NOTES ON LOCAL COHOMOLOGY AND SUPPORT

HENNING KRAUSE

ABSTRACT. These are notes for a course in Bielefeld in summer 2013. Most of
the material is taken from joint work with Dave Benson and Srikanth Iyengar,
in particular from [2].

1. THREE EXAMPLES FROM REPRESENTATION THEORY

We present three classical examples from representation theory. In each case
there is a notion of support which provides a classification of all representations.

1.1. Endomorphisms of vector spaces. Let k& be a field. We consider endo-
morphisms (V, ¢). These are pairs consisting of a finite dimensional k-vector space
V and an endomorphism ¢: V' — V. Alternatively, one may think of (V,¢) as a
k-linear representation of the quiver consisting of a single vertex and one loop.

° )

A non-zero endomorphism (V, ¢) is indecomposable if V' admits no proper decom-
position into ¢-invariant subspaces. There is an essentially unique decomposition
V =@;_, V; into a direct sum of ¢-invariant subspaces such that each (V;, ¢[v;) is
indecomposable.

A basic invariant is the minimal polynomial py, € k[t]; it is the unique monic
polynomial such that the ideal generated by ps equals the kernel of the homomor-
phism

k[t] — Endg(V), t— ¢.

The polynomial ring k[t] is a principal ideal domain. Thus monic irreducible
polynomials correspond bijectively to non-zero prime ideals by taking a polynomial
p to the ideal generated by p. Let Spec k[t] denote the set of prime ideals of k[t].

The support of (V,$) is by definition

Supp(V, ¢) = {p € Speck[t] | pg € p}.

Lemma 1.1.1. If (V,¢) is indecomposable, then Supp(V,¢) = {p} for some p €
Spec k[t]. O

Suppose that Supp(V, ¢) = {p}. The length of (V,¢) is the number n > 1 such
that (pg) = p".

Proposition 1.1.2. Two indecomposable endomorphisms are isomorphic if and
only if they have the same support and the same length. O
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1.2. Representations of the Klein four group. Let
G={(q1,92) =7Z/2xZ]2
and let k£ be a field of characteristic two. Let kG be the group algebra of G over k,
and let 71 = g1 — 1, 73 = g2 — 1 as elements of kG. Then 27 = 22 = 0, and we have
kG = k[x1, 2]/ (23, 23).

We describe kG-modules by diagrams in which the vertices represent basis elements
as a k-vector space, and an edge

a
[ ]

Zq

[
b

indicates that x;a = b. If there is no edge labelled z; in the downwards direction
from a vertex then x; sends the corresponding basis vector to zero. For example,
the group algebra kG has the following diagram:

As a vector space, kG = ka ® kb ® ke ® kd. We have rad® kG = soc kG = kd,
rad kG = soc? kG = kb ® ke @ kd.
Here are the diagrams for the syzygies of the trivial module:

- N s 2NN
o= N L = N AN A e

For each integer n > 0 we have
(1.2.1) Ext} o (k, k) = Hom,(k, Q7" (k))

and so dimy Exti(k,k) = n + 1. In fact, the full cohomology algebra is the Z-
graded algebra

H*(G, k) = Extyg(k, k) = k[, 2]
with deg(¢1) = deg(¢2) = 1.

The ring H*(G, k) is a two-dimensional graded factorial domain. Thus homo-
geneous irreducible elements correspond to non-zero homogeneous prime ideals by
taking an element p to the ideal generated by p. We write m = HT (G, k) for the
unique maximal ideal consisting of positive degree elements. Let Spec H*(G, k)
denote the set of homogeneous prime ideals of H*(G, k).
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1.3. A classification of the representations of the Klein four group. The
finite dimensional indecomposable kG-modules come in three types [I, §4.3]:

(1) The group algebra kG itself.
(2) For each n € Z, the module Q" (k).
(3) For each p € Spec H*(G, k) \ {0,m} and r € N, a module L.

