
Linear Algebra in Physics
(Summer Semester, 2006)

1 Introduction

The mathematical idea of a vector plays an important role in many areas of physics.

• Thinking about a particle traveling through space, we imagine that its speed
and direction of travel can be represented by a vector v in 3-dimensional
Euclidean space R3. Its path in time t might be given by a continuously
varying line — perhaps with self-intersections — at each point of which we
have the velocity vector v(t).

• A static structure such as a bridge has loads which must be calculated at
various points. These are also vectors, giving the direction and magnitude of
the force at those isolated points.

• In the theory of electromagnetism, Maxwell’s equations deal with vector fields
in 3-dimensional space which can change with time. Thus at each point of space
and time, two vectors are specified, giving the electrical and the magnetic fields
at that point.

• Given two different frames of reference in the theory of relativity, the trans-
formation of the distances and times from one to the other is given by a linear
mapping of vector spaces.

• In quantum mechanics, a given experiment is characterized by an abstract
space of complex functions. Each function is thought of as being itself a kind
of vector. So we have a vector space of functions, and the methods of linear
algebra are used to analyze the experiment.

Looking at these five examples where linear algebra comes up in physics, we
see that for the first three, involving “classical physics”, we have vectors placed at
different points in space and time. On the other hand, the fifth example is a vector
space where the vectors are not to be thought of as being simple arrows in the
normal, classical space of everyday life. In any case, it is clear that the theory of
linear algebra is very basic to any study of physics.

But rather than thinking in terms of vectors as representing physical processes, it
is best to begin these lectures by looking at things in a more mathematical, abstract
way. Once we have gotten a feeling for the techniques involved, then we can apply
them to the simple picture of vectors as being arrows located at different points of
the classical 3-dimensional space.

2 Basic Definitions

Definition. Let X and Y be sets. The Cartesian product X × Y , of X with Y is
the set of all possible pairs (x, y) such that x ∈ X and y ∈ Y .
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Definition. A group is a non-empty set G, together with an operation1, which is a
mapping ‘ · ’ : G×G→ G, such that the following conditions are satisfied.

1. For all a, b, c ∈ G, we have (a · b) · c = a · (b · c),

2. There exists a particular element (the “neutral” element), often called e in
group theory, such that e · g = g · e = g, for all g ∈ G.

3. For each g ∈ G, there exists an inverse element g−1 ∈ G such that g · g−1 =
g−1 · g = e.

If, in addition, we have a · b = b · a for all a, b ∈ G, then G is called an “Abelian”
group.

Definition. A field is a non-empty set F , having two arithmetical operations, de-
noted by ‘+’ and ‘·’, that is, addition and multiplication2. Under addition, F is an
Abelian group with a neutral element denoted by ‘0’. Furthermore, there is another
element, denoted by ‘1’, with 1 6= 0, such that F \ {0} (that is, the set F , with
the single element 0 removed) is an Abelian group, with neutral element 1, under
multiplication. In addition, the distributive property holds:

a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c,

for all a, b, c ∈ F .

The simplest example of a field is the set consisting of just two elements {0, 1}
with the obvious multiplication. This is the field Z/2Z. Also, as we have seen in
the analysis lectures, for any prime number p ∈ N, the set Z/pZ of residues modulo
p is a field.

The following theorem, which should be familiar from the analysis lectures, gives
some elementary general properties of fields.

Theorem 1. Let F be a field. Then for all a, b ∈ F , we have:

1. a · 0 = 0 · a = 0,

2. a · (−b) = −(a · b) = (−a) · b,

3. −(−a) = a,

4. (a−1)−1 = a, if a 6= 0,

5. (−1) · a = −a,

6. (−a) · (−b) = a · b,

7. a · b = 0⇒ a = 0 or b = 0.

1The operation is usually called “multiplication” in abstract group theory, but the sets we will
deal with are also groups under “addition”.

2Of course, when writing a multiplication, it is usual to simply leave the ‘·’ out, so that the
expression a · b is simplified to ab.
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Proof. An exercise (dealt with in the analysis lectures).

So the theory of abstract vector spaces starts with the idea of a field as the
underlying arithmetical system. But in physics, and in most of mathematics (at
least the analysis part of it), we do not get carried away with such generalities.
Instead we will usually be confining our attention to one of two very particular fields,
namely either the field of real numbers R, or else the field of complex numbers C.

Despite this, let us adopt the usual generality in the definition of a vector space.

Definition. A vector space V over a field F is an Abelian group — with vector
addition denoted by v + w, for vectors v,w ∈ V. The neutral element is the “zero
vector” 0. Furthermore, there is a scalar multiplication F ×V → V satisfying (for
arbitrary a, b ∈ F and v,w ∈ V):

1. a · (v + w) = a · v + a ·w,

2. (a + b) · v = a · v + b · v,

3. (a · b) · v = a · (b · v), and

4. 1 · v = v for all v ∈ V.

Examples

• Given any field F , then we can say that F is a vector space over itself. The
vectors are just the elements of F . Vector addition is the addition in the field.
Scalar multiplication is multiplication in the field.

• Let Rn be the set of n-tuples, for some n ∈ N. That is, the set of ordered lists
of n real numbers. One can also say that this is

R
n = R× R× · · · ×R

︸ ︷︷ ︸

n times

,

the Cartesian product, defined recursively. Given two elements

(x1, · · · , xn) and (y1, . . . , yn)

in R
n, then the vector sum is simply the new vector

(x1 + y1, · · · , xn + yn).

Scalar multiplication is

a · (x1, · · · , xn) = (a · x1, · · · , a · xn).

It is a trivial matter to verify that R
n, with these operations, is a vector space

over R.
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• Let C0([0, 1], R) be the set of all continuous functions f : [0, 1]→ R. This is a
vector space with vector addition

(f + g)(x) = f(x) + g(x),

for all x ∈ [0, 1], defining the new function (f + g) ∈ C0([0, 1], R), for all
f, g ∈ C0([0, 1], R). Scalar multiplication is given by

(a · f)(x) = a · f(x)

for all x ∈ [0, 1].

3 Subspaces

Let V be a vector space over a field F and let W ⊂ V be some subset. If W is itself
a vector space over F , considered using the addition and scalar multiplication in V,
then we say that W is a subspace of V. Analogously, a subset H of a group G, which
is itself a group using the multiplication operation from G, is called a subgroup of
G. Subfields are similarly defined.

Theorem 2. Let W ⊂ V be a subset of a vector space over the field F . Then

W is a subspace of V⇔ a · v + b ·w ∈W,

for all v,w ∈W and a, b ∈ F .

Proof. The direction ‘⇒’ is trivial.
For ‘⇐’, begin by observing that 1 · v + 1 ·w = v + w ∈W, and a · v + 0 ·w =

a · v ∈ W, for all v,w ∈ W and a ∈ F . Thus W is closed under vector addition
and scalar multiplication.

Is W a group with respect to vector addition? We have 0 · v = 0 ∈ W, for
v ∈W; therefore the neutral element 0 is contained in W. For an arbitrary v ∈W

we have

v + (−1) · v = 1 · v + (−1) · v
= (1 + (−1)) · v
= 0 · v
= 0.

Therefore (−1) · v is the inverse element to v under addition, and so we can simply
write (−1) · v = −v.

The other axioms for a vector space can be easily checked.

The method of this proof also shows that we have similar conditions for subsets
of groups or fields to be subgroups, or subfields, respectively.

Theorem 3. Let H ⊂ G be a (non-empty) subset of the group G. Then H is a
subgroup of G ⇔ ab−1 ∈ H, for all a, b ∈ H.
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Proof. The direction ‘⇒’ is trivial. As for ‘⇐’, let a ∈ H . Then aa−1 = e ∈ H . Thus
the neutral element of the group multiplication is contained in H . Also ea−1 = a−1 ∈
H . Furthermore, for all a, b ∈ H , we have a(b−1)−1 = ab ∈ H . Thus H is closed
under multiplication. The fact that the multiplication is associative (a(bc) = (ab)c,
for all a, b and c ∈ H) follows since G itself is a group; thus the multiplication
throughout G is associative.

Theorem 4. Let U,W ⊂ V be subspaces of the vector space V over the field F .
Then U ∩W is also a subspace.

Proof. Let v,w ∈ U ∩W be arbitrary vectors in the intersection, and let a, b ∈ F
be arbitrary elements of the field F . Then, since U is a subspace of V, we have
a · v + b ·w ∈ U. This follows from theorem 2. Similarly a · v + b ·w ∈W. Thus it
is in the intersection, and so theorem 2 shows that U ∩W is a subspace.

4 Linear Independence and Dimension

Definition. Let v1, . . . ,vn ∈ V be finitely many vectors in the vector space V over
the field F . We say that the vectors are linearly dependent if there exists an equation
of the form

a1 · v1 + · · ·+ an · vn = 0,

such that not all ai ∈ F are simply zero. If no such non-trivial equation exists, then
the set {v1, . . . ,vn} ⊂ V is said to be linearly independent.

This definition is undoubtedly the most important idea that there is in the theory
of linear algebra!

Examples

• In R
2 let v1 = (1, 0), v2 = (0, 1) and v3 = (1, 1). Then the set {v1,v2,v3} is

linearly dependent, since we have

v1 + v2 − v1 = 0.

On the other hand, the set {v1,v2} is linearly independent.

• In C0([0, 1], R), let f1 : [0, 1] → R be given by f1(x) = 1 for all x ∈ [0, 1].
Similarly, let f2 be given by f2(x) = x, and f3 is f3(x) = 1− x. Then the set
{f1, f2, f3} is linearly dependent.

Now take some vector space V over a field F , and let S ⊂ V be some subset
of V. (The set S can be finite or infinite here, although we will usually be dealing
with finite sets.) Let v1, . . . ,vn ⊂ S be some finite collection of vectors in S, and let
a1, . . . , an ∈ F be some arbitrary collection of elements of the field. Then the sum

a1 · v1 + · · ·+ an · vn

is a linear combination of the vectors v1, . . . ,vn in S. The set of all possible linear
combinations of vectors in S is denoted by span(S), and it is called the linear span
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of S. One also writes [S]. S is the generating set of [S]. Therefore if [S] = V, then
we say that S is a generating set for V . If S is finite, and it generates V, then we
say that the vector space V is finitely generated.

Theorem 5. Given S ⊂ V, then [S] is a subspace of V.

Proof. A simple consequence of theorem 2.

Examples

• For any n ∈ N, let

e1 = (1, 0, . . . , 0)

e2 = (0, 1, . . . , 0)
...

en = (0, 0, . . . , 1)

Then S = {e1, e2, . . . , en} is a generating set for Rn.

• On the other hand, the vector space C0([0, 1], R) is clearly not finitely gener-
ated.3

So let S = {v1, . . . ,vn} ⊂ V be a finite set. From now on in these discussions,
we will assume that such sets are finite unless stated otherwise.

Theorem 6. Let w = a1v1 + · · ·anvn be some vector in [S] ⊂ V, where a1, . . . , an

are arbitrarily given elements of the field F . We will say that this representation of
w is unique if, given some other linear combination, w = b1v1 + · · · bnvn, then we
must have bi = ai for all i = 1, . . . , n. Given this, then we have that the set S is
linearly independent ⇔ the representation of all vectors in the span of S as linear
combinations of vectors in S is unique.

Proof. ‘⇐’ We certainly have 0 · v1 + · · ·0 · vn = 0. Since this representation of the
zero vector is unique, it follows S is linearly independent.

‘⇒’ Can it be that S is linearly independent, and yet there exists a vector in the
span of S which is not uniquely represented as a linear combination of the vectors in
S? Assume that there exist elements a1, . . . , an and b1, . . . , bn of the field F , where
aj 6= bj , for at least one j between 1 and n, such that

a1v1 + · · ·+ anvn = b1v1 + · · ·+ bnvn.

But then
(a1 − b1)v1 + · · ·+ (aj − bj)

︸ ︷︷ ︸

6=0

vi + · · ·+ (an − bn)vn = 0

shows that S cannot be a linearly independent set.

3In general such function spaces — which play a big role in quantum field theory, and which
are studied using the mathematical theory of functional analysis — are not finitely generated.
However in this lecture, we will mostly be concerned with finitely generated vector spaces.
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Definition. Assume that S ⊂ V is a finite, linearly independent subset with [S] =
V. Then S is called a basis for V.

Lemma. Assume that S = {v1, . . . ,vn} ⊂ V is linearly dependent. Then there
exists some j ∈ {1, . . . , n}, and elements ai ∈ F , for i 6= j, such that

vj =
∑

i6=j

aivi.

Proof. Since S is linearly dependent, there exists some non-trivial linear combination
of the elements of S, summing to the zero vector,

n∑

i=1

bivi = 0,

such that bj 6= 0, for at least one of the j. Take such a one. Then

bjvj = −
∑

i6=j

bivi

and so

vj =
∑

i6=j

(

− bi

bj

)

vj.

Corollary. Let S = {v1, . . . ,vn} ⊂ V be linearly dependent, and let vj be as in
the lemma above. Let S ′ = {v1, . . . ,vj−1,vj+1, . . . ,vn} be S, with the element vj

removed. Then [S] = [S ′].

Theorem 7. Assume that the vector space V is finitely generated. Then there exists
a basis for V.

Proof. Since V is finitely generated, there exists a finite generating set. Let S be
such a finite generating set which has as few elements as possible. If S were linearly
dependent, then we could remove some element, as in the lemma, leaving us with a
still smaller generating set for V. This is a contradiction. Therefore S must be a
basis for V.

Theorem 8. Let S = {v1, . . . ,vn} be a basis for the vector space V, and take some
arbitrary non-zero vector w ∈ V. Then there exists some j ∈ {1, . . . , n}, such that

S ′ = {v1, . . . ,vj−1,w,vj+1, . . . ,vn}

is also a basis of V.

Proof. Writing w = a1v1 + · · ·+ anvn, we see that since w 6= 0, at least one aj 6= 0.
Taking that j, we write

vj = a−1
j w +

∑

i6=j

(

−ai

aj

)

vi.
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We now prove that [S ′] = V. For this, let u ∈ V be an arbitrary vector. Since S is
a basis for V, there exists a linear combination u = b1v1 + · · · bnvn. Then we have

u = bjvj +
∑

i6=j

bivi

= bj

(

a−1
j w +

∑

i6=j

(

−ai

aj

)

vi

)

+
∑

i6=j

bivi

= bja
−1
j w +

∑

i6=j

(

bi −
bjai

aj

)

vi

This shows that [S ′] = V.
In order to show that S ′ is linearly independent, assume that we have

0 = cw +
∑

i6=j

civi

= c

(
n∑

i=1

aivi

)

+
∑

i6=j

civi

=

n∑

i=1

(cai + ci)vi (with cj = 0),

for some c, and ci ∈ F . Since the original set S was assumed to be linearly inde-
pendent, we must have cai + ci = 0, for all i. In particular, since cj = 0, we have
caj = 0. But the assumption was that aj 6= 0. Therefore we must conclude that
c = 0. It follows that also ci = 0, for all i 6= j. Therefore, S ′ must be linearly
independent.

