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In the main, I will be following Jänich’s book, at least for the beginning part of these lectures.

1 Complex Numbers

An “imaginary” number is introduced, called i (for imaginary), which is declared to be a solution of
the polynomial equation

x2 + 1 = 0.

The field of complex numbers is denoted by C. We have

C = {x+ iy : x, y ∈ R}.

For z = x + iy, we also write Re(z) to denote the real part of z, namely the real number x. Also
Im(z) = y is the imaginary part of z.

Let z1 = x1 + iy1 and z2 = x2 + iy2 be complex numbers. Then the addition and multiplication
operations are given by

z1 + z2 = (x1 + x2) + i(y1 + y2)

and
z1 · z2 = (x1 · x2 − y1 · y2) + i(x1 · y2 + x2 · y1).

The complex conjugate is z̄ = x− iy (that is, z̄ = x+ i(−y)). Therefore ¯̄z = z. We have |z|2 = zz̄ = x2+y2.
If z 6= 0 (that is, either x 6= 0, or y 6= 0) then zz̄ > 0, and we have

z−1 =
x− iy

x2 + y2
=
z̄

zz̄
.

If z 6= 0 then there are unique real numbers r > 0 and 0 ≤ θ < 2π such that x = r cos θ and y = r sin θ.
So let u, v ∈ C be non-zero numbers, and let

u = r(cos θ+ i sin θ),

v = s(cosψ+ i sinψ).

Then (remembering the rules for combining trigonometric functions), we see that

u · v = r · s(cos(θ+ψ) + i sin(θ+ψ)).

If C is identified with R
2, the 2-dimensional real vector space, then we can identify any complex

number z = x+ iy with the vector

(
x

y

)
. But for any two real numbers x and y, there exists a unique1

pair of numbers r ≥ 0, 0 ≤ θ < 2π, with x = r cos θ and y = r sin θ. So let u = s + it =

(
s

t

)
be some

other complex number. Then

z · u =

(
x −y

y x

)
·
(
s

t

)
=

(
r cos θ −r sin θ
r sin θ r cos θ

)
·
(
s

t

)
= r

(
cos θ − sin θ
sin θ cos θ

)
·
(
s

t

)
.

1Obviously it is not quite unique for the number z = 0.
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Thus we see that multiplication of complex numbers looks like an (orientation preserving) orthogonal
mapping within R

2 — combined with a scalar factor r.

More generally, let f : R2 → R
2 be an arbitrary linear mapping, represented by the matrix

(
a b

c d

)
.

How can this mapping be represented in terms of complex arithmetic? We have f(1) =

(
a

c

)
and

f(i) =

(
b

d

)
. Therefore, using the linearity of f, for z = x+ iy we have

f(z) = x · f(1) + y · f(i)

=

(
1

2
(z+ z̄)

)
f(1) +

(
1

2i
(z− z̄)

)
f(i)

= z

(
1

2
(f(1) − if(i))

)
+ z̄

(
1

2
(f(1) + if(i))

)
.

Therefore, if f(1) = −if(i), that is, if(1) = f(i), then the mapping is simply complex multiplication.
On the other hand, if f(1) = if(i) then we have f(z) = w · z̄, where w = (f(1) + if(i))/2 ∈ C is some

complex number. Writing w =

(
s

t

)
, we have

f(z) =

(
s −t

t s

)(
x

−y

)
=

(
s t

t −s

)(
x

y

)
= r

(
cosψ sinψ
sinψ − cosψ

)(
x

y

)
,

for a suitable choice of r and ψ. This is an orientation reversing rotation (again combined with a
scalar factor r).

Now let u = a+ ib =

(
a

b

)
and v = c+ id =

(
c

d

)
. What is the scalar product 〈u, v〉? It is

〈u, v〉 =
(
a b

)(c
d

)
= ac+ bd = Re(uv̄) = Re(ūv).

Therefore 〈z, z〉 = |z|2, where |z| =
√
x2 + y2 is the absolute value of z = x+ iy.

2 Analytic Functions

Definition 1. Any non-empty connected2 open set G ⊂ C will be called a region.

So we will generally be interested in functions f : G→ C defined in regions.

Definition 2. Let f : G→ C be given, and let z0 ∈ G. If

f ′(z0) = lim
z → z0
z 6= z0
z ∈ G

f(z) − f(z0)

z− z0

exists, then it is the derivative of f at z0. The function f will be called analytic in G if it is defined,

and has a continuous derivative everywhere in G. The word holomorphic is also used, and it is

synonymous with the word analytic.

As in real analysis, we have the simple rules for combining the derivatives of two functions f and
g:

(f+ g) ′ = f ′ + g ′,

(f · g) ′ = f ′ · g+ f · g ′,
(
f

g

) ′

=
f ′g− fg ′

g2
,

(g ◦ f) ′(z) = g ′(f(z))f ′(z).

2Recall that in R2, every open connected subset is also path-connected.
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Nevertheless, there is a very big difference between the idea of a derivative in complex analysis,
and the familiar derivative in real analysis. The reason for this is that a common limit must exist,
regardless of the direction with which we approach the point z0 in the complex plane. This leads to
the Cauchy-Riemann differential equations.

Looking at the definition of the complex derivative, one immediately sees that it is really a special
version of the total derivative (as in analysis 2) in R

2. Thus, for ξ ∈ C sufficiently small (that is |ξ|

small), we have
f(z0 + ξ) = f(z0) +Aξ+ |ξ|ψ(ξ),

where A is a 2× 2 real matrix, and limξ→0ψ(ξ) = 0. But what is A? It represents multiplication with

the complex number f ′(z0) = a+ ib, say. That is, A =

(
a −b

b a

)
.

So what are these real numbers a and b? Let f(z) = u(z) + iv(z), where u, v : G → R are real
functions. Then writing z = x+ iy, we have f(x+ iy) = u(x+ iy) + iv(x+ iy). Identifying C with R

2, we
can consider the partial derivatives of u and v. Since A is simply the Jacobi matrix of the mapping
f at the point z0, we must have

A =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

Therefore
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −

∂v

∂x
.

These are the Cauchy-Riemann equations. Another way to express this is to simply say that we
must have

∂f

∂x
= −i

∂f

∂y
.

Thinking in geometrical terms, we see that if f is analytic, then it is a conformal mapping, at least
at the points where f ′ is not zero. That means that, locally, the mapping preserves angles. Looked
at up close, the mapping is

f(z0 + ξ) = f(z0)︸ ︷︷ ︸
translation

+ r︸︷︷︸
scalar factor

(
cosψ − sinψ
sinψ cosψ

)

︸ ︷︷ ︸
rotation

+ Something small.

Of course, as we have already seen, the rotation preserves orientation. Thus it is an element of the
group SL2(R).

Another interesting detail is that the real and imaginary parts of an analytic function are them-
selves harmonic functions. Anticipating a later conclusion, let us assume that the parts of the
analytic function f = u + iv are twice continuously differentiable. Since ∂u/∂x = ∂v/∂y and ∂u/∂y =

−∂v/∂x, we have
∂2u

∂x2
=
∂2v

∂x∂y
=
∂2v

∂y∂x
= −

∂2u

∂y2
.

Or, expressed in another standard form of notation,

uxx + uyy = ∆u = 0.

Here, ∆ is the Laplace operator. Similarly, we see that ∆v = 0.
All of this shows that we cannot simply choose any old smooth function f : G → C and expect

it to be analytic. On the contrary, there is a very great “rigidity”, which means that most smooth
functions — even though they may be partially differentiable when considered as mappings of 2-
dimensional Euclidean space — are not complex differentiable.

Examples

1. The first example is the nice and smooth function f(z) = f(x + iy) = x2 + y2. Here ux = 2x and
vy = 0. But according to the Cauchy-Riemann equations, we must have ux = vy; that is, x = 0.
This only holds along a single line in the complex plane C. Therefore it certainly can’t hold in
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any region of C (since regions are defined to be open), and thus f, despite all appearances of
being a nice function, is definitely not analytic.

2. Having been cautioned by the previous example, let us try to construct an analytic function.
For example, let us assume that u(x + iy) = x. What possibilities are there for v(x + iy)? Since
ux = 1 = vy and uy = 0 = vx, it is clear that the only possibility is v(x + iy) = y + constant. So
this is just the rather boring function f(z) = z+ constant.

3. Thinking more positively, we have just seen that the simplest non-trivial polynomial, namely
f(z) = z, is analytic throughout C. Of course the simplest polynomial, f(z) = constant, is
also analytic. But then, noting that we can use the sum and product rules for differentiation
in complex analysis, we see that any arbitrary complex polynomial is analytic throughout C.
Indeed, z−n is also analytic (in C \ {0}) for any n ∈ N.

3 Path Integrals

Let t0 < t1 be two real numbers. Then a continuous mapping γ : [t0, t1] → G ⊂ C is a path in the
region G of C. In the analysis lecture we learned that γ is rectifiable if a number Lγ exists such that
for all ǫ > 0, a δ > 0 exists such that for every partition t0 = a0 < a1 < · · · < an = t1 which is such
that aj+1 − aj < δ for all j, we have

∣∣∣∣∣∣
Lγ −

n∑

j=1

|γ(aj+1) − γ(aj)|

∣∣∣∣∣∣
< ǫ.

Let γ(t) = γr(t) + iγi(t), where γr, γi : [t0, t1] → R are real-valued functions. Then we say that the
path is continuously differentiable if both the functions γr and γi are continuously differentiable. In
this case, γ ′ = γ ′

r + iγ
′
i is also a path in C.3 We also learned that continuously differential paths are

always rectifiable, and we have

Lγ =

∫ t1

t0

|γ ′(t)|dt.

All of this has already been dealt with in the analysis lecture. For us now, the interesting thing
is to think about path integrals through a region where a complex-valued function is given.

Definition 3. Let G ⊂ C be a region, and let f : G → C be a function. Furthermore, let γ : [t0, t1] → G

be a differentiable path. Then the path integral of f along γ is

∫

γ

f(z)dz
def
=

∫ t1

t0

f(γ(t)) · γ ′(t)dt,

assuming it exists.

The integral here is simply the sum of the integrals over the real and the imaginary parts. It
is not necessary to assume that γ is continuously differentiable, but we will assume that it is
piecewise continuously differentiable. That is, there is a partition of the interval [t0, t1] such that
it is continuously differentiable along the pieces of the partition. So from now on, we will (almost)
always assume that all paths considered are piecewise continuously differentiable.

As an exercise (using the substitution rule for integrals), one sees that the path integral does not
depend on the way the path is parameterized. The simplest case is that, say γ(t) = t. Then (taking t

from 0 to 1) we just have
∫
γ
f(z)dz =

∫1
0
f(t)dt. Almost equally simple is the case that γ(t) = it. Then

we have
∫
γ
f(z)dz = i

∫1
0
f(it)dt.

Increasing the complexity of our thoughts ever so slightly, we arrive at the first version of
Cauchy’s integral theorem.

3Thinking in terms of 2-dimensional real geometry, we can say that γ ′(t) is the “tangent vector” to γ(t).
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4 Cauchy’s Theorem (simplest version)

Theorem 1. Let G ⊂ C be a region, and assume that the function f : G→ C has an antiderivative (auf

deutsch: Stammfunktion) F : G → C with F ′ = f. Let γ be a closed path4 in G. (Closed means that

γ(t0) = γ(t1).) Then
∫
γ
f(z)dz = 0.

Proof. ∫

γ

f(z)dz =

∫ t1

t0

f(γ(t))γ ′(t)dt =

∫ t1

t0

(F(γ(t))) ′dt = F(γ(t1)) − F(γ(t0)) = 0.

Since every polynomial has an antiderivative, it follows that the path integral around a closed
path for any polynomial is zero.

Of course this is all a bit too trivial. So let’s call the following theorem the simplest version of
Cauchy’s integral theorem.

Theorem 2. Let Q be a (solid) triangle in the complex plane. Assume that Q ⊂ G ⊂ C, and take

f : G → C to be an analytic function. Let γ be the closed path traveling around the three sides of Q.

Then
∫
γ
f(z)dz = 0.

Proof. We may assume that γ begins and ends in a corner of Q — for example the “lowest” corner
in the complex plane. If the lower side of Q is parallel to the real number axis, then take the right-
hand corner on that side. Let us now divide the sides of Q in half, connecting the half-way points
with straight line segments, thus creating four equal sub-triangles, Q1, . . . , Q4. Let γj be the path
traveling around the boundary of Qj, for j = 1, . . . , 4. Again we may assume that each γj begins and
ends in the bottom right corner of it’s triangle. So we have

∫

γ

f(z)dz =

4∑

j=1

∫

γj

f(z)dz.

Assume further that each of these paths is parameterized in the simplest way possible, so that
|γ ′| = 1 and |γ ′

j | = 1 for all the j. Therefore Lγ is the sum of the lengths of the three sides of the
triangle Q, and Lγj

= Lγ/2 for each of the j.
Let’s say that j1 is one of the numbers between one and four such that the value of

∣∣∣∣∣

∫

γj1

f(z)dz

∣∣∣∣∣

is the greatest. Then we certainly have

∣∣∣∣
∫

γ

f(z)dz

∣∣∣∣ ≤ 4
∣∣∣∣∣

∫

γj1

f(z)dz

∣∣∣∣∣ .

The next step is to concentrate on the triangle Qj1 . As with Q, we subdivide Qj1 into four
equal sub-triangles and we take paths around their boundaries. Choose Qj2 to be one of these
sub-triangles of Qj1 which is such that the value of

∣∣∣∣∣

∫

γj2

f(z)dz

∣∣∣∣∣

is the greatest. Here γj2 is the path around the boundary of Qj2 . Now we have Lγj2
= Lγ/4, and

∣∣∣∣
∫

γ

f(z)dz

∣∣∣∣ ≤ 16
∣∣∣∣∣

∫

γj2

f(z)dz

∣∣∣∣∣ .

4That is, a continuous, closed, piecewise continuously differentiable path.
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This whole process is continued indefinitely, so that we obtain a sequence of triangles, becoming
smaller and smaller, converging to a point, z0 ∈ Q say,

Q ⊃ Qj1 ⊃ Qj2 ⊃ · · · → z0 ∈ Q.

For each n we have Lγjn
= Lγ/2

n and

∣∣∣∣
∫

γ

f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣∣

∫

γjn

f(z)dz

∣∣∣∣∣ .

But we have assumed that f is analytic, in particular it is differentiable at the point z0. Thus we
can write

f(z) = f(z0) + f
′(z0)(z− z0) + χ(z),

for points z in G, where χ : G→ C is a continuous function with

lim
z→z0

χ(z)

z− z0
= 0.

So let ǫ > 0 be arbitrarily given. Then there exists some δ > 0 such that |χ(z)| < ǫ|z− z0| for all z with
0 < |z− z0| < δ.

Now we need only choose n so large that |z− z0| < δ for all z ∈ Qjn . For such z we have

|χ(z)| < ǫ|z− z0| <
ǫLγ

2n
.

On the other hand, again since the length of γjn is Lγ/2
n, we have

∣∣∣∣∣

∫

γjn

χ(z)dz

∣∣∣∣∣ <
ǫLγ

2n
· Lγ
2n
.

Bearing in mind Theorem 1 (and remembering that f ′(z0) is simply a constant complex number), we
conclude that

∣∣∣∣
∫

γ

f(z)dz

∣∣∣∣ =

∣∣∣∣
∫

γ

(f(z0) + f
′(z0)(z− z0) + χ(z))dz

∣∣∣∣

=

∣∣∣∣
∫

γ

χ(z)dz

∣∣∣∣

≤ 4n

∣∣∣∣∣

∫

γjn

χ(z)dz

∣∣∣∣∣ < 4
n · ǫLγ

2n
· Lγ
2n

= ǫL2γ.

Since ǫ was arbitrary and Lγ remains constant, we conclude that
∫
γ
f(z)dz = 0.

But now Theorem 2 can be turned around, and we obtain (almost) the converse.

Theorem 3. Assume G ⊂ C is a region and f : G → C is a continuous function. Assume furthermore

that for any solid triangle Q contained in G we have
∫
γ
f(z)dz = 0, where γ is the path around the

triangle. Then f has an antiderivative in every open disc contained in G. That is, let U = {z ∈ C :

|z− z∗| < r} be some such disc, where z∗ is a complex number (the middle point of the disc) and r > 0 is

the radius of the disc. Then there exists F : U→ C with F ′(z) = f(z) for all z ∈ U.

Proof. By replacing f with the function f∗, where f∗(z) = f(z− z∗), we obtain the situation that z∗ = 0.
Clearly, if the theorem is true for f∗, then it is also true for f. Therefore, without loss of generality,
we may simply assume that z∗ = 0.

Within U the function F is defined to be

F(z) =

∫

αz

f(w)dw.
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Here, αz is the straight line from 0 to z, that is, αz(t) = tz. To show that F really is an antiderivative
to f in U, let z0 be some arbitrary point of U and let z be some other point of U. Let β be the straight
line connecting z0 to z. That is, β(t) = (1 − t)z0 + tz. Being a triangle, the integral of f around the
path from 0 out to z, then from z to z0 then from z0 back to 0 must itself be zero. That is,

F(z) − F(z0) =

∫

β

f(w)dw.

Looking at the definition of the path integral, we see that

∫

β

f(w)dw =

∫1

0

f(β(t))β ′(t)dt =

∫1

0

f((1− t)z0 + tz)(z− z0)dt.

Therefore

F(z) − F(z0)

z− z0
=

1

z− z0

∫1

0

f((1− t)z0 + tz)(z− z0)dt

=

∫1

0

f((1− t)z0 + tz)dt

Since f is continuous at the point z0, we have

lim
z→z0

F(z) − F(z0)

z− z0
= F ′(z0) = f(z0).

