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7.3.2 Modalwert

Eine Ausprägung a eines Merkmals X ist ein Modalwert (oder Modus) der Stichprobe x1, ..., xn, wenn es
keine Ausprägung gibt, die in der Stichprobe häu�ger vorkommt, d.h. wenn für die Häu�gkeitsverteilung
Hn der Stichprobe gilt:

Hn(a) ≥ Hn(xi) für alle 1 ≤ i ≤ n.

Modalwerte sind Lagemaÿe, aber im Allgemeinen nicht eindeutig. Falls doch, werden sie mit xmod be-
zeichnet und die Häu�gkeitsverteilung heiÿt unimodal. Modalwerte lassen sich auch bei Stichproben von
nominalen Merkmalen bestimmen.

7.3.3 Quantile

Zu x1, ..., xn bezeichne x(1), ..., x(n) die geordnete Stichprobe, d.h. es gilt

{x1, ..., xn} = {x(1), ..., x(n)} und x(1) ≤ ... ≤ x(n)

Zur Beschreibung der Struktur einer Stichprobe zieht man dann sogenannte Quantile heran:

De�nition
Sei p ∈ [0, 1]. Eine Ausprägung xp heiÿt p-Quantil der Stichprobe x1, ..., xn, wenn für die Häu�gkeitsver-
teilung hn gilt: ∑

1≤i≤s
ai≤xp

hn(ai) ≥ p und
∑
1≤i≤s
ai≥xp

hn(ai) ≥ 1− p, (⋆)

d.h. mindestens p · 100% der Stichprobenwerte sind ≤ xp und mindestens (1− p) · 100% der Stichproben-
werte sind ≥ xp.

Bemerkung

� Für p = 1
2
heiÿt das p-Quantil x0,5 Median (oder Zentralwert),

d.h. mindestens 50 % der Stichprobenwerte sind gröÿer gleich und mindestens 50 % sind kleiner
gleich x0,5.

� Das 1
4
-Quantil x0,25 heiÿt unteres Quartil, das 3

4
-Quantil x0,75oberes Quartil.

� xj·0,1 heiÿt j-tes Dezil.

� Im Fall p = 0 erhält man den kleinsten Wert, das Minimum xmin = x(1) der Stichprobe, im Fall
p = 1 den gröÿten Wert, das Maximum xmax = x(n).

Alle p-Quantile sind Lagemaÿe. Verglichen mit dem arithmetischen Mittel ist der Median robuster (d.h.
weniger anfällig) gegenüber �Ausreiÿern�.
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Satz 7.3.3 (Berechnung des p-Quantils). Sei 0 < p < 1. Eine Ausprägung a ist genau dann ein p-Quantil
der Stichprobe x1, ..., xn, wenn gilt:

a = x(⌈np⌉), falls np ̸∈ N bzw. x(np) ≤ a ≤ x(np+1), falls np ∈ N, (⋆⋆).

Hierbei steht ⌈x⌉ für die kleinste ganze Zahl gröÿer oder gleich x.

Insbesondere gilt für den Median x0,5 somit

x0,5 =


x(n+1

2 ), falls n ungerade,

a, falls n gerade und a eine Ausprägung

mit x(n
2 )

≤ a ≤ x(n
2
+1) ist.

Einschub 7.3.4. ...
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7.4 Streumaÿe

De�nition 7.4.1. Sei x1, ...xn eine Stichprobe eines quantitativen Merkmals X. Eine Funktion

s : Rn → R, (x1, ...xn) 7→ s(x1, ...xn)

heiÿt Streumaÿ, wenn für alle a ∈ R und alle (x1, ...xn) ∈ Rn gilt:

s(x1 + a, ..., xn + a) = s(x1, ...xn),

d.h. durch Verschieben der Stichprobe ändert sich die Streuung nicht. Oftmals fordert man für ein Streumaÿ
s auch noch, dass s(0, 0, ..., 0) = 0 gilt.

Beispiele 7.4.2.

� Spannweite: xmax − xmin = x(n) − x(1)

� p-Quantilsabstand, p ∈
(
0, 1

2

)
: x1−p−xp = Di�erenz von (1−p)- und p-Quantil; im Fall p = 1

4
heiÿt

der p-Quantilsabstand kurz Quartilsabstand.