Theorem 9 (Steinitz Exchange Theorem). Let S = {v1, . . . ,vn} be a basis of V

and let T = {w1, . . . ,wm} ⊂ V be some linearly independent set of vectors in V.
Then we have m ≤ n. By possibly re-ordering the elements of S, we may arrange
things so that the set

U = {w1, . . . ,wm,vm+1, . . . ,vn}

is a basis for V.

Proof. Use induction over the number m. If m = 0 then U = S and there is nothing
to prove. Therefore assume m ≥ 1 and furthermore, the theorem is true for the
case m − 1. So consider the linearly independent set T ′ = {w1, . . . ,wm−1}. After
an appropriate re-ordering of S, we have U ′ = {w1, . . . ,wm−1,vm, . . . ,vn} being a
basis for V. Note that if we were to have n < m, then T ′ would itself be a basis for
V. Thus we could express wm as a linear combination of the vectors in T ′. That
would imply that T was not linearly independent, contradicting our assumption.
Therefore, m ≤ n.

Now since U ′ is a basis for V, we can express wm as a linear combination

wm = a1w1 + · · ·+ am−1wm−1 + amvm + · · ·+ anvn.
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If we had all the coefficients of the vectors from S being zero, namely

am = am+1 = · · · = an = 0,

then we would have wm being expressed as a linear combination of the other vectors
in T . Therefore T would be linearly dependent, which is not true. Thus one of the
aj 6= 0, for j ≥ m. Using theorem 8, we may exchange wm for the vector vj in U ′,
thus giving us the basis U .

Theorem 10 (Extension Theorem). Assume that the vector space V is finitely
generated and that we have a linearly independent subset S ⊂ V. Then there exists
a basis B of V with S ⊂ B.

Proof. If [S] = V then we simply take B = S. Otherwise, start with some given
basis A ⊂ V and apply theorem 9 successively.

Theorem 11. Let U be a subspace of the (finitely generated) vector space V. Then
U is also finitely generated, and each possible basis for U has no more elements than
any basis for V.

Proof. Assume there is a basis B of V containing n vectors. Then, according to the-
orem 9, there cannot exist more than n linearly independent vectors in U. Therefore
U must be finitely generated, such that any basis for U has at most n elements.

Theorem 12. Assume the vector space V has a basis consisting of n elements.
Then every basis of V also has precisely n elements.

Proof. This follows directly from theorem 11, since any basis generates V, which is
a subspace of itself.

Definition. The number of vectors in a basis of the vector space V is called the
dimension of V, written dim(V).

Definition. Let V be a vector space with subspaces X,Y ⊂ V. The subspace X +
Y = [X ∪ Y ] is called the sum of X and Y. If X ∩Y = {0}, then it is the direct
sum, written X⊕Y.

Theorem 13 (A Dimension Formula). Let V be a finite dimensional vector space
with subspaces X,Y ⊂ V. Then we have

dim(X + Y) = dim(X) + dim(Y)− dim(X ∩Y).

Corollary. dim(X⊕Y) = dim(X) + dim(Y).

Proof of Theorem 13. Let S = {v1, . . . ,vn} be a basis of X ∩ Y. According to
theorem 10, there exist extensions T = {x1, . . . ,xm} and U = {y1, . . . ,yr}, such
that S ∪ T is a basis for X and S ∪ U is a basis for Y. We will now show that, in
fact, S ∪ T ∪ U is a basis for X + Y.
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To begin with, it is clear that X+Y = [S ∪T ∪U ]. Is the set S ∪T ∪U linearly
independent? Let

0 =

n∑

i=1

aivi +

m∑

j=1

bjxj +

r∑

k=1

ckyk

= v + x + y, say.

Then we have y = −v−x. Thus y ∈ X. But clearly we also have, y ∈ Y. Therefore
y ∈ X ∩Y. Thus y can be expressed as a linear combination of vectors in S alone,
and since S ∪ U is is a basis for Y , we must have ck = 0 for k = 1, . . . , r. Similarly,
looking at the vector x and applying the same argument, we conclude that all the bj

are zero. But then all the ai must also be zero since the set S is linearly independent.
Putting this all together, we see that the dim(X) = n + m, dim(Y) = n + r and

dim(X ∩Y) = n. This gives the dimension formula.

Theorem 14. Let V be a finite dimensional vector space, and let X ⊂ V be a
subspace. Then there exists another subspace Y ⊂ V, such that V = X⊕Y.

Proof. Take a basis S of X. If [S] = V then we are finished. Otherwise, use
the extension theorem (theorem 10) to find a basis B of V, with S ⊂ B. Then4

Y = [B \ S] satisfies the condition of the theorem.

5 Linear Mappings

Definition. Let V and W be vector spaces, both over the field F . Let f : V →W

be a mapping from the vector space V to the vector space W. The mapping f is
called a linear mapping if

f(au + bv) = af(u) + bf(v)

for all a, b ∈ F and all u, v ∈ V.

By choosing a and b to be either 0 or 1, we immediately see that a linear mapping
always has both f(av) = af(v) and f(u + v) = f(u) + f(v), for all a ∈ F and for
all u and v ∈ V. Also it is obvious that f(0) = 0 always.

Definition. Let f : V → W be a linear mapping. The kernel of the mapping,
denoted by ker(f), is the set of vectors in V which are mapped by f into the zero
vector in W.

Theorem 15. If ker(f) = {0}, that is, if the zero vector in V is the only vec-
tor which is mapped into the zero vector in W under f , then f is an injection
(monomorphism). The converse is of course trivial.

Proof. That is, we must show that if u and v are two vectors in V with the property
that f(u) = f(v), then we must have u = v. But

f(u) = f(v) ⇒ 0 = f(u)− f(v) = f(u− v).

4The notation B \ S denotes the set of elements of B which are not in S
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Thus the vector u− v is mapped by f to the zero vector. Therefore we must have
u− v = 0, or u = v.

Conversely, since f(0) = 0 always holds, and since f is an injection, we must
have ker(f) = {0}.
Theorem 16. Let f : V→W be a linear mapping and let A = {w1, . . . ,wm} ⊂W

be linearly independent. Assume that m vectors are given in V, so that they form a
set B = {v1, . . . ,vm} ⊂ V with f(vi) = wi, for all i. Then the set B is also linearly
independent.

Proof. Let a1, . . . , am ∈ F be given such that a1v1 + · · ·+ amvm = 0. But then

0 = f(0) = f(a1v1 + · · ·+ amvm) = a1f(v1) + · · ·+ amf(vm) = a1w1 + · · ·+ amwm.

Since A is linearly independent, it follows that all the ai’s must be zero. But that
implies that the set B is linearly independent.

Remark. If B = {v1, . . . ,vm} ⊂ V is linearly independent, and f : V → W is
linear, still, it does not necessarily follow that {f(v1), . . . , f(vm)} is linearly inde-
pendent in W. On the other hand, if f is an injection, then {f(v1), . . . , f(vm)} is
linearly independent. This follows since, if a1f(v1) + · · · + amf(vm) = 0, then we
have

0 = a1f(v1) + · · ·+ amf(vm) = f(a1v1 + · · ·+ amvm) = f(0).

But since f is an injection, we must have a1v1 + · · ·+ amvm = 0. Thus ai = 0 for
all i.

On the other hand, what is the condition for f : V → W to be a surjection
(epimorphism)? That is, f(V) = W. Or put another way, for every w ∈ W, can
we find some vector v ∈ V with f(v) = w? One way to think of this is to consider
a basis B ⊂W. For each w ∈ B, we take

f−1(w) = {v ∈ V : f(v) = w}.

Then f is a surjection if f−1(w) 6= ∅, for all w ∈ B.

Definition. A linear mapping which is a bijection (that is, an injection and a sur-
jection) is called an isomorphism. Often one writes V ∼= W to say that there exists
an isomorphism from V to W.

Theorem 17. Let f : V → W be an isomorphism. Then the inverse mapping
f−1 : W→ V is also a linear mapping.

Proof. To see this, let a, b ∈ F and x, y ∈ W be arbitrary. Let f−1(x) = u ∈ V

and f−1(y) = v ∈ V, say. Then

f(au + bv) = (f(af−1(x) + bf−1(v)) = af(f−1(x)) + bf(f−1(v)) = ax + by.

Therefore, since f is a bijection, we must have

f−1(ax + by) = au + bv = af−1(x) + bf−1(y).
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Theorem 18. Let V and W be finite dimensional vector spaces over a field F , and
let f : V →W be a linear mapping. Let B = {v1, . . . ,vn} be a basis for V. Then
f is uniquely determined by the n vectors {f(v1), . . . , f(vn)} in W.

Proof. Let v ∈ V be an arbitrary vector in V. Since B is a basis for V, we can
uniquely write

v = a1v1 + · · ·anvn,

with ai ∈ F , for each i. Then, since the mapping f is linear, we have

f(v) = f(a1v1 + · · ·anvn)

= f(a1v1) + · · ·+ f(anvn)

= a1f(v1) + · · ·+ anf(vn).

Therefore we see that if the values of f(v1),. . . , f(vn) are given, then the value of
f(v) is uniquely determined, for each v ∈ V.

On the other hand, let A = {u1, . . . ,un} be a set of n arbitrarily given vectors
in W. Then let a mapping f : V→W be defined by the rule

f(v) = a1u1 + · · ·anun,

for each arbitrarily given vector v ∈ V, where v = a1v1+ · · ·anvn. Clearly the map-
ping is uniquely determined, since v is uniquely determined as a linear combination
of the basis vectors B. It is a trivial matter to verify that the mapping which is so
defined is also linear. We have f(vi) = ui for all the basis vectors vi ∈ B.

Theorem 19. Let V and W be two finite dimensional vector spaces over a field F .
Then we have V ∼= W⇔ dim(V) = dim(W).

Proof. “⇒” Let f : V→W be an isomorphism, and let B = {v1, . . . ,vn} ⊂ V be a
basis for V. Then, as shown in our Remark above, we have A = {f(v1), . . . , f(vn)} ⊂
W being linearly independent. Furthermore, since B is a basis of V, we have
[B] = V. Thus [A] = W also. Therefore A is a basis of W, and it contains precisely
n elements; thus dim(V) = dim(W).

“⇐” Take B = {v1, . . . ,vn} ⊂ V to again be a basis of V and let A =
{w1, . . . ,wn} ⊂W be some basis of W (with n elements). Now define the mapping
f : V → W by the rule f(vi) = wi, for all i. By theorem 18 we see that a linear
mapping f is thus uniquely determined. Since A and B are both bases, it follows
that f must be a bijection.

This immediately gives us a complete classification of all finite-dimensional vector
spaces. For let V be a vector space of dimension n over the field F . Then clearly
F n is also a vector space of dimension n over F . The canonical basis is the set of
vectors {e1, . . . , en}, where

ei = (0, · · · , 0, 1
︸︷︷︸

i-th Position

, 0, . . . , 0}

for each i. Therefore, when thinking about V, we can think that it is “really” just
F n. On the other hand, the central idea in the theory of linear algebra is that

12



we can look at things using different possible bases (or “frames of reference” in
physics). The space F n seems to have a preferred, fixed frame of reference, namely
the canonical basis. Thus it is better to think about an abstract V, with various
possible bases.

Examples

For these examples, we will consider the 2-dimensional real vector space R2, together
with its canonical basis B = {e1, e2} = {(1, 0), (0, 1)}.
• f1 : R2 → R2 with f1(e1) = (−1, 0) and f1(e2) = (0, 1). This is a reflection of

the 2-dimensional plane into itself, with the axis of reflection being the second
coordinate axis; that is the set of points (x1, x2) ∈ R

2 with x1 = 0.

• f2 : R2 → R2 with f2(e1) = e2 and f1(e2) = e1. This is a reflection of the
2-dimensional plane into itself, with the axis of reflection being the diagonal
axis x1 = x2.

• f3 : R
2 → R

2 with f3(e1) = (cos φ, sin φ) and f1(e2) = (− sin φ, cosφ), for some
real number φ ∈ R. This is a rotation of the plane about its middle point,
through an angle of φ.5 For let v = (x1, x2) be some arbitrary point of the
plane R2. Then we have

f3(v) = x1f3(e1) + x2f(e2)

= x1(cos φ, sin φ) + x2(− sin φ, cosφ)

= (x1 cos φ− x2 sin φ, x1 sin φ + x2 cos φ).

Looking at this from the point of view of geometry, the question is, what
happens to the vector v when it is rotated through the angle φ while preserving
its length? Perhaps the best way to look at this is to think about v in polar
coordinates. That is, given any two real numbers x1 and x2 then, assuming that
they are not both zero, we find two unique real numbers r ≥ 0 and θ ∈ [0, 2π),
such that

x1 = r cos θ and x2 = r sin θ,

where r =
√

x2
1 + x2

2. Then v = (r cos θ, r sin θ). So a rotation of v through
the angle φ must bring it to the new vector (r cos(φ + θ), r sin(φ + θ)) which,
if we remember the formulas for cosines and sines of sums, turns out to be

(r(cos(θ) cos(φ)− sin(θ) sin(φ)), r(sin(θ) cos(φ)− cos(θ) sin(φ)).

But then, remembering that x1 = r cos θ and x2 = r sin θ, we see that the
rotation brings the vector v into the new vector

(x1 cos φ− x2 sin φ, x1 sin φ + x2 cos φ),

5In analysis, we learn about the formulas of trigonometry. In particular we have

cos(θ + φ) = cos(θ) cos(φ) − sin(θ) sin(φ),

sin(θ + φ) = sin(θ) cos(φ) − cos(θ) sin(φ).

Taking θ = π/2, we note that cos(φ + π/2) = − sin(φ) and sin(φ + π/2) = cos(φ).

13



which was precisely the specification for f3(v).

6 Linear Mappings and Matrices

This last example of a linear mapping of R2 into itself — which should have been
simple to describe — has brought with it long lines of lists of coordinates which are
difficult to think about. In three and more dimensions, things become even worse!
Thus it is obvious that we need a more sensible system for describing these linear
mappings. The usual system is to use matrices.

Now, the most obvious problem with our previous notation for vectors was that
the lists of the coordinates (x1, · · · , xn) run over the page, leaving hardly any room
left over to describe symbolically what we want to do with the vector. The solution
to this problem is to write vectors not as horizontal lists, but rather as vertical lists.
We say that the horizontal lists are row vectors, and the vertical lists are column
vectors. This is a great improvement! So whereas before, we wrote

v = (x1, · · · , xn),

now we will write

v =






x1
...

xn




 .

It is true that we use up lots of vertical space on the page in this way, but since
the rest of the writing is horizontal, we can afford to waste this vertical space. In
addition, we have a very nice system for writing down the coordinates of the vectors
after they have been mapped by a linear mapping.

