Complex Analysis: Exercise 10

- 1. Let $g, h: \mathbb{C} \to \mathbb{C}$ be analytic functions which are both not constant. Then f(z) = g(z)/h(z) defines a meromorphic function, possibly with isolated zeros and poles. Assume f has no poles on the positive real number line. Assume furthermore that there exist two numbers λ_1 and λ_2 , with $0 < \lambda_1 < 1$ and $0 < \lambda_2 < 1$, such that for sufficiently small positive real numbers x>0, we have $f(x)< x^{-\lambda_1}$ and for sufficiently large x, we have $f(x)< x^{\lambda_2}$. Let $0 \le \varphi < \pi/2$ and assume that there are no poles of f on the line given by $te^{i\varphi}$, where $0 < t < \infty$.
 - Show that $\int_0^\infty f(te^{i\varphi})e^{i\varphi}dx$ exists.
 - \bullet Show that for sufficiently small $\varphi,$ we have

$$\lim_{\Phi \to 0} \int_0^\infty f(te^{i\Phi})e^{i\Phi}dx = \int_0^\infty f(x)dx.$$

2. In theorem 39, we looked at the function $x^{\lambda}R(x)$, and found that it was possible to evaluate the integral

$$\int_0^\infty x^{\lambda} R(x) dx$$

by following a closed curve, consisting of four segments, then using the residue theorem. For this exercise, assume as in theorem 39 that R has no poles on the non-negative real numbers, and it has a zero of order at least two at infinity. But this time, consider the function $\log(z) \cdot R(z)$, rather than $x^{\lambda}R(x)$. Show that by doing so, and using the calculus of residues, it is possible to evaluate the integral

$$\int_0^\infty R(x)dx.$$