Combining this theorem with Theorems 1 and 2, we see that if D ⊂ G is a closed disc, and γ is
the circle of it’s boundary, then

∫
γ
f(z)dz) = 0, for any analytic function defined in the region G. In

fact, if γ is any (piecewise continuously differentiable and continuous) closed path contained within
this disc-like G, then

∫
γ
f(z)dz) = 0. For example we can look at a rectangle [a, b] × [c, d] contained

within G. Since the rectangle can be taken to be a union of two triangles, attached along one side,
we see that also the path integral around the rectangle must be zero.

More generally, the following theorem will prove to be useful.

Theorem 4. Let Q = {x+ iy : 0 ≤ x, y ≤ 1} be the standard unit square in C. Take ζ to be the standard

closed path, traveling around the boundary of Q once in a counterclockwise direction, beginning and

ending at 0. Assume that a continuously differentiable mapping ϕ : Q→ C is given, such that ϕ(Q) ⊂
G, a region where an analytic function f : G → C is defined. Let γ = ϕ ◦ ζ be the image of ζ under ϕ.

Then
∫
γ
f(z)dz = 0.

Proof. Since Q is compact, ϕ(Q) is also compact. Therefore it can be covered by a finite number of
open discs in G. But Q can now be partitioned into a finite number of sub-squares Q1, . . . , Qn such
that ϕ(Qj) is in each case contained in a single one of these open discs.5 The theorem then follows
by observing that the path integral around each of these sub-square images must be zero.

A special case is the following.

Theorem 5. Let D1 and D2 be closed discs in C, such that D2 is contained in the interior of D1. Let γj
be the closed path going once, counterclockwise, around the boundary of Dj, j = 1, 2. Let G ⊂ C be a

region containing D1 \D2 and also containing the boundary of D2. Assume that f : G→ C is analytic.

Then
∫
γ1
f(z)dz =

∫
γ2
f(z)dz.

5The inverse images of the open discs in Q form a finite open covering V1, . . . , Vm of Q. A sequence of partitions of Q can
be obtained by cutting it along horizontal and vertical lines spaced 1/n apart, for each n ∈ N. Can it be that for each of these
partitions, there exists a sub-square which is not contained completely in one of the open sets Vk? But that would mean
that there exists a limit point q ∈ Q such that for every ǫ > 0, there are infinitely many of these sub-squares contained within
a distance of ǫ from q. However q ∈ Vk, for some k, and since Vk is open, there exists an ǫ-neighborhood of q contained
entirely within Vk, providing us with the necessary contradiction.
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Proof. The annulus between D2 and D1 can be taken to be the image of the unit square under a
continuously differentiable mapping. (The appropriate picture to illustrate this idea will be given in
the lecture!)

A convenient notation for this situation is the following. Let γ : [0, 1] → C be the path γ(t) =

z0 + re
2πit. Then we simply write ∫

γ

f(z)dz =

∫

|z−z0|=r

f(z)dz.

With this notation, we can say that if the analytic function f is defined in a region containing the
annulus {z ∈ C : r ≤ |z| ≤ R}, then we must have

∫

|z|=r

f(z)dz =

∫

|z|=R

f(z)dz.

5 Cauchy’s Integral Formula

Theorem 6. Let G ⊂ C be a region and let f : G → C be analytic. Take z0 ∈ G and r > 0 so small that

{z ∈ C : |z− z0| ≤ r} ⊂ G. Furthermore, let |a− z0| < r. Then

f(a) =
1

2πi

∫

|z−z0|=r

f(z)

z− a
dz.

Proof. Let 0 < ǫ < r− |a− z0|. According to Theorem 5, we have
∫

|z−z0|=r

f(z)

z− a
dz =

∫

|z−a|=ǫ

f(z)

z− a
dz.

But ∫

|z−a|=ǫ

f(z)

z− a
dz =

∫

|z−a|=ǫ

f(z) − f(a)

z− a
dz+

∫

|z−a|=ǫ

f(a)

z− a
dz.

Since f is differentiable at the point a, the fraction

f(z) − f(a)

z− a

converges to the constant number f ′(a) in the limit as ǫ → 0. On the other hand, the path length
around the circle, and the tangent vector to this path, approach zero as ǫ → 0. Thus in the limit,
the first integral is zero. As far as the second integral is concerned, we have

∫

|z−a|=ǫ

f(a)

z− a
dz =

∫1

0

f(a)

ǫe2πit
· ǫ2πi · e2πitdt = 2πif(a).

Therefore we have ∫

|z−a|=ǫ

f(z)

z− a
dz = 2πif(a)

A relatively trivial implication is the following theorem.

Theorem 7. The same assumptions as in Theorem 6. But this time take z0 to be the central point of

the circle. Then

f(z0) =
1

2π

∫2π

0

f(z0 + re
it)dt.

Proof. According to Theorem 6, with a = z0, we have

f(z0) =
1

2πi

∫

|z−z0|=r

f(z)

z− z0
dz =

1

2πi

∫2π

0

f(z0 + re
it)

reit
· rieitdt = 1

2π

∫2π

0

f(z0 + re
it)dt.
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So this is just a kind of “mean value theorem” for analytic functions. It shows quite clearly the
difference between real analysis and complex analysis. In real analysis, we can make a smooth
change in a function, leaving everything far away unchanged, and the function remains nicely
differentiable. But in complex analysis, the precise value of the function is determined by the
values on a circle, perhaps far away from the point we are looking at. So a change at one place
implies that the whole function must change everywhere in order to remain analytic.

6 Power Series

Definition 4. A power series is a sum of the form

∞∑

n=0

an(z− z0)
n

where6 (an)n∈N0
is some arbitrary sequence of complex numbers and z0 is a given complex number.

So the question is, for which z does the power series converge? Well it obviously converges for
z = z0. But more generally, we can say the following.

Theorem 8. Let the power series
∑∞

n=0 an(z− z0)
n be given. Then there exists 0 ≤ R ≤ ∞, the radius

of convergence, such that

1. The series is absolutely convergent for |z − z0| < R, and uniformly convergent for |z − z0| ≤ ρ, for

0 ≤ ρ < R fixed.

2. It diverges for |z− z0| > R.

3. The radius of convergence is given by 1/R = limn→∞ sup n
√
|an|.

4. The function given by f(z) =
∑∞

n=0 an(z − z0)
n is analytic in the region |z − z0| < R. For each such

z, the derivative is given by the series f ′(z) =
∑∞

n=1 nan(z−z0)
n−1, and the radius of convergence

of this derivative series is also R.

Proof. Parts 1 and 2 have been proved in the analysis lecture. For 3, let |z − z0| < ρ < R with
1/R = limn→∞ sup n

√
|an|. Thus there exists some N0 ∈ N with n

√
|an| < 1/R for all n ≥ N0. That is,

|an| < 1/R
n. Therefore

|an(z− z0)
n| ≤

∣∣∣∣
z− z0

R

∣∣∣∣
n

≤
∣∣∣
ρ

R

∣∣∣
n

,

with ρ/R < 1. This is a geometric series which, as is well known, converges. On the other hand, if
|z− z0| ≥ ρ > R then there exist arbitrarily large n with n

√
|an| > 1/R. That is, |an| > 1/R

n or

|an(z− z0)
n| >

∣∣∣∣
z− z0

R

∣∣∣∣
n

> 1.

So the series cannot possibly converge, since the terms of the series do not converge to zero.
As far as part 4 is concerned, it is clear that limn→∞ sup n

√
|nan| = limn→∞ sup n

√
|an| since

limn→∞
n
√
n = 1. So let f1(z) =

∑∞
n=1 nan(z − z0)

n−1 be the function which is defined in the region
|z − z0| < R. We must show that f is analytic here, with f ′ = f1. To simplify the notation, let us
assume from now on that z0 = 0. Choose some complex number w with |w| < R. We must show that
the derivative of f exists at w, and it equals f1(w).

To begin with, we write

f(z) =

n−1∑

k=0

akz
k

︸ ︷︷ ︸
Sn(z)

+

∞∑

k=n

akz
k

︸ ︷︷ ︸
Tn(z)

,

6N0 is the set of non-negative integers.
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for |z| < R. Therefore we have

S ′
n(z) =

n−1∑

k=1

kakz
k−1.

So take some ρ with |w| < ρ < R and we restrict ourselves to examining complex numbers z with
|z| < ρ. Furthermore, choose ǫ > 0. We must show that there exists a δ > 0 such that if 0 < |z−w| < δ

then ∣∣∣∣
f(z) − f(w)

z−w
− f1(w)

∣∣∣∣ < ǫ.

As a first step, choose N1 sufficiently large that

∣∣∣∣
Tn(z) − Tn(w)

z−w

∣∣∣∣ <
ǫ

3
,

for all n ≥ N1. This is possible, since

∣∣∣∣
Tn(z) − Tn(w)

z−w

∣∣∣∣ =

∣∣∣∣∣

∞∑

k=n

ak

(
zk −wk

z−w

)∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑

k=n

ak




k−1∑

j=0

zjwk−j−1




∣∣∣∣∣∣

≤
∞∑

k=n

kakρ
k−1.

(Remember that the series is absolutely and uniformly convergent in the closed disc with radius ρ.)
Thus for some N1 ∈ N, the “tail” of the series beyond N1 sums to something less than ǫ/3. Similarly,
the series defining f1 is absolutely and uniformly convergent in this disc. Therefore take N2 to be
sufficiently large that

|S ′
n(w) − f1(w)| <

ǫ

3

for all n ≥ N2. Let N be the larger of N1 and N2. Finally we must determine the number δ. For this,
we note that since Sn is just a polynomial, and thus analytic, we have a δ > 0 such that

∣∣∣∣
SN(z) − SN(w)

z−w
− S ′

N(w)

∣∣∣∣ <
ǫ

3

for all z with |z−w| < δ. In particular, if necessary, we can choose a smaller δ to ensure that such z
are in our disc of radius ρ. The fact that

f(z) − f(w)

z−w
− f1(w) =

(
SN(z) − SN(w)

z−w
− S ′

N(w)

)
+ (S ′

N(w) − f1(w)) +

(
TN(z) − TN(w)

z−w

)

shows that ∣∣∣∣
f(z) − f(w)

z−w
− f1(w)

∣∣∣∣ < ǫ.

Theorem 9. Let f : G→ C be an analytic function defined in a region G, and let z0 ∈ G be given. Then

there exists a unique power series
∑∞

n=0 cn(z− z0)
n whose radius of convergence is greater than zero,

and which converges to f(z) in a neighborhood of z0.

Proof. Let r > 0 be sufficiently small that B(z0, r) = {z ∈ C : |z − z0| < r} ⊂ G. In fact, we will also
assume the r is sufficiently small that z ∈ G for all z with |z− z0| = r. Once again, in order to simplify
the notation, we will assume that z0 = 0. That is to say, we will imagine that we are dealing with the
function f(z−z0) rather than the function f(z). But obviously if the theorem is true for this simplified
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function, then it is also true for the original function. According to theorem 7, for |z| < r we then
have

f(z) =
1

2πi

∫

|ζ|=r

f(ζ)

ζ− z
dζ

=
1

2πi

∫

|ζ|=r

f(ζ)

ζ

1

1− z
ζ

dζ

=
1

2πi

∫

|ζ|=r

f(ζ)

ζ

(
∞∑

n=0

(
z

ζ

)n
)
dζ

=
1

2πi

∫

|ζ|=r

(
∞∑

n=0

f(ζ)

ζ

(
z

ζ

)n
)
dζ

=

∞∑

n=0

(
1

2πi

∫

|ζ|=r

f(ζ)

ζn+1
dζ

)
zn

=

∞∑

n=0

cnz
n,

where

cn =
1

2πi

∫

|ζ|=r

f(ζ)

ζn+1
dζ

for each n.
Here are a few points to think about in this proof.

• The third equation is true since |z/ζ| < 1, and thus the sum is absolutely convergent.

• The fifth equation is true since the partial sums are uniformly convergent, thus the sum and
integral operations can be exchanged.

• Although the function f(ζ)/ζn+1 is not differentiable at zero, it is defined and continuous on
the (compact) circle |ζ| = r. Thus, although cn is not always zero, still it is always a well defined
complex number, for all n.

• It looks like cn might vary with r. But this is not the case. Theorem 8 implies that f(n)(0) = n!cn,
for all n, and this is certainly independent of r.

• The power series converges to f(z) at all points of B(z0, r).

7 Some Standard Theorems of Complex Analysis

Combining the last two theorems, we have:

Corollary (Goursat’s Theorem). The derivative of every analytic function is again analytic. Thus every

analytic function has arbitrarily many continuous derivatives.

We can also complete the statement of theorem 3

Theorem 10 (Morera’s Theorem). Let G ⊂ C be a region and let f : G → C be continuous such that∫
γ
f(z)dz = 0, for all closed paths which are the boundaries of triangles completely contained within G.

Then f is analytic.

Proof. According to theorem 3, there exists an antiderivative F : G → C, with F ′ = f. Thus, by
Goursat’s Theorem, f is also analytic.

11



Theorem 11 (Cauchy’s estimate for the Taylor coefficients). Again, let f : G→ C be analytic, z0 ∈ G,
r > 0 is such that D(z0, r) = {z : |z− z0| ≤ r} ⊂ G, and

f(z) =

∞∑

n=0

cn(z− z0)
n,

for all z ∈ D(z0, r). Since f is continuous and D(z0, r) is compact, we must have |f| being bounded in

D(z0, r). LetM > 0 be such that |f(z)| ≤M for all z ∈ D(z0, r). Then we have

|cn| ≤
M

rn

for all n.

Proof.

|cn| =
1

2π

∣∣∣∣∣

∫

|z−z0|=r

f(z)

(z− z0)n+1
dz

∣∣∣∣∣ =
1

2π

∣∣∣∣∣

∫2π

0

f(z)

(reit)n+1
rieitdt

∣∣∣∣∣ ≤
M

2π

∫2π

0

dt

rn
=
M

rn
.

Definition 5. Let the function f : C → C be defined throughout the whole complex plane, and let it be

analytic everywhere. Then we say that f is an entire function.

Theorem 12. A bounded entire function is constant.

Proof. Assume that the entire function f : C → C is bounded with |f(z)| ≤M say, for all z ∈ C, where
M > 0 is fixed. Thus |cn| ≤M/rn, for all r > 0. This can only be true if cn = 0 for all n > 0.

Definition 6. A field is called algebraically closed if every polynomial within the field of degree greater

than or equal to one has a root.

Theorem 13 (The Fundamental Theorem of Algebra). C is algebraically closed.

Proof. Let f(z) =
∑n

k=0 akz
k, with n ≥ 1 and an 6= 0 be a polynomial of degree n. Looking for a

contradiction, we assume that there is no root, that is, f(z) 6= 0 for all z ∈ C.
For z 6= 0, we have

f(z) = zn
(
an +

an−1

z
· · · a0
zn

)
.

Let L = max{|an−1|, . . . , |a0|} and take R ≥ 1 so large that

∣∣∣
an

2

∣∣∣ ≥ nL

R
.

That is, R ≥ 2nL/|an|. Then ∣∣∣
an−j

zj

∣∣∣ ≤ L

Rj
≤ L

R
≤ |an|

2n

for each j and each |z| ≥ R. Then we have7

|f(z)| = |zn|
∣∣∣an +

an−1

z
+ · · ·+ a0

zn

∣∣∣ ≥ |zn|

(
|an|− n · |an|

2n

)
= |z|n

|an|

2
.

Since |an|/2 remains constant, |zn| · |an|/2 becomes arbitrarily large, as |z| → ∞. Therefore |f(z)| → ∞
when |z| → ∞. That is to say, if M > 0 is given, then there exists an r > 0 such that |f(z)| > M for all
z with |z| > r. That is, |1/f(z)| < 1/M for |z| > r. Now, since f(z) 6= 0 always, and f (being a polynomial)
is an entire function, we have that 1/f is also an entire function. It is bounded outside the closed
disc D(0, r), but since the function is continuous, and D(0, r) is compact, it is also bounded on
D(0, r). Thus it is bounded throughout C, and is therefore constant, by theorem 12. Therefore, the
polynomial f itself is a constant function. This contradicts the assumption that f is of degree greater
than zero.

7Note that for a and b arbitrary numbers, we have |a| = |a + b − b| ≤ |a + b| + |b| or |a + b| ≥ |a| − |b|, and more generally,
|a + b1 + · · · + bn | ≥ |a| − |b1 | − · · · − |bn|.

12



8 Zeros of Analytic Functions

Definition 7. Let f : G→ C be an analytic function defined in a region G. A point z0 ∈ G with f(z0) = 0

is called a zero of the function.

So let z0 ∈ G be a zero of the analytic function f : G→ C. As usual, without loss of generality, we
may assume that z0 = 0. As we have seen, we can choose some r > 0 such that B(0, r) = {z : |z| < r} ⊂ G
and

f(z) =

∞∑

n=0

cnz
n,

for all such z ∈ B(0, r).
The fact that f(0) = 0 means that c0 = 0. Let k > 0 be the smallest integer such that ck 6= 0. (If

cn = 0 for all n, then f is simply the constant function which is zero everywhere. This is not what
we are interested in here so we will assume that some k exists with ck 6= 0.) The easiest case is then
that k = 1. In this case, we have

f ′(z) =

∞∑

n=1

ncnz
n−1,

and in particular f ′(0) = c1 6= 0. Could it be that for every ǫ > 0 there exists a complex number zǫ
with 0 < |zǫ| < ǫ and yet f(zǫ) = 0? But that would imply that

f ′(0) = lim
ǫ→0

f(zǫ) − f(0)

zǫ − 0
= 0.