To illustrate this system, consider the rotation of the plane through the angle φ,
which was described in the last section. In terms of row vectors, we have (x1, x2)
being rotated into the new vector (x1 cos φ− x2 sin φ, x1 sin φ + x2 cos φ). But if we
change into the column vector notation, we have

v =

(
x1

x2

)

being rotated to (
x1 cos φ− x2 sin φ
x1 sin φ + x2 cos φ

)

.

But then, remembering how we multiplied matrices, we see that this is just
(

cos φ − sin φ
sin φ cos φ

)(
x1

x2

)

=

(
x1 cos φ− x2 sin φ
x1 sin φ + x2 cos φ

)

.

So we can say that the 2× 2 matrix A =

(
cos φ − sin φ
sin φ cos φ

)

represents the mapping

f3 : R2 → R2, and the 2× 1 matrix

(
x1

x2

)

represents the vector v. Thus we have

A · v = f(v).

That is, matrix multiplication gives the result of the linear mapping.

14



Expressing f : V→W in terms of bases for both V and W

The example we have been thinking about up till now (a rotation of R2) is a linear
mapping of R

2 into itself. More generally, we have linear mappings from a vector
space V to a different vector space W (although, of course, both V and W are
vector spaces over the same field F ).

So let {v1, . . . ,vn} be a basis for V and let {w1, . . . ,wm} be a basis for W.
Finally, let f : V → W be a linear mapping. An arbitrary vector v ∈ V can be
expressed in terms of the basis for V as

v = a1v1 + · · ·+ anvn =

n∑

j=1

ajvj .

The question is now, what is f(v)? As we have seen, f(v) can be expressed in terms
of the images f(vj) of the basis vectors of V. Namely

f(v) =
n∑

j=1

ajf(vj).

But then, each of these vectors f(vj) in W can be expressed in terms of the basis
vectors in W, say

f(vj) =

m∑

i=1

cijwi,

for appropriate choices of the “numbers” cij ∈ F . Therefore, putting this all to-
gether, we have

f(v) =

n∑

j=1

ajf(vj) =

n∑

j=1

m∑

i=1

ajcijwi.

In the matrix notation, using column vectors relative to the two bases {v1, . . . ,vn}
and {w1, . . . ,wm}, we can write this as

f(v) =






c11 · · · c1n

...
. . .

...
cm1 · · · cmn











a1
...

an




 =






∑n

j=1 ajc1j

...
∑n

j=1 ajcmj




 .

When looking at this m×n matrix which represents the linear mapping f : V→
W, we can imagine that the matrix consists of n columns. The i-th column is then

ui =






c1i

...
cmi




 ∈W.

That is, it represents a vector in W, namely the vector ui = c1iw1 + · · ·+ cmiwm.
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But what is this vector ui? In the matrix notation, we have

vi =














0
...
0
1
0
...
0














∈ V,

where the single non-zero element of this column matrix is a 1 in the i-th position
from the top. But then we have

f(vi) =






c11 · · · c1n

...
. . .

...
cm1 · · · cmn



















0
...
0
1
0
...
0














=






c1i

...
cmi




 = ui.

Therefore the columns of the matrix representing the linear mapping f : V → W

are the images of the basis vectors of V.

Two linear mappings, one after the other

Things become more interesting when we think about the following situation. Let
V, W and X be vector spaces over a common field F . Assume that f : V → W

and g : W→ X are linear. Then the composition f ◦ g : V→ X, given by

f ◦ g(v) = g(f(v))

for all v ∈ V is clearly a linear mapping. One can write this as

V
f−→W

g−→ X.

Let {v1, . . . ,vn} be a basis for V, {w1, . . . ,wm} be a basis for W, and {x1, . . . ,xr}
be a basis for X. Assume that the linear mapping f is given by the matrix

A =






c11 · · · c1n

...
. . .

...
cm1 · · · cmn




 ,

and the linear mapping g is given by the matrix

B =






d11 · · · d1m

...
. . .

...
dr1 · · · drm




 .
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Then, if v =
∑n

j=1 ajvj is some arbitrary vector in V, we have

f ◦ g(v) = g

(

f

(
n∑

j=1

ajvj

))

= g

(
n∑

j=1

ajf(vj)

)

= g

(
m∑

i=1

n∑

j=1

ajcijwi

)

=

m∑

i=1

n∑

j=1

ajcijg(wi)

=
m∑

i=1

n∑

j=1

r∑

k=1

ajcijdkixk.

There are so many summations here! How can we keep track of everything? The
answer is to use the matrix notation. The composition of linear mappings is then
simply represented by matrix multiplication. That is, if

v =






a1
...

an




 ,

then we have

f ◦ g(v) = g(f(v)) =






d11 · · · d1m

...
. . .

...
dr1 · · · drm











c11 · · · c1n

...
. . .

...
cm1 · · · cmn











a1
...

an




 = BAv.

So this is the reason we have defined matrix multiplication in this way.6

7 Matrix Transformations

Matrices are used to describe linear mappings f : V→W with respect to particular
bases of V and W. But clearly, if we choose different bases than the ones we had
been thinking about before, then we will have a different matrix for describing the
same linear mapping. Later on in these lectures we will see how changing the bases
changes the matrix, but for now, it is time to think about various systematic ways
of changing matrices — in a purely abstract way.

6Recall that if A =






c11 · · · c1n

...
. . .

...
cm1 · · · cmn




 is an m × n matrix and B =






d11 · · · d1m

...
. . .

...
dr1 · · · drm




 is an

r ×m matrix, then the product BA is an r × n matrix whose kj-th element is
∑m

i=1
dkicij .
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Elementary Column Operations

We begin with the elementary column operations. Let us denote the set of all n×m
matrices of elements from the field F by M(m× n, F ). Thus, if

A =






a11 · · · a1n

...
. . .

...
am1 · · · amn




 ∈M(m × n, F )

then it contains n columns which, as we have seen, are the images of the basis
vectors of the linear mapping which is being represented by the matrix. So The first
elementary column operation is to exchange column i with column j, for i 6= j. We
can write





a11 · · · a1i · · · a1j · · · a1m

...
...

...
...

am1 · · · ami · · · amj · · · amm






Sij−→






a11 · · · a1j · · · a1i · · · a1m

...
...

...
...

am1 · · · amj · · · ami · · · amm






So this column operation is denoted by Sij . It can be thought of as being a mapping
Sij : M(m× n, F )→M(m× n, F ).

Another way to imagine this is to say that S is the set of column vectors in the
matrix A considered as an ordered list. Thus S ⊂ F m. Then Sij is the same set of
column vectors, but with the positions of the i-th and the j-th vectors interchanged.
But obviously, as a subset of F n, the order of the vectors makes no difference.
Therefore we can say that the span of S is the same as the span of Sij. That is
[S] = [Sij ].

The second elementary column operation, denoted Si(a), is that we form the
scalar product of the element a 6= 0 in F with the i-th vector in S. So the i-th
vector 




a1i

...
ami






is changed to

a






a1i

...
ami




 =






aa1i

...
aami




 .

All the other column vectors in the matrix remain unchanged.
The third elementary column operation, denoted Sij(c) is that we take the j-th

column (where j 6= i) and multiply it with c 6= 0, then add it to the i-th column.
Therefore the i-th column is changed to






a1i + ca1j

...
ami + camj




 .

All the other columns — including the j-th column — remain unchanged.
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Theorem 20. [S] = [Sij] = [Si(a)] = [Sij(c)], where i 6= j and a 6= 0 6= c.

Proof. Let us say that S = {v1, . . . ,vn} ⊂ F m. That is, vi is the i-th column vector
of the matrix A, for each i. We have already seen that [S] = [Sij ] is trivially true.
But also, say v = x1v1 + · · · + xnvn is some arbitrary vector in [S]. Then, since
a 6= 0, we can write

v = x1v1 + · · ·+ a−1xi(avi) + · · ·+ xnvn.

Therefore [S] ⊂ [Si(a)]. The other inclusion, [Si(a)] ⊂ [S] is also quite trivial so
that we have [S] = [Si(a)].

Similarly we can write

v = x1v1 + · · ·+ xnvn

= x1v1 + · · ·+ xi(vi + cvj) + · · ·+ (xj − xic)vj + · · ·+ xnvn.

Therefore [S] ⊂ [Sij(c)], and again, the other inclusion is similar.

Let us call [S] the column space (Spaltenraum), which is a subspace of F m.
Then we see that the column space remains invariant under the three types of
elementary column operations. In particular, the dimension of the column space
remains invariant.

Elementary Row Operations

Again, looking at the m×n matrix A in a purely abstract way, we can say that it is
made up of m row vectors, which are just the rows of the matrix. Let us call them
w1, . . . ,wm ∈ F n. That is,

A =






a11 · · · a1n

...
. . .

...
am1 · · · amn




 =






w1 = (a11 · · · a1n)
...

wm = (am1 · · · amn)




 .

Again, we define the three elementary row operations analogously to the way we
defined the elementary column operations. Clearly we have the same results. Namely
if R = {w1, . . . , wm} are the original rows, in their proper order, then we have
[R] = [Rij ] = [Ri(a)] = [Rij(c)].

But it is perhaps easier to think about the row operations when changing a
matrix into a form which is easier to think about. We would like to change the
matrix into a step form (Zeilenstufenform).

Definition. The m × n matrix A is in step form if there exists some r with 0 ≤
r ≤ m and indices 1 ≤ j1 < j2 < · · · < jr ≤ m with aiji

= 1 for all i = 1, . . . , r and
ast = 0 for all s, t with t < js or s > jr. That is:

A =














· · · 1 a1j1+1 · · · · · · a1n

0 1 a2j2+1 · · · a2n

0 0 1 a3j3+1 · · · a2n

. . .
...

0 · · · 0 1 arjr+1 · · · arn

0 0 0 0 0
...

...
...














.
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Theorem 21. By means of a finite sequence of elementary row operations, every
matrix can be transformed into a matrix in step form.

Proof. Induction on m, the number of rows in the matrix. We use the technique
of “Gaussian elimination”, which is simply the usual way anyone would go about
solving a system of linear equations. This will be dealt with in the next section.
The induction step in this proof, which uses a number of simple ideas which are
easy to write on the blackboard, but overly tedious to compose here in TEX, will be
described in the lecture.

Now it is obvious that the row space (Zeilenraum), that is [R] ⊂ F n, has the
dimension r, and in fact the non-zero row vectors of a matrix in step form provide
us with a basis for the row space. But then, looking at the column vectors of this
matrix in step form, we see that the columns j1, j2, and so on up to jr are all linearly
independent, and they generate the column space. (This is discussed more fully in
the lecture!)

Definition. Given an m×n matrix, the dimension of the column space is called the
column rank; similarly the dimension of the row space is the row rank.

So, using theorem 21 and exercise 6.3, we conclude that:

Theorem 22. For any matrix A, the column rank is equal to the row rank. This
common dimension is simply called the rank — written Rank(A) — of the matrix.

Definition. Let A be a quadratic n×n matrix. Then A is called regular if Rank(A) =
n, otherwise A is called singular.

Theorem 23. The n × n matrix A is regular ⇔ the linear mapping f : F n →
F n, represented by the matrix A with respect to the canonical basis of F n is an
isomorphism.

Proof. ‘⇒’ If A is regular, then the rank of A — namely the dimension of the column
space [S] — is n. Since the dimension of F n is n, we must therefore have [S] = F n.
The linear mapping f : F n → F n is then both an injection (since S must be linearly
independent) and also a surjection.

‘⇐’ Since the set of column vectors S is the set of images of the canonical basis
vectors of F n under f , they must be linearly independent. There are n column
vectors; thus the rank of A is n.

8 Systems of Linear Equations

We now take a small diversion from our idea of linear algebra as being a method
of describing geometry, and instead we will consider simple linear equations. In
particular, we consider a system of m equations in n unknowns.

a11x1 + · · ·+ a1nxn = b1

...

am1x1 + · · ·+ amnxn = bm
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We can also think about this as being a vector equation. That is, if

A =






a11 · · · a1n

...
. . .

...
am1 · · · amn




 ,

and x =






x1
...

xn




 ∈ F n and b =






b1
...

bm




 ∈ F m, then our system of linear equations is

just the single vector equation
A · x = b.

But what is the most obvious way to solve this system of equations? It is a
simple matter to write down an algorithm, as follows. The numbers aij and bk are
given (as elements of F ), and the problem is to find the numbers xl.

1. Let i := 1 and j := 1.

2. if aij = 0 then if akj = 0 for all i < k ≤ m, set j := j + 1. Otherwise find the
smallest index k > i such that akj 6= 0 and exchange the i-th equation with
the k-th equation.

3. Multiply both sides of the (possibly new) i-th equation by a−1
ij . Then for

each i < k ≤ m, subtract akj times the i-th equation from the k-th equation.
Therefore, at this stage, after this operation has been carried out, we will have
akj = 0, for all k > i.

4. Set i := i + 1. If i ≤ n then return to step 2.

So at this stage, we have transformed the system of linear equations into a system
in step form.

The next thing is to solve the system of equations in step form. The problem is
that perhaps there is no solution, or perhaps there are many solutions. The easiest
way to decide which case we have is to reorder the variables — that is the various
xi — so that the steps start in the upper left-hand corner, and they are all one unit
wide. That is, things then look like this:

x1 + a12x2 + a13x3 + · · · + · · · + a1nxn = b1

x2 + a23x3 + a24x4 + · · · + a2nxn = b2

x3 + a34x4 + · · · + a3nxn = b3
...

xk + · · · + aknxk = bk

0 = bk+1
...

0 = bm

(Note that this reordering of the variables is like our first elementary column oper-
ation for matrices.)

So now we observe that:
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• If bl 6= 0 for some k+1 ≤ l ≤ m, then the system of equations has no solution.

• Otherwise, if k = n then the system has precisely one single solution. It
is obtained by working backwards through the equations. Namely, the last
equation is simply xn = bn, so that is clear. But then, substitute bn for xn

in the n − 1-st equation, and we then have xn−1 = bn−1 − an−1 nbn. By this
method, we progress back to the first equation and obtain values for all the
xj , for 1 ≤ j ≤ n.

• Otherwise, k < n. In this case we can assign arbitrary values to the variables
xk+1, . . . , xn, and then that fixes the value of xk. But then, as before, we
progressively obtain the values of xk−1, xk−2 and so on, back to x1.

This algorithm for finding solutions of systems of linear equations is called “Gaussian
Elimination”.

All of this can be looked at in terms of our matrix notation. Let us call the
following m×n+1 matrix the augmented matrix for our system of linear equations:

A =








a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm








.

Then by means of elementary row and column operations, the matrix is transformed
into the new matrix which is in simple step form

A′ =














1 a′
12 · · · · a′

1 k+1 · · · a′
1n b′1

0 1 a′
23 · a′

2 k+1 · · · a′
2n b′2

...
. . . · ...

...
...

0 · · · 0 1 a′
k k+1 · · · a′

kn b′k
0 · · · 0 0 0 · · · 0 b′k+1
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · 0 b′m














.

