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Abstract

For non-autonomous difference equations of the form

xn+1 = f(xn, λn), n ∈ Z
we consider homoclinic trajectories. These are pairs of trajectories that con-
verge in both time directions towards each other. Assuming hyperbolicity, we
derive a numerical method to compute homoclinic trajectories in two steps.
In the first step one trajectory is approximated by the solution of a boundary
value problem and precise error estimates are given. In particular, influences
of parameters λn with |n| large are discussed in detail. A second trajectory
that is homoclinic to the first one is computed in a subsequent step as follows.
We transform the original system into a topologically equivalent form having
zero as an n-independent fixed point. Applying the boundary value ansatz
to the transformed system, we obtain a non-autonomous homoclinic orbit,
converging towards the origin, cf. Hüls (2006). Transforming back to the orig-
inal coordinates leads to the desired homoclinic trajectories. The numerical
method and the validity of the error estimates are illustrated by examples.

Keywords: Non-autonomous discrete time dynamical systems, Homoclinic trajec-
tories, Numerical approximation, Error analysis.
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1 Introduction

For autonomous systems it is well known that the dynamics in a neighborhood of a
homoclinic orbit is chaotic, see Smale (1967). In subsequent years, homoclinic orbits
were analyzed in various studies, cf. Palis & Takens (1993) for an historical overview.
Of particular importance are approximation results, see for example Beyn (1990)
for continuous time systems as well as the current version of the bifurcation toolbox
Matcont Dhooge et al. (2003), Ghaziani et al. (2009) for an implementation. For
discrete time systems, we refer to Beyn & Hüls (2004), Beyn et al. (2004), Beyn &
Kleinkauf (1997), Hüls (2005). The opposite question, whether pseudo orbits lead
to exact orbits – so called shadowing results – are discussed in detail in Pilyugin
(1999). Shadowing techniques for homoclinic and heteroclinic orbits, converging
towards periodic orbits, in discrete and continuous time, are developed in Coomes
et al. (2005) and Coomes et al. (2007).

In several realistic applications from physics or mathematical biology, the limi-
tation to autonomous systems is too restrictive. A typical example is a population
model, where the carrying capacity of the environment varies in time, cf. Elaydi
& Sacker (2005a,b), Beyn et al. (2008). These models require the development of
non-autonomous tools. In Hüls (2006) non-autonomous difference equations of the
form

xn+1 = fn(xn), n ∈ Z (1)

are considered. It is assumed that fn ∈ C∞(Rk,Rk) are diffeomorphisms for all
n ∈ Z, having zero as an n-independent fixed point, i.e. fn(0) = 0 for all n ∈ Z.
With respect to this fixed point, a homoclinic orbit is computed numerically in Hüls
(2006). Note that the points of a homoclinic orbit lie in the intersection of the
corresponding stable and unstable fiber bundles of the fixed point 0. These fiber
bundles are the non-autonomous equivalent of the invariant manifolds in autonomous
systems, cf. Hirsch et al. (1977), Pötzsche & Siegmund (2004).

More precisely, a homoclinic orbit x̄Z = (x̄n)n∈Z w.r.t. the fixed point 0 is a
solution of (1), fulfilling limn→±∞ x̄n = 0. The proposed method for computing a
finite approximation on some interval J = [n−, n+]∩Z, requires solving the boundary
value problem

0J = ΓJ(yJ) :=
(

(

yn+1 − fn(yn)
)

n=n−,...,n+−1
, b(yn−

, yn+
)
)

, (2)

with an appropriately chosen boundary operator b ∈ C1(R2k,Rk). The simplest
choice are periodic boundary conditions b(yn−

, yn+
) = yn−

− yn+
. Under reason-

able assumptions, the boundary value problem (2) possesses a unique solution in a
sufficiently small neighborhood of the exact solution, cf. Hüls (2006).

In this paper, we push these ideas one step further by skipping the assumption
that an n-independent fixed point exists. Then, the only candidate for the role of
the fixed point ξ̄ = 0 from the previous setup, is a bounded trajectory ξ̄Z of (1), cf.
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Langa et al. (2002). Thus a homoclinic orbit x̄Z is a trajectory, converging in both
time directions towards ξ̄Z, i.e.

lim
n→±∞

‖x̄n − ξ̄n‖ = 0. (3)

On the other hand ξ̄Z is also a homoclinic orbit w.r.t. x̄Z. Due to this symmetry,
we call two trajectories homoclinic if they satisfy (3).

Systems of the form (1) are typically generated by parameter dependent maps,
where the parameter varies in time. We considered in this paper non-autonomous
systems of the form

xn+1 = f(xn, λn), n ∈ Z, (4)

where λZ denotes some sequence of parameter values, and analyze the following
problems:

(1) Determine a bounded solution ξ̄Z of (4), given the sequence λ̄Z.
(2) Determine an orbit x̄Z, homoclinic to ξ̄Z.

Note that both trajectories are generally not known explicitly.
In Section 2, we first introduce our basic assumptions and prove dichotomy

results for the variational equation. Then we derive an algorithm for the numerical
approximation of the bounded trajectory ξ̄Z. For the computations, we solve the
boundary value problem ΓJ(ξJ) = 0 on some interval J = [n−, n+], using periodic
boundary conditions. Doing so, the error at the outer points ξn±

is quite large,
since the boundary condition is not accurate and in addition each point ξ̄n of the
exact orbit depends on all parameter values λ̄Z, cf. Figure 1. Nevertheless, finite
computations are justified, since errors at the boundary decrease exponentially fast
toward the middle of the interval, see Theorem 5. By taking only the inner points, cf.
Theorem 8, we obtain an approximation that is accurate up to any given accuracy.

In Section 3, an algorithm for computing a second trajectory x̄Z that is ho-
moclinic to ξ̄Z, is introduced. The idea is to consider the topologically equivalent
system

yn+1 = f(yn + ξ̄n, λ̄n) − ξ̄n+1, n ∈ Z
and apply the same boundary value approach, described above for getting a homo-
clinic orbit w.r.t. the fixed point 0, see also Hüls (2006). Transforming back to the
original coordinates, we finally obtain an approximation of the homoclinic trajectory
x̄Z.

For an illustration, we first consider Hénon’s map in Section 4. One of its pa-
rameters is chosen at random and we get a non-autonomous system of the form
(4). We indicate that the approach gives high accuracy approximations of bounded
trajectories. In a second step, homoclinic trajectories are computed numerically.

The second example, a predator-prey model, is taken from mathematical bi-
ology, cf. Beddington et al. (1975), Murray (2002). The carrying capacity of the
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environment is a parameter that fluctuates in time and generates in this way a non-
autonomous system of the form (4). For different amplitudes of the fluctuation,
homoclinic trajectories are computed.

