Graphentheorie © Übung 11

Aufgabe 29

- a Es sei M ein Matching eines Graphen G. Zeigen Sie, dass M genau dann perfekt ist, wenn $|M| = \frac{1}{2}|V(G)|$ gilt.
- b Hat der Petersen-Graph ein perfektes Matching?
- **c** Für welche $n \ge 3$ hat das Rad $W_n := C_n * K_1$ ein perfektes Matching?
- **d** Für welche $n \ge 1$ hat K_n ein perfektes Matching?
- e Für welche $n, m \ge 1$ hat $K_{n,m}$ ein perfektes Matching?

Aufgabe 30

- a Sei G ein n-regulärer bipartiter Graph mit $n \geq 1$. Zeigen Sie, dass G ein perfektes Matching hat.
- **b** Es sei I eine endliche Indexmenge und $\mathcal{A} := (A_i : i \in I)$ eine Familie von Teilmengen einer endlichen Menge A. Eine <u>Transversale</u> der Familie \mathcal{A} ist eine Menge $\{a_i \mid i \in I\}$ paarweise verschiedener Elemente mit $a_i \in A_i$ für alle $i \in I$. Zeigen Sie mit dem Satz von Hall:

 \mathcal{A} hat eine Transversale \iff $\forall J \subset I : \left| \bigcup_{i \in I} A_i \right| \ge |J|$.

Aufgabe 31 Diese Aufgabe wird Ihnen in den Übungen gestellt.