7.3.2 Modalwert

Eine Auspriagung a eines Merkmals X ist ein Modalwert (oder Modus) der Stichprobe xy, ..., z,, wenn es
keine Ausprigung gibt, die in der Stichprobe haufiger vorkommt, d.h. wenn fiir die Haufigkeitsverteilung
H,, der Stichprobe gilt:

H,(a) > H,(x;) fiir alle 1 <i <n.

Modalwerte sind Lagemafe, aber im Allgemeinen nicht eindeutig. Falls doch, werden sie mit x,,,q be-
zeichnet und die Héufigkeitsverteilung heiflt unimodal. Modalwerte lassen sich auch bei Stichproben von
nominalen Merkmalen bestimmen.

7.3.3 Quantile
Zu x4, ..., T, bezeichne z(yy, ..., 2y die geordnete Stichprobe, d.h. es gilt
{231, ,:En} = {[L’(l), ...,l‘(n)} und 23(1) S S $(n)

Zur Beschreibung der Struktur einer Stichprobe zieht man dann sogenannte Quantile heran:

Definition
Sei p € [0, 1]. Eine Ausprégung@heifét p-Quantil der Stichprobe x4, ..., x,, wenn fiir die Haufigkeitsver-

teilung h,, gilt:
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Bemerkung

e Firp= % heifit das p-Quantil x5 Median (oder Zentralwert),

d.h. mindestens 50 % der Stichprobenwerte sind grofer gleich und mindestens 50 % sind kleiner
gleich zg 5.

e Das le—Quantil Zo,25 heillt unteres Quartil, das %—Quantil xo,750beres Quartil.
® 1,0, heifit j-tes Dezil.

e Im Fall p = 0 erhilt man den kleinsten Wert, das Minimum x;,, = x() der Stichprobe, im Fall
p = 1 den groften Wert, das Mazimum Zpar = T(n)-

Alle p-Quantile sind Lagemafe. Verglichen mit dem arithmetischen Mittel ist der Median robuster (d.h.
weniger anfiillig) gegeniiber ,Ausreifern”.



Satz 7.3.3 (Berechnung des p-Quantils). Sei 0 < p < 1. Eine Ausprigung a ist genau dann ein p-Quantil
der Stichprobe x4, ..., x,, wenn gilt:

a=ogggy  follsnp ¢N  bzw. pEEpIIGETERE,  follsmpiEiN] (5x).

Hierbei steht [z] fir die kleinste ganze Zahl grofier oder gleich x.
= obue Gawsklawue~ — o
Insbesondere gilt fir den Median x¢5 somit m r;""'—‘ =3 ) 93 =0
T(ng1), falls n ungerade,
Tos = § a, falls n gerade und a eine Ausprigung

mit :v( ) <a< m(%ﬂ) 1st.
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7.4 Streumalse

Definition 7.4.1. Sei zy, ...x, eine Stichprobe eines quantitativen Merkmals X. Eine Funktion
s:R" - R, (21, ..kp) = s(x1,...2p)
heikt Streumaf, wenn fiir alle @ € R und alle (z1,...z,) € R" gilt:

5014 Ay ey T+ @) = (21, T

d.h. durch Verschieben der Stichprobe dndert sich die Streuung nicht. Oftmals fordert man fiir ein Streumafs
s auch noch, dass $(0,0,...,0) = 0 gilt.

Beispiele 7.4.2.

o Spannweite:  Tmaz — Tmin = T(n) — T(1)

p-Quantilsabstand, p € (0, %) r1_p — x, = Differenz von (1 —p)- und p-Quantil; im Fall p = i heifst
der p-Quantilsabstand kurz Quartilsabstand.

Medianabweichung: Median der Absténde |21 — zo 5, |22 — Zo5), ..., |Tn — To5| der Stichprobenwerte
vom Median x5

Mittlere absolute Abweichung vom Median: § = % >z — zo5
i=1

Mittlere quadratische Abweichung vom arithmetischen Mittel (oder Varianzi:

n
g1 )2
5 :—E lxi—xa
i

Standardabweichung: s = \/s?

Es handelt sich hier in allen Féllen um Streumafe, da zur Berechung stets Differenzen von Stichproben-
werten und Lagemafen bzw. von zwei Lagemafen verwendet werden. Bei Verschiebung der Stichprobe um
a, heben sich die Verschiebungen somit gegenseitig auf.

