Complex Analysis: Exercise 1

- 1. What is \sqrt{i} ?
- 2. Show that the function f(z) = 1/z is analytic in the region $\mathbb{C} \setminus \{0\}$.
- 3. For which $z \in \mathbb{C}$ do the following infinite sums converge?

(a)
$$\sum_{n=0}^{\infty} \left(\frac{z}{z+1}\right)^n$$

$$\sum_{n=0}^{\infty} n^{z}$$

4. Let $G \subset \mathbb{C}$ be an open subset of the complex plane. Given $u, v \in G$, a *path* in G from u to v is a continuous mapping of the unit interval $\gamma: [0,1] \to G$ such that $\gamma(0)=u$ and $\gamma(1)=v$. Let $z_0 \in G$ be some particular point in G. Let G_0 be the set of points w in G such that there exists a path in G from z_0 to w. Let G_1 be the set of points of G which are not in G_0 . (That is, $G_1 = G \setminus G_0$.) Show that both G_0 and G_1 are open sets in \mathbb{C} .