Complex Analysis: Exercise 11

1. Prove that the function

$$\frac{\pi^2}{\sin^2 \pi^2}$$

is analytic everywhere in $\mathbb{C}\setminus\mathbb{Z},$ and the points of \mathbb{Z} are isolated poles of the function.

2. Show that the function

$$g(z) = \frac{\pi^2}{\sin^2 \pi z} - \sum_{n = -\infty}^{\infty} \frac{1}{(z - n)^2}$$

has removable singularities at all points of \mathbb{Z} , so that we can take g to be an entire function $g:\mathbb{C}\to\mathbb{C}$.

3. Show that for z = x + iy, we have both

$$\lim_{y \to \pm \infty} \frac{\pi^2}{\sin^2 \pi z} = 0$$

and

$$\lim_{y \to \pm \infty} \sum_{n = -\infty}^{\infty} \frac{1}{(z - n)^2} = 0.$$

4. Why must we then have g(z) = 0, for all z?