Satz 7.4.3 (Berechnung der Varianz, Steinersche Formel). Die Varianz s* einer Stichprobe xy, ..., x,, lisst

sich wie folgt berechnen:
1 n
2 2 —2
s“= |- E x| —®
(n — ’)

Beweis
Mithilfe der Binomischen Formel gilt:
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Satz 7.4.5 (Berechnung von 7, § und s? mittels Hiufigkeitsverteilungen)). Seien ay, ..., a, die Ausprigun-
gen von X und H, bzw. h, die absolute bzw relative Hdufigkeitsverteilung der Stichprobe x1, ..., z,. Dann
qilt:

1 -
T o= = aHyla) =Y a;- ha(a)
n
=1 =1
L1 s
ST > lai = wos| - Halai) = ) las = zo5] - hu(a:)
i=1 =1

Fom Y =P Hala) = (0= ha)

i=1

Beweis

Die Behauptungen folgen sofort aus den Definitionen durch Umordnen der Summanden sortiert nach den
verschiedenen Ausprigungen. O

7.5 Vergleich von Stichproben

Einen schnellen visuellen Vergleich verschiedener Stichproben erméglichen Bozplots (auch Kistendiagram-
me genannt). Hier werden Quantile und Streumafe zur graphischen Darstellung verschiedener Stichproben
in geeigneter Weise herangezogen. Eine Variante, wie ein Boxplot erstellt werden kann, ist die folgende:

Lege eine geeignete Skala (fiir die darzustellenden Stichproben) fest und fiihre dann fiir jede Stichprobe
die folgenden Schritte durch:

(i) Zeichne ein Rechteck ein, dessen eine Seitenlédnge parallel zur Skala vom unteren Quartil bis zum
oberen Quartil reicht. Die Lange der anderen Seite ist nach &sthetischen Gesichtspunkten zu wihlen.

(ii) Unterteile das Rechteck an der Stelle des Medians senkrecht zur Skala in zwei Rechtecke.

(iii) Zeichne an der rechten und an der linken Seite des Rechtecks eine Strecke, die sogenannte Antenne
bis zum groften bzw. kleinsten Wert der Stichprobe. Der grofite und der kleinste Wert werden als
Abschluss der Antennen durch einen kleinen senkrechten Strich oder einen Kreis gekennzeichnet.

Mitunter wird das arithmetische Mittel noch durch einen kleinen Vollkreis auf der mittleren Hohe des
Rechtecks eingezeichnet. Varianten sehen vor, Ausreifser besonders zu kennzeichnen.
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7.6 Grundlagen der Wahrscheinlichkeitstheorie

Die Stochastik ist paradigmatisch fiir den Modellbildungskreislauf. Hier sollen vom Zufall abhingige Vor-
giange (wie z.B. Gliicksspiele) modelliert werden. Der Zufall soll mit dem Begriff der Wahrscheinlichkeit
erfasst werden. Als erste Nédherung kann man den frequentistischen Wahrscheinlichkeitsbegriff heranzie-
hen, der auf Richard von Mises (1883-1953) zuriickgeht. Thm liegt die Erfahrungstatsache zugrunde, dass
sich die relative Haufigkeit eines Ergebnisses in einem vom Zufall abhéngigen Experiment mit wachsender
Anzahl an Wiederholungen des Experimentes stabilisiert ( Empirisches Gesetz grofier Zahlen). Den Grenz-
wert, gegen den die relative Haufigkeit mit wachsender Wiederholungszahl strebt, interpretiert man dann
als Wahrscheinlichkeit des Ergebnisses. Dieser Erfahrungstatsache folgend kann man relative Hiufigkeiten
als Schétzwerte fiir Wahrscheinlichkeiten nehmen. Eine rigorose Definition des Wahrscheinlichkeitsbegriffs
gelang von Mises nicht, da eine mathematische Prézisierung des Stabilisierens der relativen Haufigkeiten
fehlschlug. Aus diesem Grund wihlt man heute den auf Andrei Nikolajewitsch Kolmogorow (1903-1983)
zuriickgehenden aziomatischen Zugang zur Wahrscheinlichkeitstheorie.

Thema der Stochastik sind Ereignisse ( und die Wahrscheinlichkeit ihres Eintretens. Unsere Ausgangsfragen
sind:

(i) Was kann passieren?
(ii) Mit welcher Wahrscheinlichkeit treten diese oder jene Ereignisse ein?

Unabhéingig von der konkreten betrachteten Situation wird die Menge aller mdglichen Ereignisse (also die
Antwort auf die erste Frage) in der Wahrscheinlichkeitstheorie mit €2 bezeichnet.

Beispiele 7.6.1. Wir betrachten einige Situationen und modellieren das zugehorige €2:

(i) Ein Minzwurf. Eine Miinze wird geworfen, und als Ereignis tritt entweder “Kopf” oder “Zahl” ein.
Wenn wir zur Vereinfachung das eine mit “0” notieren und das andere mit “17, ist die Menge aller
moglichen Ereignisse in diesem Fall Q = {0, 1}.

(i) Wirfelwurf. Q ={1,2,3,4,5,6}.

