• abgeschlossenes Intervall von a bis b:

$$[a,b] := \{ x \in \mathbb{R} \mid a \le x \le b \}$$

• halboffene Intervalle von a bis b:

$$(a,b] := \{x \in \mathbb{R} \mid a < x \le b\}, \quad [a,b) := \{x \in \mathbb{R} \mid a \le x < b\}$$

• offenes Intervall von a bis b:

$$(a,b) := \{ x \in \mathbb{R} \mid a < x < b \}$$

Die Zahlen a und b heißen Eckpunkte des Intervalls. a oder b können auch gleich $\pm \infty$ sein.

c) Die leere Menge $\emptyset := \{\}$ ist die Menge ohne Elemente und kann z.B. wie folgt angegeben werden: $\emptyset = \{x \in \mathbb{R} \mid x < 0 \text{ und } x > 1\}$

Zwei Mengen A und B sind genau dann gleich, wenn sie dieselben Elemente enthalten: A = B genau dann, wenn $(x \in A \Leftrightarrow x \in B)$ also genau dann, wenn $A \subseteq B$ und $B \subset A$ gilt. Dies kann man zum Beispiel durch vollständige Fallunterscheidung beweisen.

Mengentheoretische Operationen (Teil 1)

Seien A, B Teilmengen von M.

Schnittmenge (Durchschnitt) von A und B:

$$A \cap B := \{ x \in M \mid x \in A \text{ und } x \in B \}$$

Vereinigung(smenge) von A und B:

$$A \cup B := \{ x \in M \mid x \in A \text{ oder } x \in B \}$$

 $(Mengen-)Differenz \ von \ A \ und \ B \ (auch \ Komplement \ von \ B \ in \ A)$:

$$A \setminus B := \{x \in A \mid x \notin B\}$$

Die Menge $\mathcal{P}(M)$ aller Teilmengen von M heißt Potenzmenge von M.

Einschub 1.3.3. ...

(Kartesisches) Produkt von A und B:

$$A \times B := \{(a, b) \mid a \in A \text{ und } b \in B\}$$

Das ist ist also die Menge aller geordneten Paare bestehend aus Elementen von A (erster Eintrag) und Elementen von B (zweiter Eintrag).

Einschub 1.3.4. ...

Außerdem gibt es Rechengesetze für Mengen:

$$A \cap B = B \cap A, \quad A \cup B = B \cup A$$

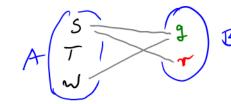
$$A \cup (B \cup C) = (A \cup B) \cup C, \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Einschub 1.3.5. ...

1.4 Relationen, Abbildungen, Funktionen

Definition 1.4.1 (Relation). Seien A und B Mengen. Eine $Relation\ zwischen\ A\ und\ B$ ist eine Teilmenge $R\subset A\times B$. Ist ein Paar (a,b) Element von R, so sagt man dann, dass a in Relation R zu b steht. Wir schreiben in diesem Fall: aRb.

Einschub 1.4.2. ... $A = \{S, T, W\}, B = \{g, T\}$ Relation zwischen & A und B & : "Gegenstand bound mit Farbe vor"



$$R = \{ (s, y), (s, \tau), (w, y) \} \subset A \times B$$

$$S R y$$

$$R^{-1} = \{ (y, s), (\pi, s), (y, v) \}$$

Beispiel 1.4.3.

- Kleiner-Gleich-Relation auf $A = B = \mathbb{N}$
 - Kleiner-Gleich-Relation auf $A = B = \mathbb{R}$, Gleichheitsrelation, Teilbarkeitsrelation auf $A = B = \mathbb{N}$
 - Geraden, Kreise, Parabeln in \mathbb{R}^2 (siehe Kapitel 2)

Einschub 1.4.4. ... 1) aben R = E acb der a=b $\leq = R = \{(1,1), (1,2), ..., (2,2), (2,3), ... \} \subset INXIN$ $2)^{n} = R = \{ (a_1b) \in N \times N \mid a = b \}$, 2R2

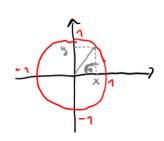
3) S:= { Studies im HS3 (RC 5x6, XRy: A=D X sited in

der selben Reihe wie y 4) Jede Tailmenge von R2= RXIR beschreibt eine Relation auf R. Zum

Bropiel der Graph einer Funktion (< spieter genauer)

g(x) = 2x $R = \{(x, y) \in \mathbb{R}^2 | y = 2x\} = \{(x, 2x) | x \in \mathbb{R}\}$ arb = 2a $(1/2) \in \mathbb{R}$ $A(x) = x^2$ $R' = \{(x, x^2) | x \in \mathbb{R}\}$ arb = 2a

