Für den Winkel α der Geraden gegenüber der Parallelen zur x-Achse gilt in jedem Steigungsdreieck

$$\tan(\alpha) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = a \quad \text{bzw.} \quad \alpha = \arctan a.^{1}$$

Geradengleichungen zu linearen Funktionen mit gewünschten 2.3 Eigenschaften

• Gerade mit Steigung a und y-Achsenabschnitt b:

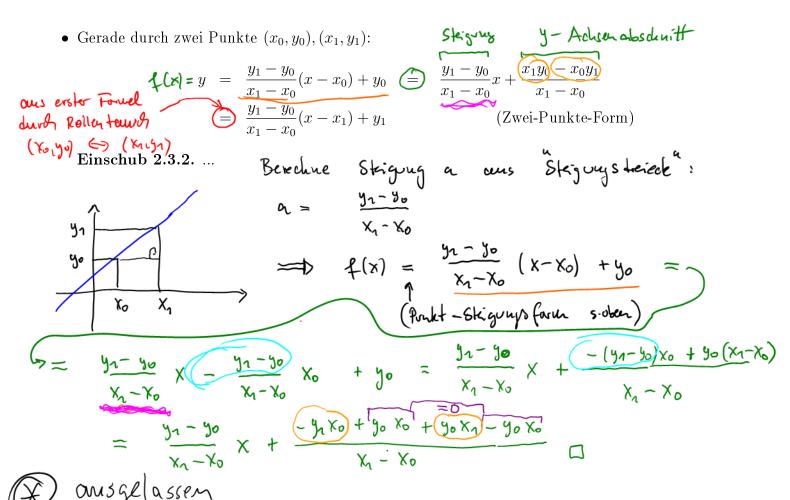
$$y = ax + b = (x)$$

• Gerade mit Steiung adurch den Punkt $(x_0, y_0) = b!$ $y = a(x - x_0) + y_0 \iff ax + (y_0 - ax_0) \qquad \text{(Punkt-Steigungs-Form)}$ Einschub 2.3.1. ... Gezeben ist (x_0, y_0) und Steigung a. Also giet $y_0 = a \times b + b$ durch Ein setzen von (x_0, y_0) in Geraden gleichung. Danif : $b = y_0 - a \times b - E$ in setzen in $y = a \times b - b$ liefet : $y = ax + y_0 - ax_0 = a(x-x_0) + y_0$

$$\tan(\alpha) = \frac{\text{Länge der Gegenkathete}}{\text{Länge der Ankathete}}.$$

Mit arctan wird die Umkehrfunktion der Tangensfunktion bezeichnet.

 $^{{}^{1}}$ Für den Tangens eines Winkels α in einem rechtwinkligen Dreieck gilt:



2.4 Anwendung: Lineare Interpolation

Gegeben eine (beliebige) Funktion $f:[x_1,x_2]\to\mathbb{R}$, deren Werte an den Randstellen x_1 und x_2 bekannt sind (und deren sonstige Werte nicht oder nur mit großem Aufwand bestimmt werden können).

Einschub 2.4.1. ...

Zur Bestimmung von Näherungswerten für die Funktionswerte von f auf (x_1, x_2) wird der Graph von f durch eine Gerade g ersetzt, die an den Randstellen von $[x_1, x_2]$ mit f übereinstimmt, d.h. gesucht ist $g: [x_1, x_2] \to \mathbb{R}$ linear mit $g(x_1) = f(x_1)$ und $g(x_2) = f(x_2)$. Die Zwei-Punkte-Form liefert

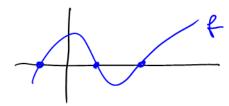
$$g(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1) + f(x_1).$$

Für hinreichend "gutartige" Funktionen f gilt dann $f(x) \approx g(x)$ für $x \in [x_1, x_2]$.

2.5 Nullstellen

Definition 2.5.1. Eine Stelle x_0 in der Definitionsmenge einer Funktion f heißt Nullstelle von f, falls $f(x_0) = 0$ gilt.

Einschub 2.5.2. ...



$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto ax + b$$

unterscheiden wir die Fälle:

1. Fall: a = 0:

Die konstante Funktion f mit f(x) = b besitzt keine Nullstelle, wenn $b \neq 0$. Falls b = 0, also f die Nullfunktion ist, ist jede Stelle der Definitionsmenge eine Nullstelle.

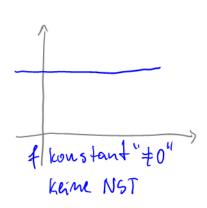
2. *Fall*: $a \neq 0$:

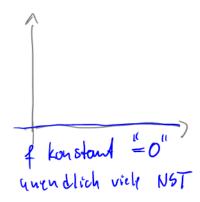
Für eine Nullstelle x_0 von f gilt:

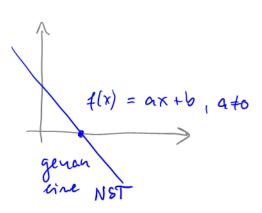
$$f(x_0) = 0$$
 , also $ax_0 + b = 0 \Leftrightarrow x_0 = -\frac{b}{a}$

d.h. es gibt genau eine Nullstelle \mathcal{M} von f.

Einschub 2.5.3. ...







2.6 Umkehrfunktion

Es sei f eine lineare Funktion. Wir unterscheiden die folgenden Fälle:

$$f(x) = ax + b$$

1. Fall: a = 0:

Der Graph der konstanten Funktion f mit f(x) = b ist eine Parallele zur x-Achse. Der Graph der Umkehrelation entsteht durch Spiegelung an der Winkelhalbierenden, ist daher eine Gerade parallel zur y-Achse und somit keine Funktion. Folglich besitzt f in diesem Fall keine Umkehrfunktion.