This is impossible, since f ′(0) 6= 0. Therefore we have:

Theorem 14. Let f : G → C be analytic and let z0 ∈ G be such that f(z0) = 0 while f ′(z0) 6= 0. Then

there exists an ǫ > 0 such that B(z0, ǫ) ⊂ G and the only zero of f in B(z0, ǫ) is the single number z0.

Of course, another way of thinking of these things — and remembering what was done in Analy-
sis II — is to consider f to be a continuously differentiable mapping of G into C, represented as R

2.
The mapping f is then totally differentiable, and the derivative at z0 is not singular; thus it is a local
bijection around z0.

More generally, we might have k being greater than 1. In any case, the number k is called the
order of the zero. A zero of order 1 is also called a simple zero.

Theorem 15. Let f : G → C be analytic in the region G, and let z0 ∈ G be a zero of f of order k. Then

there exists an ǫ > 0 such that in the open disc B(z0, ǫ) of radius ǫ around z0 we have f(z) = (h(z))k,

where h : B(z0, ǫ) → C is analytic with a simple zero at z0.

Proof. For sufficiently small ǫ > 0, we can write

f(z) =

∞∑

n=k

cn(z− z0)
n = (z− z0)

k

(
ck +

∞∑

n=k+1

cn(z− z0)
n−k

)
= (z− z0)

kg(z)

say, for z ∈ B(z0, ǫ). Here g : B(z0, ǫ) → C is analytic, and g(z0) = ck 6= 0. Thus there are k distinct
k-th roots of the number g(z0) = ck.

8 Let z1 be one of these k-th roots of g(z0). Now consider
the particular polynomial function ϕk(z) = zk. We know that ϕk is an entire function, and that
ϕ ′

k(z1) = kzk−1
1 6= 0, since z1 6= 0. So there is a neighborhood U1 of z1, and a neighborhood V1 of

g(z0), such that ϕk : U1 → V1 is a bijection9, with ϕk(z1) = g(z0). Let ϕ−1
k : V1 → U1 be the inverse

mapping. Now choose ǫ > 0 so small that g(B(z0, ǫ)) ⊂ V1. Then take h(z) = (z − z0) · ϕ−1
k (g(z)). This

defines a function h : B(z0, ǫ) → C which satisfies our conditions.10

8For any w 6= 0 in C we have w = reiθ say. Then each of the numbers k
√
r · eiθ/k+2πil/k, for l = 0, . . . , k − 1, is a different

k-th root of w.
9This is again Analysis II. ϕk is totally differentiable and non-singular at z1.

10As in real analysis (the proof is the same here in complex analysis) we have the rule that if ϕ is an invertible differentiable
function (with non-vanishing derivative), then ϕ−1 is also differentiable, with derivative (ϕ−1) ′(z) = 1/ϕ ′(ϕ−1(z)).
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Theorem 16. Again let f : G→ C be analytic in the region G, and let z0 ∈ G be a zero of order k. Then

there exists an ǫ0 > 0 and an open neighborhood Uǫ0
⊂ G of z0 with f(Uǫ0

) = B(0, ǫ0). Within Uǫ0
, z0

is the only zero of f, and if w 6= 0 in B(0, ǫ0) then there are precisely k different points v1, . . . , vk in Uǫ0

with f(vj) = w, for all j.

Proof. Since f is continuous and B(0, ǫ0) is open, it follows that Uǫ0
= f−1(B(0, ǫ0)) is also open,

regardless of how the number ǫ0 > 0 is chosen. So we begin by choosing an ǫ1 > 0 sufficiently small
that we can use theorem 15 and write f(z) = (h(z))k, for all z ∈ B(z0, ǫ1). Since h has a simple zero
at z0, and therefore the derivative at z0 is not zero (h ′(z0) 6= 0), there exists a neighborhood of z0
such that h is a bijection when restricted to the neighborhood. So let ǫ > 0 be chosen sufficiently
small that B(0, ǫ) is contained within the corresponding neighborhood of 0. Finally, with this ǫ, we
take ǫ0 = ǫk. Then if w 6= 0 in B(0, ǫ0), we have k different k-th roots of w, lets call them u1, . . . , uk.
They are all in B(0, ǫ). Therefore each has a unique inverse under h, namely vj = h−1(uj), for
j = 1, . . . , k. Is it possible that some other point, v say, not equal to any of the vj, also is such that
f(v) = (h(v))k = w? But then h(v) would also be a k-th root of w, not equal to any of the uj, since
after all, h−1 is a bijection when restricted to B(z0, ǫ0). This is impossible, owing to the fact that
there are only k different k-th roots of w.

9 Simple Consequences

Theorem 17. Assume f, g : G→ C are two analytic functions defined on a region G such that the set

{z ∈ G : f(z) = g(z)} has an accumulation point. Then f = g.

Proof. Let z0 ∈ G be such an accumulation point. Then z0 is a zero of the analytic function f − g.
But this is not an isolated zero. Therefore f− g = 0, the trivial constant function.

Theorem 18. Again, f : G→ C is analytic and it is not a constant function. Then f(G) is also a region

(that is, open and connected) in C.

Proof. Since f is continuous, f(G) must be connected. Is f(G) open? Take w0 ∈ f(G), and z0 ∈ G with
f(z0) = w0. So then z0 is a zero of the analytic function f−w0. Since f−w0 is not constant, it follows
that z0 is a zero of some particular finite order. Theorem 16 now shows that w0 lies in the interior
of f(G).

Theorem 19. Let f : G→ C be analytic and not constant. (G is a region.) Let z0 ∈ G. Then there exists

another point z1 ∈ G with |f(z1)| > |f(z0)|.

Proof. For otherwise, f(z0) would lie on the boundary of f(G) in C, and thus f(G) would not be open
in contradiction to theorem 18.

Theorem 20 (The Lemma of Schwarz). Let D = {z ∈ C : |z| ≤ 1} be the closed unit disc in C. Assume

D ⊂ G, a region in C, and f : G → C is analytic with f(D) ⊂ D and f(0) = 0. Then |f ′(0)| ≤ 1 as well,

and in fact |f(z)| ≤ |z| for all z ∈ D. If either |f ′(0)| = 1 or there exists some z0 with 0 < |z0| < 1 such that

|f(z0)| = |z0|, then we must have f being a simple rotation. i.e. f(z) = eiθ · z, for some θ.

Proof. Since f(0) = 0, we can write

f(z) = z ·
(

∞∑

n=1

cnz
n−1

)
= z · g(z)

say, where g is an analytic function, defined in some neighborhood of D. So f ′(0) = g(0) and
|f(z)| = |z| · |g(z)| ≤ 1. Thus |g(z)| ≤ 1/|z|. This holds in particular for |z| = 1.

On the other hand, theorem 18 says that g(B(0, 1)) ⊂ C is open in C.11 If there were some point
z∗ ∈ B(0, 1) with |g(z∗)| > 1 then we could choose it to be a point such that this value is maximal.
However that would then be a boundary point of f(B(0, 1)), contradicting the fact that f(B(0, 1)) is
open. Thus |g(z)| ≤ 1 for all z ∈ D. In particular, |f ′(0)| = |g(0)| ≤ 1 and |f(z)| = |z| · |g(z)| ≤ |z| for all
z ∈ D.

11Here B(0, 1) = {z ∈ C : |z| < 1} is the open disc centered at zero, with radius 1.
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Finally, let us assume that a z0 exists with 0 < |z0| < 1 such that |f(z0)| = |z0|. That means
|g(z0)| = 1. But according to theorem 19, this can only be true if g is a constant function. Since it is
a constant number with absolute value 1, it must be of the form eiθ, for some θ.

10 Analytic Continuation

We now know that an analytic function f : G → C can be represented as a power series centered at
any given point z0 ∈ G. The function f is equal to the function defined by the power series in the
largest possible open disc around z0 which is contained in G. But of course G is not, in general itself
an open disc. Therefore there might be parts of G where f is not given by this power series centered
on z0. Or, (thinking about the logarithm function) we might have the situation that G could be
expanded to a larger region G∗, with G ⊂ G∗ where the function could be defined. But then perhaps
there might be different ways of “continuing” this definition of f from G to G∗.

Therefore let us consider a chain of open discs (B1, . . . , Bn) say, with

Bj = {z ∈ C : |z− pj| < rj}

for a chain of points pj which are the centers of the discs, and numbers rj > 0, which are the
radiuses in each case. We assume that it is a connected chain in the sense that Bj ∩ Bj+1 6= ∅, in
each case. For each Bj let us assume that an analytic function fj : Bj → C exists, such that in the
region of overlap, we have fj(z) = fj+1(z) for z ∈ Bj ∩ Bj+1.

Definition 8. The functions fj here are called function elements, and if we have fj(z) = fj+1(z) for

z ∈ Bj ∩ Bj+1 for all j = 1, . . . , n − 1, then we have an analytic continuation of the function elements

through the chain of open discs. Or, if we consider the ordering of the discs, we can say that the final

function fn is obtained by analytic continuation of the initial function f1 through the chain of discs.

Theorem 17 shows that if, say f1 is given in B1, and there exists a chain of open discs allowing
some analytic continuation, then this continuation is unique.

Theorem 21. Let (B1, . . . , Bn) be a chain of open discs with Bj ∩ Bj+1 6= ∅, for j = 1, . . . , n − 1. Let

f1 : B1 → C be some given analytic function. Then there exists an analytic continuation of f1 throughout

the chain12 if and only if there also exists an analytic continuation of f ′1 : B1 → C (the derivative of f1)

throughout the chain.

Proof. “⇒” is trivial. (Just take f ′j, the derivative of fj, for each j.)
As far as “⇐” is concerned, we are assuming that there is an analytic continuation of the function

f ′1. To avoid confusion, let us call this function g1 : B1 → C. i.e. g1(z) = f ′1(z), for all z ∈ B1.
The assumption is that for each j there is an analytic function gj : Bj → C, providing an analytic
continuation, starting with g1. We now use induction on the number n. For n = 1 there is nothing to
prove. So let n > 1, and assume that we have an analytic continuation of g1 along the chain of open
discs from B1 to Bn−1, giving gj : Bj → C such that gj = f

′
j, for each j < n. According to theorem 3, gn

has an antiderivative, Gn : Bn → C, with G ′
n = gn. Now in the region Bn−1 ∩ Bn we have gn−1 = gn.

That is, f ′n−1 = G ′
n, or f

′
n−1 − G ′

n = 0. Thus fn−1 − Gn = k say, where k is a constant number. But
then the function Gn + k is also an antiderivative to gn, and we can take fn = Gn + k.

One way to think about these chains of discs is to imagine that they are associated with a path,
namely a path starting at p1 then following a straight line to p2, then a straight line to p3, and so
forth, finally ending at pn. So each straight segment, say from pj to pj+1 is contained in the union
of the two discs Bj ∪ Bj+1.

Let’s generalize this idea in the following way. Let γ : [t0, t1] → C be a continuous path. (It doesn’t
have to be differentiable here.) Let t0 = τ0 < τ1 < · · · < τn = t1 be a partition of the interval [t0, t1].
Assume that we have a corresponding set of open discs Bj = {z ∈ C : |z − γ(τj)| < rj} (where rj > 0)
such that γ(t) ∈ Bj ∪Bj+1, for t ∈ [τj, τj+1], for all relevant j. Then we will say that we have a chain of
discs along the path γ. Furthermore, if we have a sequence of analytic function elements giving an

12That is to say, there exists a set of function elements forming an analytic continuation, such that the first element in the
chain of function elements is f1.
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analytic continuation along this chain, then we will say that the function is analytically continued
along the path. The next theorem shows that this is a property of the path, independent of the
choice of discs along the path.

Theorem 22. Let γ : [t0, t1] → C be continuous and let B = {z ∈ C : |z − γ(t0)| < r} and B∗ = {z ∈
C : |z − γ(t1)| < r∗} (with both r, r∗ > 0) be open discs centered on γ(t0) and γ(t1), respectively. Let

t0 = τ0 < τ1 < · · · < τn = t1 and t0 = ρ0 < ρ1 < · · · < ρm = t1 be two different partitions of the interval

[t0, t1], giving two different chains of discs along the path, satisfying the conditions listed above, where

the first and last discs are B and B∗. Assume that f : B → C is an analytic function at the first disc

and it has an analytic continuation with respect to the first chain of discs, finally giving the analytic

function g : B∗ → C. Then f also has an analytic continuation with respect to the second chain of discs,

and it also gives the same function g : B∗ → C.

Proof. If the whole path γ is completely contained within the disc B then, using theorem 9 we see
that the analytic continuation is simply given by the power series representing the function.

Therefore letM ⊂ [t0, t1] be defined to be the set of t∗ ∈ [t0, t1] such that the theorem is true for the
interval [t0, t∗] (with respect to this path γ). But if t ∈M, then since γ is continuous, and since the
analytic function which has been continued out to the point γ(t∗) has a power series representation
in a neighborhood of γ(t∗), we must have some ǫ > 0 such that {t ∈ [t0, t1] : |t−t∗| < ǫ} ⊂M. Therefore
M is an open subset of [t0, t1]. If [t0, t1] \M 6= ∅, then the same argument shows that M is closed in
[t0, t1]. Yet the interval [t0, t1] is connected. Therefore M = [t0, t1].

All of these thoughts allow us to perform path integrals along continuous, but not necessarily
differentiable paths. To see this, take γ to be some continuous path, allowing an analytic contin-
uation from an open disc centered on the starting point of the path. The discs in the finite chain
of open discs describing the analytic continuation have centers at various points along the path γ.
But now take γ̃ to be the piecewise linear path connecting those centers. This gives a path integral,
namely

∫
γ̃
f(z)dz, where f consists of the function elements along the path. We can now simply

define
∫
γ
f(z)dz to be this integral along γ̃. Theorem 22 then shows that the path integral for γ is

well defined.

11 The Monodromy Theorem

Why confine our thoughts on analytic continuation to a single continuous path γ? After all, it seems
obvious that we can move the path back and forth to some extent — at least when staying within
the open discs which we are using — without affecting the arguments of the previous section. This
is the idea of the Monodromy Theorem. But first we must define what “moving a path” is supposed
to mean.

Definition 9. Let Q = {(x, y) ∈ R
2 : 0 ≤ x, y ≤ 1} be the unit square, and let H : Q→ C be a continuous

mapping such that

• H(0, y) = H(0, 0), for all y ∈ [0, 1],

• H(1, y) = H(1, 0), for all y ∈ [0, 1],

Let α : [0, 1] → C be the path α(t) = H(t, 0) and let β(t) = H(t, 1). Then we have α(0) = β(0) and

α(1) = β(1). The mapping H is said to be a homotopy from α to β. One also says that α and β are

homotopic to one another. If G ⊂ C is a region, and H(Q) ⊂ G, then it is a homotopy within the region.

In the more general setting of topology, this idea of homotopy is quite important. But historically,
the idea grew out of these applications in complex analysis. If we work with closed paths α, so that
α(0) = α(1), then we can define the fundamental group of the topological space. This is dealt with to
a greater or lesser degree in all of our textbooks. But I will skip over these things here. Of course,
as an additional remark, you should note that the fact that the paths are being parameterized using
the unit interval [0, 1] represents no loss of generality. It all works just as well if we use some other
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interval [t0, t1]. Finally, note that if f : G → C is given as an analytic function and α and β are
homotopic to one another within G, then theorem 4 shows that

∫

α

f(z)dz =

∫

β

f(z)dz.

Theorem 23 (Monodromy Theorem). Let α and β be two homotopic paths in C. Assume there is

an open disc B0 centered on α(0) = β(0) and an analytic function f0 : B0 → C. For each τ ∈ [0, 1]

let hτ : [0, 1] → C be the path hτ(t) = H(t, τ). (Thus α = h0 and β = h1.) Assume that f0 has an

analytic continuation along the path hτ for each τ. In particular there exists an open disc B1 centered

at α(1) = β(1) such that the analytic continuation along α produces the function f1 : B1 → C and the

analytic continuation along β produces the function f̃1 : B1 → C. Then f1 = f̃1.

Proof. The proof uses the technique which we have seen in theorem 4. The construction of an
analytic continuation along each of the paths hτ involves some finite chain of open discs. So the set
of all such discs covers the compact set H(Q). Take a finite sub-covering. Take the inverse images of
the sets in this sub-covering. We obtain a finite covering of Q by open sets. Take a subdivision of Q
into sub-squares of length 1/n, for n sufficiently large, so that each of the sub-squares is contained
in a single one of these open sets covering Q. Then let γj = hj/n, for j = 0, . . . , n. Now the argument
in the proof of the previous theorem (theorem 22) shows that the analytic continuation along γj
leads to the same function as that along γj+1, for each relevant j. In particular, the function is
uniquely defined through the power series representation in each of the sub-squares. Therefore it’s
values along one segment of the curve γj determines uniquely it’s values along the corresponding
segment of the next curve γj+1. Since the endpoints of all of the curves are identical (that is,
γj(1) = α(1) = β(1) for all j), we must have the power series expression at this endpont for each of
the analytic continuations of the original function being the same.

12 The Index of a Point With Respect to a Closed Path

Let γ : [t0, t1] → C be a continuous closed curve. Let z0 ∈ C be a point not on the path. Then, as we
have seen in Exercise 2.2, we can define a continuous path θ : [t0, t1] → R with θ(t0) = 0 and

γ(t) − z0

|γ(t) − z0|
= e2πiθ(t)

for all t ∈ [t0, t1].