� Medianabweichung: Median der Abstände |x1−x0,5|, |x2−x0,5|, ..., |xn−x0,5| der Stichprobenwerte
vom Median x0,5

� Mittlere absolute Abweichung vom Median: s̃ = 1
n

n∑
i=1

|xi − x0,5|

� Mittlere quadratische Abweichung vom arithmetischen Mittel (oder Varianz):

s2 =
1

n

n∑
i=1

(xi − x)2

� Standardabweichung: s =
√
s2

Es handelt sich hier in allen Fällen um Streumaÿe, da zur Berechung stets Di�erenzen von Stichproben-
werten und Lagemaÿen bzw. von zwei Lagemaÿen verwendet werden. Bei Verschiebung der Stichprobe um
a, heben sich die Verschiebungen somit gegenseitig auf.

Satz 7.4.3 (Berechnung der Varianz, Steinersche Formel). Die Varianz s2 einer Stichprobe x1, ..., xn lässt
sich wie folgt berechnen:

s2 =

(
1

n

n∑
i=1

x2
i

)
− x2

Beweis
Mithilfe der Binomischen Formel gilt:

s2 =
1

n

n∑
i=1

(xi − x)2 =
1

n

n∑
i=1

(
x2
i − 2xix+ x2

)
=

1

n

n∑
i=1

x2
i −

2

n
x

n∑
i=1

xi +
1

n
· nx2

=
1

n

n∑
i=1

x2
i − 2x2 + x2 =

1

n

n∑
i=1

x2
i − x2

2

Beispiele 7.4.4.
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Satz 7.4.5 (Berechnung von x, s̃ und s2 mittels Häu�gkeitsverteilungen)). Seien a1, ..., as die Ausprägun-
gen von X und Hn bzw. hn die absolute bzw relative Häu�gkeitsverteilung der Stichprobe x1, ..., xn. Dann
gilt:

x =
1

n

s∑
i=1

ai ·Hn(ai) =
s∑

i=1

ai · hn(ai)

s̃ =
1

n

s∑
i=1

|ai − x0,5| ·Hn(ai) =
s∑

i=1

|ai − x0,5| · hn(ai)

s2 =
1

n

s∑
i=1

(ai − x)2 ·Hn(ai) =
s∑

i=1

(ai − x)2 · hn(ai)

Beweis
Die Behauptungen folgen sofort aus den De�nitionen durch Umordnen der Summanden sortiert nach den
verschiedenen Ausprägungen.

7.5 Vergleich von Stichproben

Einen schnellen visuellen Vergleich verschiedener Stichproben ermöglichen Boxplots (auch Kistendiagram-
me genannt). Hier werden Quantile und Streumaÿe zur graphischen Darstellung verschiedener Stichproben
in geeigneter Weise herangezogen. Eine Variante, wie ein Boxplot erstellt werden kann, ist die folgende:

Lege eine geeignete Skala (für die darzustellenden Stichproben) fest und führe dann für jede Stichprobe
die folgenden Schritte durch:

(i) Zeichne ein Rechteck ein, dessen eine Seitenlänge parallel zur Skala vom unteren Quartil bis zum
oberen Quartil reicht. Die Länge der anderen Seite ist nach ästhetischen Gesichtspunkten zu wählen.

(ii) Unterteile das Rechteck an der Stelle des Medians senkrecht zur Skala in zwei Rechtecke.

(iii) Zeichne an der rechten und an der linken Seite des Rechtecks eine Strecke, die sogenannte Antenne
bis zum gröÿten bzw. kleinsten Wert der Stichprobe. Der gröÿte und der kleinste Wert werden als
Abschluss der Antennen durch einen kleinen senkrechten Strich oder einen Kreis gekennzeichnet.

Mitunter wird das arithmetische Mittel noch durch einen kleinen Vollkreis auf der mittleren Höhe des
Rechtecks eingezeichnet. Varianten sehen vor, Ausreiÿer besonders zu kennzeichnen.

Einschub 7.5.1. ...
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7.6 Grundlagen der Wahrscheinlichkeitstheorie

