Complex Analysis: Exercise 5

1. Let

$$\mathsf{P}(z) = \sum_{k=0}^n \mathfrak{a}_k z^k$$

be a polynomial of degree $n\geq 1$ (so that $a_n\neq 0$). We have seen that there exists an R>0 such that

$$|\mathsf{P}(z)| \ge |z|^n \frac{|\mathfrak{a}_n|}{2}$$

for $|z| \geq R.$ Going in the other direction, does there exist an r > 0 and a constant M > 0 such that

$$\left| \mathsf{P}\left(\frac{1}{z}\right) \right| \le \mathsf{M}$$

for $|z| \ge r$?

2. We have seen that two analytic functions f and g defined in a common region $G \subset \mathbb{C}$ are identical if the set of points where f and g correspond (that is, the set $\{z \in G : f(z) = g(z)\}$) has an accumulation point *within* G.

But, for example, thinking about the set of real numbers

$$\{1/n : n \ge 2\} \subset (0,1)\},\$$

we see that there can be an accumulation point *outside* G. Can you find two *different* analytic functions in a region $G \subset \mathbb{C}$ such that the set $\{z \in G : f(z) = g(z)\}$ has an accumulation point in \mathbb{C} ?

3. What is

$$\int_{|z|=1} \log z dz?$$