(iii) Mehrere Miinzwiirfe. In dieser Situation fassen wir jede m-elementige Folge von Nullen und Einsen
(alias Kopfen und Zahlen) als ein Ereignis auf; es ist also

Q= {(w1,20, . wn) [ 2 € {0, 13} =£{0,1}" = {91 x 4843 & - x 4143

die Menge aller moglichen Ereignisse. Beim zweifachen Miémzwarf also “ PRy
dh)‘;‘(‘dﬁ({é

0 =1{1,23456}x {1,2,3,4,5,6}

D.h. das Element (2,3) € Q2 bedeutet: erst wurde/eine 2 und dann eine 3 gewdiirfelt.

(iv) Unendlich viele Minzwirfe. Hier gilt F-'olae.
4

Q= {(#)ien |z: € {0, 1}} .
Im Gegensatz zum einfachen oder n-fachen Miinzwurf ist € hier nicht endlich.
(v) Zufallszahl zwischen 0 und 1. € = [0, 1].

Die Fokussierung auf spezielle Fragestellungen erfolgt durch die Betrachtung sogenannter FEreignisse. Ein
Ereignis A ist eine Teilmenge des Grundraums (2, also A C €.

Ein Elementarereignis ist ein Element w € Q.
Man sagt ,das Ereignis A tritt ein”, wenn ein w mit w € A beobachtet wird.

Da im Allgemeinen nicht jede Teilmenge von (2 als Ereignis sinnvoll sein muss (z.B. im Modell fiir den un-
endlichen Miinzwurf), werden gewisse Teilmengen als Ereignisse ausgezeichnet, indem sie in einem Ereignis-
System

A= {A CQ|Aist ein Ereignis } C P(Q).



aufgelistet werden. Hier ist P(€2) die Potenzmenge von €. Wir verlangen, dass ein Ereignissystem A abge-
schlossen gegeniiber allen abzdhlbaren Mengenoperationen (etwa Durchschnitt, Vereinigung, Komplement,
Mengedifferenzen,...) ist, d.h. fithrt man diese Operationen mit Ereignissen aus A durch, so erhdlt man
wieder Ereignisse aus A.

In den meisten Féllen wihlen wir A = P(Q).

Den Zusammenhang zwischen der Beschreibung von Ereignissen in der realen Welt und im Modell zeigt
die folgende Tabelle:

Reale Welt Modell
A und B treten (gleichzeitig) ein weANB
A oder B tritt ein (oder beide) weAUB

Entweder A oder B tritt ein
B tritt ein, A aber nicht
A tritt nicht ein

A und B schliefien sich aus

we (A\B)U(B\ A)
weB\A
we A = 2L\A
ANB =1

(A und B sind disjunkt.)

Mindestens ein A; tritt ein we U A
i>1

Alle A, treten ein we N A
i>1

Beispiele 7.6.2. Wir betrachten Situationen aus dem obigen Beispiel.
(i) Ein Minzwurf. “1 tritt ein”: A = {1}.
(ii) Wirfelwurf. Q ={1,2,3,4,5,6}. Es wird eine gerade Zahl gewiirfelt A = {2,4,6}.

(iii) Mehrere Minzwiirfe. “Es treten genau k Einsen auf™

A:{(a;l,...,xn)e{o,l}”

i=1
(iv) Unendlich viele Miinzwiirfe. “Die relative Haufigkeit der 1 ist p™
1y
A= {(z)ien € {0,1}"] lim ~ ;x = p}.
(v) Zufallszahl zwischen 0 und 1. “Es tritt eine Zahl aus [a, b] auf”> A = [a,b] C Q = [0, 1].

7.7 Zufallsexperimente und Wahrscheinlichkeitsraume

Definition 7.7.1. Ein Paar (£, p) heift Zufallsexperiment, falls ya IN, &' y/a

(i) Q eine abzdihlbare (d.h. endliche oder abzéhlbar unendliche), nicht-leere Menge ( Ergebnismenge,
Grundraum, Stichprobenraum) und

(ii) p:Q — [0,1] eine Funktion mit

Z p(w) =M (Wahrscheinlichkeitsfunktion, Wahrscheinlichkeitsdichte)

weN

ist.



Ein Element w € Q heifit Ergebnis bzw. Elementarereignis und p(w) heikt Wahrscheinlichkeit des Ergebnis-
ses bzw. desElementarereignisses w.
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Definition 7.7.3. Ein Tripel (2, A, P) heilt Wahrscheinlichkeitsraum, falls gilt:
(1) Q ist eine nicht-leere Menge  ( Ergebnismenge)
(2) A ist ein Ereignis-System (bei uns in der Regel A = P(Q))

(3) P ist ein Wahrscheinlichkeitsmaf auf (€, .A), d.h. eine Funktion P : A — [0,1] mit folgenden
Eigenschaften:

‘ Normiertheit: PQ)=1 %--
o-Additivitdt:
N —
Fiir paarweise disjunkte Ereignisse A, Ao, ... € A (d.h. A; N A; = 0 fiir ¢ # j) gilt:
neN n=1

Man sagt, dass P(A) die Wahrscheinlichkeit von A ist (bzw. die Wahrscheinlichkeit ist, dass A eintritt).