Let p € Spec H*(G, k) \ {0,m} and choose a homogeneous irreducible element p of
degree d that generates p. The bijection gives for each power p” a monomor-
phism k& — Q7 "4(k) whose cokernel we denote by L,-. Thus there is an exact
sequence

0—k— Q" (k) — Lyr — 0.

Given a finite dimensional kG-module M, consider the homomorphism
xu: H (G k) — Extio (M, M), n+— M Q.
The support of M is by definition the set
Supp M = {p € Spec H*(G, k) | Ker xas C p}.
Proposition 1.3.1. Let p € Spec H*(G, k) \ {0,m} and n € Z. Then we have
Supp kG = {m}, SuppQ"(k) = Spec H*(G,k), SuppLp» = {p,m}. O

1.4. Coherent sheaves on ]P’}C. Let k be a field and P} the projective line over
k. We view ]P’,lc as a scheme and begin with a description of the underlying set of
points.

Let k[zg,z1] be the polynomial ring in two variables with the usual Z-grading
by total degree. Denote by Projk[zo, z1] the set of homogeneous prime ideals of
klxg,x1] that are different from the unique maximal ideal consisting of positive
degree elements. Note that k[zg, 2] is a two-dimensional graded factorial domain.
Thus homogeneous irreducible polynomials correspond to non-zero homogeneous
prime ideals by taking a polynomial p to the ideal generated by p.

The elements of Proj k[xo, z1] form the points of Pj.. A point p € P} is closed if
p # 0. Using homogeneous coordinates, a rational point of ]P’,lC is a pair [Ag : \1] of
elements of k which are not both zero, subject to the relation [Ag : A\1] = [a)g : @)]
for all @ € k, a # 0. We identify each rational point [Ag : A\1] with the prime ideal
(Mzo — Aox1) of k[zg,x1]. If k is algebraically closed then all closed points are
rational.

Using the identification y = 1 /zo, we cover P}, by two copies U’ = Spec k[y] and
U" = Spec k[y~1!] of the affine line, with U’ N U” = Spec k[y,y~!]. More precisely,
the morphism k[zg,21] — k[y] which sends a polynomial p to p(1,y) induces a
bijection

Proj klzo, 1] \ {(z0)} = Speck(y].
Analogously, the morphism k[zg,2z;] — k[y~!] which sends a polynomial p to
p(y~1,1) induces a bijection

Proj k[zo, z1] \ {(x1)} = Speck[y™].

Based on the covering Pj = U’ U U”, the category cohP}. of coherent sheaves
admits a description in terms of the following pullback of abelian categories

cohP}, ———— coh U’

|

cohU"”" —— cohU' NnU"”
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where each functor is given by restricting a sheaf to the appropriate open subset;
see [4, Chap. VI, Prop. 2]. More concretely, this pullback diagram has, up to
equivalence, the form

A——— mod k[y]

| |

mod k[y~!] —— mod k[y, y ]

where the category A is defined as follows. The objects of A are triples (M’, M" | 1),
where M’ is a finitely generated k[y]-module, M" is a finitely generated k[y~!]-
module, and p: M, = M;’,l is an isomorphism of k[y,y~!]-modules. Here, we use
for any R-module M the notation M, to denote the localisation with respect to an
element x € R. A morphism from (M’, M" pu) to (N’, N” v) in A is a pair (¢, ¢")
of morphisms, where ¢': M’ — N is k[y]-linear and ¢”: M"” — N is k[y~!]-linear
such that v¢| = ¢Z,1,u.

Given a sheaf F on P}, we denote for any open subset U C P} by I'(U, F) the
sections over U.