Finding the eigenvectors of linear mappings

Definition. Let V be a vector space over a field F , and let f : V → V be a linear
mapping of V into itself. An eigenvector of f is a non-zero vector v ∈ V (so we
have v 6= 0) such that there exists some λ ∈ F with f(v) = λv. The scalar λ is then
called the eigenvalue associated with this eigenvector.

So if f is represented by the n×n matrix A (with respect to some given basis of
V), then the problem of finding eigenvectors and eigenvalues is simply the problem
of solving the equation

Av = λv.

But here both λ and v are variables. So how should we go about things? Well, as
we will see, it is necessary to look at the characteristic polynomial of the matrix, in
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order to find an eigenvalue λ. Then, once an eigenvalue is found, we can consider it to
be a constant in our system of linear equations. And they become the homogeneous7

system

(a11 − λ)x1 + a12x2 + · · · + a1nxn = 0
a21x1 + (a22 − λ)x2 + · · · + a2nxn = 0

...
an1x1 + an2x2 + · · · + (ann − λ)xn = 0

which can be easily solved to give us the (or one of the) eigenvector(s) whose eigen-
value is λ.

Now the n× n identity matrix is

E =








1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1








Thus we see that an eigenvalue is any scalar λ ∈ F such that the vector equation

(A− λE)v = 0

has a solution vector v ∈ V, such that v 6= 0.8

9 Invertible Matrices

Let f : V→W be a linear mapping, and let {v1, . . . ,vn} ⊂ V and {w1, . . . ,wm} ⊂
W be bases for V and W, respectively. Then, as we have seen, the mapping f can
be uniquely described by specifying the values of f(vj), for each j = 1, . . . , n. We
have

f(vj) =
m∑

i=1

aijwi,

And the resulting matrix A =






a11 · · · a1n

...
. . .

...
am1 · · · amn




 is the matrix describing f with

respect to these given bases.

A particular case

This is the case that V = W. So we have the linear mapping f : V→ V. But now,
we only need a single basis for V. That is, {v1, . . . ,vn} ⊂ V is the only basis we

7That is, all the bi are zero. Thus a homogeneous system with matrix A has the form Av = 0.
8Given any solution vector v, then clearly we can multiply it with any scalar κ ∈ F , and we

have
(A− λE)(κv) = κ(A− λE)v = κ0 = 0.

Therefore, as long as κ 6= 0, we can say that κv is also an eigenvector whose eigenvalue is λ.
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need. Thus the matrix for f with respect to this single basis is determined by the
specifications

f(vj) =

m∑

i=1

aijvi.

A trivial example

For example, one particular case is that we have the identity mapping

f = id : V→ V.

Thus f(v) = v, for all v ∈ V. In this case it is obvious that the matrix of the
mapping is the n× n identity matrix In.

Regular matrices

Let us now assume that A is some regular n× n matrix. As we have seen in theo-
rem 23, there is an isomorphism f : V→ V, such that A is the matrix representing
f with respect to the given basis of V. According to theorem 17, the inverse map-
ping f−1 is also linear, and we have f−1 ◦ f = id. So let f−1 be represented by the
matrix B (again with respect to the same basis {v1, . . . ,vn}). Then we must have
the matrix equation

B · A = In.

Or, put another way, in the multiplication system of matrix algebra we must have
B = A−1. That is, the matrix A is invertible.

Theorem 24. Every regular matrix is invertible.

Definition. The set of all regular n×n matrices over the field F is denoted GL(n, F ).

Theorem 25. GL(n, F ) is a group under matrix multiplication. The identity ele-
ment is the identity matrix.

Proof. We have already seen in an exercise that matrix multiplication is associative.
The fact that the identity element in GL(n, F ) is the identity matrix is clear. By
definition, all members of GL(n, F ) have an inverse. It only remains to see that
GL(n, F ) is closed under matrix multiplication. So let A, C ∈ GL(n, F ). Then
there exist A−1, C−1 ∈ GL(n, F ), and we have that C−1 · A−1 is itself an n × n
matrix. But then

(
C−1A−1

)
AC = C−1

(
A−1A

)
C = C−1InC = C−1C = In.

Therefore, according to the definition of GL(n, F ), we must also have AC ∈ GL(n, F ).
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Simplifying matrices using multiplication with regular matri-

ces

Theorem 26. Let A be an m × n matrix. Then there exist regular matrices C ∈
GL(m, F ) and D ∈ GL(n, F ) such that the matrix A′ = CAD−1 consists simply of
zeros, except possibly for a block in the upper lefthand corner, which is an identity
matrix. That is

A′ =












1 · · · 0
...

. . .
...

0 · · · 1

0 · · · 0
...

. . .
...

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0












(Note that A′ is also an m× n matrix. That is, it is not necessarily square.)

Proof. A is the representation of a linear mapping f : V → W, with respect to
bases {v1, . . . ,vn} and {w1, . . . ,wm} of V and W, respectively. The idea of the
proof is to now find new bases {x1, . . . ,xn} ⊂ V and {y1, . . . ,ym} ⊂W, such that
the matrix of f with respect to these new bases is as simple as possible.

So to begin with, let us look at ker(f) ⊂ V. It is a subspace of V, so its dimension
is at most n. In general, it might be less than n, so let us write dim(ker(f)) = n−p,
for some integer 0 ≤ p ≤ n. Therefore we choose a basis for ker(f), and we call it

{xp+1, . . . ,xn} ⊂ ker(f) ⊂ V.

Using the extension theorem (theorem 12), we extend this to a basis

{x1, . . . ,xp,xp+1, . . . ,xn}

for V.
Now at this stage, we look at the images of the vectors {x1, . . . ,xp} under f in

W. We find that the set {f(x1), . . . , f(xp)} ⊂ W is linearly independent. To see
this, let us assume that we have the vector equation

0 =

p
∑

i=1

aif(xi) = f

(
p
∑

i=1

aixi

)

for some choice of the scalars ai. But that means that
∑p

i=1 aixi ∈ ker(f). However
{xp+1, . . . ,xn} is a basis for ker(f). Thus we have

p
∑

i=1

aixi =

n∑

j=p+1

bjxj

for appropriate choices of scalars bj . But {x1, . . . ,xp,xp+1, . . . ,xn} is a basis for V.
Thus it is itself linearly independent and therefore we must have ai = 0 and bj = 0
for all possible i and j. In particular, since the ai’s are all zero, we must have the
set {f(x1), . . . , f(xp)} ⊂W being linearly independent.
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To simplify the notation, let us call f(xi) = yi, for each i = 1, . . . , p. Then we
can again use the extension theorem to find a basis

{y1, . . . ,yp,yp+1, . . . ,ym}

of W.
So now we define the isomorphism g : V→ V by the rule

g(xi) = vi, for all i = 1, . . . , n.

Similarly the isomorphism h : W→W is defined by the rule

h(yj) = wj, for all j = 1, . . . , m.

Let D be the matrix representing the mapping g with respect to the basis {v1, . . . ,vn}
of V, and also let C be the matrix representing the mapping h with respect to the
basis {w1, . . . ,wm} of W.

Let us now look at the mapping

h · f · g−1 : V→W.

For the basis vector vi ∈ V, we have

hfg−1(vi) = hf(xi) =

{

h(yi) = wi, for i ≤ p

h(0) = 0, otherwise.

This mapping must therefore be represented by a matrix in our simple form, consist-
ing of only zeros, except possibly for a block in the upper lefthand corner which is
an identity matrix. Furthermore, the rule that the composition of linear mappings
is represented by the product of the respective matrices leads to the conclusion that
the matrix A′ = CAD−1 must be of the desired form.

10 Similar Matrices; Changing Bases

Definition. Let A and A′ be n×n matrices. If a matrix C ∈ GL(n, F ) exists, such
that A′ = C−1AC then we say that the matrices A and A′ are similar.

Theorem 27. Let f : V→ V be a linear mapping and let {u1, . . . ,un}, {v1, . . . ,vn}
be two bases for V. Assume that A is the matrix for f with respect to the ba-
sis {v1, . . . ,vn} and furthermore A′ is the matrix for f with respect to the basis
{u1, . . . ,un}. Let ui =

∑n

j=1 cjivj for all i, and

C =






c11 · · · c1n

...
. . .

...
cn1 · · · cnn






Then we have A′ = C−1AC.
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Proof. From the definition of A′, we have

f(ui) =
n∑

j=1

a′
jiuj

for all i = 1, . . . , n. On the other hand we have

f(ui) = f

(
n∑

j=1

cjivj

)

=

n∑

j=1

cjif(vj)

=

n∑

j=1

cji

(
n∑

k=1

akjvk

)

=
n∑

k=1

(
n∑

j=1

cjiakj

)

vk

=
n∑

k=1

(
n∑

j=1

akjcji

)(
n∑

l=1

c∗lkul

)

=

n∑

j=1

n∑

k=1

n∑

l=1

(c∗lkakjcji)ul.

Here, the inverse matrix C−1 is denoted by

C−1 =






c∗11 · · · c∗1n
...

. . .
...

c∗n1 · · · c∗nn




 .

Therefore we have A′ = C−1AC.

Note that we have written here vk =
∑n

l=1 c∗lkul, and then we have said that the
resulting matrix (which we call C∗) is, in fact, C−1. To see that this is true, we
begin with the definition of C itself. We have

ul =
n∑

j=1

cjlvj .

Therefore

vk =
n∑

l=1

n∑

j=1

cjlc
∗
lkvj .

That is, CC∗ = In, and therefore C∗ = C−1.
Which mapping does the matrix C represent? From the equations ui =

∑n

j=1 cjivj

we see that it represents a mapping g : V → V such that g(vi) = ui for all i, ex-
pressed in terms of the original basis {v1, . . . ,vn}. So we see that a similarity
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transformation, taking a square matrix A to a similar matrix A′ = C−1AC is always
associated with a change of basis for the vector space V .

Much of the theory of linear algebra is concerned with finding a simple basis
(with respect to a given linear mapping of the vector space into itself), such that
the matrix of the mapping with respect to this simpler basis is itself simple — for
example diagonal, or at least trigonal.

11 Eigenvalues, Eigenspaces, Matrices which can

be Diagonalized

Definition. Let f : V → V be a linear mapping of an n-dimensional vector space
into itself. A subspace U ⊂ V is called invariant with respect to f if f(U) ⊂ U.
That is, f(u) ∈ U for all u ∈ U.

Theorem 28. Assume that the r dimensional subspace U ⊂ V is invariant with
respect to f : V → V. Let A be the matrix representing f with respect to a given
basis {v1, . . . ,vn} of V. Then A is similar to a matrix A′ which has the following
form

A′ =













a′
11 . . . a′

1r
...

...
a′

r1 . . . a′
rr

a′
1(r+1) . . . a′

1n

...
...

a′
r(r+1) . . . a′

rn

0

a′
(r+1)(r+1) . . . a′

(r+1)n
...

...
a′

n(r+1) . . . a′
nn













Proof. Let {u1, . . . ,ur} be a basis for the subspace U. Then extend this to a basis
{u1, . . . ,ur,ur+1, . . . ,un} of V. The matrix of f with respect to this new basis has
the desired form.

Definition. Let U1, . . . ,Up ⊂ V be subspaces. We say that V is the direct sum of
these subspaces if V = U1 + · · · + Up, and furthermore if v = u1 + · · · + up such
that ui ∈ Ui, for each i, then this expression for v is unique. In other words, if
v = u1 + · · ·+ up = u′

1 + · · ·+ u′
p with u′

i ∈ Ui for each i, then ui = u′
i, for each i.

In this case, one writes V = U1 ⊕ · · · ⊕Up

This immediately gives the following result:

Theorem 29. Let f : V → V be such that there exist subspaces Ui ⊂ V, for
i = 1, . . . , p, such that V = U1 ⊕ · · · ⊕Up and also f is invariant with respect to
each Ui. Then there exists a basis of V such that the matrix of f with respect to
this basis has the following block form.

A =










A1 0 . . . 0
0 A2 0
... 0

. . . 0
...

0 Ap−1 0
0 . . . 0 Ap









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where each block Ai is a square matrix, representing the restriction of f to the
subspace Ui.

Proof. Choose the basis to be a union of bases for each of the Ui.

A special case is when the invariant subspace is an eigenspace.

Definition. Assume that λ ∈ F is an eigenvalue of the mapping f : V → V. The
set {v ∈ V : f(v) = λv} is called the eigenspace of λ with respect to the mapping
f . That is, the eigenspace is the set of all eigenvectors (and with the zero vector 0

included) with eigenvalue λ.

Theorem 30. Each eigenspace is a subspace of V.

Proof. Let u,w ∈ V be in the eigenspace of λ. Let a, b ∈ F be arbitrary scalars.
Then we have

f(au + bw) = af(u) + bf(w) = aλu + bλw = λ(au + bw).

Obviously if λ1 and λ2 are two different (λ1 6= λ2) eigenvalues, then the only
common element of the eigenspaces is the zero vector 0. Thus if every vector in V is
an eigenvector, then we have the situation of theorem 29. One very particular case
is that we have n different eigenvalues, where n is the dimension of V.

Theorem 31. Let λ1, . . . , λn be eigenvalues of the linear mapping f : V → V,
where λi 6= λj for i 6= j. Let v1, . . . ,vn be eigenvectors to these eigenvalues. That
is, vi 6= 0 and f(vi) = λivi, for each i = 1, . . . , n. Then the set {v1, . . . ,vn} is
linearly independent.

Proof. Assume to the contrary that there exist a1, . . . , an, not all zero, with

a1v1 + · · ·+ anvn = 0.

Assume further that as few of the ai as possible are non-zero. Let ap be the first
non-zero scalar. That is, ai = 0 for i < p, and ap 6= 0. Obviously some other ak is
non-zero, for some k 6= p, for otherwise we would have the equation 0 = apvp, which
would imply that vp = 0, contrary to the assumption that vp is an eigenvector.
Therefore we have

0 = f(0) = f

(
n∑

i=1

aivi

)

=
n∑

i=1

aif(vi) =
n∑

i=1

aiλivi.

Also

0 = λp0 = λp

(
n∑

i=1

aivi

)

.

Therefore

0 = 0− 0 = λp

(
n∑

i=1

aivi

)

−
n∑

i=1

aiλivi =
n∑

i=1

ai(λp − λi)vi.

29



But, remembering that λi 6= λj for i 6= j, we see that the scalar term for vp is zero,
yet all other non-zero scalar terms remain non-zero. Thus we have found a new
sum with fewer non-zero scalars than in the original sum with the ais. This is a
contradiction.

Therefore, in this particular case, the given set of eigenvectors {v1, . . . ,vn} form
a basis for V. With respect to this basis, the matrix of the mapping is diagonal,
with the diagonal elements being the eigenvalues.

A =








λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn








.

12 The Elementary Matrices

These are n× n matrices which we denote by Sij , Si(a), and Sij(c). They are such
that when any n × n matrix A is multiplied on the right by such an S, then the
given elementary column operation is performed on the matrix A. Furthermore, if
the matrix A is multiplied on the left by such an elementary matrix, then the given
row operation on the matrix is performed. It is a simple matter to verify that the
following matrices are the ones we are looking for.

