section ¢ of £. Thus it is not clear that the
support theory one produces, via the hypersurface Y associated to this data, is
independent of the choices we have made. We now show this is in fact the case:
the choices one makes do not matter as far as the support theory is concerned.

The setup will be exactly the same as previously, except we will have two
possibly different regular noetherian separated schemes of finite Krull dimension
T and T, each carrying a vector bundle &; with a regular section t; for i = 1,2
such that

Z(t)) =2 X = Z(ty).

Thus there are, by Proposition 5.3.7, two equivalences
U S(X) — S(Y1) and WYy S(X) — S(Y2)

giving rise to a third equivalence S(Y;) — S(Y3) which we shall denote by ©.
We first treat the case in which both Og, (1) and Og,(1) are ample.

Lemma 5.3.10. Suppose Og, (1) is ample for i = 1,2. Then there is a homeo-
morphism

f: SingY; — Sing Y5

such that for any A in S(Y1) we have
0 supp A = supp O A.

In particular the two support theories for S(X) obtained via the actions of D(Y7)

and D(Ys) coincide up to this homeomorphism.

Proof. We first define 6 and show it is a bijection. Let y be a point of Sing Y;. By
Theorem 5.3.8 the subcategory I',S(Y}) is a minimal localizing subcategory. Thus
its essential image ©I',S(Y7) is a minimal localizing subcategory of S(Y2). So by
Corollary 5.2.9 the subcategory ©I'yS(Y7) is necessarily of the form I'g(,S(Y2).
This defines a function #: SingY; — Sing Y, which is a bijection as © is an
equivalence.

Let us now show that € is compatible with supports. If A is an object of S(Y})
then by Corollary 5.2.9 and Theorem 2.3.9 we have

<A>loc = <FyS(Y1) | Y € supp A>loc-
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Applying © gives two sets of equalities, namely
®<A>10C - <@A>loc - <FwS(}/2) | w € supp @A>loc
and

@<A>loc = @<Fys<}/l) | Y € supp A)loc
= (o) S(Y2) | y € supp A)oc.

We thus obtain 6 supp A = supp © A which shows that 6 respects the support.
Finally, let us show that # is a homeomorphism. Let V be a closed subset of
Sing Y;. Then it follows from Lemma 5.2.11 that there exists a compact object ¢

in S(Y1) whose support is V. Hence
0V = 6 supp ¢ = supp Oc¢

is closed by Proposition 5.2.5 as © is an equivalence and so preserves compactness.
The whole argument works just as well reversing the roles of Y7 and Y5 so 67! is

also closed and thus # is a homeomorphism. [l

By working locally we are now able to extend this to arbitrary X admitting

a suitable embedding.

Proposition 5.3.11. Suppose we are given reqular noetherian separated schemes
of finite Krull dimension Ty and Ty each carrying a vector bundle &; with a reqular

section t; for i = 1,2 such that
Z(t) =2 X = Z(ts).

Then there is a homeomorphism 6: Sing Y] — Sing Y5 satisfying
O supp A = supp©A

for any A in S(Y1). In particular the two support theories for S(X) obtained via
the actions of D(Y1) and D(Y3) coincide up to this homeomorphism.

Proof. Let {W/ *_, and {WJ}L, be open affine covers of Ty and T,. Denote
by {U] 3o, and {Uy}, the two open affine covers of X obtained by restriction.
For any of the open affines W/ we may consider Eilwr and #;]yy1; the zero scheme
of ti|Wil is precisely the open subscheme U! so each of the opens in the two covers

satisfies the set up for Proposition 5.3.7 to apply. We denote by Y} the associated
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hypersurface. Furthermore, as W/ is affine the canonical line bundle on ]P’(Si];vg)
is ample so Lemma 5.3.10 applies.

Now fix one of the U7 C X and cover it by the open affines Ufk = U/ NU}
for k=1,...,m. There are diagrams

J

S(UT) —= S(v7)
7
S(ik)
.

vy
S(U3) —== S(¥5)

where the equivalences are the restrictions of ¥y and ¥, and the diagonal maps

are inclusions. We thus get an equivalence
O7F: WIS (UYy) — WiS(UYy)
restricting ©, and so as in Lemma 5.3.10 a support preserving homeomorphism
7% . Sing Yljk — Sing Yzjk

where Yljk is the subset corresponding to WS (U{§ ) and Y2jk corresponds to
WES(UTy).

We have produced support preserving homeomorphisms 67% for each
j=1,....,nand k£ = 1,...,m and the Y;jk cover the singular locus of Y; for
t = 1,2. It just remains to note that these glue to the desired homeomorphism
Sing Y7 — Sing Y5; the required compatibility on overlaps is immediate as the

07% are defined via restrictions of ©. O]

5.3.2 Local Complete Intersection Rings

Let us now restrict our attention to the case of local complete intersection rings
over some fixed base field. Theorem 5.3.8 applies in this case and we will ex-
plicitly describe the singular locus of the associated hypersurface Y'; this can be
done working with any choice of embedding as the associated support theory is
invariant by the last subsection.

