Complex Analysis: Exercise 2

1. Assume we have two power series, $\sum_{n=0}^{\infty}a_nz^n$ and $\sum_{n=0}^{\infty}b_nz^n$, both of which converge within a circle of radius R>0. Assume that

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} b_n z^n,$$

for all z with |z| < R. Show that $a_n = b_n$ for all n.

2. Let $G=\mathbb{C}\setminus\{0\}$ and let $\gamma:[0,1]\to G$ be a continuous closed path. (Thus, in particular, $\gamma(0)=\gamma(1)$.) For each $t\in[0,1]$, let

$$\varphi(t) = \frac{\gamma(t)}{|\gamma(t)|}.$$

Therefore ϕ is a path on the unit circle in \mathbb{C} . Show that ϕ can only make a finite, well defined number of circuits of the circle (the *winding number*).

3. Let f be analytic in the region G and let $\gamma_1:[a_1,b_1]\to G$ and $\gamma_2:[a_2,b_2]\to G$ be two continuously differentiable paths in G. Assume there exists a continuously differentiable mapping $\varphi:[a_1,b_1]\to [a_2,b_2]$ such that $\gamma_1(t)=\gamma_2(\varphi(t))$, for all $t\in [a_1,b_1].^1$ Do we then have

$$\int_{\alpha_1}^{b_1} f(\gamma_1(t)) \gamma_1'(t) dt = \int_{\alpha_2}^{b_2} f(\gamma_2(t)) \gamma_2'(t) dt?$$

- 4. Let G be a region, and let $f : G \to \mathbb{C}$ be analytic. Assume that for some particular $z_0 \in G$ we have both $f(z_0) = 0$ and $f'(z_0) \neq 0$.
 - (a) Show that there exists an $\epsilon > 0$ such that for all z with

$$|z-z_0|=\epsilon$$
,

we have $z \in G$ and also $f(z) \neq 0$.

(b) Show that for sufficiently small $\varepsilon > 0$ we have

$$\int_{|z-z_0|=\varepsilon} \frac{\mathrm{d}z}{\mathsf{f}(z)} = \frac{2\pi \mathrm{i}}{\mathsf{f}'(z_0)}.$$

¹Assume also that $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$.