Lemma 1.4.1. The assignment
Fr— (F(U/a -F)a F(U”a -F)a idF(U’ﬂU“,f))
gives an equivalence coh IP’}C =5 A,

Proof. The description of a sheaf 7 on PL = U’UU" in terms of its restrictions F|y-,
Flur, and F|yqur is standard; see [4, Chap. VI, Prop. 2]. Thus it remains to ob-
serve that taking global sections identifies coh U’ = mod k[y], coh U” = mod k[y~!],
and cohU' N U"” = mod k[y,y~1]. O

From now on we identify the categories coh P} and A via the above equivalence.

Let grmod k[xg, 1] denote the category of finitely generated Z-graded k[zo, z1]-
modules and let grmod, k[zo,x1] be the Serre subcategory consisting of all finite
length modules.

There is a functor

(1.4.2) grmod k[zg, 21] — coh P}
that takes a graded k[zg,x1]-module M to the triple

M = ((Mzo)Oa (M$1)070M)7

where the variable y acts on the degree zero part of M,, via the identification
y = x1/x0, the variable y~! acts on the degree zero part of M,, via the identi-
fication y~! = x¢/z1, and the isomorphism o equals the obvious identification
[(Mzo)olzy /a0 = [(Mz,)0lao/z,- Note that this functor annihilates precisely the
finite length modules.

Given an abelian category C and a Serre subcategory D C C, the quotient category
C/D is obtained by formally inverting all morphisms in C such that kernel and
cokernel belong to D 4, Chap. III].

Proposition 1.4.3 (Serre [5]). The functor (1.4.2) induces an equivalence

grmod ko, 1]~ oy p1 O
grmod,, k[xo, z1]



NOTES ON LOCAL COHOMOLOGY AND SUPPORT 5

1.5. A classification of the coherent sheaves on Pi. For any n € Z and
F = (M',M", 1) in coh P}, denote by F(n) the twisted sheaf (M', M", (™), where
™ is the map p followed by multiplication with y~". Given a graded klxo, z1]-
module M, the twisted module M(n) is obtained by shifting the grading, that is,

M(n); = M;,, for i € Z. Note that M(n) = M(n).

The structure sheaf is the sheaf O = (k[y], kly~'],idyp, ,-11); it is the image
of the free k[xg,z1]-module of rank one under the functor (1.4.2). For any pair
m,n € Z, we have a natural bijection

(1.5.1) k[0, 1]n—m — Hom(O(m), O(n)).

The map sends a homogeneous polynomial p of degree n — m to the morphism
(¢',¢"), where ¢': k[y] — k[y] is multiplication by p(1,y) and ¢": k[y~!] — k[y~!]
is multiplication by p(y~1,1).

Each coherent sheaf F admits an essentially unique decomposition 7 = @,_, F;
into indecomposable sheaves. The indecomposable sheaves come in two types:

(1) For each n € Z, the sheaf O(n).
(2) For each closed point p € P} and r € N, a sheaf Opr.

Let p be a closed point and choose a homogeneous irreducible polynomial p of degree
d that generates p. The bijection (1.5.1) gives for each power p” a monomorphism
O — O(rd) whose cokernel we denote by O,-. Thus there is an exact sequence

0— O — O(rd) — Opr — 0.
Given a sheaf F on Pi and a point p € P}, the stalk of F at p is the colimit
Fp = colimyepy F(U)
where U runs through all open subsets of P}. The support of F is by definition
Supp F = {p € P, | F, # 0}.

The functor (|1.4.2) provides an alternative description of the support. In fact,
for each graded k[z¢, 1]-module M and p € P}, the functor induces an isomorphism

(Mp)o =+ (M)y.
Composing the natural homomorphism
klzo, 21] — End*(M) = €D Hom(M, M (n))
ne”Z

with the induced homomorphism End* (M) — End*(M) yields for each F in coh P
a homomorphism
Xr: klxo, 1] — End*(F).