2. Fall: $a \neq 0$

Löst man die Geradengleichung y = ax + b nach x auf, so erhält man

$$x = \frac{y - b}{a} \neq \frac{1}{a} \frac{1}{y} - \frac{b}{a} = \frac{1}{2} (3)$$

Die Umkehrrelation von f ist also eine Funktion, nämlich die lineare Funktion

Einschub 2.6.1. ... $f(x) = -4x + 16, \quad y = -4x + 16 \Rightarrow y - 16 = -4x$ $(x) = -4x + 4, \quad y = -4x$

2.7 Monotonie

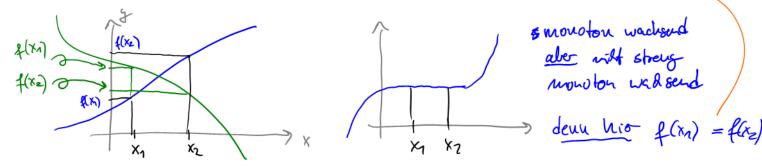
Definition 2.7.1 (Monotonie). Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heißt streng monoton wachsend (bzw. streng monoton fallend), falls

für alle
$$x_1 < x_2$$
 gilt: $f(x_1) < f(x_2)$ (bzw. $f(x_1) > f(x_2)$).

Sie heißt monoton wachsend (bzw. fallend), falls

für alle
$$x_1 < x_2$$
 gilt: $f(x_1) \le f(x_2)$ (bzw. $f(x_1) \ge f(x_2)$).

Einschub 2.7.2. ...



Folgerung 2.7.3. Für eine lineare Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto ax + b$ gilt:

$$a > 0 \implies f$$
 ist streng monoton wachsend $a < 0 \implies f$ ist streng monoton fallend

Einschub 2.7.4. ... Beispiel
$$f(x) = 2x-5$$
, $\alpha = 2$ 70 Beh f shely monoton wach send Bul Scien dazu $x_1, x_2 \in \mathbb{R}$ wit $x_1 < x_2$. Zu $x_1 = x_1 + x_2 + x_3 = x_4 + x_4 = x_2 + x_4 = x_$

Also allements Bot
$$ax0 \Rightarrow f$$
 streng monoton fallends

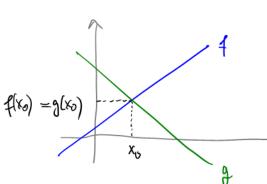
Bin Sei $x_1 < x_2$. En zigen: $f(x_1) > f(x_2)$. Also: $x_1 < x_2$

ax0
$$\Rightarrow ax_1 > ax_2 \Rightarrow ax_1 + 6 > ax_2 + 6 \Rightarrow f(x_1) > f(x_2)$$

2.8 Gemeinsame Punkte von Geraden.

Seien f und g lineare Funktionen mit f(x) = ax + b und g(x) = a'x + b'. Zur Bestimmung gemeinsamer Punkte der zugehörigen Graphen suchen wir alle Stellen $x_0 \in \mathbb{R}$ mit $f(x_0) = g(x_0)$. Dazu suchen wir Nullstellen der Funktion h := f - g, d.h. der Funktion mit h(x) = f(x) - g(x), denn es gilt $f(x_0) = g(x_0) \Leftrightarrow (f - g)(x_0) = 0$.

Einschub 2.8.1. ...



Gesuch sind KOEIR nut f(KO) = g(KO). Definione Hil-s-unktion h(x):= f(x)-g(x). Dann Lat man: 10 gésichte geneinsame Stelle von fund g (=) h(x0) = f(x0) - g(x0) = 0 h(xo) = 0 () to ist NST von h

Wir unterscheiden drei Fälle: \Rightarrow also ist h lineare \Rightarrow \Rightarrow B

1. Fall: h = f - g ist die Nullfunktion, d.h. f = g:

Die beiden Geraden stimmer ill \Rightarrow B

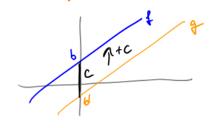
Die beiden Geraden stimmen überein. Dies ist genau dann der Fall, wenn a = a' und b = b'.

Einschub 2.8.2. ... h(x) = 0 für alle $x \in \mathbb{R}$ = 0 = h(x) = f(x) - g(x)fûr alle XEIR =) fûr alle XER: (X) = g(X). Also co-vide geneinsane Punhle

2. Fall: h = f - g ist konstant, aber nicht die Nullfunktion:

In diesem Fall exisitiert ein $c \neq 0$ mit h(x) = c für alle $x \in \mathbb{R}$, d.h.f(x) = g(x) + c für alle $x \in \mathbb{R}$, Dies ist genau dann der Fall, wenn a=a' und $b\neq b'$. Hier gibt es keinen Schnittpunkt, da f-g als konstante Funktion ungleich Null keine Nullstelle hat. Die zugehörigen Geraden sind also parallel.

Einschub 2.8.3. ... Für alle XCR: $h(x) = c \neq 0 \Rightarrow f(x) - g(x) = c$ $= \int f(x) = g(x) + c \iff ax + b = a'x + b' + c \iff (a - a') x = b' - b + c \iff a = a' \text{ and } b = b' + c$



3. Fall: h = f - g ist nicht konstant:

Da f-g offensichtlich wieder eine lineare Funktion ist (mit h(x)=(a-a')x+(b-b')), gibt es dann genau eine Nullstelle x_0 von h = f - g, d.h. genau einen Schnittpunkt von f und g, nämlich

$$(x_0, f(x_0)) = (x_0, g(x_0)) = \left(-\frac{b-b'}{a-a'}, -\frac{b-b'}{a-a'}a + b\right).$$