
NOTES ON LOCAL COHOMOLOGY AND SUPPORT

HENNING KRAUSE

Abstract. These are notes for a course in Bielefeld in summer 2013. Most of

the material is taken from joint work with Dave Benson and Srikanth Iyengar,
in particular from [2].

1. Three examples from representation theory

We present three classical examples from representation theory. In each case
there is a notion of support which provides a classification of all representations.

1.1. Endomorphisms of vector spaces. Let k be a field. We consider endo-
morphisms (V, φ). These are pairs consisting of a finite dimensional k-vector space
V and an endomorphism φ : V → V . Alternatively, one may think of (V, φ) as a
k-linear representation of the quiver consisting of a single vertex and one loop.

◦ dd

A non-zero endomorphism (V, φ) is indecomposable if V admits no proper decom-
position into φ-invariant subspaces. There is an essentially unique decomposition
V =

⊕r
i=1 Vi into a direct sum of φ-invariant subspaces such that each (Vi, φ|Vi

) is
indecomposable.

A basic invariant is the minimal polynomial pφ ∈ k[t]; it is the unique monic
polynomial such that the ideal generated by pφ equals the kernel of the homomor-
phism

k[t] −→ Endk(V ), t 7→ φ.

The polynomial ring k[t] is a principal ideal domain. Thus monic irreducible
polynomials correspond bijectively to non-zero prime ideals by taking a polynomial
p to the ideal generated by p. Let Spec k[t] denote the set of prime ideals of k[t].

The support of (V, φ) is by definition

Supp(V, φ) = {p ∈ Spec k[t] | pφ ∈ p}.

Lemma 1.1.1. If (V, φ) is indecomposable, then Supp(V, φ) = {p} for some p ∈
Spec k[t]. �

Suppose that Supp(V, φ) = {p}. The length of (V, φ) is the number n ≥ 1 such
that (pφ) = pn.

Proposition 1.1.2. Two indecomposable endomorphisms are isomorphic if and
only if they have the same support and the same length. �

This is a preliminary version from April 15, 2013. Updates will be frequent.
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1.2. Representations of the Klein four group. Let

G = 〈g1, g2〉 ∼= Z/2× Z/2
and let k be a field of characteristic two. Let kG be the group algebra of G over k,
and let x1 = g1− 1, x2 = g2− 1 as elements of kG. Then x2

1 = x2
2 = 0, and we have

kG = k[x1, x2]/(x2
1, x

2
2).

We describe kG-modules by diagrams in which the vertices represent basis elements
as a k-vector space, and an edge

a•

xi

•
b

indicates that xia = b. If there is no edge labelled xi in the downwards direction
from a vertex then xi sends the corresponding basis vector to zero. For example,
the group algebra kG has the following diagram:

a•
x1 x2

b •

x2

• c

x1

•
d

As a vector space, kG = ka ⊕ kb ⊕ kc ⊕ kd. We have rad2 kG = soc kG = kd,
rad kG = soc2 kG = kb⊕ kc⊕ kd.

Here are the diagrams for the syzygies of the trivial module:

Ω−1(k) =

•
x1 x2

• •
Ω−2(k) =

•
x1 x2

•
x1 x2

• • •

Ω(k) =

•

x2

•

x1

•
Ω2(k) =

•

x2

•

x1 x2

•

x1

• •
etc.

For each integer n ≥ 0 we have

(1.2.1) ExtnkG(k, k)
∼−→ HomkG(k,Ω−n(k))

and so dimk ExtnkG(k, k) = n + 1. In fact, the full cohomology algebra is the Z-
graded algebra

H∗(G, k) = Ext∗kG(k, k) = k[ζ1, ζ2]

with deg(ζ1) = deg(ζ2) = 1.
The ring H∗(G, k) is a two-dimensional graded factorial domain. Thus homo-

geneous irreducible elements correspond to non-zero homogeneous prime ideals by
taking an element p to the ideal generated by p. We write m = H+(G, k) for the
unique maximal ideal consisting of positive degree elements. Let SpecH∗(G, k)
denote the set of homogeneous prime ideals of H∗(G, k).
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1.3. A classification of the representations of the Klein four group. The
finite dimensional indecomposable kG-modules come in three types [1, §4.3]:

(1) The group algebra kG itself.
(2) For each n ∈ Z, the module Ωn(k).
(3) For each p ∈ SpecH∗(G, k) \ {0,m} and r ∈ N, a module Lpr .