Satz 7.7.4. Fir ein Zufallsexperiment (€, p) wird durch A := P() und

i PTE—

Satz 7.7.5. (Eigenschaften von Wahrscheinlichkeitsiiapén) Sei (Q, AP) ein Wahrscheinlichkeitsraum.

Dann gelten:

2) /X Endliche Additivitit: Fir paarweise disjunkte Ereignisse Ay, Ag,...A, € A gilt:
P(CJAk> :zn:P(Ak) ?‘“¢ =#
k=1 k=1 &
)R PO=0 dewe P@l= Pl up) = WS+ RE = B(L)=0

(A)
(3) Fir alle A € A gilt: P(AC) = 1 — P(A) =A%
1= M=) = P(2\AvA) = @A+ P
(4) Fir alle A, B € A gilt: P(B\ A) = (B) ~ P(ANB)
A <7777

(5) FuralleABEAgzltPAUB A+P AﬂB

(6) Fiir alle AABE€ Agilt: ACB = P(A

o) @
(7) Endliche Subadditivitat: Fir Ay, ..., A, € A gilt:

tn midlk Lok P(AjU..UA,) < P(A) + ... + P(4,)

M‘:‘ 5

(8) Subadditiviit: Fiir Ay, As, ... € A gilt: P(L) A2) < 3" P(Ay)
n=1

n=1



Definition 7.7.6. Ein Zufallsexperiment (€2, p) heifst Laplace-Versuch (oder Laplace-Experiment), wenn €2
endlich und p : Q — [0, 1] die sogenannte Gleichverteilung (oder Laplace’sche Wahrscheinlichkeit(sfunktion))
ist, die jedem Ergebnis diesselbe Wahrscheinlichkeit, namlich

1
plw) = @,

zuordnet, wobei |Q| gleich der Anzahl der Elemente in § bezeichnet. Der zugehorige Wahrscheinlichkeits-
raum (2, P(Q), P) heilt Laplace’scher Wahrscheinlichkeitsraum (oder Laplace-Modell). Im Laplace-Modell
gilt fiir ein Ereignis A C ()

|A]' “3Anzahl der fiir A giinstigen Ergebnisse oS Sadz

71

In Laplace-Modellen ermittelt man Wahrscheinlichkeiten héufig durch geschicktes Abzéhlen.
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7.8 Bedingte Wahrscheinlichkeit und Unabhangigkeit

Q] 4 Anzahl aller mdglichen Ergebnisse

Offenbar ist es moglich, dass durch das Eintreten eines Ereignisses B die Wahrscheinlichkeit eines Ereig-
nisses A verdndert werden kann. Gesucht ist in diesem Zusammenhang die Wahrscheinlichkeit von A unter
der Bedingung, dass B eingetreten ist. Um dies zu modellieren fithren wir bedingte Wahrscheinlichkeiten
ein. Die bedingte Wahrscheinlichkeit kann als Neueinschétzung der Wahrscheinlichkeit von A interpretiert
werden, wenn die Information vorliegt, dass das Ereignis B bereits eingetreten ist.

Definition 7.8.1. Sei (2, 4, P) ein Wahrscheinlichkeitsraum und B € A mit P(B) > 0. Dann heifst

P(AN B)

P(A|B) := P(B)

die bedingte Wahrscheinlichkeit von A gegeben B.
Beispiele 7.8.2. Fairer Wiirfelwurf. SZ = -{4|_..[ 63 A= -[ Z{Ltlb% = .l “Scadc'j
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Bedingte Wahrscheinlichkeiten kann man wie folgt mithilfe von Wahrscheinlichkeitsbaumen visualisieren:

Einschub 7.8.3. ... ‘P(AUB) Ji“ M (A &'5[7‘6‘ ’LU'\
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Satz 7.8.4. (Multiplikatiofis- oder Pfadregel)
Sei (2, A, P) ein Wahrscheinlichkeitsraum und Ay, ..., A, € A mit P(A;N...NA,_1) > 0. Dann gilt:

P(A N ...NA,) = P(4) - P(AQ]Al)-.F|43|A1 NAy) - P(ApA1 NN Aply).

Einschub 7.8.5. ...

Satz 7.8.6. (von der totalen Wahrscheinlichkeit)
Sei (Q, A, P) ein W.raum, A € A und B; € A, i > 1, eine Partition von Q, d.h. es gelten:

(i) BiNB; =0 fir alle i # j,
(i) Upsy B. = O

Ist weiterhin P(B;) > 0 fir alle i > 1, so gilt:

P(4) = 3" P(AIB) - P(By)

i>1

Einschub 7.8.7. ...



Beispiele 7.8.8. Satz von der totalen W.keit und Pfadregel im Spezialfall Q = B U B°.