Die Stochastik ist paradigmatisch für den Modellbildungskreislauf. Hier sollen vom Zufall abhängige Vor-
gänge (wie z.B. Glücksspiele) modelliert werden. Der Zufall soll mit dem Begri� der Wahrscheinlichkeit
erfasst werden. Als erste Näherung kann man den frequentistischen Wahrscheinlichkeitsbegri� heranzie-
hen, der auf Richard von Mises (1883-1953) zurückgeht. Ihm liegt die Erfahrungstatsache zugrunde, dass
sich die relative Häu�gkeit eines Ergebnisses in einem vom Zufall abhängigen Experiment mit wachsender
Anzahl an Wiederholungen des Experimentes stabilisiert (Empirisches Gesetz groÿer Zahlen). Den Grenz-
wert, gegen den die relative Häu�gkeit mit wachsender Wiederholungszahl strebt, interpretiert man dann
als Wahrscheinlichkeit des Ergebnisses. Dieser Erfahrungstatsache folgend kann man relative Häu�gkeiten
als Schätzwerte für Wahrscheinlichkeiten nehmen. Eine rigorose De�nition des Wahrscheinlichkeitsbegri�s
gelang von Mises nicht, da eine mathematische Präzisierung des Stabilisierens der relativen Häu�gkeiten
fehlschlug. Aus diesem Grund wählt man heute den auf Andrei Nikolajewitsch Kolmogorow (1903-1983)
zurückgehenden axiomatischen Zugang zur Wahrscheinlichkeitstheorie.

Thema der Stochastik sind Ereignisse ( und die Wahrscheinlichkeit ihres Eintretens. Unsere Ausgangsfragen
sind:

(i) Was kann passieren?

(ii) Mit welcher Wahrscheinlichkeit treten diese oder jene Ereignisse ein?

Unabhängig von der konkreten betrachteten Situation wird die Menge aller möglichen Ereignisse (also die
Antwort auf die erste Frage) in der Wahrscheinlichkeitstheorie mit Ω bezeichnet.

Beispiele 7.6.1. Wir betrachten einige Situationen und modellieren das zugehörige Ω:

(i) Ein Münzwurf. Eine Münze wird geworfen, und als Ereignis tritt entweder �Kopf� oder �Zahl� ein.
Wenn wir zur Vereinfachung das eine mit �0� notieren und das andere mit �1�, ist die Menge aller
möglichen Ereignisse in diesem Fall Ω = {0, 1}.

(ii) Würfelwurf. Ω = {1, 2, 3, 4, 5, 6}.

(iii) Mehrere Münzwürfe. In dieser Situation fassen wir jede n-elementige Folge von Nullen und Einsen
(alias Köpfen und Zahlen) als ein Ereignis auf; es ist also

Ω =
{
(x1, x2, . . . , xn)

∣∣ xi ∈ {0, 1}
}
= {0, 1}n

die Menge aller möglichen Ereignisse. Beim zweifachen Münzwurf also

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}

D.h. das Element (2, 3) ∈ Ω bedeutet: erst wurde eine 2 und dann eine 3 gewürfelt.

(iv) Unendlich viele Münzwürfe. Hier gilt

Ω = {(xi)i∈N |xi ∈ {0, 1}} .

Im Gegensatz zum einfachen oder n-fachen Münzwurf ist Ω hier nicht endlich.

(v) Zufallszahl zwischen 0 und 1. Ω = [0, 1].

Die Fokussierung auf spezielle Fragestellungen erfolgt durch die Betrachtung sogenannter Ereignisse. Ein
Ereignis A ist eine Teilmenge des Grundraums Ω, also A ⊂ Ω.

Ein Elementarereignis ist ein Element ω ∈ Ω.

Man sagt �das Ereignis A tritt ein�, wenn ein ω mit ω ∈ A beobachtet wird.

Da im Allgemeinen nicht jede Teilmenge von Ω als Ereignis sinnvoll sein muss (z.B. im Modell für den un-
endlichen Münzwurf), werden gewisse Teilmengen als Ereignisse ausgezeichnet, indem sie in einem Ereignis-
System

A := {A ⊆ Ω |A ist ein Ereignis } ⊆ P(Ω).
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aufgelistet werden. Hier ist P(Ω) die Potenzmenge von Ω. Wir verlangen, dass ein Ereignissystem A abge-
schlossen gegenüber allen abzählbaren Mengenoperationen (etwa Durchschnitt, Vereinigung, Komplement,
Mengedi�erenzen,...) ist, d.h. führt man diese Operationen mit Ereignissen aus A durch, so erhält man
wieder Ereignisse aus A.

In den meisten Fällen wählen wir A = P(Ω).

Den Zusammenhang zwischen der Beschreibung von Ereignissen in der realen Welt und im Modell zeigt
die folgende Tabelle:

Reale Welt Modell

A und B treten (gleichzeitig) ein ω ∈ A ∩B

A oder B tritt ein (oder beide) ω ∈ A ∪B

Entweder A oder B tritt ein ω ∈ (A \B) ∪ (B \ A)

B tritt ein, A aber nicht ω ∈ B \ A

A tritt nicht ein ω ∈ AC

A und B schlieÿen sich aus A ∩B = ∅
(A und B sind disjunkt.)