Let p ∈ SpecH∗(G, k) \ {0,m} and choose a homogeneous irreducible element p of
degree d that generates p. The bijection (1.2.1) gives for each power pr a monomor-
phism k → Ω−rd(k) whose cokernel we denote by Lpr . Thus there is an exact
sequence

0 −→ k −→ Ω−rd(k) −→ Lpr −→ 0.

Given a finite dimensional kG-module M , consider the homomorphism

χM : H∗(G, k) −→ Ext∗kG(M,M), η 7→M ⊗k η.

The support of M is by definition the set

SuppM = {p ∈ SpecH∗(G, k) | KerχM ⊆ p}.

Proposition 1.3.1. Let p ∈ SpecH∗(G, k) \ {0,m} and n ∈ Z. Then we have

Supp kG = {m}, Supp Ωn(k) = SpecH∗(G, k), SuppLpn = {p,m}. �

1.4. Coherent sheaves on P1
k. Let k be a field and P1

k the projective line over
k. We view P1

k as a scheme and begin with a description of the underlying set of
points.

Let k[x0, x1] be the polynomial ring in two variables with the usual Z-grading
by total degree. Denote by Proj k[x0, x1] the set of homogeneous prime ideals of
k[x0, x1] that are different from the unique maximal ideal consisting of positive
degree elements. Note that k[x0, x1] is a two-dimensional graded factorial domain.
Thus homogeneous irreducible polynomials correspond to non-zero homogeneous
prime ideals by taking a polynomial p to the ideal generated by p.

The elements of Proj k[x0, x1] form the points of P1
k. A point p ∈ P1

k is closed if
p 6= 0. Using homogeneous coordinates, a rational point of P1

k is a pair [λ0 : λ1] of
elements of k which are not both zero, subject to the relation [λ0 : λ1] = [αλ0 : αλ1]
for all α ∈ k, α 6= 0. We identify each rational point [λ0 : λ1] with the prime ideal
(λ1x0 − λ0x1) of k[x0, x1]. If k is algebraically closed then all closed points are
rational.

Using the identification y = x1/x0, we cover P1
k by two copies U ′ = Spec k[y] and

U ′′ = Spec k[y−1] of the affine line, with U ′ ∩ U ′′ = Spec k[y, y−1]. More precisely,
the morphism k[x0, x1] → k[y] which sends a polynomial p to p(1, y) induces a
bijection

Proj k[x0, x1] \ {(x0)} ∼−→ Spec k[y].

Analogously, the morphism k[x0, x1] → k[y−1] which sends a polynomial p to
p(y−1, 1) induces a bijection

Proj k[x0, x1] \ {(x1)} ∼−→ Spec k[y−1].

Based on the covering P1
k = U ′ ∪ U ′′, the category cohP1

k of coherent sheaves
admits a description in terms of the following pullback of abelian categories

cohP1
k

//

��

cohU ′

��

cohU ′′ // cohU ′ ∩ U ′′
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where each functor is given by restricting a sheaf to the appropriate open subset;
see [4, Chap. VI, Prop. 2]. More concretely, this pullback diagram has, up to
equivalence, the form

A //

��

mod k[y]

��

mod k[y−1] // mod k[y, y−1]

where the category A is defined as follows. The objects of A are triples (M ′,M ′′, µ),
where M ′ is a finitely generated k[y]-module, M ′′ is a finitely generated k[y−1]-

module, and µ : M ′y
∼−→M ′′y−1 is an isomorphism of k[y, y−1]-modules. Here, we use

for any R-module M the notation Mx to denote the localisation with respect to an
element x ∈ R. A morphism from (M ′,M ′′, µ) to (N ′, N ′′, ν) in A is a pair (φ′, φ′′)
of morphisms, where φ′ : M ′ → N ′ is k[y]-linear and φ′′ : M ′′ → N ′′ is k[y−1]-linear
such that νφ′y = φ′′y−1µ.

Given a sheaf F on P1
k, we denote for any open subset U ⊆ P1

k by Γ(U,F) the
sections over U .

Lemma 1.4.1. The assignment

F 7−→ (Γ(U ′,F),Γ(U ′′,F), idΓ(U ′∩U ′′,F))

gives an equivalence cohP1
k
∼−→ A.