We finally note that non-autonomous homoclinic and heteroclinic trajectories
also arise in the analysis of controllability in control problems of the form

xn+1 = f(xn, un), n ∈ Z, un control at time n,

where f models, for example, roll motions of a ship, cf. Colonius et al. (2009).

2 Bounded trajectories

We start this section by introducing basic notions and assumptions. Throughout this
paper, the non-autonomous system (1) is assumed to be generated by a parameter
dependent map as in (4).

We impose the following assumptions on f .

A1 f ∈ C∞(Rk ×R,Rk) and f(·, λ) is a diffeomorphism for all λ ∈ R.

A2 There exists a bounded sequence λ̄Z ∈ RZ such that (5) possesses the bounded
solution ξ̄Z.

A3 The variational equation

un+1 = Dxf(ξ̄n, λ̄n)un, n ∈ Z
possesses an exponential dichotomy on Z, cf. Appendix A, Definition 13.

Definition 1 For a given parameter sequence λ̄Z, let ξ̄Z and x̄Z be two solutions of
the non-autonomous difference equation

xn+1 = f(xn, λ̄n), n ∈ Z. (5)

The trajectories ξ̄Z and x̄Z are homoclinic to each other, if

lim
n→±∞

‖x̄n − ξ̄n‖ = 0.

Let J = [n−, n+]∩Z be a discrete interval, where the cases n− = −∞ and n+ = ∞
are included. We define the space of bounded sequences on J

XJ :=

{

uJ = (un)n∈J ∈ (Rk)J : sup
n∈J

‖un‖ < ∞

}

equipped with the ℓ∞-norm, and denote by 0J the zero element in XJ .
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For a given sequence λZ, an orbit xZ ∈ XZ, i.e. a solution of (5), is a zero of the
operator Γ : XZ ×RZ → XZ, defined as

Γ(ξZ, λZ) :=
(

ξn+1 − f(ξn, λn)
)

n∈Z. (6)

Let λ̄Z be the sequence from assumption A2. In general, the bounded solution
ξ̄Z is not known explicitly. Even worse, the sequence ξ̄Z is not convergent. The
main task, we consider in this section, is to compute an approximation of this
bounded trajectory. First, we prove that a bounded trajectory also exists in some
neighborhood of ξ̄Z, if the parameter sequence λZ varies slightly around λ̄Z.
Lemma 2 Assume A1–A3. Then there exist two neighborhoods U(λ̄Z) and V (ξ̄Z),
such that

Γ(ξZ, λZ) = 0Z (7)

has for all λZ ∈ U(λ̄Z) a unique solution ξZ ∈ V (ξ̄Z).

Proof: Since Γ(ξ̄Z, λ̄Z) = 0Z, the assertion follows from the implicit function theo-
rem, cf. Dieudonné (1969), if DxΓ(ξ̄Z, λ̄Z) is a homeomorphism of XZ into itself.

Note that uZ is a solution of DxΓ(ξ̄Z, λ̄Z)uZ = 0Z if and only if

un+1 = Dxf(ξ̄n, λ̄n)un, for all n ∈ Z. (8)

From A1, A2 it follows that the matrices Dxf(ξ̄n, λ̄n) and Dxf(ξ̄n, λ̄n)
−1 are uni-

formly bounded for n ∈ Z. The difference equation (8) possesses by assumption A3

an exponential dichotomy on Z and as a consequence, N
(

DxΓ(ξ̄Z, λ̄Z)
)

= {0Z}, see
(Palmer 1988, Section 2).

On the other hand, the inhomogeneous difference equation

un+1 = Dxf(ξ̄n, λ̄n)un + hn, n ∈ Z
possesses by (Palmer 1988, Lemma 2.7) for each sequence hZ ∈ XZ a unique bounded
solution on Z. Thus DxΓ(ξ̄Z, λ̄Z) is also surjective and therefore it is a homeomor-
phism.

�

Let λZ ∈ U ⊂ U(λ̄Z) and denote by ξZ the unique bounded solution of (4) in
V (ξ̄Z). The next lemma shows that the variational equation

un+1 = Dxf(ξn, λn)un, n ∈ Z (9)

possesses an exponential dichotomy on Z, if U is chosen sufficiently small.

Lemma 3 Assume A1–A3. Then neighborhoods U of λ̄Z and V of ξ̄Z exist, such
that the difference equation

un+1 = Dxf(̺n, λn)un, n ∈ Z
5



possesses for ̺Z ∈ V , λZ ∈ U an exponential dichotomy on Z. The dichotomy
constants do not depend on the specific sequences λZ, ̺Z.

The equation Γ(·, λZ) = 0 possesses for each λZ ∈ U a unique solution ξZ ∈ V
and (9) has an exponential dichotomy on Z.

Proof: Due to assumption A3, the difference equation (8) has an exponential
dichotomy on Z. An application of the Roughness-Theorem 14 guarantees the exis-
tence of an exponential dichotomy of the perturbed equation

un+1 =
(

Dxf(ξ̄n, λ̄n) +
[

Dxf(̺n, λn) − Dxf(ξ̄n, λ̄n)
])

un, n ∈ Z
if

‖Dxf(̺n, λn) − Dxf(ξ̄n, λ̄n)‖ ≤ β (10)

holds, where β is specified in Theorem 14. The inequality (10) is satisfied if V ⊂
V (ξ̄Z) and U1 ⊂ U(λ̄Z) are chosen sufficiently small.

Choose U ⊂ U1 ⊂ U(λ̄Z) such that for all λZ ∈ U , the unique solution ξZ(λZ)
(Lemma 2) lies in V . From the first part of the proof, we immediately see that (9)
possesses an exponential dichotomy.

�

The numerical computation of bounded trajectories is based on solving sparse
boundary value problems. In Section 2.1 a general ansatz is introduced and approx-
imation results are provided. Note that in non-autonomous systems, a boundary
operator, restricting the end points, for example, to linearizations of stable and un-
stable fiber bundles must depend on time. Nevertheless we reduce the computational
effort by choosing time-independent boundary conditions. This simplification is jus-
tified in Section 2.2 by showing that the difference between two solutions of (5) for
different sequences λZ, µZ that coincide on some interval J , decreases exponentially
fast towards the middle. For asymptotically constant µZ, an approximation theorem
is stated in Section 2.3 and a combination of these results enables the computation
of asymptotically non-constant trajectories with high accuracy, see Theorem 8.

