Universität Bielefeld Prof. Dr. Barbara Gentz Dr. Jason Uhing Sommersemester 2025

Wahrscheinlichkeitstheorie und Statistik © Übung 02

Abgabe: bis Freitag, den 02.05.2025 um 11 Uhr

Hausaufgabe 2.1 [n-facher Münzwurf] (6 Punkte)

Vorgegeben sei eine natürliche Zahl $n \in \mathbb{N}$ und eine faire Münze, die auf einer Seite Kopf (K) und auf der anderen Seite Zahl (Z) zeigt. Nun wird diese Münze n-mal geworfen. Nach jedem Wurf notieren wir das Ergebnis, also K oder Z, das die Münze zeigt.

- a Modellieren Sie dieses Zufallsexperiment, indem Sie einen geeigneten Wahrscheinlichkeitsraum (Ω, \mathbb{P}) angeben. Begründen Sie Ihre Wahl.
- **b** Definieren Sie formal die folgenden Ereignisse und berechnen Sie deren Wahrscheinlichkeiten:
 - i Für $k \in \mathbb{N}$ sei A_k das Ereignis, dass im k-ten Wurf das erste Mal Kopf erscheint.
 - ii Für $k \in \mathbb{N}$ sei B_k das Ereignis, dass genau k-mal Mal Kopf erscheint.
- \mathbf{c} Bei diesem Experiment sei ein Run eine zusammenhängende Folge gleicher Ergebnisse von Würfen von maximaler Länge. Zum Beispiel enthält die Folge

KKKZZKZZZKKZ

genau 6 Runs, die man wie folgt mit Klammern veranschaulichen kann

$$(KKK)(ZZ)(K)(ZZZ)(KK)(Z)$$
.

Berechnen Sie für n = 10 die Wahrscheinlichkeit, dass genau 3 Runs aus Kopf und 2 Runs aus Zahl auftauchen.

Hausaufgabe 2.2 [Spezielle Wahrscheinlichkeiten] (6 Punkte)

a Seien (Ω, \mathbb{P}) ein Wahrscheinlichkeitsraum und $D, E \subseteq \Omega$ mit $\mathbb{P}(D) = \frac{8}{13}$ und $\mathbb{P}(E) = \frac{6}{13}$. Welche der folgenden Mengen können die Wahrscheinlichkeit 0 besitzen? Begründen Sie Ihre Antwort. Dazu geben Sie in dem Fall, dass die Wahrscheinlichkeit 0 möglich ist, ein Beispiel an. Andernfalls beweisen Sie, dass die Wahrscheinlichkeit 0 nicht möglich ist.

i)
$$D \cap E^c$$
, ii) $D^c \setminus E$.

- **b** Seien (Ω, \mathbb{P}) ein Wahrscheinlichkeitsraum und $A, B \subseteq \Omega$ mit $\mathbb{P}(A) = \mathbb{P}(B) = \frac{4}{5}$.
 - i Finden Sie eine Zahl $c \in (0,1)$, für welche Sie beweisen können, dass

$$\mathbb{P}(A \setminus B) \le c$$

gilt.

ii Geben Sie ein Beispiel an, das die obigen Voraussetzungen erfüllt und für das

$$\mathbb{P}(A \setminus B) = c$$

gilt.

 Hausaufgabe 2.3 [W-Maß mit Dichte] (6 Punkte) Die Abbildung $f: \mathbb{R} \to \mathbb{R}$ sei gegeben durch

$$f(x) = \begin{cases} \frac{3|x|}{C} & \text{für } x \in [-1, 0], \\ \frac{5x^2}{C} & \text{für } x \in [1, 5], \\ 0 & \text{sonst,} \end{cases}$$

wobei $C \in \mathbb{R}$ eine Konstante ist. Außerdem seien $A_n := [1, 2 - \frac{1}{n}] \subseteq \mathbb{R}$ für $n \in \mathbb{N}$ und

$$A\coloneqq\bigcup_{n\in\mathbb{N}}A_n.$$

- a Bestimmen Sie C so, dass f eine Dichte ist.
- **b** Zeigen Sie, dass A = [1, 2) gilt.
- \mathbf{c} Es sei \mathbb{P} das Wahrscheinlichkeitsmaß auf \mathbb{R} mit der Dichte f. Zeigen Sie, dass

$$\lim_{n\to\infty}\mathbb{P}(A_n)=\mathbb{P}(A)$$

gilt.

d Zeigen Sie die Aussage aus \mathbf{c} , also $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$, direkt anhand der Rechenregeln für Wahrscheinlichkeitsmaße, das heißt, ohne die Dichte f zu verwenden.