Talmeyer missen with turner Grapher von Friktioner sin:



$$\widetilde{R} = \left\{ (X_1 y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \right\}$$

$$x^2 + y^2 = 1^2 \quad \text{Pythejoras}$$

Definition 1.4.5 (Umkehrrelation). Ist $R \subset A \times B$ eine Relation von A nach B, so ist durch

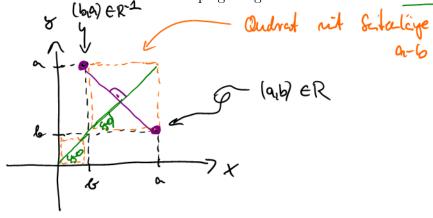
$$R^{-1} := \{(b, a) \in B \times A \mid aRb \}$$

eine Relation von B nach A, die sogenannte Umkehrrelation zu R, definiert.

Einschub 1.4.6. ... Im objen Bispiel ist R-1: Fabe kound als Forbe von Expensional vor, R-2 = { (siche oben) }

Im Fall A = B entsteht die Umkehrrelation durch Spiegelung der Relation an der Winkelhalbierenden.

Einschub 1.4.7. ...



Äquivalenzrelationen 1.4.1

Definition 1.4.8. Äquivalenzrelation Eine Relation \sim auf einer Menge A (d.h. zwischen A und A) heißt Äquivalenzrelation, falls sie die folgenden Eigenschaftgen besitzt:

Reflexivität Für alle $a \in A$ gilt: $a \sim a$

Für alle $a, b \in A$ gilt: $a \sim b \Rightarrow b \sim a$ Symmetrie

Transitivität Für alle $a, b, c \in A$ gilt: $a \sim b$ und $b \sim c \Rightarrow a \sim c$

Gilt $a \sim b$, so heißen a und b äquivalent.

Bemerkung 1.4.9. Die Äquivalenzrelation \sim zerlegt die Grundmenge A in Teilmengen von A, die sogenannten $\ddot{A}quivalenzklassen$, so dass jedes Element von A in genau einer der \ddot{A} quivalenzklassen liegt. Die Äquivalenzklassen sind paarweise disjunkt (haben paarweise eine leere Schnittmenge) und ergeben als Vereinigung ganz A. Die Äquivalenzklasse von $a \in A$ notieren wir als

$$[a] := \{b \in A \mid b \sim a\}. \qquad \mathbf{a} \in [\mathbf{a}]$$

Beispiele 1.4.10. Sei $m \in \mathbb{N}, m > 1$. Auf $A = B = \mathbb{Z}$ definiert $a \sim b$: $\Leftrightarrow b = \mathbb{Z}$ definiert

eine Äquivalenzrelation. Die Äquivalenzklassen sind die Restklassen modulo m.

```
Einschub 1.4.11. .1) Hörsaaltelation II: S= { Studis in Hörsaal }
xR'y : AD x und y sitzen in deselber Reihe ador in der Felben Spalle
 is night transitiv also beine AR
2) abez, mell, mol: and it m/b-a Behn ist AR
Bon reflexiv acz: ana => mla-a=0
symmetrish and => m/b-a => es alt NEZ so dess m.N=b-a
= m. (-N) = (-6+a) = mla-b = 6~a
travaitiv and, buc = m/b-a, m/c-b = es subt NEZ
 und N' = 72 80 dass pitt: m. N = 6-a, m. N' = c-b
 = D \quad C-a = C-b+b-a = m \cdot N' + m \cdot N = m(N'+N)
  => M (C-A =) a N C 0
 Aquivalenzklassen modulo m ~ 1st AR out Z, daher wird Z
 in Klassen zerlegt: [1] = {1+ k-m | kEZ3 = { ..., 1-2m, 1-m,
 1+0-m, 1+m, 1+2m, ... }. Dank gitt_a, b e [1]: b-a =
  = 1+ kg·m - (1+ kg·m) = m(kg fir) - kg) => m(b-a
  =) and. Genouso für [2] ut tEll:
           \cdots = [-m] = [0] = [nn] = [2m]
         = [1-m] = [1] = [1+u] = [1+2u] = ---
              ... = [2] = [2+m] = [2+2m] = ...
         - = [m-1-n] = [m-1] = [m-1+m] = ---
                                          disjuntle Veeinijuy
                            1) [a] = [b] ( an b
  Man okernt (ohre Bueis):
```