Lemma 1.5.2. We have
Supp F = {p € P} | Kerxr C p}. O
Proposition 1.5.3. Let p € P} be a closed point and n € Z. Then we have
Supp O(n) = P and Supp Oy = {p}. O

Remark 1.5.4. The sheaf T = O @ O(1) is a tilting object and its endomorphism
algebra is isomorphic to the Kronecker algebra A (i.e. the path algebra of the quiver
o —= o ). This yields a derived equivalence

RHom(7, —): D’(cohP}) =+ D®(mod A)

and therefore a notion of support for each A-module.
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2. SUPPORT FOR MODULES OVER COMMUTATIVE RINGS

Let A be a commutative noetherian ring. We consider the category Mod A of A-
modules and its full subcategory mod A which is formed by all finitely generated A-
modules. Note that an A-module is finitely generated if and only if it is noetherian.

The spectrum Spec A of A is the set of prime ideals in it. A subset of Spec A is
Zariski closed if it is of the form

V(a) ={p € Spec A | a C p}
for some ideal a of A. A subset V of Spec A is specialisation closed if for any pair
p C q of prime ideals, p € V implies q € V.
2.1. Support. The support of an A-module M is the subset
Suppy M = {p € Spec A | M,, # 0}.
Observe that this is a specialisation closed subset of Spec A.

Lemma 2.1.1. One has Suppy A/a =V(a) for each ideal a of A.

Proof. Fix p € Spec A and let S = A\ p. Recall that for any A-module M, an
element z/s in S~'M = M, is zero iff there exists ¢ € S such that tz = 0. Thus
we have (A/a), = 0 iff there exists t € S with t(1+a) =t +a=0iff a Z p. O

Lemma 2.1.2. If0 - M' — M — M"” — 0 is an exact sequence of A-modules,
then Supp 4 M = Supp 4 M’ U Supp 4, M".

Proof. The sequence 0 — My — M, — M, — 0 is exact for each p in Spec A. [

Lemma 2.1.3. Let M = ). M; be an A-module, written as a sum of submodules
M;. Then Supp, M =, Supp 4 M;.

Proof. The assertion is clear if the sum ), M; is direct, since
@(Mi)p = (@Mi)p-
i i
As M; C M for all i one gets |J, Supp4 M; C Supp, M, from Lemma On the
other hand, M =}, M; is a factor of @@, M;, so Supp, M C |J; Supp 4 M;. O

We write Annyg M for the ideal of elements in A that annihilate M; it is the
kernel of the natural homomorphism

A — Enda(M).

Lemma 2.1.4. One has Suppy M C V(Anny M), with equality when M is in
mod A.

Proof. Write M =Y, M; as a sum of cyclic modules M; = A/a;. Then
Suppy M = USuppA M, = UV(ui) - V(ﬂai) =V(Anng M),
i i

K3

and equality holds if the sum is finite. O

Lemma 2.1.5. Let M # 0 be an A-module. If p is maximal in the set of ideals
which annihilate a non-zero element of M, then p is prime.

Proof. Suppose 0 # z € M and px = 0. Let a,b € A with ab € p and a & p. Then
(p, b) annihilates ax # 0, so the maximality of p implies b € p. Thus p is prime. 0O

Lemma 2.1.6. Let M # 0 be an A-module. There exists a submodule of M which
is isomorphic to A/p for some prime ideal p.
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Proof. The set of ideals annihilating a non-zero element has a maximal element,
since A is noetherian. Now apply Lemma [2.1.5 (]

Lemma 2.1.7. For each M in mod A there exists a finite filtration
0O=MyCM;C...CM, =M

such that each factor M;/M;_; is isomorphic to A/p; for some prime ideal p;. In
that case one has Supp, M = J,; V(p;).

Proof. Repeated application of Lemma[2.1.6)yields a chain of submodules 0 = M, C
M, C My C ... of M such that each M;/M,;_; is isomorphic to A/p; for some p;.
This chain stabilises since M is noetherian, and therefore | J, M; = M.