2.1 A boundary value approach

Let µ̄Z ∈ U ; denote by ζ̄Z the unique solution of

ζn+1 = f(ζn, µ̄n), n ∈ Z
in V and by P s

n, P u
n the dichotomy projectors of

un+1 = Dxf(ζ̄n, µ̄n)un, n ∈ Z, (11)

see Lemma 3. For computing an approximation of ζ̄Z, we solve the boundary value
problem

ΓJ(xJ , µ̄J) :=
(

(

xn+1 − f(xn, µ̄n)
)

n∈J̃
, bn±

(xn−
, xn+

)
)

= 0J , (12)
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where J = [n−, n+] and J̃ = [n−, n+ − 1] are finite intervals.
It is assumed that the boundary operator bn±

, which may depend on n±, fulfills
the following conditions.

A4 bn±
∈ C1(R2k,Rk), Dbn±

(xn−
, xn+

) is uniformly bounded for xZ ∈ U and
uniformly Lipschitz w.r.t. −n−, n+ ∈ N.

A5 bn±
(ζ̄n−

, ζ̄n+
) → 0 as n± → ±∞.

A6 The matrix
(

D1bn±
(ζ̄n−

, ζ̄n+
)|R(P s

n−
) D2bn±

(ζ̄n−
, ζ̄n+

)|R(P u

n+
)

)

possesses for sufficiently large −n−, n+ a uniformly bounded inverse.

Note that the definition of a boundary operator, fulfilling A4–A6 requires knowledge
about the whole infinite difference equation, i.e. the whole parameter sequence µ̄Z.
In practical examples, one therefore defines n±-independent boundary conditions.
Errors that occurs in this case from µ̄n, |n| large are discussed in the forthcoming
section. First, we consider the general n-dependent case and prove an approximation
theorem.

Theorem 4 Assume A1–A6. Then constants δ, N exist, such that the approxi-
mating system ΓJ(xJ , µ̄J) = 0J , cf. (12) possesses a unique solution

xJ ∈ Bδ(ζ̄J) for J = [n−, n+], −n−, n+ ≥ N.

With a J-independent constant C > 0, the error can be estimated as

‖ζ̄J − xJ‖ ≤ C‖bn±
(ζ̄n−

, ζ̄n+
)‖. (13)

Proof: First, we show that D1ΓJ(ζ̄J , µ̄J) has for sufficiently large intervals J a
uniformly bounded inverse.

Let (yJ̃ , r) ∈ XJ̃ × Rk. Then the inhomogeneous equation D1ΓJ(ζ̄J , µ̄J)uJ =
(yJ̃ , r) may equivalently be written as

un+1 − Dxf(ζ̄n, µ̄n)un = yn, n ∈ J̃ , (14)

D1bn±
(ζ̄n−

, ζ̄n+
)un−

+ D2bn±
(ζ̄n−

, ζ̄n+
)un+

= r. (15)

Denote by Φ the solution operator of the homogeneous equation (11). Since this
difference equation possesses by Lemma 3 an exponential dichotomy on Z with data
(K, α, P s

n, P u
n ), any solution of (14) has the form

un = Φ(n, 0)v +
∑

m∈J̃

G(n, m + 1)ym, n ∈ J,
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with some v ∈ Rk. Here, G denotes Green’s function, defined as

G(n, m) =

{

Φ(n, m)P s
m, n ≥ m,

−Φ(n, m)P u
m, n < m,

(16)

for which the estimates hold

‖G(n, m)‖ = ‖Φ(n, m)P s
m‖ ≤ Ke−α(n−m), for n ≥ m, (17)

‖G(n, m)‖ = ‖Φ(n, m)P u
m‖ ≤ Ke−α(m−n), for n < m. (18)

We introduce the following decomposition of v:

v = Φ(0, n−)v− + Φ(0, n+)v+, v− ∈ R(P s
n−

), v+ ∈ R(P u
n+

).

In this notation, (15) reads

D1bn±
(ζ̄n−

, ζ̄n+
)v− + D1bn±

(ζ̄n−
, ζ̄n+

)Φ(n−, n+)v+

+D2bn±
(ζ̄n−

, ζ̄n+
)Φ(n+, n−)v− + D2bn±

(ζ̄n−
, ζ̄n+

)v+ = R,
(19)

where

R = r − D1bn±
(ζ̄n−

, ζ̄n+
)
∑

m∈J̃

G(n−, m + 1)ym

−D2bn±
(ζ̄n−

, ζ̄n+
)
∑

m∈J̃

G(n+, m + 1)ym.

Employing the dichotomy estimates and assumption A4, the second and third term
in (19) converge exponentially fast to 0 as n± → ±∞ and it follows from A6 that
(19) has a unique solution for sufficiently large −n−, n+. From (17) and (18),
we obtain with some J-independent generic constant C > 0 the uniform estimate
‖R‖ ≤ C (‖yJ̃‖ + ‖r‖) and therefore ‖v±‖ ≤ C (‖yJ̃‖ + ‖r‖). Furthermore, using
the dichotomy estimates it holds for n− ≤ n ≤ n+

‖Φ(n, 0)v‖ ≤ ‖Φ(n, n−)P s
n−
‖‖v−‖ + ‖Φ(n, n+)P u

n+
‖‖v+‖

≤ C (‖v−‖ + ‖v+‖) .

Thus, a J-independent constant σ exists, such that

‖uJ‖ ≤ ‖Φ(n, 0)v‖ +
∑

m∈J̃

‖G(n, m + 1)‖‖ym‖ ≤ σ−1 (‖yJ̃‖ + ‖r‖) ,

and consequently ‖D1ΓJ(ζ̄J , µ̄J)−1‖ ≤ σ−1.
The remaining part of the proof is an application of Lemma 15 with the setting

Y = (XJ , ‖ · ‖), Z =
(

XJ̃ ×Rk, ‖ · ‖ + ‖ · ‖
)

, F = ΓJ(·, µ̄J), y0 = ζ̄J .
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We show that assumption (45) of Lemma 15 is fulfilled. By assumptions A1 and
A4, there exists a δ > 0 such that

‖D1ΓJ(zJ , µ̄J) − D1ΓJ(ζ̄J , µ̄J)‖ ≤ sup
n∈J̃

‖Dxf(zn, µ̄n) − Dxf(ζ̄n, µ̄n)‖

+‖Dbn±
(zn−

, zn+
) − Dbn±

(ζ̄n−
, ζ̄n+

)‖ ≤
σ

2

for zJ ∈ Bδ(ζ̄J).
Assumption (46) can also be verified with κ = σ

2
:

‖ΓJ(ζ̄J , µ̄J)‖ =
∥

∥

∥

(

ζ̄n+1 − f(ζ̄n, µ̄n)
)

n∈J̃

∥

∥

∥
+ ‖bn±

(ζ̄n−
, ζ̄n+

)‖ ≤
σ

2
δ

holds due to assumption A5 for sufficiently large −n−, n+.
By Lemma 15 a unique solution zJ of ΓJ(zJ , µ̄J) = 0J exists in Bδ(ζ̄J) for J

sufficiently large, and an estimate of the approximation error follows from (48):

‖ζ̄J − zJ‖ ≤
1

σ − κ
‖ΓJ(ζ̄J , µ̄J) − ΓJ(zJ , µ̄J)‖ =

2

σ
‖bn±

(ζ̄n−
− ζ̄n+

)‖.