Beispiele 7.8.9. In einer Urne befinden sich zwei blaue und zwei rote Kugeln. Es wird zweimal aus
gezogen. Wird im ersten Zug eine rote Kugel gezogen, so wird sie wieder zuriickgelegt. Dann wird ein
zweites Mal gezogen. Wird im ersten Zug eine blaue Kugel gezogen, so wird sie nicht zuriickgelegt und
dann ein zweites Mal gezogen.



Satz 7.8.10. (von Bayes) Sei (2, A, P) ein W.raum und B; € A, i > 1 eine Partition von 2 mit P(B;) > 0
fiir alle i > 1. Dann gilt fir alle j = 1,2, .... und alle A € A:

P(A|B;) - P(B;)

PO = = BBy P(BY

Bemerkung 7.8.11. Speziell fiir die Partition (B, BY) bedeutet der Satz von Bayes:

P(A|B) - P(B)
(A|B) - P(B) + P(A|BC) - P(B°)

P(BJA) = -

Beispiele 7.8.12. In Deutschland sei eine Person von 1000 an einer bestimmten Krankheit erkrankt. Zur
Diagnose der Krankheit wird ein Test verwendet, der in 99% der Félle, in denen die Krankheit vorliegt,
ein positives Testergebnis liefert. Bei einer nicht-erkrankten Person gibt der Test allerdings in 2% der Félle
falschlicherweise ein positives Testergebnis aus.

Mit welcher Wahrscheinlichkeit ist eine Person, die ein positives Testergebnis erhalten hat, tatsdchlich
krank?



Bedingte Wahrscheinlichkeiten kann man wie folgt mithilfe von Wahrscheinlichkeitsbiumen visualisieren

Einschub 7.8.3. ...

Fiir das Rechnen mit bedingten Wahrscheinlichkeiten gelten die folgenden Séitze:

Satz 7.8.4. (Multiplikations- oder Pfadregel)

Einschub 7.8.5. ... KP/P*‘
7,

\N\P“n
=4,
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Sei (2, A, P) ein Wahrscheinlichkeitsraum und Ay, ..., A, € A mit P(A; N ...N A,_1) > 0. Dann gilt:

P(A N . NA) = P(A)) - P(As]Ay) - P(As| A1 N Ag) - - P(Au| AN o0 Ay,

Bespid vor  ohus
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Beispiele 7.8.7. (Mehrstufiges Experiment und Pfadregel) Wir werfen zweimal hintereinander einen fairen
3-seitigen Wiirfel. Dazu sei

Q= {1,2,3) x {1,2,3} [2~3

die Ergebnismenge und p(w;,ws) = % das zugehorige Laplace-Experiment. Das Ereignis A C €2 im ersten
Wurf eine gerade Zahl zu werfen lautet

C
A={29)|se{1,23}} co  AT=4 (1), (42), (4 ;),}
Das Ereignis B C €2 im zweiten Wurf eine gerade Zahl zu werfen lautet ()"4)? (3"' (331

B={(s,9|se{1,23)} Q.

Das Ereignis im zweiten Wurf eine gerade und im ersten eine ungerade Zahl zu werfen lautet

{(1,2),(3,2)} = Bn A°.

Also EEE]
5 P(B N A%) = P(B|A®) - P(A°) = P(B|A) - §
und somit (-/-]k__..--""'"'__
P(B|4°) =f§.

Der zugehdrige Wahrscheinlichkeitbaum sieht so aus

BnA M P(An®)

% ¢ = '112’ (5\2>
é/\ AC BaA L0, J
b) —/ E&AAC

R

Umgekehrt kann man die Wahrscheinlichkeitsfunktion p bestimmen (eventuell kein Laplace-Experiment),
falls man ausreichend viele bedingte Wahrscheinlichkeiten kennt (siche Beispiel unten).

Satz 7.8.8. (von der totalen Wahrscheinlichkeit)
Sei (Q, A, P) ein W.raum, A € A und B; € A, i > 1, eine Partition von Q, d.h. es gelten:

(i) BEOB; = () fiir alle i # j,

Ist weiterhin P(B;) > 0 fir alle i > 1, so gilt:

Einschub 7.8.9. ... -

Beispiele 7.8.10. Satz von der totalen W keit und Pfadregel im Spezialfall Q = B U B°.



®_ Anb ?(A)\" P(AR) - P (B)
5 = P(AR) - P (
?W/ 6

W@ b
o / \AC{[B + ’F(A_[Bc.) ?(%c.)

usuww: do ’E{laclc’
| W‘\. A 1]

Beispiele 7.8.11. In einer Urne befinden sich zwei blaue und zwei rote Kugeln. Es wird zweimal aus
gezogen. Wird im ersten Zug eine rote Kugel gezogen, so wird sie wieder zuriickgelegt. Dann wird ein

zweites Mal gezogen. Wirdwimmmerstenm g eine blanesKugel gezogen, so Srirdisienmichtezurickgelegt und
dann ein zweites Mal gezogen. bl