Definition 10. The number θ(t1) ∈ Z is called the index of the point z0 with respect to the closed path

γ. Sometimes it is also called the winding number of γ with respect to z0. It is denoted νγ(z0)

Theorem 24. Let α and β be homotopic closed paths, homotopic by a homotopy H : Q → C. Assume

that z0 6∈ H(Q). then να(z0) = νβ(z0).

Proof. Let θα be the corresponding path in R (corresponding to α) and let θβ be the path in R

corresponding to β. Then the homotopy from α to β induces a homotopy of the path θα to θβ in R.
Since the endpoints thus remain fixed, the index remains unchanged.

Theorem 25. Let γ, z0 and νγ(z0) be as in the definition (but this time we assume that γ is continu-

ously differentiable). Then
1

2πi

∫

γ

dz

z− z0
= νγ(z0).

Proof. Obviously the function 1/(z− z0) is analytic in C \ {z0}. For simplicity, assume that z0 = 0 and
γ(0) = γ(1) = 1 = ei·0, where γ : [0, 1] → C \ {0}. Write γ(t) = r(t)e2πiθ(t). Let

hτ(t) = e
2πiθ(t)(t+ (1− t)r(t)),
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for τ, t ∈ [0, 1]. This defines a homotopy from γ to a new path γ̃, which lies on the unit circle. But

∫

γ̃

dz

z
=

∫1

0

1

e2πiθ(t)
2πiθ ′(t)e2πiθ(t)dt

= 2πi

∫1

0

θ ′(t)dt

= 2πi(θ(1) − θ(0)) = 2πiνγ(0).

Theorem 26 (Cauchy’s Theorem: Complicated version). Let f : G→ C be an analytic function defined

in a region G of C. Let γ : [0, 1] → G be a continuous closed path in G such that νγ(a) = 0 for all a 6∈ G.
Then

∫
α
f(z)dz = 0.

Proof. Since the (image of the) path γ is a compact subset of G, there exists an ǫ > 0 such that for
all t ∈ [0, 1], we have B(γ(t), ǫ) ⊂ G. Let n ∈ N be sufficiently large that 1/n < ǫ/

√
2. Then split up the

whole complex plane C into a system of small squares of the form

Q(p, q) =

{
x+ iy ∈ C :

p

n
≤ x ≤ p+ 1

n
,
q

n
≤ y ≤ q+ 1

n

}
,

where p, q ∈ Z. γ meets only finitely many of these small squares, and each of the squares which
γ does meet is completely contained in G. Our proof now consists in altering γ, one step after the
next, through processes which can be achieved using a homotopy. In the end we get a version of γ
which is so simple that the theorem becomes obvious.

• Let Q be one of the squares which γ meets. If γ only runs along the boundary of Q without
entering it’s interior, then there is nothing further to do in this step of the proof. On the other
hand, if γ does enter the interior of Q, then we perform a homotopy on it, moving it to the
boundary of Q, but leaving all points of γ which are not in the interior of Q unchanged. This
is explained more fully in the lecture. Basically, we take an interior point of Q which is not a
point of the path, then we push the part of γ which is in the interior of Q radially from that
point out to the boundary. Do this with all the Q’s which are on the path, then finally, if
necessary, move the endpoint γ(0) = γ(1) to a vertex of one of these squares.13 The end result
of all this is a homotopy, moving γ so that at the end of the movement it is contained within the
lattice of vertical and horizontal lines which make up the boundaries of all the small squares.
For simplicity, let us again call this “simplified” version of the path γ.

• Now it may be that this simplified γ is still too complicated. Looking at each individual segment
of the lattice, it may be that during a traverse of some particular segment, we see that γ moves
back and forth in some irregular way. So again using a homotopy, we can replace γ with a new
version which traverses each segment of the lattice in a simple linear path.

• We are still not completely happy with the version of γ which has been obtained, for it might
be that γ has a winding number which is not zero with respect to one of the squares Q. That
is, let q be an interior point of Q. What is νγ(q)? If it is not zero, then we can alter γ using a
homotopy, changing the winding number with respect to this particular square to zero and not
altering the winding number with respect to any of the other squares. Again this is illustrated
in the lecture. The idea is simply to add a bit on to the end of γ, going out to a corner of
the offending square along the lattice, then around the square a sufficient number of times to
reduce the winding number to zero, returning to that corner, then returning back along the
same path through the lattice to the starting point. Since γ is compact, there can be at most
finitely many such offending squares. At the end of this operation, we have ensured that γ has
winding number zero with respect to all points of C which do not lie on the path γ.

Our curve is now sufficiently well simplified for our purposes. The reason for this is that for every
segment of the lattice which γ traverses, it must be that it traverses the segment the same number

13Alternatively, and without loss of generality, we may assume that the endpoint of γ is already in a corner of the lattice.
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of times in the one direction as it does in the other direction. To see this, let S be some segment of
the lattice. To visualize the situation, imagine that it is a vertical segment. Assume that γ traverses
the segment u times in the upwards direction, and d times in the downwards direction. Now S

adjoins two squares, say Q1 on the lefthand side, and Q2 on the righthand side. Let us now alter γ,
moving the downwards moving parts which traverse S leftwards across Q1 to the other three sides
of Q1. On the other hand, the upwards moving parts of γ are moved rightwards across Q2 to the
other three sides of Q2. Let z1 be the middle point of the square Q1, and let z2 be the middle point of
Q2. Before this movement, the winding number of γ with respect to both points was zero. However,
afterwards, νγ(z1) = a and νγ(z2) = b. Yet they are in the same region of C \γ. Thus the points must
have the same winding numbers and so a = b.

Finally, after all this fiddling, we see that we must have
∫
γ
f(z)dz = 0 since the total of the

contributions from the path integrals along each of the segments of the lattice adds up to zero in
each case.

Up to now we have always been performing path integrals around single closed paths. This is
quite sensible. But sometimes it is also convenient to imagine two or more closed paths. So let say
γ1, . . . , γn be n paths, each of which are piecewise continuously differentiable and closed in some
region G. We can think of them together, and call them a cycle, denoted by the letter Ω say.14

Then if f : G → C is a function, we might be able to perform the path integrals over each of the γj
seperately, and thus we can define the integral over the whole cycle to be simply the sum of the
seperate integrals. ∫

Ω

f(z)dz
def
=

∫

γ1

f(z)dz+ · · ·+
∫

γn

f(z)dz.

Furthermore, if Ω is a cycle and z0 is a point not on any path of the cycle, then we can define the
index of z0 with respect to the cycle to be the sum of the indices of z0 with respect to the individual
closed paths in the cycle. On the other hand, if we want, we can connect the endpoints of the
paths in a cycle together to make a single larger closed path (this is illustrated in the lecture), thus
showing that theorem 26 is also true for cycles.

Theorem 27. Again, let G ⊂ C be a region, f : G → C be analytic, γ a closed curve in G with winding

number zero with respect to all points of C not in G. Let z0 ∈ G be a point which does not lie on the

path γ. then
1

2πi

∫

γ

f(z)dz

z− z0
= νγ(z0)f(z0).

Proof. This is a straight-forward generalization of theorem 6. For r > 0 sufficiently small, we have

1

2πi

∫

|z−z0|=r

f(z)dz

z− z0
= f(z0).

Let β(t) = z0 + r · e2πit be the path we are thinking about in this path-integral. (Here t ∈ [0, 1].)
Obviously we have νβ(z0) = 1. Now take the cycle consisting of the given path γ, together with
−νγ(z0) copies of the path β. (If this is a negative number, then we should travel around β in the
reverse direction.) We assume that r is so small that the closed disc D(z0, r) is contained in G and
furthermore the path γ does not meet D(z0, r). Then z0 has index zero with respect to the cycle
consisting of γ− νγ(z0)β. Thus, according to theorem 26,

1

2πi

∫

Ω

f(z)dz

z− z0
=

1

2πi

∫

γ

f(z)dz

z− z0
− νγ(z0)

1

2πi

∫

β

f(z)dz

z− z0
=

1

2πi

∫

γ

f(z)dz

z− z0
− νγ(z0)f(z0) = 0.

14More generally, we might allow paths which are not necessarily closed. In this case one speaks of “chains”, but we will
not persue this idea further in this lecture.
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13 Weierstrass’s Convergence Theorem

This is the analog of the theorem in real analysis which states that a sequence of continuous
functions which is uniformly convergent converges to a continuous function. But here we are
concerned with analytic functions.

Theorem 28 (Weierstrass). Let G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂ · · · be an increasing sequence of regions in

C and let (fn)n∈N be a sequence of analytic functions fn : Gn → C for each n. Let G = ∪∞
n=1Gn, and

assume that in every compact subset of G, the sequence (fn) converges uniformly. Let f : G → C be

defined by f(z) = limn→∞ fn(z) for all z ∈ G. Then f is analytic on G, and furthermore f ′n → f ′ uniformly

on every compact subset of G.

Proof. Let z0 ∈ G and take r > 0 such that B(z0, r) ⊂ G. (That is the closure of the open set B(z0, r).)
Let N ∈ N be sufficiently large that B(z0, r) ⊂ ∪N

n=1Gn. Then B(z0, r) ⊂ Gm, for all m ≥ N. According
to theorem 2 we have

∫
γ
fn(z)dz = 0 for all triangles in B(z0, r). Moreover we have

∫

γ

f(z)dz = lim
n→∞

∫

γ

fn(z)dz = 0,

owing to the uniform convergence of the sequence. Therefore, by theorem 10, f is analytic. By
Goursat’s theorem, the derivatives are also analytic. Specifically, let ζ be the boundary of the disc
B(z0, r). Then, using Cauchy’s formula (theorem 6), we have

f ′n(z0) =
1

2πi

∫

ζ

fn(z)dz

(z− z0)2
.

Thus

lim
n→∞

f ′n(z0) =
1

2πi

∫

ζ

f(z)dz

(z− z0)2
= f ′(z0),

and the fact that the convergence of the fn is uniform in B(z0, r) shows that f ′n → f ′ uniformly.

An interesting example of this is Riemann’s Zeta function. Let z = x+ iy with x > 1. Then
∣∣∣∣∣

∞∑

n=1

n−z

∣∣∣∣∣ ≤
∞∑

n=1

∣∣n−xn−iy
∣∣ =

∞∑

n=1

n−x
∣∣∣e−iy logn

∣∣∣ =
∞∑

n=1

n−x.

Thus the infinte sum ζ(z) =
∑∞

n=1 n
−z defines a function which is the limit of a uniformly convergent

sequence of analytic functions (the partial sums) for all z with Re(z) > a, where a > 1 is a given
constant. Therefore Weierstrass’s convergence theorem implies that the Zeta function ζ(z) is analytic
in this region. As a matter of fact, Riemann showed that, with the exception of the obvious isolated
singularity at the point z = 1, the zeta function can be analytically continued throughout the whole
complex plane. The big question is “Where are the zeros of the zeta function?” Some of them are
located at negative even integers. (These are the so-called “trivial zeros”.) They are not particularly
interesting. But there are lots along the vertical line Re(z) = 1/2. The famous Riemann conjecture
— which is certainly the greatest unsolved problem in mathematics today — is that all of the zeros
(apart from the trivial ones) lie on this line.15

14 Isolated Singularities

A “singularity” is really nothing more than a point of the complex plane where a given function is
not definied. That is, if f is defined in a region G ⊂ C, then any point a 6∈ G can be thought of as
being a singularity of the function. But this is not really what we are thinking about when we speak
of singularities. As an example of what we are thinking about, consider the particular function

f(z) =
1

z
.

15An American businessman, Mr. Landon T. Clay has put aside one million American dollars each for the solution of a
certain collection of outstanding problems in mathematics. The Riemann conjecture is one of them.
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Here, except for the special point z0 = 0 which is not so nice, we have a good example of an analytic
function. Since only a single point is causing problems with this function, let us more or less ignore
this point and call it an isolated singularity. So in general, an isolated singularity is a point z0 ∈ C

such that z0 6∈ G, yet there exists some r > 0 with B(z0, r) \ {z0} ⊂ G.

Definition 11. Let f : G → C be analytic, but with an isolated singularity at z0 ∈ C. The residue of f

at z0 is the number

Resz0
f(z)

def
=

1

2πi

∫

|z−z0|=r

f(z)dz.

According to Cauchy’s theorem, the residue is a well-defined number, independent of the radius
r of the circle of the path used to define it, as long as r is small enough to satisfy our condition.

We identify three different kinds of isolated singularities:

• removable singularities,

• poles,

• essential singularities.

Let’s begin with removable singularities. Let f : G→ C have a singularity at z0. This singularity is
removable if it is possible to find some number w0 such that if we simply define f0 : G ∪ {z0} → C by

f0(z) =

{
f(z), if z ∈ G
w0, z = z0

then f0 is analytic (thus also differentiable at the special point zo). We see then that a removable
singularity is really nothing special. We have simply “forgotten” to put in the correct value of the
function f at the isolated point z0. By putting in the correct value, the singularity disappears.

A pole is somewhat more interesting. For example the function

f(z) =
1

z

has a “simple” pole at the point z0 = 0. But then if we multiply f with the “simple” polynomial
g(z) = z, then we get f(z) · g(z) = 1. Of course the function f · g has a removable singularity at the
special point z0 = 0. Furthermore, the function which results does not have a zero at the point 0.
The general rule is: let z0 be an isolated, not removable, singularity of the analytic function f. If
there is some n ∈ N such that the function given by f(z) · (z− z0)n has a removable singularity at z0,
and the resulting function does not have a zero at z0, then z0 is a pole of order n.

Finally, an essential singularity is neither removable, nor is it a pole.

Definition 12. Let f : G → C be analytic, such that all it’s isolated singularities are either removable

or else they are poles. Then f is called a meromorphic function (defined in G).

15 The Laurent Series

Since a pole of order n involves a function which looks somewhat like (z− z0)
−n, at least near to the

singularity z0, it seems reasonable to expand our idea of power series into the negative direction.
This gives us the Laurent series. That is, a sum which looks like this:

∞∑

n=−∞

cn(z− z0)
n.

There is a little problem with this notation. After all, if the series is not absolutely convergent,
then we might get different sums if we start at different places in the doubly infinite sequence. Let
us therefore say that the sum from 0 to +∞ is the positive series, and that from −∞ to −1 is the
negative series. So the whole series is absolutely convergent if both the positive and negative series
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are absolutely convergent.16 One can obviously imagine that the negative series is really a positive
series in the variable 1/(z− z0).

So given some collection of coefficients cn for all n ∈ Z, let R ≥ 0 be the radius of convergence of
the series

∞∑

n=0

cn(z− z0)
n

and let 1/r ≥ 0 be the radius of convergence of the series

∞∑

n=1

c−nw
n =

−∞∑

n=−1

cn

(
1

w

)n

.

That is to say, if 1/|z− z0| < 1/r, or put another way, if |z− z0| > r, then the negative series

−∞∑

n=−1

cn(z− z0)
n

converges.
Therefore, there is an open ring (or annulus) of points of the complex plane, namely the region

{z ∈ C : r < |z − z0| < R}, where the Laurent series is absolutely convergent. In this ring, the function
defined by the Laurent series

f(z) =

∞∑

n=−∞

cn(z− z0)
n

is analytic. Note however that it is not necessarily true that f has an antiderivative. We see this
by observing that the particular term c−1(z − z0)

−1 has no antiderivative in the ring. On the other
hand, if we happen to have c−1 = 0 then there is an antiderivative, namely the function in the ring
given by the Laurent series

∞∑

n = −∞
n 6= −1

cn

n+ 1
(z− z0)

n+1.

Theorem 29. Assume the Laurent series converges in the ring between 0 ≤ r < R ≤ ∞. Let r < ρ < R.

The coefficients of the Laurent series are then given by

cn =
1

2πi

∫

|z−z0|=ρ

f(z)

(z− z0)n+1
dz.

Proof. Since the series is uniformly convergent around the circle of radius ρ, we can exchange sum
and integral signs to write

∫

|z−z0|=ρ

f(z)

(z− z0)n+1
dz =

∞∑

k=−∞

ck

∫

|z−z0|=ρ

(z− z0)
k

(z− z0)n+1
dz.

However, if we look at the individual terms, we see that if k 6= n, then each term has an antiderivative,
and thus the path-integral is zero for that term. We are left with the n-term, and this is then simply

∫

|z−z0|=ρ

f(z)

(z− z0)n+1
dz = cn

∫

|z−z0|=ρ

1

z− z0
dz = 2πi · cn.

Conversely, we have:

16The negative series is called the “Hauptteil” in German, whilst the positive series is the “Nebenteil”.
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Theorem 30. Given 0 ≤ r < ρ ≤ R, let G = {z ∈ C : r < |z − z0| < R} and f : G → C be an analytic

function. Then we have f(z) =
∑∞

n=−∞ cnz
n, where

cn =
1

2πi

∫

|z−z0|=ρ

f(z)

zn+1
dz.