Proof. The description of a sheaf F on P1
k = U ′∪U ′′ in terms of its restrictions F|U ′ ,

F|U ′′ , and F|U ′∩U ′′ is standard; see [4, Chap. VI, Prop. 2]. Thus it remains to ob-
serve that taking global sections identifies cohU ′ = mod k[y], cohU ′′ = mod k[y−1],
and cohU ′ ∩ U ′′ = mod k[y, y−1]. �

From now on we identify the categories cohP1
k and A via the above equivalence.

Let grmod k[x0, x1] denote the category of finitely generated Z-graded k[x0, x1]-
modules and let grmod0 k[x0, x1] be the Serre subcategory consisting of all finite
length modules.

There is a functor

(1.4.2) grmod k[x0, x1] −→ cohP1
k

that takes a graded k[x0, x1]-module M to the triple

M̃ = ((Mx0
)0, (Mx1

)0, σM ),

where the variable y acts on the degree zero part of Mx0
via the identification

y = x1/x0, the variable y−1 acts on the degree zero part of Mx1 via the identi-
fication y−1 = x0/x1, and the isomorphism σM equals the obvious identification
[(Mx0

)0]x1/x0
= [(Mx1

)0]x0/x1
. Note that this functor annihilates precisely the

finite length modules.
Given an abelian category C and a Serre subcategory D ⊆ C, the quotient category

C/D is obtained by formally inverting all morphisms in C such that kernel and
cokernel belong to D [4, Chap. III].

Proposition 1.4.3 (Serre [5]). The functor (1.4.2) induces an equivalence

grmod k[x0, x1]

grmod0 k[x0, x1]

∼−→ cohP1
k. �



NOTES ON LOCAL COHOMOLOGY AND SUPPORT 5

1.5. A classification of the coherent sheaves on P1
k. For any n ∈ Z and

F = (M ′,M ′′, µ) in cohP1
k, denote by F(n) the twisted sheaf (M ′,M ′′, µ(n)), where

µ(n) is the map µ followed by multiplication with y−n. Given a graded k[x0, x1]-
module M , the twisted module M(n) is obtained by shifting the grading, that is,

M(n)i = Mi+n for i ∈ Z. Note that M̃(n) = M̃(n).
The structure sheaf is the sheaf O = (k[y], k[y−1], idk[y,y−1]); it is the image

of the free k[x0, x1]-module of rank one under the functor (1.4.2). For any pair
m,n ∈ Z, we have a natural bijection

(1.5.1) k[x0, x1]n−m
∼−→ Hom(O(m),O(n)).

The map sends a homogeneous polynomial p of degree n − m to the morphism
(φ′, φ′′), where φ′ : k[y]→ k[y] is multiplication by p(1, y) and φ′′ : k[y−1]→ k[y−1]
is multiplication by p(y−1, 1).

Each coherent sheaf F admits an essentially unique decomposition F =
⊕r

i=1 Fi
into indecomposable sheaves. The indecomposable sheaves come in two types:

(1) For each n ∈ Z, the sheaf O(n).
(2) For each closed point p ∈ P1

k and r ∈ N, a sheaf Opr .

Let p be a closed point and choose a homogeneous irreducible polynomial p of degree
d that generates p. The bijection (1.5.1) gives for each power pr a monomorphism
O → O(rd) whose cokernel we denote by Opr . Thus there is an exact sequence

0 −→ O −→ O(rd) −→ Opr −→ 0.

Given a sheaf F on P1
k and a point p ∈ P1

k, the stalk of F at p is the colimit

Fp = colimp∈U F(U)

where U runs through all open subsets of P1
k. The support of F is by definition

SuppF = {p ∈ P1
k | Fp 6= 0}.

The functor (1.4.2) provides an alternative description of the support. In fact,
for each graded k[x0, x1]-module M and p ∈ P1

k, the functor induces an isomorphism

(Mp)0
∼−→ (M̃)p.

Composing the natural homomorphism

k[x0, x1] −→ End∗(M) =
⊕
n∈Z

Hom(M,M(n))

with the induced homomorphism End∗(M)→ End∗(M̃) yields for each F in cohP1
k

a homomorphism
χF : k[x0, x1] −→ End∗(F).