�

2.2 Influence of λ̄n with large |n|

Assume that the sequence λ̄Z is given, cf. assumption A2. For computing a finite
approximation zJ of the bounded trajectory ξ̄Z, we solve the boundary value problem
(12) numerically. Doing so, the choice of a suitable boundary operator is crucial.
Following the ideas, introduced in Hüls (2008), we obtain accurate approximations of
dichotomy projectors P s

n−
and P u

n+
that can be used for defining projection boundary

conditions. This ansatz requires solving large sparse linear systems. In this paper,
we avoid this extra computations by taking n±-independent boundary conditions.

Obviously, the finite middle part of the sequence ξ̄Z, denoted by ξ̄J , depends on
λ̄J but also on the parameters λ̄n, n /∈ J . On the other hand, finite approximations,
i.e. the solutions of the boundary value problem (12), coincide for all sequences µ̄Z
and λ̄Z fulfilling µ̄n = λ̄n for n ∈ J . Thus, in case of n±-independent boundary
conditions, we will have a relatively large approximation error at the boundary. For
numerical calculations it is convenient to choose periodic boundary conditions

bper(x, y) := x − y. (20)

First, we prove that the influence of the outer points decreases exponentially fast
towards the middle of the interval J .

Theorem 5 Assume A1–A3. Let U and V be given as in Lemma 3. Then there
are positive constants C and α such that for any interval J and any λZ, µZ ∈ U
with λn = µn for n ∈ J , the estimate

‖ξn − ζn‖ ≤ C
(

e−α(n−n−) + e−α(n+−n)
)

, n ∈ J (21)
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holds. Here ξZ, ζZ ∈ V denote the bounded solutions w.r.t. λZ and µZ, respectively.

Proof: W.l.o.g. assume that the components Vi of V are convex for all i ∈ Z. Due
to our assumptions it holds that

ξn+1 = f(ξn, λn) and ζn+1 = f(ζn, µn), n ∈ Z.

Let dZ = ζZ−ξZ and hZ = µZ−λZ. Then dZ is a solution of the following difference
equation

dn+1 = f(ξn + dn, λn + hn) − f(ξn, λn)

= f(ξn + dn, λn) +

∫ 1

0

Dλf(ξn + dn, λn + τhn)dτ hn − f(ξn, λn)

= f(ξn, λn) +

∫ 1

0

Dxf(ξn + τdn, λn)dτ dn

+

∫ 1

0

Dλf(ξn + dn, λn + τhn)dτ hn − f(ξn, λn)

=

∫ 1

0

Dxf(ξn + τdn, λn)dτ dn +

∫ 1

0

Dλf(ξn + dn, λn + τhn)dτ hn.

The homogeneous difference equation

un+1 = Dxf(ξ̄n, λ̄n)un, n ∈ Z
possesses by assumption A3 an exponential dichotomy on Z. Let β > 0 be chosen
as in the Roughness-Theorem 14. From the construction of U and V and (10), it
follows that

sup
n∈Z ∥∥∥∥∫ 1

0

Dxf(ξn + τdn, λn) − Dxf(ξ̄n, λ̄n)dτ

∥

∥

∥

∥

≤ sup
n∈Z ∫ 1

0

βdτ = β.

Applying the Roughness-Theorem 14, we get an exponential dichotomy on Z of the
difference equation

un+1 = Anun, An =

∫ 1

0

Dxf(ξn + τdn, λn)dτ, n ∈ Z. (22)

Let (K, α, P s
n, P u

n ) be the corresponding dichotomy data and denote the solution
operator of (22) by Φ. Consider the inhomogeneous difference equation

un+1 = Anun + rn, rn =

∫ 1

0

Dλf(ξn + dn, λn + τhn)dτ hn, n ∈ Z. (23)

The unique bounded solution of (23) on Z is

un =
∑

m∈ZG(n, m + 1)rm,

10



cf. Palmer (1988), where G is Green’s function, introduced in (16).
Note that due to our assumptions, ‖rn‖ is bounded from above by some constant

R for all n ∈ Z and rn = 0 for n ∈ J = [n−, n+], since λn = µn for n ∈ J .
For n ∈ J we derive an estimate of ‖un‖:

‖un‖ ≤
∑

m∈Z ‖G(n, m + 1)rm‖

=

n−−1
∑

m=−∞

‖G(n, m + 1)rm‖ +

∞
∑

m=n++1

‖G(n, m + 1)rm‖

=

n−−1
∑

m=−∞

‖Φ(n, m + 1)P s
m+1rm‖ +

∞
∑

m=n++1

‖Φ(n, m + 1)P u
m+1rm‖ (24)

≤

n−−1
∑

m=−∞

RKe−α(n−m−1) +

∞
∑

m=n++1

RKe−α(m+1−n)

= RK

(

0
∑

m=−∞

e−α(n−m−n−) +

∞
∑

m=0

e−α(m+n++2−n)

)

=
RK

1 − e−α

(

e−α(n−n−) + e−α(n+−n+2)
)

.

By construction, dZ is the bounded solution of (23), thus the estimate

‖dn‖ ≤ C
(

e−α(n−n−) + e−α(n+−n)
)

holds for all n ∈ J with constant C = RK
1−e−α

.
�

For two sequences of parameters that converge towards each other, the next
proposition shows that the corresponding solutions approach each other.

Proposition 6 Assume A1–A3. Let U and V be given as in Lemma 3. Let λZ,
µZ ∈ U such that limn→±∞ |λn − µn| = 0. Denote by ξZ, ζZ ∈ V the corresponding
solutions. Then

lim
n→±∞

‖ξn − ζn‖ = 0.

Proof: Let dZ = ζZ−ξZ and hZ = µZ−λZ. The same computations as in the proof
of Theorem 5 yield for each n ∈ Z

dn =
∑

m∈ZG(n, m + 1)rm,

where rZ is defined in (23) and G is Green’s function from (16) w.r.t. the difference
equation (22).