Sij =
























1
. . . 0

1

0
i−th row−→ 1

1

↓ . . . ↑
1

1 ←−
j−th row

0

1

0
. . .

1
























Here, everything is zero except for the two elements at the positions ij and ji, which
have the value 1. Also the diagonal elements are all 1 except for the elements at ii
and jj, which are zero.

Then we have

Si(a) =














1
. . . 0

1
a

1

0
. . .

1














30



That is, Si(a) is a diagonal matrix, all of whose diagonal elements are 1 except for
the single element at the position ii, which has the value a.

Finally we have

Sij(c) =



















1 0
. . .

1
i−th row−→ c

1
. . . ↑ j−th column

1
1

0
. . .

1



















So this is again just the n × n identity matrix, but this time we have replaced the
zero in the ij-th position with the scalar c. It is an elementary exercise to see that:

Theorem 32. Each of the n× n elementary matrices are regular.

And thus we can prove that these elementary matrices generate the group GL(n, F ).
Furthermore, for every elementary matrix, the inverse matrix is again elementary.

Theorem 33. Every matrix in GL(n, F ) can be represented as a product of elemen-
tary matrices.

Proof. Let A =






a11 · · · a1n

...
. . .

...
an1 · · · ann




 ∈ GL(n, F ) be some arbitrary regular matrix. We

have already seen that A can be transformed into a matrix in step form by means of
elementary row operations. That is, there is some sequence of elementary matrices:
S1, . . . , Sp, such that the product

A∗ = Sp · · ·S1A

is an n×n matrix in step form. However, since A was a regular matrix, the number
of steps must be equal to n. That is, A∗ must be a triangular matrix whose diagonal
elements are all equal to 1.

A∗ =














1 a∗
12 a∗

13 ⋆ · · · ⋆ a∗
1n

0 1 a∗
23 ⋆ · · · ⋆ a∗

2n

0 0 1 ⋆ · · · ⋆ a∗
3n

...
...

. . . ⋆ ⋆
...

0 · · · 0 1 a∗
(n−2)(n−1) a∗

(n−2)n

0 · · · 0 1 a∗
(n−1)n

0 · · · 0 1














But now it is obvious that the elements above the diagonal can all be reduced to
zero by elementary row operations of type Sij(c). These row operations can again
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be realized by multiplication of A∗ on the right by some further set of elementary
matrices: Sp+1, . . . , Sq. This gives us the matrix equation

Sq · · ·Sp+1Sp · · ·S1A = In

or
A = S−1

1 · · · · · ·S−1
p S−1

p+1 · · ·S−1
q .

Since the inverse of each elementary matrix is itself elementary, we have thus ex-
pressed A as a product of elementary matrices.

This proof also shows how we can go about programming a computer to cal-
culate the inverse of an invertible matrix. Namely, through the process of Gauss
elimination, we convert the given matrix into the identity matrix In. During this
process, we keep multiplying together the elementary matrices which represent the
respective row operations. In the end, we obtain the inverse matrix

A−1 = Sq · · ·Sp+1Sp · · ·S1.

We also note that this is the method which can be used to obtain the value of the
determinant function for the matrix. But first we must find out what the definition
of determinants of matrices is!

13 The Determinant

Let M(n× n, F ) be the set of all n× n matrices of elements of the field F .

Definition. A mapping det : M(n × n, F )→ F is called a determinant function if
it satisfies the following three conditions.

1. det(In) = 1, where In is the identity matrix.

2. If A ∈M(n×n, F ) is changed to the matrix A′ by multiplying all the elements
in a single row with the scalar a ∈ F , then det(A′) = a · det(A). (This is our
row operation Si(a).)

3. If A′ is obtained from A by adding one row to a different row, then det(A′) =
det(A). (This is our row operation Sij(1).)

Simple consequences of this definition

Let A ∈ M(n × n, F ) be an arbitrary n × n matrix, and let us say that A is
transformed into the new matrix A′ by an elementary row operation. Then we have:

• If A′ is obtained by multiplying row i by the scalar a ∈ F , then det(A′) =
a · det(A). This is completely obvious! It is just part of the definition of
“determinants”.

• Therefore, if A′ is obtained from A by multiplying a row with −1 then we have
det(A′) = −det(A).
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• Also, it follows that a matrix containing a row consisting of zeros must have
zero as its determinant.

• If A has two identical rows, then its determinant must also be zero. For can
we multiply one of these rows with -1, then add it to the other row, obtaining
a matrix with a zero row.

• If A′ is obtained by exchanging rows i and j, then det(A′) = −det(A). This
is a bit more difficult to see. Let us say that A = (u1, . . . ,ui, . . . ,uj, . . .un),
where uk is the k-th row of the matrix, for each k. Then we can write

det(A) = det(u1, . . . ,ui, . . . ,uj, . . .un)

= det(u1, . . . ,ui + uj , . . . ,uj, . . . ,un)

= −det(u1, . . . ,−(ui + uj), . . . ,uj, . . . ,un)

= −det(u1, . . . ,−(ui + uj), . . . ,uj − (ui + uj), . . . ,un)

= det(u1, . . . ,ui + uj , . . . ,−ui, . . . ,un)

= det(u1, . . . , (ui + uj)− ui, . . . ,−ui, . . . ,un)

= det(u1, . . . ,uj, . . . ,−ui, . . . ,un)

= −det(u1, . . . ,uj , . . . ,ui, . . . ,un)

(This is the elementary row operation Sij .)

• If A′ is obtained from A by an elementary row operation of the form Sij(c),
then det(A′) = det(A). For we have:

det(A) = det(u1, . . . ,ui, . . . ,uj, . . . ,un)

= c−1det(u1, . . . ,ui, . . . , cuj, . . . ,un)

= c−1det(u1, . . . ,ui + cuj , . . . , cuj, . . . ,un)

= det(u1, . . . ,ui + cuj , . . . ,uj, . . . ,un)

Therefore we see that each elementary row operation has a well-defined effect on
the determinant of the matrix. This gives us the following algorithm for calculating
the determinant of an arbitrary matrix in M(n× n, F ).

How to find the determinant of a matrix

Given: An arbitrary matrix A ∈ M(n× n, F ).
Find: det(A).

Method:

1. Using elementary row operations, transform A into a matrix in step form,
keeping track of the changes in the determinant at each stage.
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2. If the bottom line of the matrix we obtain only consists of zeros, then the
determinant is zero, and thus the determinant of the original matrix was zero.

3. Otherwise, the matrix has been transformed into an upper triangular matrix,
all of whose diagonal elements are 1. But now we can transform this matrix
into the identity matrix In by elementary row operations of the type Sij(c).
Since we know that det(In) must be 1, we then find a unique value for the
determinant of the original matrix A. In particular, in this case det(A) 6= 0.

Note that in both this algorithm, as well as in the algorithm for finding the
inverse of a regular matrix, the method of Gaussian elimination was used. Thus we
can combine both ideas into a single algorithm, suitable for practical calculations in
a computer, which yields both the matrix inverse (if it exists), and the determinant.
This algorithm also proves the following theorem.

Theorem 34. There is only one determinant function and it is uniquely given by
our algorithm. Furthermore, a matrix A ∈ M(n × n, F ) is regular if and only if
det(A) 6= 0.

In particular, using these methods it is easy to see that the following theorem is
true.

Theorem 35. Let A, B ∈M(n×n, F ). Then we have det(A ·B) = det(A) ·det(B).

Proof. If either A or B is singular, then A · B is singular. This can be seen by
thinking about the linear mappings V→ V which A and B represent. At least one
of these mappings is singular. Thus the dimension of the image is less than n, so
the dimension of the image of the composition of the two mappings must also be
less than n. Therefore A · B must be singular. That means, on the one hand, that
det(A · B) = 0. And on the other hand, that either det(A) = 0 or else det(B) = 0.
Either way, the theorem is true in this case.

If both A and B are regular, then they are both in GL(n, F ). Therefore, as we
have seen, they can be written as products of elementary matrices. It suffices then
to prove that det(S1)det(S2) = det(S1S2), where S1 and S2 are elementary matrices.
But our arguments above show that this is, indeed, true.

Remembering that A is regular if and only if A ∈ GL(n, F ), we have:

Corollary. If A ∈ GL(n, F ) then det(A−1) = (det(A))−1.

In particular, if det(A) = 1 then we also have det(A−1) = 1. The set of all such
matrices must then form a group.

Another simple corollary is the following.

Corollary. Assume that the matrix A is in block form, so that the linear mapping
which it represents splits into a direct sum of invariant subspaces (see theorem 29).
Then det(A) is the product of the determinants of the blocks.
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Proof. If

A =










A1 0 . . . 0
0 A2 0
... 0

. . . 0
...

0 Ap−1 0
0 . . . 0 Ap










then for each i = 1, . . . , p let

A∗
i =











1 0 . . . 0

0
. . . 0

... 0 Ai 0
...

0
. . . 0

0 . . . 0 1











.

That is, for the matrix A∗
i , all the blocks except the i-th block are replaced with

identity-matrix blocks. Then A = A∗
1 · · ·A∗

p, and it is easy to see that det(A∗
i ) =

det(Ai) for each i.

Definition. The special linear group of order n is defined to be the set

SL(n, F ) = {A ∈ GL(n, F ) : det(A) = 1}.

Theorem 36. Let A′ = C−1AC. Then det(A′) = det(A).

Proof. This follows, since det(C−1) = (det(C))−1.

14 Leibniz Formula

Definition. A permutation of the numbers {1, . . . , n} is a bijection

σ : {1, . . . , n} → {1, . . . , n}.

The set of all permutations of the numbers {1, . . . , n} is denoted Sn. In fact, Sn is
a group: the symmetric group of order n. Given a permutation σ ∈ Sn, we will say
that a pair of numbers (i, j), with i, j ∈ {1, . . . , n} is a “reversed pair” if i < j, yet
σ(i) > σ(j). Let s(σ) be the total number of reversed pairs in σ. Then the sign of
sigma is defined to be the number

sign(σ) = (−1)s(σ).

Theorem 37 (Leibniz). Let the elements in the matrix A be aij, for i, j between 1
and n. Then we have

det(A) =
∑

σ∈Sn

sign(σ)
n∏

i=1

aσ(i)i.

As a consequence of this formula, the following theorems can be proved:
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Theorem 38. Let A be a diagonal matrix.

A =








λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 · · · λn








Then det(A) = λ1λ2 · · ·λn.

Theorem 39. Let A be a triangular matrix.










a11 a12 ⋆ · · · ⋆
0 a22 ⋆ · · · ⋆

0 0
. . .

...
... 0 a(n−1)(n−1) a(n−1)n

0 · · · 0 0 ann










Then det(A) = a11a22 · · ·ann.

Leibniz formula also gives:

Definition. Let A ∈ M(n× n, F ). The transpose At of A is the matrix consisting
of elements at

ij such that for all i and j we have at
ij = aji, where aji are the elements

of the original matrix A.

Theorem 40. det(At) = det(A).

14.1 Special rules for 2× 2 and 3× 3 matrices

Let A =

(
a11 a12

a21 a22

)

. Then Leibniz formula reduces to the simple formula

det(A) = a11a22 − a12a21.

For 3×3 matrices, the formula is a little more complicated. Let A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



.

Then we have

det(A) = a11a22a33 + a12a23a33 + a13a21a32 − a11a23a32 − a12a21a33 − a11a23a32.

14.2 A proof of Leibniz Formula

Let the rows of the n× n identity matrix be ǫ1, . . . , ǫn. Thus

ǫ1 = (1 0 0 · · · 0), ǫ2 = (0 1 0 · · · 0), . . . , ǫn = (0 0 0 · · ·1).

Therefore, given that the i-th row in a matrix is

ξi = (ai1 ai2 · · · ain),
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then we have

ξi =

n∑

j=1

aijǫj .

So let the matrix A be represented by its rows,

A =






ξ1
...
ξn




 .

It was an exercise to show that the determinant function is additive. That is, if B
and C are n× n matrices, then we have det(B + C) = det(B) + det(C). Therefore
we can write

det(A) = det






ξ1
...
ξn






=

n∑

j1=1

a1j1det






ǫj1

ξ2
...

ξn






=
n∑

j1=1

a1j1

n∑

j2=1

a2j2det










ǫj1

ǫj2

ξ3
...
ξn










=
n∑

j1=1

n∑

j2=1

· · ·
n∑

jn=1

a1j1 · · ·anjn
det






ǫj1
...

ǫjn




 .

But what is det






ǫj1
...

ǫjn




? To begin with, observe that if ǫjk

= ǫjl
for some jk 6= jl, then

two rows are identical, and therefore the determinant is zero. Thus we need only the
sum over all possible permutations (j1, j2, . . . , jn) of the numbers (1, 2, . . . , n). Then,

given such a permutation, we have the matrix






ǫj1
...

ǫjn




. This can be transformed back

into the identity matrix






ǫ1
...
ǫn




 by means of successively exchanging pairs of rows.

Each time this is done, the determinant changes sign (from +1 to -1, or from -1 to
+1). Finally, of course, we know that the determinant of the identity matrix is 1.
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Therefore we obtain Leibniz formula

det(A) =
∑

σ∈Sn

sign(σ)
n∏

i=1

aiσ(i).

15 Why is the Determinant Important?

I am sure there are many points which could be advanced in answer to this question.
But here I will concentrate on only two special points.

• The transformation formula for integrals in higher-dimensional spaces.

This is a theorem which is usually dealt with in the Analysis III lecture. Let
G ⊂ Rn be some open region, and let f : G → R be a continuous function.
Then the integral ∫

G

f(x)d(n)x

has some particular value (assuming, of course, that the integral converges).
Now assume that we have a continuously differentiable injective mapping φ :
G→ Rn and a continuous function F : φ(G)→ R. Then we have the formula

∫

φ(G)

F (u)d(n)u =

∫

G

F (φ(x))|detD(φ(x))|d(n)x.

Here, D(φ(x)) is the Jacobi matrix of φ at the point x.

This formula reflects the geometric idea that the determinant measures the
change of the volume of n-dimensional space under the mapping φ.

If φ is a linear mapping, then take Q ⊂ Rn to be the unit cube: Q =
{(x1, . . . , xn) : 0 ≤ xi ≤ 1, ∀i}. Then the volume of Q, which we can de-
note by vol(Q) is simply 1. On the other hand, we have vol(φ(Q)) = det(A),
where A is the matrix representing φ with respect to the canonical coordinates
for Rn. (A negative determinant — giving a negative volume — represents an
orientation-reversing mapping.)

• The characteristic polynomial.

Let f : V → V be a linear mapping, and let v be an eigenvector of f with
f(v) = λv. That means that (f − λid)(v) = 0; therefore the mapping (f −
λid) : V → V is singular. Now consider the matrix A, representing f with
respect to some particular basis of V. Since λIn is the matrix representing the
mapping λid, we must have that the difference A − λIn is a singular matrix.
In particular, we have det(A− λIn) = 0.