Lemma 1.5.2. We have

SuppF = {p ∈ P1
k | KerχF ⊆ p}. �

Proposition 1.5.3. Let p ∈ P1
k be a closed point and n ∈ Z. Then we have

SuppO(n) = P1
k and SuppOpn = {p}. �

Remark 1.5.4. The sheaf T = O ⊕ O(1) is a tilting object and its endomorphism
algebra is isomorphic to the Kronecker algebra Λ (i.e. the path algebra of the quiver
◦ //

// ◦ ). This yields a derived equivalence

RHom(T ,−) : Db(cohP1
k)

∼−→ Db(modΛ)

and therefore a notion of support for each Λ-module.
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2. Support for modules over commutative rings

Let A be a commutative noetherian ring. We consider the category ModA of A-
modules and its full subcategory modA which is formed by all finitely generated A-
modules. Note that an A-module is finitely generated if and only if it is noetherian.

The spectrum SpecA of A is the set of prime ideals in it. A subset of SpecA is
Zariski closed if it is of the form

V(a) = {p ∈ SpecA | a ⊆ p}
for some ideal a of A. A subset V of SpecA is specialisation closed if for any pair
p ⊆ q of prime ideals, p ∈ V implies q ∈ V.

2.1. Support. The support of an A-module M is the subset

SuppAM = {p ∈ SpecA |Mp 6= 0} .
Observe that this is a specialisation closed subset of SpecA.

Lemma 2.1.1. One has SuppAA/a = V(a) for each ideal a of A.

Proof. Fix p ∈ SpecA and let S = A \ p. Recall that for any A-module M , an
element x/s in S−1M = Mp is zero iff there exists t ∈ S such that tx = 0. Thus
we have (A/a)p = 0 iff there exists t ∈ S with t(1 + a) = t+ a = 0 iff a 6⊆ p. �

Lemma 2.1.2. If 0 → M ′ → M → M ′′ → 0 is an exact sequence of A-modules,
then SuppAM = SuppAM

′ ∪ SuppAM
′′.

Proof. The sequence 0→M ′p →Mp →M ′′p → 0 is exact for each p in SpecA. �

Lemma 2.1.3. Let M =
∑
iMi be an A-module, written as a sum of submodules

Mi. Then SuppAM =
⋃
i SuppAMi.

Proof. The assertion is clear if the sum
∑
iMi is direct, since⊕

i

(Mi)p =
(⊕

i

Mi

)
p
.

As Mi ⊆M for all i one gets
⋃
i SuppAMi ⊆ SuppAM , from Lemma 2.1.2. On the

other hand, M =
∑
iMi is a factor of

⊕
iMi, so SuppAM ⊆

⋃
i SuppAMi. �

We write AnnAM for the ideal of elements in A that annihilate M ; it is the
kernel of the natural homomorphism

A −→ EndA(M).

Lemma 2.1.4. One has SuppAM ⊆ V(AnnAM), with equality when M is in
modA.

Proof. Write M =
∑
iMi as a sum of cyclic modules Mi

∼= A/ai. Then

SuppAM =
⋃
i

SuppAMi =
⋃
i

V(ai) ⊆ V
(⋂
i

ai
)

= V(AnnAM),

and equality holds if the sum is finite. �

Lemma 2.1.5. Let M 6= 0 be an A-module. If p is maximal in the set of ideals
which annihilate a non-zero element of M , then p is prime.

Proof. Suppose 0 6= x ∈ M and px = 0. Let a, b ∈ A with ab ∈ p and a 6∈ p. Then
(p, b) annihilates ax 6= 0, so the maximality of p implies b ∈ p. Thus p is prime. �

Lemma 2.1.6. Let M 6= 0 be an A-module. There exists a submodule of M which
is isomorphic to A/p for some prime ideal p.
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Proof. The set of ideals annihilating a non-zero element has a maximal element,
since A is noetherian. Now apply Lemma 2.1.5. �

Lemma 2.1.7. For each M in modA there exists a finite filtration

0 = M0 ⊆M1 ⊆ . . . ⊆Mn = M

such that each factor Mi/Mi−1 is isomorphic to A/pi for some prime ideal pi. In
that case one has SuppAM =

⋃
i V(pi).

Proof. Repeated application of Lemma 2.1.6 yields a chain of submodules 0 = M0 ⊆
M1 ⊆ M2 ⊆ . . . of M such that each Mi/Mi−1 is isomorphic to A/pi for some pi.
This chain stabilises since M is noetherian, and therefore

⋃
iMi = M .

The last assertion follows from Lemmas 2.1.2 and 2.1.1. �

2.2. Serre subcategories. A full subcategory C of A-modules is called Serre sub-
category if for every exact sequence 0 → M ′ → M → M ′′ → 0 of A-modules, M
belongs to C if and only if M ′ and M ′′ belong to C. We set

SuppA C =
⋃
M∈C

SuppAM.