Proof. For simplicity, choose z0 = 0. Let z be given with r < |z| < R, and take ǫ > 0 such that
ǫ <min{R− |z|, |z|− r}. Thus, according to theorems 5 and 6, we have

f(z) =
1

2πi

∫

|ζ−z|=ǫ

f(ζ)

ζ− z
dζ

=
1

2πi

∫

|ζ|=R−ǫ

f(ζ)

ζ− z
dζ−

1

2πi

∫

|ζ|=r+ǫ

f(ζ)

ζ− z
dζ

=
1

2πi

∫

|ζ|=R−ǫ

f(ζ)

ζ

(
1

1− z
ζ

)
dζ+

1

2πi

∫

|ζ|=r+ǫ

f(ζ)

z− ζ
dζ

=
1

2πi

∫

|ζ|=R−ǫ

f(ζ)

ζ

∞∑

n=0

(
z

ζ

)n

dζ+
1

2πi

∫

|ζ|=r+ǫ

f(ζ)

z− ζ
dζ

=

∞∑

n=0

(
1

2πi

∫

|ζ|=R−ǫ

f(ζ)

ζn+1
dζ

)
zn +

1

2πi

∫

|ζ|=r+ǫ

f(ζ)

z− ζ
dζ

=

∞∑

n=0

cnz
n +

1

2πi

∫

|ζ|=r+ǫ

f(ζ)

z− ζ
dζ

So the terms for n ≥ 0 are OK. Now let’s look at the terms with n < 0. We have

1

2πi

∫

|ζ|=r+ǫ

f(ζ)

z− ζ
dζ =

1

2πi

∫

|ζ|=r+ǫ

f(ζ)

z
(
1− ζ

z

)dζ

=
1

z
· 1

2πi

∫

|ζ|=r+ǫ

f(ζ)

∞∑

n=0

(
ζ

z

)n

dζ

=
1

z

∞∑

n=0

1

zn

(
1

2πi

∫

|ζ|=r+ǫ

f(ζ)ζndζ

)

=

−∞∑

n=−1

cnz
n.

(Note that theorem 5 shows that the integrals for |z| = R− ǫ, and for |z| = r+ ǫ are equal to the same
integrals, taken along the path |z| = ρ.)

Theorem 31. Again, the same assumptions as in theorem 30. Assume further that there exists some

M > 0 with |f(z)| ≤M for all z with |z− z0| = ρ. Then |cn| ≤M/ρn for all n.

Proof.

|cn| ≤
1

2π

∫

|z−z0|=ρ

∣∣∣∣
f(z)

zn+1

∣∣∣∣dz ≤
M

ρn
.

Theorem 32 (Riemann). Let a ∈ G ⊂ C be an isolated singularity of an analytic function f : G\{a} → C,

such that the exists anM > 0 and an ǫ > 0 with |f(z)| ≤M for all z ∈ G with z 6= a and |z− a| < ǫ. Then

a is a removable singularity.

Proof. For then |cn| ≤ M/rn for all 0 < r < ǫ, and therefore, for the terms with n < 0 we must have
cn = 0, showing that in fact f is given by a normal power series, and thus it is also analytic in a.
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Theorem 33 (Casorati-Weierstrass). Let a be an essential singularity of the function f : G \ {a} → C.

Then for all ǫ, δ > 0 and w ∈ C, there exists a z ∈ G with |z− a| < ǫ such that |f(z) −w| < δ. (Which is to

say, arbitrarily small neighborhoods of a are “exploded” through the action of f throughout C, so that

they form a dense subset of C!)

Proof. Otherwise, there must exist some w0 ∈ C such that there exists an ǫ > 0 and |f(z)−w0| ≥ δ for
all z ∈ G with |z−a| < ǫ. Let B(a, ǫ) = {z ∈ C : |z−a| < ǫ} and define the function h : (B(a, ǫ)\{a})∩G→ C

to be

h(z) =
1

f(z) −w0
.

Clearly h is analytic, with an isolated singularity at the point a. Furthermore,

|h((z)| ≤ 1

δ
.

Therefore, according to theorem 32 we must have a being removable. Thus, writing

f(z) =
1

h(z)
+w0,

we see that since the function given by 1/h(z) has at most a pole at a, we cannot have a being an
essential singularity of f. This is a contradiction.

As an example of a function with an essential singularity, consider the function f(z) = exp(1/z).
Clearly f is defined for all z 6= 0, and not defined for the single point 0. In fact, 0 is an essential
singularity. To see this, consider the exponential series

f(z) =

∞∑

n=0

(
1
z

)n

n!
= 1+

−∞∑

n=0

zn

(−n)!
.

The singularity at 0 obviously cannot be a pole of the function, since the negative series is infinite.
In fact we can make a theorem out of this observation.

Theorem 34. Let a function f be defined by a Laurent series
∑∞

n=−∞ cn(z−z0)
n around a point z0 ∈ C.

Assume that the series converges in a “punctured disc” {0 < |z−z0| < R}. If infinitely many of the terms

cn, for n < 0, are not zero, then z0 is an essential singularity of f.

Proof. Obviously z0 is not a removable singularity. If it were a pole of order n, then all the terms cm,
for m < −n must vanish. The only remaining possibility is that z0 is an essential singularity.

16 The Calculus of Residues

Let’s begin by thinking about a function f with a pole of order m at the point a ∈ C. That is, in a
sufficiently small neighborhood of a we can write h(z) = f(z)(z−a)m, and after filling in the removable
singularity of h at a, we have h(a) 6= 0. Let

h(z) =

∞∑

n=1

cn(z− a)
n.

For ǫ > 0 sufficiently small we therefore have

Resa(f(z)) =
1

2πi

∫

|z−a|=ǫ

f(z)dz

=
1

2πi

∫

|z−a|=ǫ

h(z)

(z− a)m
dz

= cm−1
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Or putting this another way, we can say that

Resa(f(z)) = cm−1 =
1

(m− 1)!

d(m−1)

dz(m−1)
|z=a

((z− a)mf(z)) .

So this is a formula for the residue of a function with a pole at a.
A rather special case is the following. Let us assume that G ⊂ C is a region, and g, h are both

analytic functions defined on G. Assume that a ∈ G is a simple zero of h. (That is h(a) = 0, but
h ′(a) 6= 0.) Assume furthermore that g(a) 6= 0. Then let f = g/h. (Note that a function such as f,
which is defined to be the ratio of two analytic functions, is called a rational function.) Therefore f is
meromorphic in G. What is the residue of f at a? Writing g and h as power series around a, we have

g(z) =

∞∑

k=0

ck(z− a)
k

and

h(z) =

∞∑

l=1

dl(z− a)
l.

Since a is a pole of order 1, we have

Resa(f(z)) =
1

(1− 1)!

d0

dz0

(
(z− a)

g(z)

h(z)

)

|z=a

=

(
(z− a)

∑∞
k=0 ck(z− a)

k

∑∞
l=1 dl(z− a)

l

)

|z=a

=

( ∑∞
k=0 ck(z− a)

k

∑∞
l=1 dl(z− a)

l−1

)

|z=a

=
c0

d1
=
g(a)

h ′(a)
.

Of course, going in the other direction, if a is a zero of g and h(a) 6= 0, then the residue of f at a is
simply zero. This is trivial.

Theorem 35 (The Residue Theorem). Let the function f be defined and analytic throughout the region

G ⊂ C, except perhaps for a set S ⊂ G of isolated, not removable singularities. Let Ω be a cycle in G

which avoids all these singularities and which is such that the winding number of Ω around all points

of the compliment of G is zero. Then only finitely many points of S have non-vanishing index with

respect to Ω and we have the residue formula

1

2πi

∫

Ω

f(z)dz =
∑

a∈S

νΩ(a)Resaf(z).

Proof. Nothing is lost if we assume thatΩ simply consists of a single closed path γ. So it is contained
in a compact disc in C which must contain all points of C having a non-vanishing index with respect
to γ. If there were infinitely many such points, then they must have an accumulation point, which
must lie in the compliment of G. But such a point has index zero with respect to γ. Since that
point does not lie on γ, it must have a neighborhood which contains only points with index zero
with respect to γ. Thus we have a contradiction. The residue theorem now follows from Cauchy’s
theorem (theorem 26).

17 Residues Around the Point at “Infinity”

In many applications, one speaks of the properties of a function “at infinity”. For this, we take the
“compactification” of the complex number plane. This is the set C ∪ {∞}, where “∞” is simply an
abstract symbol. Then the open sets of C ∪ {∞} are, first of all the familiar open sets of C, then in
addition, we say that any set of the form {z ∈ C : |z| > R}∪ {∞} is open, for R > 0. Finally, the union of
all these sets of sets gives the topology of C ∪ {∞}. It turns out that C ∪ {∞} is homeomorphic to the
standard 2-sphere. It is often called the “Riemann sphere”.
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Definition 13. Let G ⊂ C ∪ {∞} be a region containing ∞. (Thus G is open and connected.)17 We will

say that f : G → C is analytic at ∞ if the function given by f(1/z) has a removable singularity at 0.

Similarly, f has a zero of order n, or a pole of order n at ∞ if the respective property is true of the

function f(1/z) at 0. That is to say, if ∞ is a zero of order n of f then we would like to have the function

wnf(w) having a removable, non-zero singularity at ∞. However this is the same as looking at the

limit as z→ 0 of the function which is given by substituting w = 1/z. That is, the function

g(z) =
1

zn
· f
(
1

z

)
.

So f has a zero of order n at infinity if g has a removable, non-zero singularity at 0.

Theorem 36. Let g, h : C → C be entire, not constant, functions (thus they are analytic at all points of

C). Let f be the meromorphic function f = g/h. Assume that there is no zero of h on the real number

line. Assume furthermore that f has a zero at infinity of order at least 2. Then we have

∫∞

−∞

f(x)dx = 2πi
∑

Im(a)>0

Resaf(z).

(Here the sum is over all poles of the function f in the “upper” half plane of C. That is, the set of all

complex numbers with positive imaginary parts.)

Proof. Because f has a zero at infinity, we have f being bounded outside of a compact disc of the
form D = {z ∈ C : |z| ≥ r}, for some sufficiently large r > 0. In particular, all of the poles of f must be
within D. Since the zeros of h are isolated, there are only finitely many of them, thus the sum over
the poles is finite. Therefore, the residue theorem shows that

∫

γ

f(z)dz = 2πi
∑

Im(a)>0

Resaf(z),

where γ is the closed curve which consists of two segments: first the segment along the real number
line from −r to r, then the segment consisting of the semi-circle of radius r around zero, traveling
upwards from r and around through ir, then coming back to −r. That is to say,

2πi
∑

Im(a)>0

Resaf(z) =

∫r

−r

f(x)dx+

∫

αr

f(z)dz,

where αr is this semi-circle in the upper half-plane. But

∫

αr

f(z)dz =

∫1

0

f(reπit)rπieπitdt.

We are assuming that f has a zero at infinity of order at least 2. That means, for all ǫ > 0 there
exists some δ > 0 such that for all w 6= 0 in C with |w| < δ, we have

∣∣∣∣
1

w
· f
(
1

w

)∣∣∣∣ < ǫ.

Or put another way, |z · f(z)| < ǫ for all z ∈ C with |z| = r > 1/δ. Therefore

∣∣∣∣∣

∫1

0

f(reπit)rπieπitdt

∣∣∣∣∣ <
∫1

0

π · ǫdt = π · ǫ.

Since ǫ can be taken to be arbitrarily small, giving a corresponding δ, we can choose our r to be
greater than 1/δ, and thus the integral around the half-circle αr is small. The limit r→ ∞ gives the
formula of the theorem.

17Note that we must then have C \ G being a closed and bounded set, thus compact.
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So this gives a method of calculating an integral along the real number line without actually
having to do the integral at all! We only need to know the residues of the poles of the function in the
upper half-plane of C; no poles are allowed to be on the real number line; and the function should
tend to zero sufficiently quickly at infinity.

But the assumption that the zero at infinity is of order 2 or more might be too restrictive. Perhaps
the function we happen to be looking at only has a simple zero at infinity. For example consider the
function

f(z) =
1

z− i
.

The integral along the real number line does not converge, and so this shows that we cannot expect
the integral to exist if the zero at infinity is only of the first order. But perhaps the following theorem,
where f(x) is multiplied with the “rotating” function eix, thus mixing things up nicely, might be
useful. However, in contrast to the case where the zero at infinity is of at least second order, here
we cannot expect that the integral over the absolute value of the function also converges.

Theorem 37. The same assumptions as in the previous theorem, except that the zero of f at infinity

is only of the first order. Then we have
∫∞

−∞

f(x)eixdx = 2πi
∑

Im(a)>0

Resaf(z)e
iz.

Proof. Again, we only have finitely many singularities in the upper half-plane. This time take a
closed path γ consisting of four straight segments. The first segment is the straight line from the
point −r to +r, along the real number line. The second segment goes from r to r + ir. The third
from r + ir to −r + ir, and the fourth from −r + ir back to the starting point at −r. Let’s call these
segments γ1(r), . . . , γ4(r). Following the ideas in the proof of the previous theorem, we see that it is
only necessary to show that

lim
r→∞

∫

γj(r)

f(z)eizdz = 0,

for j = 2, 3, 4. Our assumption implies that for all ǫ > 0 there exists an r0 > 0 such that |f(z)| < ǫ for
all z with |z| > r0. We will show that the absolute value of the integral along the path γ2(r0) is less
than ǫ. The calculation for the other paths is similar. We have

∣∣∣∣∣

∫

γ2(r0)

f(z)eizdz

∣∣∣∣∣ ≤
∫r0

0

|f(r+ it)|e−tdt <

∫r0

0

ǫe−tdt = ǫ
(
1− e−r0

)
< ǫ.

18 Integrating Across a Pole

For example, consider the “integral” ∫1

−1

dx

x
.

Obviously this is nonsense, since the integrals from −1 to 0, and from 0 to 1 of the function 1/x

diverge. Specifically, for 0 < ǫ < 1 we have

∫1

ǫ

dx

x
= log ǫ.

By the same token, it is clear that ∫−ǫ

−1

dx

x
= − log ǫ.

Thus, if we agree to abandon the principles we have learned in the analysis lectures, and simply
say that

∫1

−1

dx

x

?
= lim

ǫ→0

(∫−ǫ

−1

dx

x
+

∫1

ǫ

dx

x

)
= 0,
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then we have the Cauchy principle value of the integral, and we see that in this case it is simply zero.
One could make an important-looking definition here, but let us confine our attention to integrals
along closed intervals [a, b] ⊂ R of complex-valued functions, where there might be poles of the
function in the given interval. Assume for the moment there is a single pole at the point p ∈ (a, b).
Then we will define the principle value of the integral (if it exists) to be

P
∫b

a

f(x)dx
def
= lim

ǫց0

(∫p−ǫ

a

f(x)dx+

∫b

p+ǫ

f(x)dx

)
.

Then the generalization to having a finite number of poles of f along the interval (but not at the
endpoints) is clear.

Theorem 38. Let R be a rational function, defined throughout C (together with it’s poles). Assume

that it has a zero at infinity, so that there can only be finitely many poles. Let p1 < · · · < pm be the

poles of R which happen to lie on R. Assume that each of these poles is simple; that is, of order 1. We

distinguish two cases:

• If R has a simple zero at infinity (that is, of order 1), then we take f(z) = R(z)eiz.

• Otherwise, R has a pole of order at least 2 at infinity, and in this case we take f(z) = R(z).

Then we have

lim
r→∞

P
∫r

−r

f(x)dx = 2πi
∑

Im(a)>0

Resaf(z) + πi

n∑

j=1

Respj
f(z).

Proof. In either case, we can have only finitely many poles of the function f; therefore only finitely
many poles along the real number line. Let γδ be the path along the real number line from −∞ to
∞, but altered slightly, following a semi-circle of radius δ above each of the poles on the real line.
Furthermore, δ is sufficiently small that no other pole of f is enclosed within any of the semi-circles.
Then, according to our previous theorems, we have

∫

γδ

f(x)dx = 2πi
∑

Im(a)>0

Resaf(z).

To simplify our thoughts, let us first consider the case that there is only one single pole p ∈ R on the
real number line. And to simplify our thoughts even further, assume that p = 0. Then we have the
path γδ coming from −∞ to −δ, then it follows the path δeiπ(1−t), for t going from 0 to 1, and then
finally it goes straight along the real number line from δ to ∞.

Let us now consider the Laurent series around 0. We can write

f(z) =
c−1

z
+

∞∑

n=0

cnz
n =

c−1

z
+ g(z)

say. But then we can just define the new function g throughout C (leaving out the finite set of poles
of f) by the rule

g(z) = f(z) −
c−1

z
.

Obviously g has no pole at 0, but otherwise it has the same set of poles as the original function f.
Since the function c−1/z is analytic at all these other poles, the residue of g is identical with that of
f around each of these poles. Therefore

∫∞

−∞

g(x)dx =

∫

γδ

f(x)dx = 2πi
∑

Im(a)>0

Resaf(z).

On the other hand, since g is continuous at 0, we must have

∫∞

−∞

g(x)dx = lim
δ→0

∫

γδ

g(x)dx.
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Now, to get the principle value of the integral for f, we use the path γδ, but we must remove the
semi-circle part of it. That is, let

ωδ(t) = δe
iπt,

for t from 0 to 1. Then

P
∫∞

−∞

f(x)dx = lim
δ→0

(∫

γδ

f(x)dx+

∫

ωδ

f(z)dz

)
= 2πi

∑

Im(a)>0

Resaf(z) + lim
δ→0

∫

ωδ

f(z)dz.

But

lim
δ→0

∫

ωδ

f(z)dz = lim
δ→0

∫

ωδ

(c−1

z
+ g(z)

)
dz = lim

δ→0

∫

ωδ

c−1

z
dz = 2πi · Res0f(z) · lim

δ→0

∫

ωδ

1

z
dz.

This final integral is easy to calculate. We have

∫

ωδ

1

z
dz =

∫1

0

iπδeiπt

δeiπt
= iπ.

Therefore the theorem is true in this case.
For the more general case, we take

g(z) = f(z) −

m∑

j=1

Respj
f(z)

z− pj
,

and then proceed as before.

19 Integrating Out From a Pole

Maybe we are dissatisfied with this “Cauchy principle value” technique. After all, it is rather like
cheating! So let’s see what we can do with an integral like

∫∞

0

f(x)dx,

where 0 is a pole, and ∞ is a zero of f. For example, look at the function f(x) = 1/x. But here we see

big problems! Both of the integrals
∫∞
1
f(x)dx and

∫1
0
f(x)dx are divergent.