The last assertion follows from Lemmas 2.1.2] and R.1.11 O

2.2. Serre subcategories. A full subcategory C of A-modules is called Serre sub-
category if for every exact sequence 0 — M’ — M — M"” — 0 of A-modules, M
belongs to C if and only if M’ and M" belong to C. We set

Supp, C = U Supp 4 M.
MeC
Proposition 2.2.1. The assignment C — Supp 4 C induces a bijection between

— the set of Serre subcategories of mod A, and
— the set of specialisation closed subsets of Spec A.

Its inverse takes V C Spec A to {M € mod A | Supp M C V}.

Proof. Both maps are well defined by Lemmas and If V C SpecAis a
specialisation closed subset, let Cy, denote the smallest Serre subcategory containing

{A/p | p € V}. Then we have Supp Cyy = V, by Lemmas[2.1.1] and [2.1.2] Now let C
be a Serre subcategory of mod A. Then

SuppC = {p € SpecA | A/p € C}
by Lemma [2.I.7 It follows that C = Cy for each Serre subcategory C, where
VY = Supp C. Thus Supp C; = Supp Cs implies C; = Cs for each pair Cy, Cy of Serre
subcategories. O

Corollary 2.2.2. Let M and N be in mod A. Then Supp, N C Supps M if and
only if N belongs to the smallest Serre subcategory containing M .

Proof. With C denoting the smallest Serre subcategory containing M, there is an
equality Supp, C = Supp, M by Lemma [2.1.2] Now apply Proposition 2.2.1] O

2.3. Localising subcategories. A full subcategory C of A-modules is said to be
localising if it is a Serre subcategory and if for any family of A-modules M; € C the
sum @, M; is in C.

Corollary 2.3.1 (Gabriel [4]). The assignment C — Supp,4 C gives a bijection
between

— the set of localising subcategories of Mod A, and

— the set of specialisation closed subsets of Spec A.

Its inverse takes V C Spec A to {M € Mod A | Supp, M C V}.

Proof. The proof is essentially the same as the one of Proposition if we observe
that any A-module M is the sum M = )", M; of its finitely generated submodules.
Note that M belongs to a localising subcategory C if and only if all M; belong to
C. In addition, we use that Supp, M = J, Supp 4 M;; see Lemmam O
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2.4. Graded rings and modules. The results in this section generalise to graded
modules over graded rings. We sketch the appropriate setting, following closely the
exposition in [3].

Fix an abelian grading group G endowed with a symmetric bilinear form

(=, —):GxG—1Z)2.

We consider a ring A with a decomposition

A=P A,
geG
such that the multiplication satisfies AgA, C Agqp for all g,h € G. We say that
A is G-graded commutative when xy = (—1)9Myz for all homogeneous elements
x € Ag, y € Ap. A homogeneous element in A is even if it belongs to A, for some
g € G satisfying (g,h) =0 for all h € G.

Let us fix such a G-graded commutative ring A. We consider graded A-modules
and homogeneous ideals of A. Note that all homogeneous ideals are automatically
two-sided. The graded localisation of A at a multiplicative set consisting of even
(and therefore central) homogeneous elements is the obvious one and enjoys the
usual properties; in particular, it is again a G-graded commutative ring. Similarly,
one localises any graded A-module at such a multiplicative set. For instance, when
p is a homogeneous prime ideal of A and M is a graded A-module, then M, is
the localisation of M with respect to the multiplicative set of even homogeneous
elements in A\ p.

Suppose now that A is noetherian as a G-graded ring, that is, the ascending
chain condition holds for homogeneous ideals of A. Then all results of this section
carry over to the category of graded A-modules. However, it is necessary to twist.
Recall that for any graded A-module M and g € G, the twist M(g) is the A-module
M with the new grading defined by M (g);, = Mg+, for each h € G. For instance, in
Lemma [2.1.6] one shows that each graded non-zero module has a submodule of the
form (A/p)(g) for some homogeneous prime ideal p and some g € G. This affects
all subsequent statements. For example, Proposition then classifies the Serre
subcategories that are closed under twists.
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