Proposition 2.2.1. The assignment C 7→ SuppA C induces a bijection between

– the set of Serre subcategories of modA, and
– the set of specialisation closed subsets of SpecA.

Its inverse takes V ⊆ SpecA to {M ∈ modA | SuppM ⊆ V}.

Proof. Both maps are well defined by Lemmas 2.1.2 and 2.1.4. If V ⊆ SpecA is a
specialisation closed subset, let CV denote the smallest Serre subcategory containing
{A/p | p ∈ V}. Then we have SuppCV = V, by Lemmas 2.1.1 and 2.1.2. Now let C
be a Serre subcategory of modA. Then

SuppC = {p ∈ SpecA | A/p ∈ C}
by Lemma 2.1.7. It follows that C = CV for each Serre subcategory C, where
V = SuppC. Thus SuppC1 = SuppC2 implies C1 = C2 for each pair C1,C2 of Serre
subcategories. �

Corollary 2.2.2. Let M and N be in modA. Then SuppAN ⊆ SuppAM if and
only if N belongs to the smallest Serre subcategory containing M .

Proof. With C denoting the smallest Serre subcategory containing M , there is an
equality SuppA C = SuppAM by Lemma 2.1.2. Now apply Proposition 2.2.1. �

2.3. Localising subcategories. A full subcategory C of A-modules is said to be
localising if it is a Serre subcategory and if for any family of A-modules Mi ∈ C the
sum

⊕
iMi is in C.

Corollary 2.3.1 (Gabriel [4]). The assignment C 7→ SuppA C gives a bijection
between

– the set of localising subcategories of ModA, and
– the set of specialisation closed subsets of SpecA.

Its inverse takes V ⊆ SpecA to {M ∈ ModA | SuppAM ⊆ V}.

Proof. The proof is essentially the same as the one of Proposition 2.2.1 if we observe
that any A-module M is the sum M =

∑
iMi of its finitely generated submodules.

Note that M belongs to a localising subcategory C if and only if all Mi belong to
C. In addition, we use that SuppAM =

⋃
i SuppAMi; see Lemma 2.1.3. �
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2.4. Graded rings and modules. The results in this section generalise to graded
modules over graded rings. We sketch the appropriate setting, following closely the
exposition in [3].

Fix an abelian grading group G endowed with a symmetric bilinear form

(−,−) : G×G −→ Z/2.
We consider a ring A with a decomposition

A =
⊕
g∈G

Ag

such that the multiplication satisfies AgAh ⊆ Ag+h for all g, h ∈ G. We say that

A is G-graded commutative when xy = (−1)(g,h)yx for all homogeneous elements
x ∈ Ag, y ∈ Ah. A homogeneous element in A is even if it belongs to Ag for some
g ∈ G satisfying (g, h) = 0 for all h ∈ G.

Let us fix such a G-graded commutative ring A. We consider graded A-modules
and homogeneous ideals of A. Note that all homogeneous ideals are automatically
two-sided. The graded localisation of A at a multiplicative set consisting of even
(and therefore central) homogeneous elements is the obvious one and enjoys the
usual properties; in particular, it is again a G-graded commutative ring. Similarly,
one localises any graded A-module at such a multiplicative set. For instance, when
p is a homogeneous prime ideal of A and M is a graded A-module, then Mp is
the localisation of M with respect to the multiplicative set of even homogeneous
elements in A \ p.

Suppose now that A is noetherian as a G-graded ring, that is, the ascending
chain condition holds for homogeneous ideals of A. Then all results of this section
carry over to the category of graded A-modules. However, it is necessary to twist.
Recall that for any graded A-module M and g ∈ G, the twist M(g) is the A-module
M with the new grading defined by M(g)h = Mg+h for each h ∈ G. For instance, in
Lemma 2.1.6 one shows that each graded non-zero module has a submodule of the
form (A/p)(g) for some homogeneous prime ideal p and some g ∈ G. This affects
all subsequent statements. For example, Proposition 2.2.1 then classifies the Serre
subcategories that are closed under twists.

References

[1] D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathe-
matics, 30, Cambridge Univ. Press, Cambridge, 1991.

[2] D. J. Benson, S. Iyengar and H. Krause, Representations of finite groups: local cohomology

and support, Oberwolfach Seminars, 43, Birkhäuser/Springer Basel AG, Basel, 2012.
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