A\k{,f&),e Besiwane. T L = J\ (1’14-7' l‘fb); (.5(-1")' (5,6)j
Wheed & w dhn g Wl o defuictn Qe & ond due Ereyusse -{ivwé_
Bz 4 im 1Zvet § = { (+ ™), [*,6)} c SL.
Aoz {im 2ty =4 (v) (un] <« L2
4= {im 1% B\&H] = {(6;"') Lééﬁ@] c L2

Kooz dim AU 7= L (78] (48] c L2

v A Aa® = { (] sle 5.0 = Lo]

% 8 M) ==z o4
+r % TN A B ={n¥)] P = =
¥ o S Pl = %

%f‘ ‘E)c’——-—-j___. Aa E)C = jl (.Ltr)‘ﬂ

v S RS
BN Aag =466)3 =

W
P(A) = Pl Lon By ) =

<[V
e
+
~&|®
|
|#



Satz 7.8.12. (von Bayes) Sei (2, A, P) ein W.raum und B; € A, i > 1 eine Partition von 2 mit P(B;) > 0
fiir alle i > 1. Dann gilt fir alle j = 1,2, .... und alle A € A:

-: PEBS) - P(B;))
Zizl _ ’ P(Bi)‘

Bemerkung 7.8.13. Speziell fiir die Partition (B, BY) bedeutet der Satz von Bayes:

P(A|B) - P(B)
P(A|B) - P(B) + P(A|B®) . P(B9)

P(B|A) =

Einschub 7.8.14. ...

s P(AB) PME) bekowt | fonns paan P (BIA) ouschen

Beispiele 7.8.15. In Deutschland sei eine Person von 1000 an einer bestimmten Krankheit erkrankt. Zur
Diagnose der Krankheit wird ein Test verwendet, der in 99%»derRille, in-denen die” Krankheit'worliegt,
einspositivesybestergebiiis liefert. Bei einer nicht-erkrankten Person glbt der Test allerdings in 2% der Falle
falschlicherweise ein positives Testergebnis aus.

Mit welcher Wahrscheinlichkeit ist eine Person, dle ein posmves Testergebnls erhalten hat, tatsdchlich

-_— - — —_—

krank” e e e -

P(kesk [9) —  P(ple)- (=)
- B ?(Plh . P(Iz) + ?(?\1‘&)?(—:‘2)
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Definition 7.8.16. Sei (2, .A, P) ein Wahrscheinlichkeitsraum. Zwei Ereignisse A und B aus A heiflen
((P-)stochastisch))-unabhingig, falls gilt:

P(ANB) = P(A) - P(B).

Andernfalls heifen A und B nicht unabhingig. Allgemein heifst eine Familie (A;);cr, I eine beliebige Index-
menge, ((P-)stochastisch))-unab-hangig, falls fiir jede endliche Teilfamilie (A;);c; mit J = {iy,...,i,} C [
gilt:
P([)A) = P(Ai, N...NA;) = P(Ay) - ...« P(A;,) = [[ P(4).
ieJ ieJ
Drei Ereignisse A;, Ay, A3 sind gemif der Definition also unabhéngig (hier I = {1, 2, 3}), falls gilt:
Einschub 7.8.17. ...

P(AaAL ad) = PA)PA) B(4) wd  P(Azn A;) = PLA)THA)
ki, jednas

Beispiele 7.8.18.
(i) im Beispiel 7.8.7 gelten
P(A)=35, P(B)=35 PANB)=P{(22}) =5
Also sind A und B unabhéngig.

, (ii) Falls P(B) > 0 gilt, sind die Ereignisse A und B genau dann unabhingig, wenn P(A|B) = P(A)
gilt.

i ?lAnB)
A = P o o cRD e fAE) - R TE)
% (AYP(R = B4 tB)

’ (iii) Falls A und B unabhingig sind, so auch A“ und B.
P —— e —

th_ uuab
R(AAR) = P(B\A) = P®)-PlAB) = P(B)- PAR(B) = ?(B)(1-FA)
2 /Y P49

(iv) Hat A die Wahrscheinlichkeit 0 oder 1, so sind A und B fiir jede Wahl von B unabhéngig.

A0 PlANE) SPA) =0 = POARE -0 = PR

=0

Pﬂi‘d_ ‘-‘G)aht MS.



(v) Aus der Unabhéngigkeit der Ereignisse Ay, ..., A, folgt die paarweise Unabhéingigkeit (d.h. je zwei
der Ereignisse A, ..., A, sind unabhéngig), aber nicht umgekehrt. Prw- uuab 7% alle uvabh,

(vi) (Un-)Abhéngigkeit meint hier stets stochastische (Un-) Abhéngigkeit und nicht zwingend eine kausale
(un-)Abhéngigkeit (d.h. (Nicht-)Existenz eines Ursache-Wirkungszusammenhang).