Thinking about this, we see that the problems with the function 1/x stem from the fact that, first
of all, the zero at ∞ is simple, and second of all, the pole at 0 is simple. This leads us to formulate
the following theorem.

Theorem 39. Again, let R be a rational function defined throughout C, but this time with a zero of

order at least 2 at ∞. Furthermore, R has no poles in the positive real numbers (x > 0), and at most a

simple pole at 0. Then we have
∫∞

0

xλR(x)dx =
2πi

1− e2πiλ

∑

a 6=0

Resaz
λR(z),

for all 0 < λ < 1.

Proof. As before, the function zλR(z) has at most finitely many poles in C. Let γr,φ, where 0 < r < 1
and 0 < φ < π, be the following closed curve. It starts at the point reφi and follows a straight
line out to the point Teφi, where T = 1/r. Next it travels counter-clockwise around the circle of
radius T , centered at 0, till it reaches the point Te(2π−φ)i. Next it travels along a straight line to
the point re(2π−φ)i. Finally it travels back to the starting point, following the circle of radius r in a
clockwise direction. Lets call these segments of the path L1, L2, L3 and L4. By choosing r and φ to be
sufficiently small, we ensure that the path γr,φ encloses all poles of the function. In the exercises,
we have seen that the path integrals along the segments L2 and L4 tend to zero for r → 0. Thus we
have

lim
r,φ→0

(∫

L1

zλR(z)dz+

∫

L3

zλR(z)dz

)
= 2πi

∑

a 6=0

Resaz
λR(z).
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But we can take the path L1 to be teφi, for t ∈ [r, T ]. Thus we have

∫

L1

zλR(z)dz =

∫T

r

(teφi)λR(teφi)eφidt = e(λ+1)φi)

∫T

r

tλR(teφi)dt.

Similarly,

∫

L3

zλR(z)dz =

∫T

r

(te(2π−φ)i)λR(te(2π−φ)i)
(
−e(2π−φ)i

)
dt = −e(2π−φ)(λ+1)i

∫T

r

tλR(te(2π−φ)i)dt.

In the limit as φ→ 0, we then have

∫

L1

zλR(z)dz+

∫

L3

zλR(z)dz→
(
1− e2πiλ

) ∫T

r

xλR(x)dx.

Finally, taking the limit as r→ 0 gives us the result.

20 Symmetric Real Functions

For example, how do we calculate the integral

∫∞

0

sin x

x
dx ?

On the one hand, there is no singularity at 0, but on the other hand, how are we to calculate the
integral other than by using the calculus of residues?18 Let us begin by noting that

∫∞

ǫ

sin x

x
dx =

∫∞

ǫ

eix − e−ix

2ix
dx =

1

2i

(∫−∞

−ǫ

eix

x
dx+

∫∞

ǫ

eix

x
dx

)
=
1

2i
P
∫∞

−∞

eix

x
dx.

But the residue of exp(ix)/x at 0 is simply 1. Therefore, theorem 38 shows that

∫∞

0

sin x

x
dx =

π

2
.

This example shows that if we have a meromorphic function f which is defined in C, such that
f(x) = f(−x) for all x ∈ R, and such that the conditions of theorem 38 are satisfied, then it does make
sense to calculate the integral

∫∞
0
f(x)dx, using the Cauchy principle value technique.

21 The Logarithmic Derivative

Let f : G→ C be a function. Thinking about the rules for derivatives, we can combine what we know
about the derivative of a logarithm and the chain rule to arrive at the interesting observation that

(log f(z)) ′ =
f ′(z)

f(z)
.

This is an interesting equation, particularly so in the field of analytical number theory. But the
theorem we will look at here concerns path integrals. For simplicity, we will assume that G = C,
and that the function f is meromorphic, so that it is analytic everywhere in C, except possibly for
some set of isolated singularities. At each of these singularities, f has a pole of some order.

So let us say that f has a pole of order k at the point a ∈ C. Then we can write

f(z) =
g(z)

(z− a)k
= (z− a)−kg(z),

18For example, partial integration only seems to make things more complicated here. Nevertheless, I see that the computer
algebra system MuPAD does give the correct answer with little fuss!
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where g is analytic at a, and g(a) 6= 0. Looking at the logarithmic derivative, we have

f ′(z)

f(z)
=

−k(z− a)−k−1g(z) + (z− a)−kg ′(z)

(z− a)−kg(z)
=

−k

z− a
+
g ′(z)

g(z)
.

Therefore, if r > 0 is sufficiently small that the disc around a with radius r avoids all other poles and
zeros of f, then we have

1

2πi

∫

|z−a|=r

f ′(z)

f(z)
dz = −k.

A similar calculation, where a is now a zero of order k of f, shows that

1

2πi

∫

|z−a|=r

f ′(z)

f(z)
dz = k.

Combining this with the residue theorem, we have a method of counting the zeros and poles.
Namely:

Theorem 40. Let f be a meromorphic function, defined in a region G ⊂ C, and let Ω be some cycle

which avoids all zeros and poles of f and which is such that all points of C \ G have index zero with

respect to Ω. Let NΩ be the number of zeros of f which have non-vanishing index with respect to Ω,

counted according to their orders, and let PΩ be the poles, again counted with their orders. Then

1

2πi

∫

Ω

f ′(z)

f(z)
dz = NΩ − PΩ.

Another way to look at this is to remember that f is, after all, just a mapping of a region of C back
into C. Thus if γ is a closed path in the region G (again, with winding number zero with respect to
all points in the compliment of G in C), it follows that f ◦γ, given by f ◦γ(t) = f(γ(t)), is itself another
closed path in C. If we assume that γ passes through no zero or pole of f, then the path f ◦ γ avoids
both 0 ∈ C and also the special point ∞. Therefore we can think about the index of 0 with respect to
this path.

Theorem 41. νf◦γ(0) = Nγ − Pγ, where the numbers Nγ and Pγ have been defined in the previous

theorem (theorem 40).

Proof. As we saw in theorem 25, we have

νf◦γ(0) =
1

2πi

∫

f◦γ

1

z
dz.

However

1

2πi

∫

f◦γ

1

z
dz =

1

2πi

∫b

a

(f ◦ γ) ′(t)
(f ◦ γ)(t) dt =

1

2πi

∫b

a

f ′(γ(t))γ ′(t)

f(γ(t))
dt =

1

2πi

∫

γ

f ′(z)

f(z)
dz = Nγ − Pγ,

where we use the result of the previous theorem. Here, we have just imagined that the path γ is
defined on some interval of the form [a, b]. Of course it is a trivial matter to see that we could replace
the single path γ with a cycle Ω.

Theorem 42 (Roché). Let f, g : G → C be analytic functions, and let Ω be a cycle in G. Assume

A = {w ∈ C : νΩ(w) 6= 0} ⊂ G, and assume furthermore that |g(z)| < |f(z)| for all z which lie directly on

Ω. Then both functions f and f+ g have the same number of zeros in A.

Proof. Let z be a point of Ω. Then since 0 ≤ |g(z)| < |f(z)|, we certainly do not have f(z) = 0. But also,
for all τ ∈ [0, 1], we have

|f(z) + τg(z)| ≥ |f(z)|− τ|g(z)| > 0.

Therefore the cycle (f + g) ◦Ω is homotopic to the cycle f ◦Ω in C \ {0}, and the result then follows
from theorem 41.
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This theorem gives us a very quick proof of the Fundamental Theorem of Calculus. For let

P(z) = zn + an−1z
n−1 + · · ·+ a1z+ a0

be some polynomial of degree n ≥ 1 in C. Let R = |an−1| + · · · + |a0| + 1. Then on the circle given by
|z| = R, we have

0 ≤ |an−1z
n−1 + · · ·+ a1z+ a0| < |zn|.

But then theorem 42 implies that P(z) must have n zeros (counted with their multiplicities) within
the circle of radius R.

22 Montel’s Theorem

Thinking about Weierstrass’ convergence theorem (theorem 28), let us again consider sequences of
functions.

Definition 14. Let G ⊂ C be a region, and for each n ∈ N let fn : G → C be analytic. This gives us a

sequence of functions on G. We will say the sequence is locally bounded if for all z ∈ G, there exists

an (open) neighborhood z ∈ U ⊂ G and anM > 0, such that |fn(w)| ≤M, for all w ∈ U and all n ∈ N.

Theorem 43. Let fn : G→ C be a locally bounded sequence of analytic functions. Assume there exists

a dense subset T ⊂ G, such that (fn(z))n∈N is a convergent sequence in C for all z ∈ T . Then there

exists an analytic function f : G→ C such that fn → f uniformly on every compact subset of G.

Proof. Begin by observing that we only need prove that for every z0 ∈ G, there exists an r > 0 such
that the sequence of functions fn is uniformly convergent on B(z0, r) (the open disc of radius r
centered on z0). This follows, since given any compact subset K ⊂ G, it can be covered with finitely
many such discs.

So given some z0 ∈ G, we would like to show that there exists an r > 0 such that for all ǫ > 0

there exists an N0 ∈ N such that |fn(z) − fm(z)| < ǫ for all n,m ≥ N0 and |z− z0| < r. Given this, then
for each such z we would have (fn(z))n∈N being a Cauchy sequence, converging to a point f(z) in C.
Thus the sequence would be uniformly convergent in B(z0, r) to the function f.

In order to find such an r and N0, let us begin by using the property that the sequence of
functions is locally bounded. Thus there is some M > 0 and an r > 0 such that |fn(z)| ≤ M for all
z ∈ D(z0, 2r) = {z ∈ G : |z − z0| ≤ 2r}. Since T is dense in G, and D(z0, r) is compact, we can find some
finite number of points of T in B(z0, r), call them a1, . . . , ak ∈ T , with

B(z0, r) ⊂
k⋃

l=1

B(al,
ǫ

3
· r
2
· 1
M

).

Let N0 be sufficiently large that

|fn(al) − fm(al)| <
ǫ

3

for all m,n ≥ N0 and for all l = 1, . . . , k. Choose any z ∈ B(z0, r). Then there exists some l ∈ {1, . . . , k}

with z ∈ B(al, ǫr/6M). Therefore, for m,n ≥ N0 we have

|fn(z) − fm(z)| ≤ |fn(z) − fn(al)|︸ ︷︷ ︸
S1

+ |fn(al) − fm(al)|︸ ︷︷ ︸
S2

+ |fm(al) − fm(z)|
︸ ︷︷ ︸

S3

.

By assumption, we know that S2 < ǫ/3. Let’s look at S1 (clearly, S3 is similar). We have

|fn(z) − fn(al)| =
1

2π

∣∣∣∣∣

∫

|ζ−z0|=2r

(
fn(ζ)

ζ− z
−
fn(ζ)

ζ− al

)
dζ

∣∣∣∣∣

=
1

2π
|z− al|

∣∣∣∣∣

∫

|ζ−z0|=2r

fn(ζ)

(ζ− z)(ζ− al)
dζ

∣∣∣∣∣

<
1

2π
|z− al|

M

r2
2π(2r)

= |z− al|
2M

r
<
ǫ

3
.
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Note that the inequality in the third line follows because the radius of the circle is 2r, and of course
r is greater than both |ζ − z| and |ζ − al|. Also the last inequality is due to the fact that we have
assumed that |z− al| < ǫr/6M.

Theorem 44 (Montel). Assume fn : G → C (with n ∈ N) is a locally bounded sequence of analytic

functions. Then there exists a subsequence which is uniformly convergent on every compact subset of

G.

Proof. Take some arbitrary sequence {a1, a2, . . . } which is dense in G. Since the sequence of points
(fn(a1)n∈N is bounded, there exists a convergent subsequence, giving a subsequence (f1n)n∈N of the
sequence of functions. Next look at the sequence of points (f1n(a1)n∈N. Again, there is a convergent
subsequence. And so forth. So for each m ∈ N, we obtain a sequence of functions (fmn)n∈N which
is such that the sequence of points (fmn(al)n∈N converges, for all l ≤ m. Therefore the sequence of
fuctions (fnn)n∈N satisfies the conditions of theorem 43.

We can use this theorem to find a criterion for the convergence of a sequence of functions as
follows.

Theorem 45. Again, let fn : G→ C be a locally bounded sequence of analytic functions. Assume there

exists some z0 ∈ G such that the sequences (f
(k)
n (z0))n∈N (that is, the sequences of k-th derivatives)

converge, for all k. Then (fn)n∈N is uniformly convergent on all compact subsets of G.

Proof. According to theorem 43, if (fn(z))n∈N is convergent for all z ∈ G, then the sequence of func-
tions is uniformly convergent on all compact subsets of G, and we are finished. So let’s assume
that there exists some a ∈ G, such that the sequence of points (fn(a))n∈N is not convergent. But at
least it must be bounded, so there must be two different subsequences of the sequence of functions,
being convergent at a to two different values, say one subsequence converges to the value va and
the other converges to wa, where wa 6= va. However, using Montel’s theorem, we have subsequences
of these subsequences of functions, converging to two different analytic functions: f, g : G→ C, with
f(a) = wa 6= va = g(a). Looking at the point z0, we have

lim
n→∞

f(k)n (z0) = f
(k)(z0) = g

(k)(z0),

that is, (f− g)k(z0) = 0 for all k. Therefore, the function f− g is zero in a neighborhood of z0, but this
implies that it is zero everywhere, including at the point a, which gives us a contradiction.

23 Infinite Products

After thinking about Weierstrass’ theorem, where we are interested in infinite sums of analytic
functions, the question comes up, is it also possible to deal with infinite products? Well it certainly
is possible, and this is the subject of a number of classical theorems within complex analysis.

Before we get involved with infinite products of functions, we should first think about something
easier, namely infinite products of numbers alone. So let z1, z2, . . . be a sequence of numbers. These
give rise to a sequence of “partial products”

Pn =

n∏

k=1

zk.

But we should realize that there are some special things to think about here which make things
different from the simpler situation with partial sums.

• For example with sums, the convergence of the series is not affected if we change a single term.
But with products, if one of the terms zk is changed to 0, then obviously all of the subsequent
Pn are zero, regardless of what the further terms look like. Therefore we see that it only makes
sense to consider products where all terms are non-zero.

• Another thing is that we could have limn→∞ Pn = 0. While this may not seem to be particu-
larly objectionable at first, it is when one realizes that in this case, the limit again remains
unchanged if various terms in the product are changed.
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Both of these considerations show that, in a way, the number 0 in a product creates the same
problems as does the number ∞ in a sum. So we will just agree to do away with the number zero
when thinking about infinite products. However, because some people still find it nice to think
about the number zero, the following definition will be used.

Definition 15. Let (zn)n∈N be a sequence of complex numbers which contains at most finitely many

zeros. If the sequence of partial products of the non-zero terms converges to a number which is not

zero, then we will say that the infinite product is convergent.

It is a rather trivial observation that, for a convergent product of the form
∏

n∈N
zn, we must have

limn→∞ zn = 1. Furthermore, we can assume that at most one of the zn is a negative real number.
For it is obvious that if we have two negative numbers, then it is simpler to just take the correspond-
ing positive numbers. In fact, for this reason it is best to simply exclude negative real numbers from
our considerations here completely, and if, as a very special case, we find it convenient to multiply
things with the number −1, then that can be done at the end of our calculations.

This means that if we multiply numbers of the form zn, then we will assume that we can write
zn = rne

iθn , with −π < θn < π. Or put another way, we can write log zn = log r + iθn. This is the
principal branch of the logarithm.

Theorem 46. Let zk = xk + iyk for all k ∈ N such that if yk = 0 then xk > 0. (That is, all complex

numbers are allowed except for real numbers which are not positive.) Then we have that
∏∞

k=1 zk is

convergent if and only if
∑∞

k=1 log zn is convergent (where, of course, we take the principal branch of

the logarithm).

Proof. First assume that the sum of the logarithms converge. For example, let

lim
n→∞

n∑

k=1

log zk = α.

But then

exp(α) = lim
n→∞

exp

(
n∑

k=1

log zk

)
= lim

n→∞

n∏

k=1

zk,

so the product converges too. (Here we are simply using the fact that the exponential function is
continuous.)

Going in the other direction, assume that the product of the zk’s converges. For example, let

lim
n→∞

n∏

k=1

zk = β 6= 0.

Writing the partial products as

Pn =

n∏

k=1

zk,

we then have

lim
n→∞

Pn

β
= 1.

Of course this implies that the sequence of fractions Pm/Pn converges to 1. Therefore let N0 ∈ N be
sufficiently large that ∣∣∣∣

Pm

Pn
− 1

∣∣∣∣ <
1

2
,

for all m and n ≥ N0. In particular, for m > n ≥ N0, let Pn,m =
∏m

k=n+1 zk. Then we have |Pn,m − 1| <

1/2. This means that Re(Pn,m) > 0, that is, in particular, Pn,m = reiφ say, with −π/2 < φ < +π/2. Of
course we always have zm+1 = Pm+1/Pm so that Re(zm+1) > 0 for all m > N0 as well. Thus, choosing
log(zk) to be in the principle branch of the logarithm for all k ≥ N0, we can write

log

(
m∏

k=N0

zk

)
=

m∑

k=N0

log zk,
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and we always remain in the principal branch of the logarithm. Since

lim
m→∞

m∏

k=N0

zk =
β

∏N0−1
k=1 zk

exists, and it’s logarithm has a unique value in the principal branch for all m, we must have

∞∑

k=N0

log zk

also being convergent. Finally we can add on the finitely many terms from 1 to N0 − 1.

Of course, the logarithm always seems troublesome. Therefore the following theorem reduces
things to a level which can be more easily checked.