11



Exploiting (17), (18), the following estimates hold for n ∈ Z:

‖dn‖ ≤
∑

m∈Z ‖G(n, m + 1)rm‖

=

n−1
∑

m=−∞

‖Φ(n, m + 1)P s
m+1rm‖ +

∞
∑

m=n

‖Φ(n, m + 1)P u
m+1rm‖

≤
n−1
∑

m=−∞

Ke−α(n−m−1)‖rm‖ +

∞
∑

m=n

Ke−α(m+1−n)‖rm‖

=

0
∑

m=−∞

Keαm‖rm+n−1‖ +

∞
∑

m=1

Ke−αm‖rm+n−1‖.

Let ε > 0. Since rZ is bounded from above, a constant M ∈ N that does not depend
on n exists, such that

−M−1
∑

m=−∞

Keαm‖rm+n−1‖ +

∞
∑

m=M+1

Ke−αm‖rm+n−1‖ ≤
ε

2
.

We show that also the middle part can be estimated by ε
2
. Let

C :=

0
∑

m=−M

Keαm +

M
∑

m=1

Ke−αm,

and recall that ‖rn‖ → 0 as n → ±∞. Thus a constant N ∈ N exists such that

‖rm+n−1‖ ≤
ε

2C
for all |n| ≥ N, m ∈ [−M, M ],

and as a consequence ‖dn‖ ≤ ε
2

+ C ε
2C

= ε for all |n| ≥ N .
�

2.3 Approximation of bounded trajectories with asymptot-

ically constant tails

From the previous section, we know that for two given sequences λ̄Z, µ̄Z that coincide
on the interval J , the corresponding solutions ξ̄Z, ζ̄Z of (5) are exponentially close
in the middle of J . On the other hand, the solution of the boundary value problem
(12) does not depend on λ̄n for n /∈ J .

In this section, we consider the case of an asymptotically autonomous system
and show that Theorem 4 applies and allows the computation of accurate finite
orbit segments. We assume that the asymptotically constant case is included in our
neighborhoods.

12



A7 There exists a sequence µ̄Z ∈ U with corresponding solution ζ̄Z ∈ V of (5),
such that

lim
n→+∞

µ̄n = lim
n→−∞

µ̄n =: µ̄ and lim
n→+∞

ζ̄n = lim
n→−∞

ζ̄n =: ζ̄ (25)

hold for some µ̄ ∈ R, ζ̄ ∈ Rk.

Note that if λ̄Z and ξ̄Z, introduced in assumption A2, do not vary too much as
n → ±∞, sequences µ̄Z ∈ U , ζ̄Z ∈ V exist that satisfy (25). In several applications,
condition A7 is naturally fulfilled. Let ζ̄ be a hyperbolic fixed point of f(·, µ̄).
For the constant sequence µ̄Z defined as µ̄n = µ̄, the constant trajectory ζ̄Z (ζ̄n =
ζ̄) obviously is a solution of (5). By Lemma 2 a generally non-constant bounded
trajectory ξ̄Z exists for λ̄Z ∈ U(µ̄Z), fulfilling A3, see the first example in Section 4.

We assume that µ̄Z is given as in assumption A7 and compute a finite segment
of the bounded trajectory ζ̄Z.
Corollary 7 Assume A1–A3, A7. Then constants δ, N exist, such that the ap-
proximating system ΓJ(zJ , µ̄J) = 0J with periodic boundary conditions (20), pos-
sesses a unique solution

zJ ∈ Bδ(ζ̄J) for J = [n−, n+], −n−, n+ ≥ N.

With a J-independent constant C > 0, the error can be estimated as

‖ζ̄J − zJ‖ ≤ C‖ζ̄n−
− ζ̄n+

‖. (26)

Proof: In order to apply Theorem 4, we verify assumptions A4–A6. Obviously,
A4 holds and by assumption A7 b(ζ̄n−

, ζ̄n+
) → 0 as ±n± → ∞. Furthermore,

(

D1b(ζ̄n−
, ζ̄n+

)|R(P s

n−
) D2b(ζ̄n−

, ζ̄n+
)|R(P u

n+
)

)

=
(

I|R(P s

n−
) −I|R(P u

n+
)

)

has a uniformly bounded inverse, since the angle between range and nullspace of the
dichotomy projectors of the difference equation un+1 = Dxf(ζ̄n, µ̄n)un is uniformly
bounded from below ( ‖Dxf(ζ̄n−

, µ̄n−
)−Dxf(ζ̄n+

, µ̄n+
)‖ → 0 as ±n± → ∞). There-

fore, Theorem 4 applies and guarantees existence of a unique bounded solution zJ ,
fulfilling

‖ζ̄J − zJ‖ ≤ C‖b(ζ̄n−
, ζ̄n+

)‖ = C‖ζ̄n−
− ζ̄n+

‖.

�

2.4 Approximation of bounded trajectories with varying

tails

Combining the previous results, we show that one obtains an approximation of the
trajectory ξ̄Z ∈ V on the finite interval J that is accurate up to any given accuracy
∆.
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Theorem 8 Assume A1–A3, A7. Let J = [n−, n+] be a finite interval and let ∆ be
a given accuracy. Denote by ξ̄Z the solution of (5) with respect to the parameters λ̄Z,
see A2, and let µ̄Z be the sequence of parameters from A7. Consider the parameters

ω̄n(I) =

{

λ̄n, for n ∈ I,
µ̄n, for n /∈ I,

, where I ⊂ Z is an interval,

with corresponding solution η̄Z(I) of

zn+1 = f(zn, ω̄n(I)), n ∈ Z. (27)

Then there exist intervals Ĵ ⊃ J̄ ⊃ J and a δ > 0, such that the difference equation

ΓĴ

(

zĴ , ω̄Ĵ(J̄)
)

= 0J with periodic boundary conditions

possesses a unique solution zĴ ∈ Bδ(η̄Ĵ(J̄)), satisfying

‖ξ̄n − zn‖ ≤ ∆ for all n ∈ J.

Proof: The main idea is to compute an approximation of the orbit on a longer
interval. Since the largest approximation errors occur at the boundary of this in-
terval, we only take the accurate middle part. Let µZ and ζZ be given as in A7.
Applying Lemma 2, it follows that (27) possesses in V a unique solution η̄Z(I). By
construction

lim
n→±∞

|ω̄n(I) − µ̄n| = 0,

and due to Proposition 6, the corresponding orbit also converges:

lim
n→±∞

‖η̄n(I) − ζ̄n‖ = 0;

as a consequence, (ω̄Z(I), η̄Z(I)) satisfies A7 for all finite intervals I.
Applying Theorem 5, we find an interval J̄ ⊃ J such that

‖ξ̄n − η̄n(J̄)‖ ≤
∆

2
holds for all n ∈ J. (28)

In the second step, we compute a finite approximation of η̄Z(J̄). By Corollary
7 there exists an interval Ĵ = [n̂−, n̂+], such that the boundary value problem
ΓĴ

(

zĴ , ω̄Ĵ(J̄)
)

= 0J with periodic boundary conditions, possesses a unique solution
zĴ ∈ Bδ(η̄Ĵ(J̄)), fulfilling

‖η̄Ĵ(J̄) − zĴ‖ ≤ C‖η̄n̂−
(J̄) − η̄n̂+

(J̄)‖,

where the constant C does not depend on the chosen interval Ĵ . Since η̄Z(J̄) con-
verges in the sense of (25), we can enlarge Ĵ such that

‖η̄n̂−
(J̄) − η̄n̂+

(J̄)‖ ≤
∆

2C

14



holds and consequently

‖η̄Ĵ(J̄) − zĴ‖ ≤
∆

2
. (29)

Combining the results (28) and (29), we get for n ∈ J

‖ξ̄n − zn‖ ≤ ‖ξ̄n − η̄n(J̄)‖ + ‖η̄n(J̄) − zn‖ ≤
∆

2
+

∆

2
= ∆.