Another way of looking at this is to take a “variable” x, and then calculate
(for example, using the Leibniz formula) the polynomial in x

P (x) = det(A− xIn).

This polynomial is called the characteristic polynomial for the matrix A.
Therefore we have the theorem:
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Theorem 41. The zeros of the characteristic polynomial of A are the eigen-
values of the linear mapping f : V→ V which A represents.

Obviously the degree of the polynomial is n for an n× n matrix A. So let us
write the characteristic polynomial in the standard form

P (x) = cnx
n + cn−1x

n−1 + · · ·+ c1x + c0.

The coefficients c0, . . . , cn are all elements of our field F .

Now the matrix A represents the mapping f with respect to a particular choice
of basis for the vector space V. With respect to some other basis, f is repre-
sented by some other matrix A′, which is similar to A. That is, there exists
some C ∈ GL(n, F ) with A′ = C−1AC. But we have

det(A′ − xIn) = det(C−1AC − xC−1InC)

= det(C−1(A− xIn)C)

= det(C−1)det(A− xIn)det(C)

= det(A− xIn)

= P (x).

Therefore we have:

Theorem 42. The characteristic polynomial is invariant under a change of
basis; that is, under a similarity transformation of the matrix.

In particular, each of the coefficients ci of the characteristic polynomial P (x) =
cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0 remains unchanged after a similarity transfor-

mation of the matrix A.

What is the coefficient cn? Looking at the Leibniz formula, we see that the
term xn can only occur in the product

(a11 − x)(a22 − x) · · · (ann − x) = (−1)xn − (a11 + a22 + · · ·+ ann)xn−1 + · · · .

Therefore cn = 1 if n is even, and cn = −1 if n is odd. This is not particularly
interesting.

So let us go one term lower and look at the coefficient cn−1. Where does xn−1

occur in the Leibniz formula? Well, as we have just seen, there certainly is the
term

(−1)n−1(a11 + a22 + · · ·+ ann)xn−1,

which comes from the product of the diagonal elements in the matrix A−xIn.
Do any other terms also involve the power xn−1? Let us look at Leibniz formula
more carefully in this situation. We have

det(A− xIn) = (a11 − x)(a22 − x) · · · (ann − x)

+
∑

σ∈Sn
σ 6=id

sign(σ)
n∏

i=1

(
aσ(i)i − xδσ(i)i

)
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Here, δij = 1 if i = j. Otherwise, δij = 0. Now if σ is a non-trivial permutation
— not just the identity mapping — then obviously we must have two different
numbers i1 and i2, with σ(i1) 6= i1 and also σ(i2) 6= i2. Therefore we see that
these further terms in the sum can only contribute at most n− 2 powers of x.
So we conclude that the (n− 1)-st coefficient is

cn−1 = (−1)n−1(a11 + a22 + · · ·+ ann).

Definition. Let A =






a11 · · · a1n

...
. . .

...
an1 · · · ann




 be an n × n matrix. The trace of A

(in German, the spur of A) is the sum of the diagonal elements:

tr(A) = a11 + a22 + · · ·+ ann.

Theorem 43. tr(A) remains unchanged under a similarity transformation.

An example

Let f : R2 → R2 be a rotation through the angle θ. Then, with respect to the
canonical basis of R2, the matrix of f is

A =

(
cos θ − sin θ
sin θ cos θ

)

.

Therefore the characteristic polynomial of A is

det

[(
cos θ − sin θ
sin θ cos θ

)

− x

(
1 0
0 1

)]

= det

(
cos θ − x − sin θ

sin θ cos θ − x

)

= x2 − 2x cos θ + 1.

That is to say, if λ ∈ R is an eigenvalue of f , then λ must be a zero of the charac-
teristic polynomial. That is,

λ2 − 2λ cos θ + 1 = 0.

But, looking at the well-known formula for the roots of quadratic polynomials, we
see that such a λ can only exist if | cos θ| = 1. That is, θ = 0 or π. This reflects the
obvious geometric fact that a rotation through any angle other than 0 or π rotates
any vector away from its original axis. In any case, the two possible values of θ give
the two possible eigenvalues for f , namely +1 and −1.

16 Complex Numbers

On the other hand, looking at the characteristic polynomial, namely x2−2x cos θ+1
in the previous example, we see that in the case θ = ±π this reduces to x2 +1. And
in the realm of the complex numbers C, this equation does have zeros, namely ±i.
Therefore we have the seemingly bizarre situation that a “complex” rotation through
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a quarter of a circle has vectors which are mapped back onto themselves (multiplied
by plus or minus the “imaginary” number i). But there is no need for panic here!
We need not follow the example of numerous famous physicists of the past, declaring
the physical world to be “paradoxical”, “beyond human understanding”, etc. No.
What we have here is a purely algebraic result using the abstract mathematical
construction of the complex numbers which, in this form, has nothing to do with
rotations of real physical space!

So let us forget physical intuition and simply enjoy thinking about the artificial
mathematical game of extending the system of real numbers to the complex numbers.
I assume that you all know that the set of complex numbers C can be thought of as
being the set of numbers of the form x + yi, where x and y are elements of the real
numbers R and i is an abstract symbol, introduced as a “solution” to the equation
x2 + 1 = 0. Thus i2 = −1. Furthermore, the set of numbers of the form x + 0 · i
can be identified simply with x, and so we have an embedding R ⊂ C. The rules of
addition and multiplication in C are

(x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i

and
(x1 + y1i) · (x2 + y2i) = (x1x2 − y1y2) + (x1y2 + x2y1)i.

Let z = x+ yi be some complex number. Then the absolute value of z is defined
to be the (non-negative) real number |z| =

√

x2 + y2. The complex conjugate of z
is z = x− yi. Therefore |z| =

√
zz.

It is a simple exercise to show that C is a field. The main result — called (in
German) the Hauptsatz der Algebra — is that C is an algebraically closed field.
That is, let C[z] be the set of all polynomials with complex numbers as coefficients.
Thus, for P (z) ∈ C[z] we can write P (z) = cnz

n + · · ·+ c1z + c0, where cj ∈ C, for
all j = 0, . . . , n. Then we have:

Theorem 44 (Hauptsatz der Algebra). Let P (z) ∈ C[z] be an arbitrary polynomial
with complex coefficients. Then P has a zero in C. That is, there exists some λ ∈ C

with P (λ) = 0.

The theory of complex numbers (Funktionentheorie in German) is an extremely
interesting and pleasant subject. Complex analysis is quite different from the real
analysis which you are learning in the Analysis I and II lectures. If you are interested,
you might like to have a look at my lecture notes on the subject (in English), or
look at any of the many books in the library with the title “Funktionentheorie”.

Unfortunately, owing to a lack of time in this summer semester, I will not be
able to describe the proof of theorem 44 here. Those who are interested can find a
proof in my other lecture notes on linear algebra. In any case, the consequence is

Theorem 45. Every complex polynomial can be completely factored into linear fac-
tors. That is, for each P (z) ∈ C[z] of degree n, there exist n complex numbers
(perhaps not all different) λ1, . . . , λn, and a further complex number c, such that

P (z) = c(λ1 − z) · · · (λn − z).
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Proof. Given P (z), theorem 44 tells us that there exists some λ1 ∈ C, such that
P (λ1) = 0. Let us therefore divide the polynomial P (z) by the polynomial (λ1− z).
We obtain

P (z) = (λ1 − z) ·Q(z) + R(z),

where both Q(z) and R(z) are polynomials in C[z]. However, the degree of R(z) is
less than the degree of the divisor, namely (λ1 − z), which is 1. That is, R(z) must
be a polynomial of degree zero, i.e. R(z) = r ∈ C, a constant. But what is r? If we
put λ1 into our equation, we obtain

0 = P (λ1) = (λ1 − λ1)Q(z) + r = 0 + r.

Therefore r = 0, and so
P (z) = (λ1 − z)Q(z),

where Q(z) must be a polynomial of degree n−1. Therefore we apply our argument in
turn to Q(z), again reducing the degree, and in the end, we obtain our factorization
into linear factors.

So the consequence is: let V be a vector space over the field of complex numbers
C. Then every linear mapping f : V → V has at least one eigenvalue, and thus at
least one eigenvector.

17 Scalar Products, Norms, etc.

So now we have arrived at the subject matter which is usually taught in the second
semester of the beginning lectures in mathematics — that is in Linear Algebra II
— namely, the properties of (finite dimensional) real and complex vector spaces.
Finally now, we are talking about geometry. That is, about vector spaces which
have a distance function. (The word “geometry” obviously has to do with the
measurement of physical distances on the earth.)

So let V be some finite dimensional vector space over R, or C. Let v ∈ V be
some vector in V. Then, since V ∼= Rn, or Cn, we can write v =

∑n

j=1 ajej , where
{e1, . . . , en} is the canonical basis for Rn or Cn, and aj ∈ R or C, respectively, for
all j. Then the length of v is defined to be the non-negative real number

‖v‖ =
√

|a1|2 + · · ·+ |an|2.

Of course, as these things always are, we will not simply confine ourselves to
measurements of normal physical things on the earth. We have already seen that the
idea of a complex vector space defies our normal powers of geometric visualization.
Also, we will not always restrict things to finite dimensional vector spaces. For
example, spaces of functions — which are almost always infinite dimensional — are
also very important in theoretical physics. Therefore, rather than saying that ‖v‖
is the “length” of the vector v, we use a new word, and we say that ‖v‖ is the
norm of v. In order to define this concept in a way which is suitable for further
developments, we will start with the idea of a scalar product of vectors.
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Definition. Let F = R or C and let V, W be two vector spaces over F . A bilinear
form is a mapping s : V ×W → F satisfying the following conditions with respect
to arbitrary elements v, v1 and v2 ∈ V, w, w1 and w2 ∈W, and a ∈ F .

1. s(v1 + v2,w) = s(v1,w) + s(v2,w),

2. s(av,w) = as(v,w),

3. s(v,w1 + w2) = s(v,w1) + s(v,w2) and

4. s(v, aw) = as(v,w).

If V = W, then we say that a bilinear form s : V × V → F is symmetric, if
we always have s(v1,v2) = s(v2,v1). Also the form is called positive definite if
s(v,v) > 0 for all v 6= 0.

On the other hand, if F = C and f : V→W is such that we always have

1. f(v1 + v2) = f(v1) + f(v1) and

2. f(av) = af(v)

Then f is a semi-linear (not a linear) mapping. (Note: if F = R then semi-linear
is the same as linear.)

A mapping s : V ×W→ F such that

1. The mapping given by s(·,w) : V → F , where v → s(v,w) is semi-linear for
all w ∈W, whereas

2. The mapping given by s(v, ·) : W → F , where w → s(v,w) is linear for all
v ∈ V

is called a sesqui-linear form.
In the case V = W, we say that the sesqui-linear form is Hermitian (or Eu-

clidean, if we only have F = R), if we always have s(v1,v2) = s(v2,v1). (Therefore,
if F = R, an Hermitian form is symmetric.)

Finally, a scalar product is a positive definite Hermitian form s : V ×V → F .
Normally, one writes 〈v1,v2〉, rather than s(v1,v2).

Well, these are a lot of new words. To be more concrete, we have the inner
products, which are examples of scalar products.

Inner products

Let u =








u1

u2
...

un








,v =








v1

v2
...
vn







∈ Cn. Thus, we are considering these vectors as column

vectors, defined with respect to the canonical basis of Cn. Then define (using matrix
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multiplication)

〈u,v〉 = utv = (u1 u2 · · · un)








v1

v2
...
vn








=

n∑

j=1

ujvj.

It is easy to check that this gives a scalar product on Cn. This particular scalar
product is called the inner product.

Remark. One often writes u · v for the inner product. Thus, considering it to be a
scalar product, we just have u · v = 〈u,v〉.

This inner product notation is often used in classical physics; in particular in
Maxwell’s equations. Maxwell’s equations also involve the “vector product” u × v.
However the vector product of classical physics only makes sense in 3-dimensional
space. Most physicists today prefer to imagine that physical space has 10, or even
more — perhaps even a frothy, undefinable number of — dimensions. Therefore
it appears to be the case that the vector product might have gone out of fashion
in contemporary physics. Indeed, mathematicians can imagine many other possible
vector-space structures as well. Thus I shall dismiss the vector product from further
discussion here.

Definition. A real vector space (that is, over the field of the real numbers R),
together with a scalar product is called a Euclidean vector space. A complex vector
space with scalar product is called a unitary vector space.

Now, the basic reason for making all these definitions is that we want to define
the length — that is the norm — of the vectors in V. Given a scalar product, then
the norm of v ∈ V — with respect to this scalar product — is the non-negative real
number

‖v‖ =
√

〈v,v〉.
More generally, one defines a norm-function on a vector space in the following

way.

Definition. Let V be a vector space over C (and thus we automatically also include
the case R ⊂ C as well). A function ‖ · ‖ : V → R is called a norm on V if it
satisfies the following conditions.

1. ‖av‖ = |a|‖v‖ for all v ∈ V and for all a ∈ C,

2. ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖ for all v1,v2 ∈ V (the triangle inequality), and

3. ‖v‖ = 0⇔ v = 0.

Theorem 46 (Cauchy-Schwarz inequality). Let V be a Euclidean or a unitary vector
space, and let ‖v‖ =

√

〈v,v〉 for all v ∈ V. Then we have

|〈u,v〉| ≤ ‖u‖ · ‖v‖

for all u and v ∈ V. Furthermore, the equality |〈u,v〉| = ‖u‖ · ‖v‖ holds if, and
only if, the set {u,v} is linearly dependent.
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Proof. It suffices to show that |〈u,v〉|2 ≤ 〈u,u〉〈v,v〉. Now, if v = 0, then — using
the properties of the scalar product — we have both 〈u,v〉 = 0 and 〈v,v〉 = 0.
Therefore the theorem is true in this case, and we may assume that v 6= 0. Thus
〈v,v〉 > 0. Let

a =
〈u,v〉
〈v,v〉 ∈ C.

Then we have

0 ≤ 〈u− av,u− av〉
= 〈u,u− av〉+ 〈−av,u− av〉
= 〈u,u〉+ 〈u,−av〉+ 〈−av,u〉+ 〈−av,−av〉
= 〈u,u〉 − a〈u,v〉

︸ ︷︷ ︸

〈u,v〉〈u,v〉
〈v,v〉

− a〈u,v〉
︸ ︷︷ ︸

〈u,v〉〈u,v〉
〈v,v〉

+ aa〈v,v〉
︸ ︷︷ ︸

〈u,v〉〈u,v〉
〈v,v〉

.

Therefore,
0 ≤ 〈u,u〉〈v,v〉 − 〈u,v〉〈u,v〉.