Theorem 47. Writing zk = 1+ak, we have
∏∞

k=1(1+ak) is absolutely convergent (that is, the sum of the

absolute values of the logarithms,
∑∞

k=1 | log(1+ ak)| is convergent) if and only if
∑∞

k=1 |ak| converges.

Proof. Begin by observing that since we have log ′
(z) = 1/z, it follows that

log ′
(1) = lim

a→0

log(1+ a)

a
= 1.

Since log ′ is a continuous function, there exists a δ > 0, such that for all |a| < δ we have

1

2
<

∣∣∣∣
log(1+ a)

a

∣∣∣∣ <
3

2
.

That is,
|a|

2
< | log(1+ a)| <

3|a|

2
.

This shows that
∑∞

k=1 | log(1+ ak)| converges if and only if the sum
∑∞

k=1 |ak| converges.

24 Infinite Products of Functions

For example, we have seen in exercise 6.3 that for z not a real integer, we have the series

∞∑

n=−∞

1

(z− n)2

converging. In fact it is absolutely convergent. Therefore, according to theorem 47, we must have

∏

n∈Z

(
1+

1

(z− n)2

)

converging, and so defining a function, for all z 6∈ Z. But is this function meromorphic? It is a small
exercise to see that the sequence of partial products is uniformly convergent on compact subsets of
C \ Z, and thus according to Weierstrass’ convergence theorem, the function is analytic in C \ Z. So
this example shows one way to proceed in this special case.

On the other hand, polynomials seem to give us a more natural basis for generating analytic
functions. Given a polynimial P(z), we can write it as

P(z) = a(a1 − z) · · · (an − z),

where a1, . . . , an are the zeros of the polynomial (perhaps some with multiplicity greater than one),
and a 6= 0 is some constant. If we generalize this to an infinite product, and if we hope that things
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will converge, then we expect the terms to converge to 1. So it is natural to write something like
this:

f(z) = α

∞∏

n=1

(
1−

z

an

)
.

If the sequence of absolute values |an| grows sufficiently rapidly, then we might expect to have
convergence. But even a simple sequence like an = n does not satisfy this property. Such consider-
ations led to Weierstrass’ product theorem.

Theorem 48 (Weierstrass). Let (an)n∈N be a sequence of complex numbers with an 6= 0 for all n, and
limn→∞ an = ∞. Then there exist integers mn ≥ 0 such that the product

Ψ(z) =

∞∏

n=1

(
1−

z

an

)
e

z
an

+···+ 1
mn

( z
an

)
mn

converges to an entire function. The set of it’s zeros is the sequence of the an (counted with their

multiplicities).

Proof. Begin by observing that for |w| < 1, we have

log(1−w) =

∞∑

k=1

−
wk

k
.

Now we choose mn, for each n, by specifying that mn is sufficiently large that

∣∣∣∣∣log(1−w) +
mn∑

k=1

wk

k

∣∣∣∣∣ <
1

2n
,

for all w with |w| < 1/2. Since limn→∞ an = ∞, we have that for any z ∈ C, there exists an Nz ∈ N

such that |an| > 2|z|, for all n ≥ Nz. Then we must have

gz(υ) =

∞∑

n=Nz

(
log

(
1−

υ

an

)
+

mn∑

k=1

1

k

(
υ

an

)k
)

being absolutely and uniformly convergent for all υ with |υ| ≤ |z|. Furthermore, as we have seen
before, since |υ/an| < 1/2, we stay in the principle branch of the logarithm in this sum.

By Weierstrass’ convergence theorem, gz is analytic for |υ| ≤ |z|, and exp ◦gz is too. But what is
exp ◦gz(υ)? We have

exp ◦gz(υ) = egz(υ) =

∞∏

n=Nz

(
1−

υ

an

)
e

υ
an

+···+ 1
mn

( υ
an

)
mn

.

This is never zero, since we always have |an| > |υ|, for n ≥ Nz. But now we multiply the remaining
Nz − 1 terms onto this function, obtaining the analytic function

Ψ(υ) =

(
Nz−1∏

n=1

(
1−

υ

an

)
e

υ
an

+···+ 1
mn

( υ
an

)
mn

)
·
(

∞∏

n=Nz

(
1−

υ

an

)
e

υ
an

+···+ 1
mn

( υ
an

)
mn

)

which, as we see, does not depend on the choice of z.

In fact, we can be more specific than this.

Corollary. Let f : C → C be a non-constant entire function. Then there exists an entire function g such

that

f(z) = zm0eg(z)
∞∏

n=1

(
1−

z

an

)
e

z
an

+···+ 1
mn

( z
an

)
mn

for an the non-zero zeros of f and m0 the order of the zero of f at 0 (m0 = 0 if there is no zero at 0).
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Proof. Writing

Ψ(z) = zm0

∞∏

n=1

(
1−

z

an

)
e

z
an

+···+ 1
mn

( z
an

)
mn

,

we have that the function given by φ(z) = f(z)/Ψ(z) is an entire function (with removable singular-
ities) with φ(z) 6= 0, for all z ∈ C. But then φ ′(z)/φ(z) is also an entire function, with antiderivative
g(z), say. Let’s look at the derivative of the function φ(z)e−g(z). We get

(
φ(z)e−g(z)

) ′

= φ ′(z)e−g(z) − φ(z)g ′(z)e−g(z) = φ ′(z)e−g(z) − φ(z)
φ ′(z)

φ(z)
e−g(z) = 0.

So φ(z)e−g(z) is a constant, which we can absorb into g in such a way that φ(z)e−g(z) = 1

A simple consequence of this theorem is that every meromorphic function defined throughout
C is a rational function. That is, let f be meromorphic, with poles a1, a2, . . . .

19 Regardless of the
way the poles are numbered, since they are isolated we must have limn→∞ an = ∞. Therefore take
the product Ψ · f, where Ψ is an entire function with the same set of zeros as f has poles (weighted
according to their orders). Thus Ψ · f is — apart from a set of isolated, removable singularities — an
entire function; call it g : C → C. Therefore we can write f = g/Ψ.

Looking at the the formula in Weierstrass’ theorem, we see that it can become a bit of a mess,
particularly when the numbers mn get larger and larger. Things are nicer if there exists a single
number m, such that Weierstrass’ theorem works with all mn ≤ m.

Definition 16. Given a countable set of non-zero complex numbers {an}, if there exists an integer

m ≥ 0 such that the product
∞∏

n=1

(
1−

z

an

)
e

z
an

+···+ 1
m ( z

an
)
m

converges, then this is called the canonical product associated with the sequence (an)n∈N. The small-

est such m is called the genus of the canonical product.

When does the canonical product exist? That is to say, for a fixed non-negative integer m, and
for each an, we have a “remainder term” of the form

rn(z) = log

(
1−

z

an

)
+

m∑

k=1

1

k

(
z

an

)k

.

Looking at the proof of Weierstrass’ theorem, we see that the canonical product (with respect to this
m) will exist if

∞∑

n=N

rn(z)

converges, for some sufficiently large N. For large enough n, we have |z| < |an|, and so

rn(z) = −

∞∑

k=m+1

1

k

(
z

an

)k

.

Therefore

|rn(z)| ≤
1

m+ 1

∣∣∣∣
z

an

∣∣∣∣
m+1

·
(
1+

∣∣∣∣
z

an

∣∣∣∣+
∣∣∣∣
z

an

∣∣∣∣
2

+ · · ·
)

=
1

m+ 1

∣∣∣∣
z

an

∣∣∣∣
m+1

·
(

1

1− |z/an|

)
.

So for a given z, and m fixed, we require that the series

∞∑

n=1

1

m+ 1

∣∣∣∣
z

an

∣∣∣∣
m+1

19Of course if there are only finitely many poles, then this is trivial. On the other hand, since the poles are isolated, there
can be at most countably many of them.
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converges. This will be true if the series

∞∑

n=1

|an|
−(m+1)

converges.

25 Some Infinite Products

Genus zero: Given a sequence of non-zero points an with
∑
1/|an| converging, we can simply say

that
∞∏

n=1

(
1−

z

an

)

gives us an example of a genus zero function with zeros just where we want them. Of course if
we also want a zero at 0, then we can multiply this product with the factor Czl say, where l is
the order of this zero, and C is a non-zero constant which we can choose as we like.

The sine function: Being more concrete, let us look at the function sinπz. According to the defini-
tion of the sine function, we have

sinπz =
eπiz − e−πiz

2i
.

But this can only be zero if eiπz = e−iπz. Writing z = x + iy, this means that e−yeiπx = eye−iπx.
In particular, y = 0 so that the zeros are just the familiar zeros which we know from real
analysis, namely the integers, Z. As we know, the series

∑
1/n2 converges, thus the complex

sine function must have genus one. Writing

sinπz = zeg(z)
∏

n 6=0

(
1−

z

n

)
ez/n,

the problem is then to determine the function g. For this, we take the logarithmic derivatives
of both sides. We obtain

π cotπz =
1

z
+ g ′(z) +

∑

n 6=0

(
1

z− n
+
1

n

)
.

So now we must think about the cotangent function.

In the exercises we have seen that

π2

sin2 πz
=

∞∑

n=−∞

1

(z− n)2
.

Taking antiderivatives of both sides, we see that

(−π cotπz) ′ =
π2

sin2 πz

and 
1
z
+

∑

n 6=0

(
1

z− n
+
1

n

)


′

=

∞∑

n=−∞

1

(z− n)2
.

(Note here that
1

z− n
+
1

n
=

z

n(z− n)

so that the sum is uniformly convergent in compact subsets of C which do not contain points
of Z, thus showing that the derivative of the sum is the sum of the derivatives.)
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Therefore

−π cotπz =
1

z
+

∑

n 6=0

(
1

z− n
+
1

n

)

︸ ︷︷ ︸
χ(z)

+ C,

where C is a constant. On the other hand, we have both cot(w) = − cot(−w) and χ(w) = −χ(−w).
That is, they are both anti-symmetric. But this can only be true if the constant C = 0. But this
implies that our function g satisfies the equation g ′(z) = 0; that is, g is a constant. Since

lim
z→0

sinπz

z
= π,

we must have eg(z) = π. Therefore, we end up with the representation

sinπz = πz
∏

n 6=0

(
1−

z

n

)
ez/n.

26 The Gamma Function: I

In the analysis lecture, we defined the gamma function for real numbers x > 1 using the improper
integral

Γ(x) =

∫∞

0

e−ttx−1dt.

We can do the same thing here in the realms of complex analysis. Just substitute the complex
number z for the real number x in the formula. Using the same argument as in the real case, we
find that the integral converges if Re(z) > 1. But by doing this, we miss out on the fact that the
gamma function can be defined everywhere in C (with isolated poles). Of course it is again possible
to look at the functional equation for the gamma function, then bring in analytic continuation. But
this is a rather complicated manipulation! In reality, an infinite product representation is simpler.

Let’s begin by looking at the following function

G(z) =

−∞∏

n=−1

(
1−

z

n

)
e

z
n =

∞∏

n=1

(
1+

z

n

)
e−

z
n .

We will be using the second expression here, although the first expression shows that we can apply
theorem 48 and conclude that the product does converge to an entire function, whose zeros are
simply the set of negative real integers. Taking a look at the product representation of the sine
function which we obtained in the last section, we see that

zG(z)G(−z) =
sinπz

π
.

The function zG(z) obviously has as it’s zeros the negative real integers, and also 0. But then, if
we take the function G(z − 1), we see that it also has the negative real integers and 0 as it’s set of
zeros. Since all of these zeros are simple zeros for both functions, we have

G(z− 1)

zG(z)

being an entire function which is never zero. It is now an exercise to show that there must exist an
entire function γ : C → C such that

zeγ(z)G(z) = G(z− 1)

for all z ∈ C.

39



Let’s take the logarithmic derivative on both sides of the equation. We get

1

z
+ γ ′(z) +

∞∑

n=1

(
1

z+ n
−
1

n

)
=

∞∑

n=1

(
1

z− 1+ n
−
1

n

)

=
1

z
− 1+

∞∑

n=1

(
1

z+ n
−

1

n+ 1

)

=
1

z
− 1+

∞∑

n=1

(
1

z+ n
−
1

n

)
+

∞∑

n=1

(
1

n
−

1

n+ 1

)

=
1

z
− 1+

∞∑

n=1

(
1

z+ n
−
1

n

)
+ 1

=
1

z
+

∞∑

n=1

(
1

z+ n
−
1

n

)
.

Note that here
1

n
−

1

n+ 1
=

1

n(n+ 1)
<
1

n2
,

so the sum is certainly absolutely convergent and thus the third equation is valid. But this means
that γ ′(z) = 0, that is, γ(z) is a constant, which we simply denote by γ. In fact it is Euler’s constant.

To see this, consider the case z = 1. From the formula defining G, we certainly have G(0) = 1.
Therefore G(0) = 1 = eγG(1), or20

e−γ = G(1) =

∞∏

k=1

(
1+

1

k

)
e−

1
k = lim

n→∞

n∏

k=1

(
1+

1

k

)
e−

1
k = lim

n→∞
(n+ 1)e−(1+ 1

2
+ 1

3
+···+ 1

n
).

Therefore

γ = lim
n→∞

(
1+

1

2
+
1

3
+ · · ·+ 1

n
− logn

)
.

So G is an entire function satisfying the functional equation G(z−1) = zeγG(z). In order to improve
the appearance of things, let us define H(z) = G(z)ez·γ. Then we have the functional equation

H(z− 1) = zH(z).

This is beginning to look like the functional equation for the gamma function, but unfortunately (or
fortunately?) it is going in the “wrong” direction. To fix this up, we take

Γ(z) =
1

zH(z)
,

giving us Euler’s gamma function

Γ(z+ 1) = zΓ(z).

Thus

Γ(z) =
e−z·γ

z

∞∏

n=1

(
1+

z

n

)−1

e
z
n .

20Note here that we have
n∏

k=1

(

1 +
1

k

)

= n + 1.

This is easily proved using induction on n. The inductive step is to observe that

(n + 1)

(

1 +
1

n + 1

)

= n + 1 +
n

n + 1
+

1

n + 1
= (n + 1) + 1.

40



From the construction, we see that it has simple poles at the negative integers, and at 0, but it has
no zeros. Also, looking at the equation for the sine function, we can express this in terms of the
gamma function:

Γ(z)Γ(1− z) =
π

sinπz
.

In particular, we have
Γ(1/2) =

√
π.

27 The Gamma Function: II

But what is the relationship with the formula

Γ(x) =

∫∞

0

e−ttx−1dt,

for x a real number greater than 1, which we used in the analysis lectures? Going from real to
complex numbers, let us write z = x+ iy. Then we have

∣∣tz−1
∣∣ =

∣∣∣e((x−1)+iy) log(t)
∣∣∣ =

∣∣∣e(x−1) log(t) · eiy log(t)
∣∣∣ =

∣∣∣e(x−1) log(t)
∣∣∣ =

∣∣tx−1
∣∣ .

Therefore — as we saw in Analysis I — the integral defining the gamma function will again converge
when x > 1; for x < 1 it diverges.

As an exercise, we see that for z = x+ iy and x > 0, we have

∫n

0

(
1−

t

n

)n

tz−1dt =
nzn!

z(z+ 1) · · · (z+ n) ,

for all n ∈ N. Since

lim
n→∞

(
1−

t

n

)n

= e−t,

we therefore21 get

Γ(z) = lim
n→∞

∫n

0

(
1−

t

n

)n

tz−1dt = lim
n→∞

nzn!

z(z+ 1) · · · (z+ n) .

This is another standard formula for the gamma function, and in fact it is valid as long as Re(z) > 0.
But we still haven’t shown that it is the same gamma function as that which was defined in the
previous section.

For each n ∈ N, let

gn(z) =
z(z+ 1) · · · (z+ n)

n!nz
.

This is obviously an entire function. On the other hand, at least for Re(z) > 0, we have

Γ(z) = lim
n→∞

1

gn(z)
.

So the question is, what is this limit? Begin by making things look somewhat more complicated:

gn(z) = ze
z(1+ 1

2
+···+ 1

n
−log(n))

n∏

k=1

((
1+

z

k

)
e−

z
k

)
.

21For 0 ≤ t ≤ n we have
(

1 −
t

n

)n

≤ e−t.

This can be seen by taking the logarithm. We have

log

(

1 −
t

n

)n

= −

∞∑

k=1

1

k

(

t

n

)k

≤ −t = log
(

e−t
)

.
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Therefore

lim
n→∞

gn(z) = ze
z·γ

∞∏

k=1

(
1+

z

k

)
e−

z
k = zez·γG(z) = zH(z),

and we see the connection with the definition in the previous section.
As a final remark before proceeding with Stirling’s formula, I should mention that Legendre

introduced the beta function, which is

β(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
.

This seems to be used these days in computer algebra programs. Also, when on that subject, one
finds many interesting and obscure formulas related to the gamma function. (You can also look in
books containing tables of mathematical formulas.) One such formula which caught my eye is the
following. Let n ∈ N. Then

Γ
(n
2

)
=

(n− 2)!!
√
π

2(n−1)/2
.

Here n!! is the double factorial. That is

n!! =






n(n− 2) · · · 5 · 3 · 1, n > 0 and odd,

n(n− 2) · · · 6 · 4 · 2, n > 0 and even,

1, n = 0,−1.

28 Stirling’s Formula

The functional equation for the gamma function, Γ(z+ 1) = zΓ(z), together with the observation that
Γ(1) = 1, shows that for all n ∈ N, we have Γ(n+ 1) = n!. In the analysis lecture, I gave a very simple
approximation to the gamma function. Namely, for large integers n, we have n! ≈ nne−n. But this
is really a very inexact approximation, which we were able to derive with hardly any thought at all.
In this section, we will be looking at the “genuine” Stirling formula. It is

Γ(z) ∼ zz−1/2e−z
√
2π.