Mindestens ein Ai tritt ein ω ∈ ⋃
i≥1

Ai

Alle Ai treten ein ω ∈ ⋂
i≥1

Ai

Beispiele 7.6.2. Wir betrachten Situationen aus dem obigen Beispiel.

(i) Ein Münzwurf. �1 tritt ein�: A = {1}.

(ii) Würfelwurf. Ω = {1, 2, 3, 4, 5, 6}. Es wird eine gerade Zahl gewürfelt A = {2, 4, 6}.

(iii) Mehrere Münzwürfe. �Es treten genau k Einsen auf�:

A =
{
(x1, . . . , xn) ∈ {0, 1}n

∣∣∣ n∑
i=1

xi = k
}
.

(iv) Unendlich viele Münzwürfe. �Die relative Häu�gkeit der 1 ist p�:

A = {(xi)i∈N ∈ {0, 1}N| lim
n→∞

1

n

n∑
i=1

xi = p}.

(v) Zufallszahl zwischen 0 und 1. �Es tritt eine Zahl aus [a, b] auf�: A = [a, b] ⊆ Ω = [0, 1].

7.7 Zufallsexperimente und Wahrscheinlichkeitsräume

De�nition 7.7.1. Ein Paar (Ω, p) heiÿt Zufallsexperiment, falls

(i) Ω eine abzählbare (d.h. endliche oder abzählbar unendliche), nicht-leere Menge (Ergebnismenge,
Grundraum, Stichprobenraum) und

(ii) p : Ω → [0, 1] eine Funktion mit∑
ω∈Ω

p(ω) = 1 (Wahrscheinlichkeitsfunktion, Wahrscheinlichkeitsdichte)

ist.
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Ein Element ω ∈ Ω heiÿt Ergebnis bzw.Elementarereignis und p(ω) heiÿt Wahrscheinlichkeit des Ergebnis-
ses bzw. desElementarereignisses ω.

Beispiele 7.7.2.
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De�nition 7.7.3. Ein Tripel (Ω,A, P ) heiÿt Wahrscheinlichkeitsraum, falls gilt:

(1) Ω ist eine nicht-leere Menge (Ergebnismenge)

(2) A ist ein Ereignis-System (bei uns in der Regel A = P(Ω))

(3) P ist ein Wahrscheinlichkeitsmaÿ auf (Ω,A), d.h. eine Funktion P : A → [0, 1] mit folgenden
Eigenschaften:

(N) Normiertheit: P (Ω) = 1

(A) σ-Additivität:
Für paarweise disjunkte Ereignisse A1, A2, ... ∈ A (d.h. Ai ∩ Aj = ∅ für i ̸= j) gilt:

P

(⋃
n∈N

An

)
=

∞∑
n=1

P (An)

Man sagt, dass P (A) die Wahrscheinlichkeit von A ist (bzw. die Wahrscheinlichkeit ist, dass A eintritt).

Satz 7.7.4. Für ein Zufallsexperiment (Ω, p) wird durch A := P(Ω) und

P (A) :=
∑
ω∈A

p(ω) für A ∈ A

ein Wahrscheinlichkeitsraum (Ω,A, P ) de�niert.

Satz 7.7.5. (Eigenschaften von Wahrscheinlichkeitsmaÿen) Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum.
Dann gelten:

(1) Endliche Additivität: Für paarweise disjunkte Ereignisse A1, A2, ...An ∈ A gilt:

P

(
n⋃

k=1

Ak

)
=

n∑
k=1

P (Ak)

(2) P (∅) = 0

(3) Für alle A ∈ A gilt: P (AC) = 1− P (A)

(4) Für alle A,B ∈ A gilt: P (B \ A) = P (B)− P (A ∩B)

(5) Für alle A,B ∈ A gilt: P (A ∪B) = P (A) + P (B)− P (A ∩B)

(6) Für alle A,B ∈ A gilt: A ⊂ B ⇒ P (A) ≤ P (B)

(7) Endliche Subadditivität: Für A1, ..., An ∈ A gilt:

P (A1 ∪ ... ∪ An) ≤ P (A1) + ...+ P (An)