But
〈u,v〉〈u,v〉 = |〈u,v〉|2,

which gives the Cauchy-Schwarz inequality. When do we have equality?
If v = 0 then, as we have already seen, the equality |〈u,v〉| = ‖u‖·‖v‖ is trivially

true. On the other hand, when v 6= 0, then equality holds when 〈u−av,u−av〉 = 0.
But since the scalar product is positive definite, this holds when u− av = 0. So in
this case as well, {u,v} is linearly dependent.

Theorem 47. Let V be a vector space with scalar product, and define the non-
negative function ‖ · ‖ : V→ R by ‖v‖ =

√

〈v,v〉. Then ‖ · ‖ is a norm function on
V.

Proof. The first and third properties in our definition of norms are obviously sat-
isfied. As far as the triangle inequality is concerned, begin by observing that for
arbitrary complex numbers z = x + yi ∈ C we have

z + z = (x + yi) + (x− yi) = 2x ≤ 2|x| ≤ 2|z|.

Therefore, let u and v ∈ V be chosen arbitrarily. Then we have

‖u + v‖2 = 〈u + v,u + v〉
= 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉
= 〈u,u〉+ 〈u,v〉+ 〈u,v〉+ 〈v,v〉
≤ 〈u,u〉+ 2|〈u,v〉|+ 〈v,v〉
≤ 〈u,u〉+ 2‖u‖ · ‖v‖+ 〈v,v〉 (Cauchy-Schwarz inequality)

= ‖u‖2 + 2‖u‖ · ‖v‖+ ‖v‖2
= (‖u‖+ ‖v‖)2.

Therefore ‖u + v‖ ≤ ‖u‖+ ‖v‖.
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18 Orthonormal Bases

Our vector space V is now assumed to be either Euclidean, or else unitary — that
is, it is defined over either the real numbers R, or else the complex numbers C. In
either case we have a scalar product 〈·, ·〉 : V ×V→ F (here, F = R or C).

As always, we assume that V is finite dimensional, and thus it has a basis
{v1, . . . ,vn}. Thinking about the canonical basis for Rn or Cn, and the inner
product as our scalar product, we see that it would be nice if we had

• 〈vj,vj〉 = 1, for all j (that is, the basis vectors are normalized), and further-
more

• 〈vj,vk〉 = 0, for all j 6= k (that is, the basis vectors are an orthogonal set in
V).9

That is to say, {v1, . . . ,vn} is an orthonormal basis of V. Unfortunately, most
bases are not orthonormal. But this doesn’t really matter. For, starting from any
given basis, we can successively alter the vectors in it, gradually changing it into an
orthonormal basis. This process is often called the Gram-Schmidt orthonormaliza-
tion process. But first, to show you why orthonormal bases are good, we have the
following theorem.

Theorem 48. Let V have the orthonormal basis {v1, . . . ,vn}, and let x ∈ V be
arbitrary. Then

x =

n∑

j=1

〈vj,x〉vj .

That is, the coefficients of x, with respect to the orthonormal basis, are simply the
scalar products with the respective basis vectors.

Proof. This follows simply because if x =
∑n

j=1 ajvj , then we have for each k,

〈vk,x〉 = 〈vk,
n∑

j=1

ajvj〉 =
n∑

j=1

aj〈vk,vj〉 = ak.

So now to the Gram-Schmidt process. To begin with, if a non-zero vector v ∈ V

is not normalized — that is, its norm is not one — then it is easy to multiply it by a

9Note that any orthogonal set of non-zero vectors {u1, . . . ,um} in V is linearly independent.
This follows because if

0 =

m∑

j=1

ajuj

then

0 = 〈uk,0〉 = 〈uk,
m∑

j=1

ajuj〉 =
m∑

j=1

aj〈uk,uj〉 = ak〈uk,uk〉

since 〈uk,uj〉 = 0 if j 6= k, and otherwise it is not zero. Thus, we must have ak = 0. This is true
for all the ak.
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scalar, changing it into a vector with norm one. For we have 〈v,v〉 > 0. Therefore
‖v‖ =

√

〈v,v〉 > 0 and we have

∥
∥
∥
∥

v

‖v‖

∥
∥
∥
∥

=

√
〈

v

‖v‖ ,
v

‖v‖

〉

=

√

〈v,v〉
〈v,v〉 =

‖v‖
‖v‖ = 1.

In other words, we simply multiply the vector by the inverse of its norm.

Theorem 49. Every finite dimensional vector space V which has a scalar product
has an orthonormal basis.

Proof. The proof proceeds by constructing an orthonormal basis {u1, . . . ,un} from
a given, arbitrary basis {v1, . . . ,vn}. To describe the construction, we use induction
on the dimension, n. If n = 1 then there is almost nothing to prove. Any non-zero
vector is a basis for V, and as we have seen, it can be normalized by dividing by the
norm. (That is, scalar multiplication with the inverse of the norm.)

So now assume that n ≥ 2, and furthermore assume that the Gram-Schmidt pro-
cess can be constructed for any n−1 dimensional space. Let U ⊂ V be the subspace
spanned by the first n − 1 basis vectors {v1, . . . ,vn−1}. Since U is only n − 1 di-
mensional, our assumption is that there exists an orthonormal basis {u1, . . . ,un−1}
for U. Clearly10, adding in vn gives a new basis {u1, . . . ,un−1,vn} for V. Unfor-
tunately, this last vector, vn, might disturb the nice orthonormal character of the
other vectors. Therefore, we replace vn with the new vector11

u∗
n = vn −

n−1∑

j=1

〈uj ,vn〉uj.

Thus the new set {u1, . . . ,un−1,u
∗
n} is a basis of V. Also, for k < n, we have

〈uk,u
∗
n〉 =

〈

uk,vn −
n−1∑

j=1

〈uj,vn〉uj

〉

= 〈uk,vn〉 −
n−1∑

j=1

〈uj ,vn〉〈uk,uj〉

= 〈uk,vn〉 − 〈uk,vn〉 = 0.

Thus the basis {u1, . . . ,un−1,u
∗
n} is orthogonal. Perhaps u∗

n is not normalized, but
as we have seen, this can be easily changed by taking the normalized vector

un =
u∗

n

‖u∗
n‖

.

10Since both {v1, . . . ,vn−1} and {u1, . . . ,un−1} are bases for U, we can write each vj as a linear
combination of the uk’s. Therefore {u1, . . . ,un−1,vn} spans V, and since the dimension is n, it
must be a basis.

11A linearly independent set remains linearly independent if one of the vectors has some linear
combination of the other vectors added on to it.
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19 Some “Classical Groups” Often Seen in Physics

• The orthogonal group O(n): This is the set of all linear mappings f : R
n → R

n

such that 〈u,v〉 = 〈f(u), f(v)〉, for all u, v ∈ Rn. We think of this as being
all possible rotations and inversions (Spiegelungen) of n-dimensional Euclidean
space.

• The special orthogonal group SO(n): This is the subgroup of O(n), containing
all orthogonal mappings whose matrices have determinant +1.

• The unitary group U(n): The analog of O(n), where the vector space is n-
dimensional complex space Cn. That is, 〈u,v〉 = 〈f(u), f(v)〉, for all u, v ∈
Cn.

• The special unitary group SU(n): Again, the subgroup of U(n) with determi-
nant +1.

Note that for orthogonal, or unitary mappings, all eigenvalues — if they exist —
must have absolute value 1. To see this, let v be an eigenvector with eigenvalue λ.
Then we have

〈v,v〉 = 〈f(v), f(v)〉 = 〈λv, λv〉 = λλ〈v,v〉 = |λ|2〈v,v〉.

Since v is an eigenvector, and thus v 6= 0, we must have |λ| = 1.
We will prove that all unitary matrices can be diagonalized. That is, for every

unitary mapping Cn → Cn, there exists a basis consisting of eigenvectors. On the
other hand, as we have already seen in the case of simple rotations of 2-dimensional
space, “most” orthogonal matrices cannot be diagonalized. On the other hand, we
can prove that every orthogonal mapping Rn → Rn, where n is an odd number, has
at least one eigenvector.12

• The self-adjoint mappings f (of Rn → Rn or Cn → Cn) are such that 〈u, f(v)〉 =
〈f(v),u〉, for all u, v in Rn or Cn, respectively. As we will see, the matrices for
such mappings are symmetric in the real case, and Hermitian in the complex
case. In either case, the matrices can be diagonalized. Examples of Hermitian
matrices are the Pauli spin-matrices:

(
0 1
1 0

)

,

(
0 −i
i 0

)

,

(
1 0
0 −1

)

.

We also have the Lorentz group, which is important in the Theory of Relativity.
Let us imagine that physical space is R

4, and a typical point is v = (tv, xv, yv, zv).
Physicists call this Minkowski space, which they often denote by M4. A linear map-
ping f : M4 → M4 is called a Lorentz transformation if, for f(v) = (t∗v, x

∗
v, y

∗
v, z

∗
v),

we have

• −(t∗v)
2 + (x∗

v)
2 + (y∗

v)
2 + (z∗v)

2 = −t2v + x2
v + y2

v + z2
v , for all v ∈M4, and also

12For example, in our normal 3-dimensional space of physical reality, any rotating object — for
example the Earth rotating in space — has an axis of rotation, which is an eigenvector.
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• the mapping is “time-preserving” in the sense that the unit vector in the time
direction, (1, 0, 0, 0) is mapped to some vector (t∗, x∗, y∗, z∗), such that t∗ > 0.

The Poincare group is obtained if we consider, in addition, translations of Minkowski
space. But translations are not linear mappings, so I will not consider these things
further in this lecture.

20 Characterizing Orthogonal, Unitary, and Her-

mitian Matrices

20.1 Orthogonal matrices

Let V be an n-dimensional real vector space (that is, over the real numbers R), and
let {v1, . . . ,vn} be an orthonormal basis for V. Let f : V → V be an orthogonal
mapping, and let A be its matrix with respect to the basis {v1, . . . ,vn}. Then we
say that A is an orthogonal matrix.

Theorem 50. The n × n matrix A is orthogonal ⇔ A−1 = At. (Recall that if aij

is the ij-th element of A, then the ij-the element of At is aji. That is, everything is
“flipped over” the main diagonal in A.)

Proof. For an orthogonal mapping f , we have 〈u,w〉 = 〈f(u), f(w)〉, for all j and
k. But in the matrix notation, the scalar product becomes the inner product. That
is, if

u =






u1
...

un




 and w =






w1
...

wn




 ,

then

〈u,w〉 = ut ·w = (u1 · · · un)






w1
...

wn




 =

n∑

j=1

ujwj.

In particular, taking u = vj and w = vk, we have

〈vj,vk〉 =

{

1, if j = k,

0, otherwise.

In other words, the matrix whose jk-th element is always 〈vj,vk〉 is the n×n identity
matrix In. On the other hand,

f(vj) = Avj =






a11 · · · a1n

...
. . .

...
an1 · · · ann




 · vj =






a1j

...
anj




 .

That is, we obtain the j-th column of the matrix A. Furthermore, since 〈vj,vk〉 =
〈f(vj), f(vk)〉, we must have the matrix whose jk-th elements are 〈f(vj), f(vk)〉
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being again the identity matrix. So

(a1j · · · anj)






a1k

...
ank




 =

{

1, if j = k,

0, otherwise.

But now, if you think about it, you see that this is just one part of the matrix
multiplication AtA. All together, we have

AtA =






a11 · · · an1
...

. . .
...

a1n · · · ann




 ·






a11 · · · a1n

...
. . .

...
an1 · · · ann




 = In.

Thus we conclude that A−1 = At. (Note: this was only the proof that f orthogo-
nal ⇒ A−1 = At. The proof in the other direction, going backwards through our
argument, is easy, and is left as an exercise for you.)

20.2 Unitary matrices

Theorem 51. The n × n matrix A is unitary ⇔ A−1 = A
t
. (The matrix A is

obtained by taking the complex conjugates of all its elements.)

Proof. Entirely analogous with the case of orthogonal matrices. One must note
however, that the inner product in the complex case is

〈u,w〉 = ut ·w = (u1 · · · un)






w1
...

wn




 =

n∑

j=1

ujwj.

20.3 Hermitian and symmetric matrices

Theorem 52. The n× n matrix A is Hermitian ⇔ A = A
t
.

Proof. This is again a matter of translating the condition 〈vj , f(vk)〉 = 〈f(vj),vk〉
into matrix notation, where f is the linear mapping which is represented by the
matrix A, with respect to the orthonormal basis {v1, . . . ,vn}. We have

〈vj, f(vk)〉 = vt
j ·Avk = vt

j






a1k

...
ank




 = ajk.

On the other hand

〈f(vj),vk〉 = Av
t

j · vk = (a1j · · · anj) · vk = akj.

In particular, we see that in the real case, self-adjoint matrices are symmetric.
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21 Which Matrices can be Diagonalized?

The complete answer to this question is a bit too complicated for me to explain to
you in the short time we have in this semester. It all has to do with a thing called
the “minimal polynomial”.

Now we have seen that not all orthogonal matrices can be diagonalized. (Think
about the rotations of R2.) On the other hand, we can prove that all unitary, and
also all Hermitian matrices can be diagonalized.

Of course, a matrix M is only a representation of a linear mapping f : V → V

with respect to a given basis {v1, . . . ,vn} of the vector space V. So the idea that
the matrix can be diagonalized is that it is similar to a diagonal matrix. That is,
there exists another matrix S, such that S−1MS is diagonal.

S−1MS =








λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn








.

But this means that there must be a basis for V, consisting entirely of eigenvectors.
In this section we will consider complex vector spaces — that is, V is a vector

space over the complex numbers C. The vector space V will be assumed to have a
scalar product associated with it, and the bases we consider will be orthonormal.

We begin with a definition.

Definition. Let W ⊂ V be a subspace of V. Let

W⊥ = {v ∈ V : 〈v,w〉 = 0, ∀w ∈W}.

Then W⊥ is called the perpendicular space to W.

It is a rather trivial matter to verify that W⊥ is itself a subspace of V, and
furthermore W ∩W⊥ = {0}. In fact, we have:

Theorem 53. V = W⊕W⊥.

Proof. Let {w1, . . . ,wm} be some orthonormal basis for the vector space W. This
can be extended to a basis {w1, . . . ,wm,wm+1, . . . ,wn} of V. Assuming the Gram-
Schmidt process has been used, we may assume that this is an orthonormal basis.
The claim is then that {wm+1, . . . ,wn} is a basis for W⊥.

Now clearly, since 〈wj ,wk〉 = 0, for j 6= k, we have that {wm+1, . . . ,wn} ⊂W⊥.
If u ∈W⊥ is some arbitrary vector in W⊥, then we have

u =
n∑

j=1

〈wj ,u〉wj =
n∑

j=m+1

〈wj,u〉wj,

since 〈wj,u〉 = 0 if j ≤ m. (Remember, u ∈W⊥.) Therefore, {wm+1, . . . ,wn} is a
linearly independent, orthonormal set which generates W⊥, so it is a basis. And so
we have V = W⊕W⊥.
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Theorem 54. Let f : V → V be a unitary mapping (V is a vector space over the
complex numbers C). Then there exists an orthonormal basis {v1, . . . ,vn} for V

consisting of eigenvectors under f . That is to say, the matrix of f with respect to
this basis is a diagonal matrix.