Thus, the middle part zJ is a finite approximation of ξ̄Z on the interval J with
accuracy ∆.

�

The concrete choice of these buffer intervals for numerical computations is dis-
cussed in Section 4.2.

3 Homoclinic trajectories

Applying the approach introduce in the previous section, we obtain for a given
parameter sequence λ̄Z a finite approximation of the bounded trajectory ξ̄Z of (5).
In the following, we derive an algorithm for computing a second trajectory x̄Z that
is homoclinic to the first one, see Definition 1. First, we assume existence as well as
transversality.

A8 Let λ̄Z be given as in A2. For this parameter sequence a solution x̄Z of

xn+1 = f(xn, λ̄n), n ∈ Z
exists, that is homoclinic to ξ̄Z and non-trivial, i.e. x̄Z 6= ξ̄Z.

A9 The trajectory x̄Z is transversal, i.e.

un+1 = Dxf(x̄n, λ̄n)un, n ∈ Z for uZ ∈ XZ ⇐⇒ uZ = 0Z.

First, we prove that the exponential dichotomy of the variational equation

un+1 = Dxf(ξ̄n, λ̄n)un, n ∈ Z (30)

implies an exponential dichotomy on Z of the difference equation

un+1 = Dxf(x̄n, λ̄n)un, n ∈ Z. (31)

Lemma 9 Assume A1–A3, A8, A9. Then the difference equation (31) possesses
an exponential dichotomy on Z.
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Proof: Since (30) possesses an exponential dichotomy on Z and ‖x̄n − ξ̄n‖ → 0 as
n → ±∞, there exists an N > 0, such that

∥

∥Dxf(x̄n, λ̄n) − Dxf(ξ̄n, λ̄n)
∥

∥ < β, for all |n| ≥ N,

where β is the bound for the additive perturbation in Theorem 14. Thus, (31) pos-
sesses exponential dichotomies on (−∞,−N ] and on [N,∞) which can be extended
to Z− and Z+, respectively.

Due to our transversality assumption A9, the two half-sided dichotomies lead to
an exponential dichotomy on Z, cf. Palmer (1988).

�

After these preparations, we introduce techniques for the numerical approxima-
tion of the second trajectory x̄Z. The main idea is to transform the system (5) into
a topologically equivalent form, see Aulbach & Wanner (2003), where we assume
the family of transformations to be equicontinuous.

Definition 10 Two non-autonomous discrete time dynamical systems

xn+1 = fn(xn), n ∈ Z, (32)

yn+1 = gn(yn), n ∈ Z (33)

are topologically equivalent if a family of homeomorphism (Tn)n∈Z exist, such
that Tn and T−1

n are equicontinuous on any compact set and such that

gn = T−1
n+1 ◦ fn ◦ Tn.

Orbits of topologically equivalent systems transform into each other as follows. Let
xZ be an orbit of (32), then yn = T−1

n (xn), n ∈ Z defines an orbit of (33).
Note that equicontinuity in Definition 10 guarantees that homoclinic trajectories

of (32) transform into homoclinic trajectories of (33) via T−1
n , n ∈ Z and vice versa.

The following lemma introduces a topologically equivalent system to (5), having
zero as an n-independent fixed point.

Lemma 11 Assume A1, A2 and let

gn(y) := T−1
n+1 ◦ f(·, λ̄n) ◦ Tn(y),

where Tn(y) := y + ξ̄n for n ∈ Z.
The difference equations (5) and

yn+1 = gn(yn), n ∈ Z (34)

are topologically equivalent and 0 is an n-independent fixed point of (34).
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As a consequence, the task of computing a second trajectory of (5) that is homo-
clinic to ξ̄Z is equivalent to the computation of a homoclinic orbit ȳZ of (34) w.r.t.
the fixed point 0. The transformed system (34) is often called equation of perturbed
motion.

Note that the variational equations (31) and

un+1 = Dgn(ȳn)un, n ∈ Z (35)

coincide. Consequently, (35) possesses an exponential dichotomy with the same data
as (31) and the transversality assumption A9 holds for the transformed system, too.
For system (34) the geometric interpretation of A9 is a transversal intersection of
the corresponding stable and unstable fiber bundles of the fixed point 0, cf. (Hüls
2006, Lemma 3.7).

We obtain a finite approximation of the homoclinic orbit ȳZ on the interval J by
solving

ΓJ(yJ) =
(

(yn+1 − gn(yn))n∈J̃ , bn±
(yn−

, yn+
)
)

= 0J , (36)

with boundary operator bn±
∈ C1(R2k,Rk). Similar to Section 2.3, we do not

construct a boundary operator, restricting the end points to linearizations of the
corresponding stable and unstable fiber bundles. These fiber bundles are generally
not known explicitly, cf. Hirsch et al. (1977) for the case of normally hyperbolic
manifolds. Furthermore, the effort of approximating linearizations of these objects
numerically, using the techniques introduced in Hüls (2008), is not justified by a
slightly better rate of convergence of the algorithm, described above.

We choose boundary conditions that do not depend on n±, namely periodic
boundary conditions, introduced in (20) or projection boundary conditions w.r.t. a
fixed projector, defined as

b(x, y) :=

(

Y T
s x

Y T
u y

)

, x, y ∈ Rk, (37)

where the columns of Ys and Yu form an orthogonal basis of N (P )⊥ and R(P )⊥

with respect to a given projector P .
Theorem 4, applies to (36) if the boundary operator satisfies A4–A6, which is

guaranteed by imposing the following angle conditions, see Hüls (2008).

A10 There exists a 0 < σ < π
2

such that

• in case of periodic boundary conditions

∡(R(P s
n−

),R(P u
n+

)) > σ

holds for sufficiently large −n−, n+.