More specifically, we prove that

log Γ(z) =

(
z−

1

2

)
log z− z+

1

2
log 2π−

∫∞

0

P1(t)

z+ t
dt,

where P1(t) = t − [t] − 1/2, and [t] is the largest integer which is less than or equal to t. Of course
we take the principle value of the logarithm here. The fact that, as long as z is not a negative real
number, the integral on the right-hand side of the equation goes to zero as |z| → ∞, shows that

lim
|z|→∞

zz−1/2e−z
√
2π

Γ(z)
= 1

(at least if we stay away from the negative real numbers). In fact we will show that for a given fixed
δ between 0 and π, we have that P1(z) falls uniformly to 0, for z = reiθ and |θ| ≤ π− δ.

Lemma 1 (Euler’s Summation formula). Let f : R → R be continuously differentiable (in the sense of

real analysis). Then
n∑

k=0

f(k) =

∫n

0

f(t)dt+
1

2
(f(n) + f(0)) +

∫n

0

P1(t)f
′(t)dt.

Proof. For k an integer, using partial integration and the observation that P ′
1(t) = 1 when t 6∈ Z, we

have ∫k

k−1

P1(t)f
′(t)dt =

P1(k)f(k) + P1(k− 1)f(k− 1)

2
−

∫k

k−1

f(t)dt.

Taking the sum from k = 1 to n then gives the result.
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Similarly we have

Lemma 2. Assume z is not a negative real number or zero. Let P2(t) = t∗(t∗ − 1)/2, where t∗ = t − [t]

for t ∈ R. Then we have

Φ(z) =

∫∞

0

P1(t)

z+ t
dt =

∫∞

0

P2(t)

(z+ t)2
dt.

The function Φ which is so defined is analytic in C (minus the negative reals and 0).

Proof. Using partial integration22, we have

∫k

k−1

P1(t)

z+ t
dt =

∫k

k−1

P2(t)

(z+ t)2
dt,

for each k ∈ N.Let us take z = x+ iy, with y 6= 0. Then we have

∣∣∣∣
∫∞

0

P1(t)

z+ t
dt

∣∣∣∣ ≤
∫∞

0

∣∣∣∣
P2(t)

(z+ t)2

∣∣∣∣dt

≤
∫∞

0

∣∣∣∣
1

(z+ t)2

∣∣∣∣dt

=

∫∞

0

dt

y2 + (t+ x)2

=

∣∣∣∣
∫−x

0

dt

y2 + (t+ x)2

∣∣∣∣
︸ ︷︷ ︸

K

+

∫∞

−x

dt

y2 + (t+ x)2

= K+

∫∞

0

dt

y2 + t2
= K+

1

y2

∫∞

0

dt

1+
(

t
y

)2 = K+
1

y

∫∞

0

dt

1+ t2
= K+

π

2y

where K is a finite number. (When z is a positive real number, the integral obviously also converges.)
Thus we can use Weierstrass’ convergence theorem — on the integrals between successive integers
— to conclude that Φ is an analytic function.

Lemma 3. We have

lim
y→∞

∫∞

0

P1(t)

iy+ t
dt = 0.

Proof. This follows from the previous lemma, since then K = 0 and π/2y→ 0, when y→ ∞.

So now that we have looked at these lemmas, let us begin proving Stirling’s formula. It involves
the standard, rather awkward problem of the logarithms. So to avoid this, let us first take the case
that z is just a positive real number. That is, we take z = x+i ·0, and we set about examining log Γ(x).
Obviously Γ(x) > 0, so we can use the simple, real logarithm function. The antiderivative of log(x) is

22Here we are using the quotient rule to obtain the following derivative:

(

t(t − 1)

2(z + t)

)

′

=
2t − 1

2(z + t)
−
2t(t − 1)

4(z + t)2
.
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x log(x) − x. Therefore, using lemma 1, we see that for n ∈ N we have

log
x(x+ 1) · · · (x+ n)

n!nx
=

n∑

k=0

log(x+ k) −

n∑

k=0

log(k+ 1) + log(n+ 1) − x log(n)

=

∫n

0

log(x+ t)dt−

∫n

0

log(t+ 1)dt+
1

2
(log(x+ n) + log(x) − log(n+ 1))

+ log(n+ 1) − x log(n) +

∫n

0

P1(t)

x+ t
dt−

∫n

0

P1(t)

t+ 1
dt

= (x+ n) log(x+ n) − (x+ n) − x log(x) + x− (n+ 1) log(n+ 1) + (n+ 1) − 1

+ log(n+ 1) − x log(n) +
1

2
(log(x+ n) + log(x) − log(n+ 1))

+

∫n

0

P1(t)

x+ t
dt−

∫n

0

P1(t)

t+ 1
dt

At this stage, we note that

x log(x+ n) = x logn
(
1+

x

n

)
= x logn+ x log

(
1+

x

n

)
.

Furthermore, for n > x we have

log
(
1+

x

n

)
=
x

n
−
1

2

( x
n

)2
+ · · · .

Therefore, we get relations such as

lim
n→∞

n log
(
1+

x

n

)
= x.

After an unpleasant calculation (which I will not reproduce here in TEX), using the expression for
Γ(x) which was found in the previous section, we end up with the equation

log Γ(x) =

(
x−

1

2

)
log x− x−Φ(x) + 1+

∫n

0

P1(t)

t+ 1
dt.

Lemma 2 shows that the last expression,

1+

∫n

0

P1(t)

t+ 1
dt,

is simply some constant real number, let’s call it C. But then we see that the left-hand side of
the equation, namely log Γ(x) is just the restriction to the positive real numbers of an analytic
function which is defined in the region consisting of C with the negative real numbers and 0 removed.
Similarly the right-hand side, namely x log x− (log x)/2− x−Φ(x) +C is the restriction to the positive
real numbers of another analytic function which is defined in the same region. Since both of these
functions coincide on the positive real numbers, they must be same analytic function.

So the only remaining problem is to find out what the value of C is. Writing

Γ(1− z) = −zΓ(−z),

we have

Γ(z)Γ(−z) = −
Γ(z)Γ(1− z)

z
= −

π

z sinπz
.

Choosing in particular z = 0+ i · y, we observe23 that |Γ(iy)| = |Γ(−iy)|. Therefore

|Γ(iy)| =

√
2π

y (eπy − e−πy)
.

23For example, we can use the expression

Γ(z) = lim
n→∞

nzn!

z(z + 1) · · · (z + n) .
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Since C ∈ R we must have

C = Re

(
log Γ(iy) −

(
iy−

1

2

)
log(iy) + iy+Φ(iy)

)
.

This is true for all y > 0, no matter how large. But according to lemma 3, we have limy→∞Φ(iy) = 0.
For the rest, we should remember that for a complex number of the form reiθ, we have

Re
(
log(reiθ)

)
= Re(log r+ iθ) = log r.

Therefore

C = lim
y→∞

(
log(|Γ(iy)|) +

1

2
log(y) +

πy

2

)
= lim

y→∞
log

√
2πyeπy

y (eπy − e−πy)
=
1

2
log(2π).

29 The Order of an Entire Function

Theorem 49. Let f : C → C be an entire function. Assume that there exist real constants C > 0, λ > 0,

such that Re(f(z)) ≤ C(1+ |z|λ), for all z ∈ C. Then f is a polynomial, at most of degree [λ].

Proof. To begin with, we know that, for k, l ∈ Z, we have
∫2π

0

cos(kθ) sin(lθ) = 0

and ∫2π

0

cos(kθ) cos(lθ) =

∫2π

0

sin(kθ) sin(lθ) =

{
0, k 6= l
π, k = l.

If f(0) 6= 0, then we can just substitute the function f − f(0) for f. Thus we can assume without
loss of generality that f(0) = 0. Developing f in a power series around 0, we write

f(z) =

∞∑

n=1

(an + ibn)z
n

where an and bn are real numbers. Therefore

Re(f(z)) =

∞∑

n=1

rn(an cos(nθ) − bn sin(nθ)),

where z = reiθ. So for each k ∈ N we have
∫2π

0

cos(kθ)Re(f(z))dθ = akr
kπ.

Similarly ∫2π

0

sin(kθ)Re(f(z))dθ = bkr
kπ.

But also (recalling theorem 7) ∫2π

0

Re(f(z))dθ = f(0) = 0.

Therefore we get

|ak| ≤ 1

πrk

∫2π

0

|Re(f(z))|dθ

=
1

πrk

∫2π

0

(|Re(f(z))|+ Re(f(z)))dθ

=
2

πrk

∫2π

0

max(Re(f(z)), 0)dθ

≤ 4C(1+ rλ)

rk
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Therefore, taking r → ∞, we see that if k > λ then ak = 0. An analogous argument shows also that
bk = 0.

Definition 17. An entire function f is said to have finite order if there exists some real number ρ > 0,

and a constant C > 0, such that

|f(z)| ≤ Ce|z|ρ ,
for all z ∈ C. The infimum over all such ρ is the order of f. That is to say, α is the order of f if

|f(z)| ≤ Ce|z|α+ǫ

for all ǫ > 0 and z ∈ C. If |f(z)| ≤ Ce|z|α for all z ∈ C then α is the strict order of f.

Theorem 50. Let f be an entire function of finite order with no zeros. Then f = eg, where g is a

polynomial whose degree is the order of f.

Proof. According to exercise 12.1, given f, then there exists an entire function g with f = eg. But
then we must have

|f(z)| =
∣∣∣eg(z)

∣∣∣ =
∣∣∣eRe(g(z))+iIm(g(z))

∣∣∣ =
∣∣∣eRe(g(z))

∣∣∣
∣∣∣eiIm(g(z))

∣∣∣ =
∣∣∣eRe(g(z))

∣∣∣ .

So Re(g(z)) ≤ |z|α if α is the order of f, and therefore the result follows from theorem 49.

Going beyond this, we would like to think about entire functions of finite order, but with zeros.
This leads us to Hadamard’s theorem. But before we arrive there, let us think about Jensen’s
formula.

30 Jensen’s Formula

But before doing that, we look at the easier Jensen’s inequality.

Theorem 51 (Jensen’s Inequality). Let R > 0 be given and let the (non-constant) analytic function f

be defined in a region containing the closed disc DR = {z ∈ C : |z| ≤ R}. Assume f(0) 6= 0 and also

f(z) 6= 0 for all z with |z| = R. Let the zeros of f in DR be z1, . . . , zn. (Here a zero is listed m times if it is

a zero of order m.) We assume the zeros are ordered according to their increasing absolute value. Let

‖f‖R = max{|f(z)| : |z| = R}. Then we have

|f(0)| ≤ ‖f‖R
Rn

|z1 · · · zn|.

More generally, thinking about various values of R, let vf(R) = n be the number of zeros of f in DR,

where R, thus n, is allowed to vary. Then we have Jensen’ inequality:

∫R

0

vf(t)

t
dt ≤ log ‖f‖R − log |f(0)|.

Proof. Consider the function

g(z) = f(z)

n∏

k=1

R2 − zz̄k

R(z− zk)
.

It is obviously analytic in DR. Furthermore, we have |g(z)| = |f(z)| when |z| = R. This implies24 that
|g(w)| ≤ ‖f‖R for all w ∈ DR. Therefore

|g(0)| =

∣∣∣∣∣f(0)
n∏

k=1

R

zk

∣∣∣∣∣ ≤ ‖f‖R.

Taking logarithms of these real numbers, we have

log
Rn

|z1 · · · zn|
=

n∑

k=1

(logR− log |zk|) =

n∑

k=1

∫R

|zk|

dt

t
=

∫R

0

vf(t)

t
dt ≤ log ‖f‖R − log |f(0)|.

24If we had a point w∗ in the interior of DR with |g(w∗)| > ‖f‖R, then we can assume that it is maximal with respect to this
property. However, that would contradict theorem 19.
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Theorem 52 (Jensen’s Formula). The same assumptions as in the previous theorem. Then we have

1

2π

∫2π

0

log |f(Reiθ|dθ = log |f(0)|+

n∑

k=1

log
R

|zk|
.

Proof. In this proof, we will first look at two very simple cases:

1. We first prove Jensen’s formula in the simple case that there are no zeros of f in DR. Then
again, as in exercise 12.1, we have an analytic function g, defined in a neighborhood of DR,
with f = eg. Or put another way, g = log f. (To be definite, we could specify that log f(0) should
be in the principle branch of the logarithm.) Then Cauchy’s formula is simply

log f(0) =
1

2πi

∫

|z|=R

log f(z)

z
dz =

1

2π

∫2π

0

log f(Reiθ)dθ.

Taking the real part, we get

| log f(0)| =
1

2π

∫2π

0

Re(log f(Reiθ))dθ =
1

2π

∫2π

0

log |f(Reiθ))|dθ,

which establishes the theorem in this first case.

2. The second case is even simpler. Namely, let ζ be a complex number with |ζ| < R. That is, ζ is
some point in the interior of DR. This second case is that the function f is simply f(z) = z − ζ.
We then define a new function, namely

Q(z) =
f(z)

R2 − zζ̄
=

z− ζ

R2 − zζ̄
.

For |z| = R, we have zz̄ = R2, so that then

|Q(z)| =

∣∣∣∣
z− ζ

z(z̄− ζ̄)

∣∣∣∣ =
1

R
.

Thus
1

2π

∫2π

0

log
∣∣Q(Reiθ)

∣∣dθ =
1

2π

∫2π

0

log

(
1

R

)
dθ = − logR.

On the other hand, remembering that f(z) = z− ζ, we have25

1

2π

∫2π

0

log
∣∣Q(Reiθ)

∣∣dθ =
1

2π

∫2π

0

log
∣∣f(Reiθ)

∣∣dθ− 1

2π

∫2π

0

log
∣∣R2 − zζ̄

∣∣dθ

=
1

2π

∫2π

0

log
∣∣f(Reiθ)

∣∣dθ− logR2

=
1

2π

∫2π

0

log
∣∣f(Reiθ)

∣∣dθ− 2 logR.

But this means26 that we have

1

2π

∫2π

0

log
∣∣f(Reiθ)

∣∣dθ = logR = log
R|ζ|

|ζ|
= log

(
|f(0)| · R

|ζ|

)
= log |f(0)|+ log

R

|ζ|
.

So the theorem is established in the case f(z) = z− ζ.

The more general case is that there are the zeros z1, . . . , zn in DR. In this case, we have

f(z) = (z− z1) · · · (z− zn)F(z),

where F has no zeros in DR. Taking the logarithm of the product gives a sum, thus establishing the
theorem in the general case as well.

25Note that for the second equation here, we are using the result of case 1. of our proof. Obviously the function (of z) given
by R2 − zζ̄ has no zeros in BR.

26Remember that |f(0)| = |0 − ζ| = |ζ|.
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31 Functions of Finite Order With Zeros

Theorem 53. Let f be an entire function of strict order α. Then there exists a C > 0 such that, for all

R > 0 and DR = {z ∈ C : |z| ≤ r}, we have

vf(R) ≤ CRα,
where vf(R) is the number of zeros of f in DR.

Proof. Assume first that f(0) 6= 0. According to Jensen’s inequality (leaving out the part where we
integrate from 0, and remembering that |f(z)| ≤ Ke|z|α , for some K > 0), we have, for R > 1

∫2R

R

vf(t)

t
dt ≤ log ‖f‖2R ≤ logKe(2R)

α

= 2αRα logK.

However,

vf(R) log 2 = vf(R)

∫2R

R

dt

t
≤

∫2R

R

vf(t)

t
dt.

Finally, if we do have f(0) = 0, then take g(z) = f(z)/zm, where m is the order of the zero at 0. Then
the theorem will apply to g, and since m is then fixed, to f as well.

Theorem 54. Again, f is an entire function of strict order α with zeros {zn}, listed (with multiplicity) in

order of increasing absolute value. We assume that f(0) 6= 0. Then for every δ > 0 we have the series

∑
|zn|

−α−δ

converging.

Proof. Using partial summation27 and the previous theorem, where we assume that R ∈ N, we have

∑

|zn|≤R

|zn|
α+δ ≤

R∑

k=1

vf(k+ 1) − vf(k)

kα+δ

=
vf(R+ 1)

(R+ 1)α+δ
−
vf(1)

1α+δ
−

R∑

k=1

vf(k)
(
(k+ 1)α+δ − kα+δ

)

=
vf(R+ 1)

(R+ 1)α+δ
− vf(1) +

R∑

k=1

1

α+ δ

∫k+1

k

vf(k)

tα+δ+1
dt

≤ vf(R+ 1)

(R+ 1)α+δ
− vf(1) +

1

α+ δ

R∑

k=1

vf(k)

kα+δ+1

≤ CR−δ − vf(1) +
C

α+ δ

R∑

k=1

1

k1+δ
,

and this last sum is convergent.

This, combined with the discussion concerning the genus of a canonical product of discrete
elements of C (see section 24), leads to:

Corollary (Hadamard). Let f be an entire function of finite order α with zeros {zn}n∈N. Then

f(z) = zmeg(z)
∞∏

n=1

(
1−

z

zn

)
e

z
zn

+···+ 1
m∗

( z
zn

)
m∗

,

where m is the order of the zero at 0, g is a polynomial of degree at most α, and m∗ > α− 1.

27That is, given two sequences, am, . . . , an+1 and bm, . . . , bn+1, we have

n∑

k=m

ak(bk+1 − bk) = [an+1bn+1 − ambm] −

n∑

k=m

bk+1(ak+1 − ak).
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