Proof. If the dimension of V is zero or one, then obviously there is nothing to prove.
So let us assume that the dimension n is at least two, and we prove things by
induction on the number n. That is, we assume that the theorem is true for spaces
of dimension less than n.

Now, according to the fundamental theorem of algebra, the characteristic poly-
nomial of f has a zero, λ say, which is then an eigenvalue for f . So there must be
some non-zero vector vn ∈ V, with f(vn) = λvn. By dividing by the norm of vn if
necessary, we may assume that ‖vn‖ = 1.

Let W ⊂ V be the 1-dimensional subspace generated by the vector vn. Then
W⊥ is an n−1 dimensional subspace. We have that W⊥ is invariant under f . That
is, if u ∈W⊥ is some arbitrary vector, then f(u) ∈W⊥ as well. This follows since

λ〈f(u),vn〉 = 〈f(u), λvn〉 = 〈f(u), f(vn)〉 = 〈u,vn〉 = 0.

But we have already seen that for an eigenvalue λ of a unitary mapping, we must
have |λ| = 1. Therefore we must have 〈f(u),vn〉 = 0.

So we can consider f , restricted to W⊥, and using the inductive hypothesis,
we obtain an orthonormal basis of eigenvectors {v1, . . . ,vn−1} for W⊥. There-
fore, adding in the last vector vn, we have an orthonormal basis of eigenvectors
{v1, . . . ,vn} for V.

Theorem 55. All Hermitian matrices can be diagonalized.

Proof. This is similar to the last one. Again, we use induction on n, the dimension
of the vector space V. We have a self-adjoint mapping f : V → V. If n is zero or
one, then we are finished. Therefore we assume that n ≥ 2.

Again, we observe that the characteristic polynomial of f must have a zero, hence
there exists some eigenvalue λ, and an eigenvector vn of f , which has norm equal
to one, where f(vn) = λvn. Again take W to be the one dimensional subspace of
V generated by vn. Let W⊥ be the perpendicular subspace. It is only necessary to
show that, again, W⊥ is invariant under f . But this is easy. Let u ∈W⊥ be given.
Then we have

〈f(u),vn〉 = 〈u, f(vn)〉 = 〈u, λvn〉 = λ〈u,vn〉 = λ · 0 = 0.

The rest of the proof follows as before.

In the particular case where we have only real numbers (which of course are a
subset of the complex numbers), then we have a symmetric matrix.

Corollary. All real symmetric matrices can be diagonalized.

Note furthermore, that even in the case of a unitary matrix, the symmetry con-
dition, namely ajk = akj, implies that on the diagonal, we have ajj = ajj for all j.
That is, the diagonal elements are all real numbers. But these are the eigenvalues.
Therefore we have:
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Corollary. The eigenvalues of a self-adjoint matrix — that is, a symmetric or a
Hermitian matrix — are all real numbers.

Orthogonal matrices revisited

Let A be an n× n orthogonal matrix. That is, it consists of real numbers, and we
have At = A−1. In general, it cannot be diagonalized. But on the other hand, it can
be brought into the following form by means of similarity transformations.

A′′ =












±1
. . . 0
±1

R1

0
. . .

Rp












,

where each Rj is a 2× 2 block of the form
(

cos θ ± sin θ
sin θ ∓ cos θ

)

.

To see this, start by imagining that A represents the orthogonal mapping f :
Rn → Rn with respect to the canonical basis of Rn. Now consider the symmetric
matrix

B = A + At = A + A−1.

This matrix represents another linear mapping, call it g : Rn → Rn, again with
respect to the canonical basis of Rn.

But, as we have just seen, B can be diagonalized. In particular, there exists some
vector v ∈ Rn with g(v) = λg(v), for some λ ∈ R. We now proceed by induction
on the number n. There are two cases to consider:

• v is also an eigenvector for f , or

• it isn’t.

The first case is easy. Let W ⊂ V be simply W = [v]. i.e. this is just the set of all
scalar multiples of v. Let W⊥ be the perpendicular space to W. (That is, w ∈W⊥

means that 〈w,v〉 = 0.) But it is easy to see that W⊥ is also invarient under f .
This follows by observing first of all that f(v) = αv, with α = ±1. (Remember that
the eigenvalues of orthogonal mappings have absolute value 1.) Now take w ∈W⊥.
Then 〈f(w),v〉 = α−1〈f(w), αv〉 = α−1〈f(w), f(v)〉 = α−1〈w,v〉 = α−1 · 0 = 0.
Thus, by changing the basis of Rn to being an orthonormal basis, starting with v

(which we can assume has been normalized), we obtain that the original matrix is
similar to the matrix (

α 0
0 A∗

)

,

where A∗ is an (n−1)×(n−1) orthogonal matrix, which, according to the inductive
hypothesis, can be transformed into the required form.
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If v is not an eigenvector of f , then, still, we know it is an eigenvector of g, and
furthermore g = f + f−1. In particular, g(v) = λv = f(v) + f−1(v). That is,

f(f(v)) = λf(v)− v.

So this time, let W = [v, f(v)]. This is a 2-dimensional subspace of V. Again,
consider W⊥. We have V = W ⊕W⊥. So we must show that W⊥ is invarient
under f . Now we have another two cases to consider:

• λ = 0, and

• λ 6= 0.

So if λ = 0 then we have f(f(v)) = −v. Therefore, again taking w ∈W⊥, we have
〈f(w),v〉 = 〈f(w),−f(f(v))〉 = −〈w, f(v)〉 = 0. (Remember that w ∈ W⊥, so
that 〈w, f(v)〉 = 0.) Of course we also have 〈f(w), f(v)〉 = 〈w,v〉 = 0.

On the other hand, if λ 6= 0 then we have v = λf(v) − f(f(v)) so that
〈f(w),v〉 = 〈f(w), λf(v) − f(f(v))〉 = λ〈f(w), f(v)〉 − 〈f(w), f(f(v))〉, and we
have seen that both of these scalar products are zero. Finally, we again have
〈f(w), f(v)〉 = 〈w,v〉 = 0.

Therefore we have shown that V = W ⊕W⊥, where both of these subspaces
are invariant under the orthogonal mapping f . By our inductive hypothesis, there
is an orthonormal basis for f restricted to the n− 2 dimensional subspace W⊥ such
that the matrix has the required form. As far as W is concerned, we are back in
the simple situation of an orthogonal mapping R2 → R2, and the matrix for this has
the form of one of our 2× 2 blocks.

22 Dual Spaces

Again let V be a vector space over a field F (and, although its not really necessary
here, we continue to take F = R or C).

Definition. The dual space to V is the set of all linear mappings f : V → F . We
denote the dual space by V∗.

Examples

• Let V = Rn. Then let fi be the projection onto the i-th coordinat. That is, if
ej is the j-th canonical basis vector, then

fi(ej) =

{

1, if i = j,

0, otherwise.

So each fi is a member of V∗, for i = 1, . . . , n, and as we will see, these dual
vectors form a basis for the dual space.
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• More generally, let V be any finite dimensional vector space, with some basis
{v1, . . . ,vn}. Let fi : V → F be defined as follows. For an arbitrary vector
v ∈ V there is a unique linear combination

v = a1v1 + · · ·+ anvn.

Then let fi(vi) = ai. Again, fi ∈ V∗, and we will see that the n vectors,
f1, . . . , fn form a basis of the dual space.

• Let C0([0, 1]) be the space of continuous functions f : [0, 1]→ R. As we have
seen, this is a real vector space, and it is not finite dimensional. For each
f ∈ C0([0, 1]) let

Λ(f) =

∫ 1

0

f(x)dx.

This gives us a linear mapping Λ : C0([0, 1])→ R. Thus it belongs to the dual
space of C0([0, 1]).

• Another vector in the dual space to C0([0, 1]) is given as follows. Let x ∈ [0, 1]
be some fixed point. Then let Γx : C0([0, 1])→ R is defined to be Γ(f) = f(x),
for all f ∈ C0([0, 1]).

• For this last example, let us assume that V is a vector space with scalar
product. (Thus F = R or C.) For each v ∈ V, let φ

v
(u) = 〈v,u〉. Then

φ
v
∈ V∗.

Theorem 56. Let V be a finite dimensional vector space (over C) and let V∗ be
the dual space. For each v ∈ V, let φ

v
: V → C be given by φ

v
(u) = 〈v,u〉. Then

given an orthonormal basis {v1, . . . ,vn} of V, we have that {φ
v1

, . . . , φ
vn
} is a basis

of V∗. This is called the dual basis to {v1, . . . ,vn}.
Proof. Let φ ∈ V∗ be an arbitrary linear mapping φ : V → C. But, as always, we
remember that φ is uniquely determined by vectors (which in this case are simply
complex numbers) φ(v1), . . . , φ(vn). Say φ(vj) = cj ∈ C, for each j. Now take some
arbitrary vector v ∈ V. There is the unique expression

v = a1v1 + · · ·+ anvn.

But then we have

φ(v) = φ(a1v1 + · · ·+ anvn)

= a1φ(v1) + · · ·+ anφ(vn)

= a1c1 + · · ·+ ancn

= c1φv1
(v) + · · ·+ cnφvn

(v)

= (c1φv1
+ · · ·+ cnφvn

)(v).

Therefore, φ = c1φv1
+ · · ·+ cnφ

vn
, and so {φ

v1
, . . . , φ

vn
} generates V∗.

To show that {φ
v1

, . . . , φ
vn
} is linearly independent, let φ = c1φv1

+· · ·+cnφvn
be

some linear combination, where cj 6= 0, for at least one j. But then φ(vj) = cj 6= 0,
and thus φ 6= 0 in V∗.
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Corollary. dim(V∗) = dim(V).

Corollary. More specifically, we have an isomorphism V → V∗, such that v→ φ
v

for each v ∈ V.

But somehow, this isomorphism doesn’t seem to be very “natural”. It is defined
in terms of some specific basis of V. What if V is not finite dimensional so that we
have no basis to work with? For this reason, we do not think of V and V∗ as being
“really” just the same vector space.13

On the other hand, let us look at the dual space of the dual space (V∗)∗. (Perhaps
this is a slightly mind-boggling concept at first sight!) We imagine that “really” we
just have (V∗)∗ = V. For let Φ ∈ (V∗)∗. That means, for each φ ∈ V∗ we have
Φ(φ) being some complex number. On the other hand, we also have φ(v) being
some complex number, for each V ∈ V. Can we uniquely identify each V ∈ V with
some Φ ∈ (V∗)∗, in the sense that both always give the same complex numbers, for
all possible φ ∈ V∗?

Let us say that there exists a v ∈ V such that Φ(φ) = φ(v), for all φ ∈ V∗. In
fact, if we define Φ

v
to be Φ(φ) = φ(v), for each φ ∈ V∗, then we certainly have a

linear mapping, V∗ → C. On the other hand, given some arbitrary Φ ∈ (V∗)∗, do
we have a unique v ∈ V such that Φ(φ) = φ(v), for all φ ∈ V∗? At least in the case
where V is finite dimensional, we can affirm that it is true by looking at the dual
basis.

Dual mappings

Let V and W be two vector spaces (where we again assume that the field is C).
Assume that we have a linear mapping f : V → W. Then we can define a linear
mapping f ∗ : W∗ → V∗ in a natural way as follows. For each φ ∈W∗, let f ∗(φ) =
φ ◦ f . So it is obvious that f ∗(φ) : V→ C is a linear mapping. Now assume that V

and W have scalar products, giving us the mappings s : V→ V∗ and t : W→W∗.
So we can draw a little “diagram” to describe the situation.

V
f−→ W

s ↓ ↓ t

V∗ f∗

←− W∗

The mappings s and t are isomorphisms, so we can go around the diagram, using
the mapping fadj = s−1 ◦ f ∗ ◦ t : W → V. This is the adjoint mapping to f . So
we see that in the case V = W, we have that a self-adjoint mapping f : V → V is
such that fadj = f .

Does this correspond with our earlier definition, namely that 〈u, f(v)〉 = 〈f(u),v〉
for all u and v ∈ V? To answer this question, look at the diagram, which now has
the form

V
f−→ V

s ↓ ↓ s

V∗ f∗

←− V∗

13In case we have a scalar product, then there is a “natural” mapping V→ V
∗, where v→ φv,

such that φv(u) = 〈v,u〉, for all u ∈ V.
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where s(v) ∈ V∗ is such that s(v)(u) = 〈v,u〉, for all u ∈ V. Now fadj = s−1◦f ∗◦s;
that is, the condition fadj = f becomes s−1 ◦ f ∗ ◦ s = f . Since s is an isomorphism,
we can equally say that the condition is that f ∗◦s = s◦f . So let v be some arbitrary
vector in V. We have s ◦ f(v) = f ∗ ◦ s(v). However, remembering that this is an
element of V∗, we see that this means

(s ◦ f(v))(u) = (f ∗ ◦ s)(v)(u),

for all u ∈ V. But (s◦f(v))(u) = 〈f(v),u〉 and (f ∗◦s)(v)(u) = 〈v, f(u)〉. Therefore
we have

〈f(v),u〉 = 〈v, f(u)〉
for all v and u ∈ V, as expected.

23 The End

This is the end of the semester, and thus the end of what I have to say about
“linear algebra in physics” here. But that is not to say that there is nothing more
that you have to know about the subject. For example, when studying the theory
of relativity you will encounter tensors, which are combinations of linear mappings
and dual mappings. One speaks of “covariant” and “contravariant” tensors. That
is, linear mappings and dual mappings.

But then, proceeding to the general theory of relativity, these tensors are used
to describe differential geometry. That is, we no longer have a linear (that is, a
vector) space. Instead, we imagine that space is curved, and in order to describe
this curvature, we define a thing called the tangent vector space which you can
think of as being a kind of linear approximation to the spacial structure near a
given point. And so it goes on, leading to more and more complicated mathematical
constructions, taking us away from the simple “linear” mathematics which we have
seen in this semester.

After a few years of learning the mathematics of contemporary theoretical physics,
perhaps you will begin to ask yourselves whether it really makes so much sense after
all. Can it be that the physical world is best described by using all of the latest
techniques which pure mathematicians happen to have been playing around with
in the last few years — in algebraic topology, functional analysis, the theory of
complex functions, and so on and so forth? Or, on the other hand, could it be
that physics has been loosing touch with reality, making constructions similar to the
theory of epicycles of the medieval period, whose conclusions can never be verified
using practical experiments in the real world?

In his book “The Meaning of Relativity”, Albert Einstein wrote

“One can give good reasons why reality cannot at all be represented by
a continuous field. From the quantum phenomena it apears to follow
with certainty that a finite system of finite energy can be completely
described by a finite set of numbers (quantum numbers). This does not
seem to be in accordance with a continuum theory, and must lead to an
attempt to find a purely algebraic theory for the description of reality.
But nobody knows how to obtain the basis of such a theory.”
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