Beispiele 7.8.19. Ein zentrales Beispiel fiir Unabhéngigkeit ist der n-fache unabhéngige Wurf einer Miin-
ze, die mit Wahrscheinlichkeit p € [0, 1] auf 'Kopf’” und Wahrscheinlichkeit 1 — p auf "Zahl’ fallt.

Wir betrachten den Spezialfall n = 3:

Einschub 7.8.20. ...

Die Anzahl der Pfade mit genau k Einsen kann man zédhlen, diesen Wert wollen wir vorerst oy, nennen.
Daraus ergibt sich

P(Es fallen genau k Einsen) = ay., - p*(1 — p)" % =: b, (k)

Durch b, , ist eine Wahrscheinlichkeitsfunktion auf Q := {0,1,...,n} definiert, die sogenannte Binomial-
verteilung zu den Parametern n und p.



(v) Aus der Unabhéngigkeit der Ereignisse Ay, ..., A, folgt die paarweise Unabhéngigkeit (d.h. je zwei
der Ereignisse A, ..., A, sind unabhéngig), aber nicht umgekehrt.

(vi) (Un-)Abhéngigkeit meint hier stets stochastische (Un-) Abhéngigkeit und nicht zwingend eine kausale
(un-)Abhéangigkeit (d.h. (Nicht-)Existenz eines Ursache-Wirkungszusammenhang).

Beispiele 7.8.19. Ein zentrales Beispiel fiir Unabhéngigkeit ist der n-fache unabhéngige Wurf einer Miin-
ze, die mit Wahrscheinlichkeit p € [0, 1] auf Kopf’,und Wahrscheinlichkeit 1 — p auf *Zahl’ fillt.

A
Wir betrachten den Spezialfall n = 3: =0 Sa
Einschub 7.8.20. ... P '—0‘3:: 30, 41_[ 2 3 (01%°?)
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Die Anzahl der Pfade mit genau k Einsen kann man zédhlen, diesen Wert wollen wir vorerst oy, nennen.
Daraus ergibt sich | siche

P(Es fallen genau & Einsen) = ay,, -pk(l — p)n—k —: by (k) ( ﬁ) M"P*"d?

Durch b, ,, ist eine Wahrscheinlichkeitsfunktion auf Q := {0,1,...,n} definiert, die sogenannte Binomial-
verteilung zu den Parametern n und p.

Einschub 7.8.21. ... Gl ek +rand
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7.9 Kombinatorik

In der Kombinatorik unterscheidet man bei der Auswahl von k aus n verschiedenen Objekten, ob
e mit Beachtung der Reihenfolge oder
e ohne Beachtung der Reihenfolge ausgewahlt wird. (4,,'2-2 $ (Z’l't)
Im ersten Fall erhélt man eine geordnete Menge, die man als k-Tupel (z1, ..., xx) notiert. Im zweiten Fall
erhilt man eine k-elementige Teilmenge {1, ..., x}}. ‘{4!13 - A{Zti?l
7.9.1 Allgemeines Zahlprinzip

Es seien My, ..., M} endliche Mengen. Wahlt man aus diesen Mengen nacheinander jeweils ein Element

aus, so gibt es insgesamt — N A .
ol Elesmede io
M| - | M) - ... - | My i Ma

verschiedene Moglichkeiten, dies zu tun. Das Ergebnis dieser Auswahl wird mit
(1‘1, ,:L‘k) e M; x ... x M,
notiert und nennt man eine Anordnung, falls alle Mengen M; gleich sind. Wir wissen bereits

|M1 X MQ X ... X Mk‘ = |M1| c ‘M2| e |Mk|

Beispiele 7.9.1. zum Abzihlprinzip. Sbokolade

_ m SHkchen M4 1={4l“"f""1

N — ) el SWike = mem = M)y
. Riegel - '\\1:({1,_'

Eine Anordnung von n verschiedenen Objekten heifst auch Permutation. Es gibt

nl:=1-2-...-n ’5!_—-_{—2."&:6

verschiedene Permutationen von n Objekten. $l = 1-2-%3- %= 2¢

Wir wollen die Formel an folgendem Beispiel einsehen. = 3l . @



Beispiele 7.9.2. Zehn verschiedene Biicher sollen angeordnet werden.

= ~ 10 Blche
M, Mewqe ‘ l (
M, = H{A—da{ ) E-,-t:tla(f{ mob e ey s Mo gee urwtsn

\*5 ﬂ.tca N
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=D Am%hl’tl éef"AnnOrrlmdhack = A0 - 3%- ¢-3F-.. -4
= 10!

( OAL7 %ruwﬂhlu&vkﬂw& d,ea)

Eine k-elementige Teilmenge von einer m-elementigen Menge von Objekten wird auch k-Kombination
genannt. Es gibt “ "
o(,_ Lo\ _ n! _ n(n—1).(n—k+1) “ e b

e k k! (n =k)! k!

O T

verschiedene k-Kombinationen von n Obje \

Wir wollen die Formel an folgendem Beispiel einsehen.