• in case of projection boundary conditions let rank(P ) = rank(P s
n) and

∡(R(P s
n−

),N (P )) > σ, ∡(R(P u
n+

),R(P )) > σ

hold for sufficiently large −n−, n+.
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The angle between two subspaces A and B is defined as, see Golub & Van Loan
(1996)

∡(A, B) = θ ∈
[

0,
π

2

]

, where cos θ = max
u∈A,‖u‖=1

max
v∈B,‖v‖=1

uTv.

The following corollary to Theorem 4 summarizes (local) existence and well-
posedness results.

Corollary 12 Assume A1–A3, A8–A10. There exist constants δ, N , such that
the approximating system (36) ΓJ(yJ) = 0J possesses a unique solution

yJ ∈ Bδ(ȳ|J) for all J = [n−, n+],

where −n−, n+ ≥ N . With a J-independent constant C > 0, the approximation
error can be estimated as

‖ȳ|J − yJ‖ ≤ C‖b(ȳn−
, ȳn+

)‖. (38)

Transforming yJ back to the original coordinates, we obtain a finite approxima-
tion

xn := Tn(yn) = yn + ξ̄n, n ∈ J

of x̄Z, fulfilling the same error estimate (38).

4 Examples

For an illustration of our approach, we approximate homoclinic trajectories for two
examples. First, we apply our techniques to the well known Hénon-map, where we
randomize one parameter to get a non-autonomous system. The second example is
a predator-prey model, cf. Beddington et al. (1975), Murray (2002). In this model,
the carrying capacity of the environment fluctuates in time and generates a non-
autonomous system.

4.1 The Hénon-map

Hénon’s map, cf. Mira (1987), Devaney (1989), Hale & Koçak (1991) is defined as

xn+1 =

(

(x1)n+1

(x2)n+1

)

= h

((

(x1)n

(x2)n

)

, λ, b

)

:=

(

1 + (x2)n − λ(x1)
2
n

b(x1)n

)

, n ∈ Z. (39)

Fix the parameter b = 0.3. This map possesses for λ > − (b−1)2

4
the fixed point

η(λ, b) =

(

z(λ, b)
bz(λ, b)

)

, where z(λ, b) =
b − 1 +

√

(b − 1)2 + 4λ

2λ
. (40)
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For fixed parameter λ̂ = 1.5, the matrix

A = Dxh
(

η(λ̂, b), λ̂, b
)

=

(

−b + 1 −
√

(b − 1)2 + 4λ̂ 1

b 0

)

has the eigenvalues σs ≈ 0.15 and σu ≈ −1.998 and consequently A is hyperbolic
and the difference equation

un+1 = Aun, n ∈ Z
possesses an exponential dichotomy on Z.

Furthermore, a transversal homoclinic orbit xZ w.r.t. the fixed point η(λ̂, b) ex-
ists, cf. Beyn et al. (2004). Theorem 14 applies with the setting An = A and
Bn = Dxh(xn, λ̂, b) − A, and it follows that

un+1 = Dxh(xn, λ̂, b)un, n ∈ Z
has exponential dichotomies on Z− and Z+ which could, due to transversality, be
combined to an exponential dichotomy on Z.

In the language of this paper, xZ and ξZ, where ξn = η(λ̂, b) for all n ∈ Z,
are two homoclinic trajectories. From Lemma 2 and Lemma 3, the existence of a
neighborhood U(λ̂Z) follows, in which the non-autonomous system

xn+1 = h(xn, λ̄n, b), n ∈ Z, λ̄Z ∈ U(λ̂Z)

possesses two bounded homoclinic trajectories ξ̄Z and x̄Z, and the corresponding
variational equations exhibit exponential dichotomies. As a consequence, our as-
sumptions A1–A3, A7–A9 are satisfied for λZ ∈ U(λ̂Z).

For the forthcoming numerical computations, we choose an interval around λ̂ =
1.5, namely I = [1, 2], and take a sequence λZ ∈ IZ at random.

4.2 Computation of a bounded trajectory

First, we approximate the bounded trajectory ξ̄Z on the finite interval J = [n−, n+]
by computing a longer orbit segment ξJ̄ on J̄ = [n̄−, n̄+] and taking only the accurate
middle part ξJ as suggested in Section 2.4.

For illustrating that errors at the boundary decay exponentially fast toward the
middle of J , we choose two sequences at random on the interval [−40, 40] that coin-
cide in the middle interval [−20, 20]. The solutions of the boundary value problem
(12), (20) are shown in Figure 1.
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Figure 1: For two randomly chosen parameter sequences with the same
middle part (lower diagram), the upper picture shows the corresponding
solutions of (12), (20).

The choice of n̄± is guided by Theorem 5. We take n̄± such that the difference
between two solutions with different tails is of the order ∆, i.e.

e−α−(n−−n̄−) + e−α+(n̄+−n+) = O(∆).

Here α± denote the dichotomy constants w.r.t. the stable and unstable direction
and ∆ = 10−16 is the machine accuracy. Let

n̄− =

⌊

n− +
log ∆

α−

⌋

and n̄+ =

⌈

n+ −
log ∆

α+

⌉

. (41)

As a guess of α±, we take into account the weakest rates in the stable and unstable
directions and define α− = log |σs| and α+ = log |σu|, cf. (24).

For testing the validity of this ansatz, let J̄ = [−100, 100], Ĵ = [−150, 150] and

choose a sequence λĴ ∈ I Ĵ at random. Then, a second sequence µĴ is defined, such
that µJ̄ = λJ̄ holds.

With respect to the parameter sequences λĴ , µĴ , we compute the associated
bounded trajectories ξĴ , ζĴ , respectively, using Newton’s method for solving the
non-linear systems. As an initial guess xĴ , we take the fixed points xn = η(λn, b) for

n ∈ Ĵ . For an illustration, dn := ‖ξn − ζn‖ is plotted over n in a logarithmic scale.
In Figure 2, these computations are performed for 10 sequences µĴ , having different,
randomly chosen tails. Define J = [n−, n+], where n± are given in (41). We expect
that the influence of parameter values outside the interval J̄ on the solution in J , is
of magnitude O(∆). For an illustration, two lines are drawn, connecting the points
(

n̄−, 1
2

)

with (n−, ∆) and
(

n̄+, 1
2

)

with (n+, ∆). As one can see from Figure 2, these
results are quite accurate.
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n− n+n̄− n̄+n̂− n̂+

Figure 2: Difference dn = ‖ξn − ζn‖ between two solutions of (12). ξĴ is
computed w.r.t. the reference parameter sequence λĴ , and ζĴ is a solution
w.r.t. a sequences µĴ , where λĴ and µĴ coincide on J̄ = [n̄−, n̄+]. The
results for 10 different µĴ are shown. The red lines indicate the predicted
differences.