Suppose (R, m, k) is a local complete intersection of codimension ¢ i.e., R is
the quotient of a regular local ring () by an ideal generated by a regular sequence
and

cxp k = dimym/m? — dim R = c.
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Replacing @) by a quotient if necessary we may assume that the kernel of ) — R
is generated by a regular sequence of length precisely c. To see this is the case
suppose the kernel is generated by a regular sequence {qi,...,q,} with r > c.
Then by considering the effect on the embedding dimension and the dimension of
successive quotients by the ¢; we see that r — ¢ of the ¢; must lie in n \ n? where
n is the maximal ideal of (). By [53] Theorem 16.3 any permutation of the ¢; is
again a regular sequence so we may rearrange to first take the quotient by the
r — ¢ of the ¢; not in n?. This quotient is again regular, surjects onto R and this
surjection has kernel generated by a regular sequence of length c.
Set X = Spec R, T = SpecQ, £ = OF°, and t = (q1, .. .,q.) where the ¢; are

a regular sequence generating the kernel of ) — R. Let Y be the hypersurface
defined by the section X ,¢;x; of (’)Pchl(l) where the x; are a basis for the free
Q-module H O(Pgl, O]PCQ—l(l)). In summary we are concerned with the following
commutative diagram

I e

N

X , T.
J

Let us first make the following trivial observation about the singular locus of
Pt

Lemma 5.3.12. There is an equality
Sing IP’CR_l =p ! Sing R.

Now we show that the singular locus of Y can not be any bigger than the

singular locus of P%; '
Lemma 5.3.13. The singular locus of Y, SingY', is contained in i(Sing P; ).

Proof. We first show the singular locus of Y is contained in the image of ¢. The
image of 7 is precisely Y N ¢~ ' X, so we want to show that away from ¢~ !X the
scheme Y is regular. Let p € T'\ X, so the section t = (q1,...,q.) is not zero
at k(p). Thus in a neighbourhood of any point of ¢~'(p) the section defining
Y N g *(p) is just a linear polynomial with invertible coefficients and so Y is
regular along its intersection with ¢~*(p). Thus SingY C i(P} ') as claimed.

Next let us prove that SingY is in fact contained in i(SingP?{l). Given
z € P4 such that i(z) € SingY we need to show z € SingP% '. By Remark
5.3.6 the surjection

Ovitz) — Opg1
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has kernel generated by a regular sequence. Thus Proposition 4.1.16 applies
yielding

X Ope s, k(z) 2 cx oy, txk(2) = cx 0y, k(i(2)) > 0

()

where we have also used Theorem 4.1.15, so 2 € Sing P%; . O

In fact the part of the singular locus of Y corresponding to m can not be any

smaller than p~!'(m) either.
Lemma 5.3.14. Every point in ip~*(m) is contained in SingY .

Proof. By Lemma 5.3.12 every point in p~!(m) is singular in ]P’CR_l. Consider for

z € p~!(m) the local maps
a B
Oﬂmgl’m(z) — OY,i(z) — O]P’%fl,z

where the kernel of each of these morphisms and the composite is generated by
a regular sequence (see Remark 5.3.6). We have assumed () — R minimal i.e.,
the elements ¢; occuring in the regular sequence generating the kernel all lie in
n? where n is the maximal ideal of (). Thus as z lies over m the image of each g;
is in the square of the maximal ideal of (9%71’“@.

By passing to a standard open affine in ]P’%_l containing ui(z) (and reordering
the ¢; if necessary) we see that the morphism « has kernel generated by the image
of Zf;ll q;T; + q. where the z; are now coordinates on ACQ’I. As the image of each
¢; is in the square of the maximal ideal of OPCQAM(Z) the element Zf;ll i + qc
defining Oy,;(.) must also lie in the square of the maximal ideal. Hence i(z) lies
in Sing Y. O]

It follows from this that supp pyym) ImS(R) = P¢~!. By Lemma 3.4.9 the
object 1,Q,k generates I'yS(R). Thus its image under 7,p*, which is precisely
I,Q, of the structure sheaf of ip~! (m) with the reduced induced scheme structure,
generates Si,Sp*T'S(R). By Lemma 5.2.11 this generating object has support,
with respect to the D(Y') action on S(Y), precisely ip~*(m). Thus, identifying
the topological spaces P{ ™! and ip~*(m), we see I',S(R) has the claimed support.

We now show the singular locus of Y is composed completely of such projective
pieces with dimensions corresponding to the complexities of the residue fields of
the points in Sing R.

Proposition 5.3.15. As a set the singular locus of Y is
SngY = [ Py,
peSing R

where ¢, = cxg, k(p) is the codimension of R,.
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Proof. We can write Sing Y, using the classification of Theorem 5.3.8, as

Sing Y & H supp(p(y),o) LeS(R).
pESing R
Again using the classification theorem and the independence results of the pre-
vious subsection we may compute the D(Y')-support of I',S(R) = I',S(R,) over
R,. By the discussion before the proposition this is precisely IP’;"(;)I. n

This gives the following refined version of Theorem 5.3.8 for local complete

intersection rings.

Corollary 5.3.16. Suppose (R, m, k) is a local complete intersection of finite type

over a field. Then there are order preserving bijections

subsets of -
11 Pzp(—)l { localizing subcategories of S(R) }
p o
pESing R

and
localizing subcategories

of S(R) generated by
objects of S(R)*

subsets of SingY o

{ specialization closed } T,

Furthermore the telescope conjecture holds for S(R).

Proof. We apply Theorem 5.3.8 setting X = Spec R, S = SpecQ, & = OF°, and
s =1(qi,...,q.) where the g; are a regular sequence generating the kernel of

() — R. The line bundle Og(1) is ample on Pé_l so we obtain a complete classi-
fication of the localizing subcategories of S(R) in terms of Sing Y. By Proposition
5.3.15 the singular locus of Y is, as a set, precisely the given disjoint union of

projective spaces. The final statement is Corollary 5.3.9. [

Remark 5.3.17. A similar result has been announced by Iyengar [42] for locally

complete intersection rings essentially of finite type over a field.

Remark 5.3.18. The support theory obtained here may be compared to results
of Avramov and Buchweitz [3]. They consider supports in the cone over the piece
of Sing Y corresponding to the closed point of Spec R after changing base to the
algebraic closure of k. As in their work our support theory has consequences for

cohomological vanishing which will be pursued in further work.
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