Beispiele 7.9.3. Aus 10 verschiedenen Biichern solléiid miit einem Griff ausgewéhlt /gezogen werden. Wi
viele Ergebnisse sind moglich?
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Definition 7.9.4. Die natiirliche Zahl (’;) (sprich: ,n iiber k) heilst Binomialkoeffizient. Falls k > n setzt
man (Z) = 0.

Satz 7.9.5. (Binomischer Lehrsatz) Fiir alle z,y € R und alle n € N gilt:

(z+y)" = i (Z)““

k=0
- 2_o
Bemerkung 7.9.6. (zﬁ.a)?- - (g] xoa" ° v (i) x1 51 + (; )x p)
(i) Fiir n = 2 erhélt man die iibliche Binomische Formel.
"(ii) Fiir ¢ = y = 1 ergibt sich _ —@® und 4————0'-14.( T el teifle  Crer An-
e e L Y tltwh\‘a— Wk‘cdzh
(ili) fir z = =1,y = 1 ergibt sich: Y} (=1)*(}) = O.)

Beispiele 7.9.7. (zur Binomialverteilung)

Wir betrachten ein Hotel mit 200 Zimmern. Die Wahrscheinlickeit, dass ein Zimmer vor Anreise storniert
wird sei 10%.

(i) Es seien alle Zimmer reserviert. Es sei Z, das Ereignis, dass weniger als 186 Zimmer vor Anreise
t werden. Dann gilt

@) = = (%) &)
=9 Tl g Stocuicuvy

200-A
A0

( A
pidot stacnied



(ii) Nun sollen mehr als 200 Reservierungen vorgenommen werden. Aber die Wahrscheilichkeit, dass das
Hotel iiberbelegt ist soll maximal 1% betragen. Wie viele Reservierungen n(> 200) diirfen maximal

vorgenommen werden?

7.10 Urnenmodelle

Oftmals hilft beim strategischen Abzihlen die Interpretation der Fragestellung als Ziehung aus einer Urne

mit Kugeln. Hier sind im Wesentlichen vier Félle zu unterscheiden:

Im Folgenden betrachten wir eine Urne mit n verschiedenen Kugeln. Es bezeichne k die Anzahl der Zie-

hungen von Kugeln aus der Urne.

i) Ziehen @i Zuriicklegen und mit™Beachtung der Reihenfolge:

Anzahl der moglichen Ergebnisse: n*

Einschub 7.10.1. ... U&rfd v mal  wefs:

b. 6- 6= 62 = 24b

ii) Ziehen [0hfé Zuriicklegen und it Beachtung der Reihenfolge:

Anzahl der moglichen Ergebnisse: ne(n=1)-..-(n—k+1)

Spezialfall =3
Das Experiment liefert alle moglichen AmordnungensvonmmBlemetiten .

r= 6 k=3



Anzahl moglicher Amnordiimngenl von n Elementen: m

Einschub 7.10.2. ... 40 8&ler ah‘l']ﬁ'tﬂ/"\l‘fh A2,.7% )

clso v m=10 . o 5.8= 720

iii) Ziehen [Ghne Zuriicklegen und _Beachtung der Reihenfolge: v

Anzahl der moglichen Ergebnisse: ': k!~(77:!—k)! = n'(”_l)";ﬁ'!’(n_kﬂ) 51.!-.1“ u_?‘?e’

(= Anzahl der k-elementigen Teilmengen einer n-elementigen Menge)

Einschub 7.10.3. ... AL‘S N0 S(,Lu-. (oA IM,H-G‘L\ 3 L(laﬁj(/i‘ 9'-,:.5’4”‘“’440'1
¥

wh lem 10 _ et - 0! ____L--q-‘s-10=120
3| = 3 (=) ¥ T ey T

iv) Ziehen - Zuriicklegen und _Seachtung der Reihenfolge:

Anzahl der moglichen Ergebnisse: (n+,’§_1)

Efschub 7.104. .. Aug 3 Bigsortern 2 kuela W:Llcﬁ/

h= 4, m=% QY% (%4’2.-1_) :(:‘:_) 0

2

7.11 Hypergeometrische Verteilung
el

e N die Anzahl Kugeln in einer Urne, von denen



e M (M < N) eine bestimmte Eigenschaft £ haben. Aus dieser Urne zieht man
e n (n < N) Kugeln.
Dann gilt:
MY  (N-M
()

Diese Verteilung heiflst hypergeometrische Verteilung zu den Parametern N, M und n.

P(Anzahl der gezogenen Kugeln mit Eigenschaft £ = k) =

Beispiele 7.11.1. (Zahlenlotto) Berechnung der Wahrscheinlichkeit von & Richtigen im Lotto 6 aus 49,

also N =49, M = 6 und n = 6. VO‘ﬁku Uhar . %r,kppk IE’:.LLI”_‘ St'/'-d I‘Ok 9_.-4,6(_.
firble gl ( Bipe slogt £)
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