For a randomly chosen sequence λZ ∈ IZ, we illustrate the numerical approxi-
mation of a homoclinic trajectory of length n− = −20, n+ = 20. Compute n̄± as
n̄− = −40, n̄+ = 74 using (41), and solve the boundary value problem (12) on the
buffer-interval J̄ = [n̄−, n̄+], using periodic boundary conditions. Figure 3 shows
the solution (left) and the accurate middle part (right).
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n−n− n+n+n̂− n̂+

Figure 3: Bounded trajectory ξZ (left) and the accurate middle part
(right), projected onto the (n, x1)-plane.
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4.3 Computation of homoclinic trajectories

In the next step, a homoclinic orbit yJ of the transformed system

yn+1 = h(yn + ξn, λn, b) − ξn+1, n ∈ J (42)

is computed w.r.t. the fixed point 0, see Figure 4 (left). In the right picture, the
distance to the fixed point ‖yn‖ is given in a logarithmic scale, thus one can see
the exponentially fast convergence of the orbit towards the fixed point 0. Note that
Newton’s method is applied for computing a homoclinic orbit of (42). Due to the
choice of initial points, we get a non-trivial orbit yJ , i.e. yn 6= 0 for all n.

Transforming the orbit yJ back to the original coordinates we obtain an approx-
imation of a second trajectory xJ , where xn = yn + ξn for n ∈ J , that is homoclinic
to ξJ . The two homoclinic trajectories xJ (in black) and ξJ (in red) are shown in
Figure 5.
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n
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Figure 4: Homoclinic orbit of the transformed system (42) (left). The
right diagram illustrates the exponentially fast convergence of the orbit
towards the fixed point 0.

4.4 A predator-prey model

Consider the predator-prey model

(

xn+1

yn+1

)

= G

((

xn

yn

)

, K

)

=

(

xn exp
(

a
(

1 − xn

K

)

− byn

)

cxn

(

1 − exp(−byn)
)

)

, n ∈ Z,

where xn (yn) describes the number of prey (predators) at time n, cf. Beddington
et al. (1975), Murray (2002). The parameter K, which we choose from an interval
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Figure 5: Two homoclinic trajectories xJ (in black) and ξJ (in red). In
the right figure, a projection onto the (n, x1) plane is given.

around 10, models the carrying capacity of the environment. More precisely, we take
a sequence rZ, rn ∈ [0, 1] for n ∈ Z at random, and define Kn = 10 + v

(

1
2
− rn

)

,
where v is the amplitude of the noise. This means that the carrying capacity fluctu-
ates in time in the interval [10 − 1

2
v, 10 + 1

2
v]. The remaining parameters are fixed:

a = 7, c = 2, and b = 0.2.
In Figure 6 approximations of homoclinic trajectories of G(·, Kn) for the ampli-

tudes v ∈ {0, 1
3
, 2

3
, 1} are shown.

Note that in case v = 0, the two homoclinic trajectories are a fixed point and a
homoclinic orbit w.r.t. this fixed point.

For numerical computations in Figure 6, the sequence rZ is fixed while the am-
plitude varies. In this case, homoclinic trajectories depend continuously on the
amplitude v.
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Figure 6: Numerical approximation of homoclinic trajectories on the in-
terval [−20, 20] for different amplitudes of the noise v ∈ {0, 1
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and for v = 1 (right).
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Appendix A Exponential dichotomy

In this appendix, we collect some well known results on exponential dichotomies
from Palmer (1988).

Denote by Φ the solution operator of the linear difference equation

un+1 = Anun, n ∈ Z, (43)

which is defined as

Φ(n, m) :=







An−1 . . . Am, for n > m,
I, for n = m,

A−1
n . . . A−1

m−1, for n < m.

Definition 13 The linear difference equation (43) with invertible matrices An ∈Rk,k possesses an exponential dichotomy with data (K, α, P s
n, P u

n ) on J ⊂ Z, if
there exist two families of projectors P s

n and P u
n = I − P s

n and constants K, α > 0,
such that the following statements hold:

P s
nΦ(n, m) = Φ(n, m)P s

m ∀n, m ∈ J,

‖Φ(n, m)P s
m‖ ≤ Ke−α(n−m)

‖Φ(m, n)P u
n ‖ ≤ Ke−α(n−m)

∀n ≥ m, n, m ∈ J.

We introduce an important perturbation result for exponential dichotomies, fre-
quently named as Roughness-Theorem, cf. (Palmer 1988, Proposition 2.10).

Theorem 14 Assume that the difference equation

un+1 = Anun, An ∈ Rk,k invertible, ‖A−1
n ‖ ≤ M ∀n ∈ J

with an interval J ⊆ Z, possesses an exponential dichotomy with data (K, α, P s
n, P u

n ).
Suppose 0 < δ < α and Bn ∈ Rk,k satisfies ‖Bn‖ ≤ β for all n ∈ J , where

β < M−1,

2K(1 + e−α)(1 − e−α)−1β ≤ 1,

2Keα(e−δ + 1)(eδ − 1)−1β ≤ 1.

Then An + Bn is invertible and the perturbed difference equation

un+1 = (An + Bn)un

possesses an exponential dichotomy on J with data
(

2K(1 + eδ)(1 − e−δ)−1,α − δ,
Qs

n, Qu
n

)

, where rank(Qs
n) = rank(P s

n) and

‖P s
n − Qs

n‖ ≤ 2K2 1 + e−α

1 − e−α
sup
m∈J

‖Bm‖ for all n ∈ J. (44)
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Appendix B A Lipschitz inverse mapping theo-

rem

We apply a quantitative version of the Lipschitz inverse mapping theorem, cf. Irwin
(2001), for proving our approximation theorem.

Lemma 15 Assume Y and Z are Banach spaces, F ∈ C1(Y, Z) and F ′(y0) is for
y0 ∈ Y a homeomorphism. Let κ, σ, δ > 0 be three constants, such that the following
estimates hold:

∥

∥F ′(y) − F ′(y0)
∥

∥ ≤ κ < σ ≤
1

∥

∥F ′(y0)−1
∥

∥

∀y ∈ Bδ(y0), (45)

∥

∥F (y0)
∥

∥ ≤ (σ − κ)δ. (46)

Then F has a unique zero ȳ ∈ Bδ(y0) and the following inequalities are satisfied

∥

∥F ′(y)−1
∥

∥ ≤
1

σ − κ
∀y ∈ Bδ(y0), (47)

‖y1 − y2‖ ≤
1

σ − κ

∥

∥F (y1) − F (y2)
∥

∥ ∀y1, y2 ∈ Bδ(y0). (48)
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