(8) Subadditiviät: Für A1, A2, ... ∈ A gilt: P (
∞⋃
n=1

An) ≤
∞∑
n=1

P (An)
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De�nition 7.7.6. Ein Zufallsexperiment (Ω, p) heiÿt Laplace-Versuch (oder Laplace-Experiment), wenn Ω
endlich und p : Ω → [0, 1] die sogenannte Gleichverteilung (oder Laplace'sche Wahrscheinlichkeit(sfunktion))
ist, die jedem Ergebnis diesselbe Wahrscheinlichkeit, nämlich

p(ω) =
1

|Ω| ,

zuordnet, wobei |Ω| gleich der Anzahl der Elemente in Ω bezeichnet. Der zugehörige Wahrscheinlichkeits-
raum (Ω,P(Ω), P ) heiÿt Laplace'scher Wahrscheinlichkeitsraum (oder Laplace-Modell). Im Laplace-Modell
gilt für ein Ereignis A ⊂ Ω:

P (A) =
|A|
|Ω| =

Anzahl der für A günstigen Ergebnisse
Anzahl aller möglichen Ergebnisse

In Laplace-Modellen ermittelt man Wahrscheinlichkeiten häu�g durch geschicktes Abzählen.

Einschub 7.7.7. ...

7.8 Bedingte Wahrscheinlichkeit und Unabhängigkeit

O�enbar ist es möglich, dass durch das Eintreten eines Ereignisses B die Wahrscheinlichkeit eines Ereig-
nisses A verändert werden kann. Gesucht ist in diesem Zusammenhang die Wahrscheinlichkeit von A unter
der Bedingung, dass B eingetreten ist. Um dies zu modellieren führen wir bedingte Wahrscheinlichkeiten
ein. Die bedingte Wahrscheinlichkeit kann als Neueinschätzung der Wahrscheinlichkeit von A interpretiert
werden, wenn die Information vorliegt, dass das Ereignis B bereits eingetreten ist.

De�nition 7.8.1. Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum und B ∈ A mit P (B) > 0. Dann heiÿt

P (A|B) :=
P (A ∩B)

P (B)

die bedingte Wahrscheinlichkeit von A gegeben B.

Beispiele 7.8.2. Fairer Würfelwurf.
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Bedingte Wahrscheinlichkeiten kann man wie folgt mithilfe von Wahrscheinlichkeitsbäumen visualisieren:

Einschub 7.8.3. ...

Für das Rechnen mit bedingten Wahrscheinlichkeiten gelten die folgenden Sätze:

Satz 7.8.4. (Multiplikations- oder Pfadregel)
Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum und A1, ..., An ∈ A mit P (A1 ∩ ... ∩ An−1) > 0. Dann gilt:

P (A1 ∩ ... ∩ An) = P (A1) · P (A2|A1) · P (A3|A1 ∩ A2) · ... · P (An|A1 ∩ ... ∩ An−1).

Einschub 7.8.5. ...

Satz 7.8.6. (von der totalen Wahrscheinlichkeit)
Sei (Ω,A, P ) ein W.raum, A ∈ A und Bi ∈ A, i ≥ 1, eine Partition von Ω, d.h. es gelten:

(i) Bi ∩Bj = ∅ für alle i ̸= j,

(ii)
⋃

i≥1Bi = Ω.

Ist weiterhin P (Bi) > 0 für alle i ≥ 1, so gilt:

P (A) =
∑
i≥1

P (A|Bi) · P (Bi).

Einschub 7.8.7. ...
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Beispiele 7.8.8. Satz von der totalen W.keit und Pfadregel im Spezialfall Ω = B ∪BC .

Beispiele 7.8.9. In einer Urne be�nden sich zwei blaue und zwei rote Kugeln. Es wird zweimal aus
gezogen. Wird im ersten Zug eine rote Kugel gezogen, so wird sie wieder zurückgelegt. Dann wird ein
zweites Mal gezogen. Wird im ersten Zug eine blaue Kugel gezogen, so wird sie nicht zurückgelegt und
dann ein zweites Mal gezogen.
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Satz 7.8.10. (von Bayes) Sei (Ω,A, P ) ein W.raum und Bi ∈ A, i ≥ 1 eine Partition von Ω mit P (Bi) > 0
für alle i ≥ 1. Dann gilt für alle j = 1, 2, .... und alle A ∈ A:

P (Bj|A) =
P (A|Bj) · P (Bj)∑
i≥1 P (A|Bi) · P (Bi)

.

Bemerkung 7.8.11. Speziell für die Partition (B,BC) bedeutet der Satz von Bayes:

P (B|A) = P (A|B) · P (B)

P (A|B) · P (B) + P (A|BC) · P (BC)

Beispiele 7.8.12. In Deutschland sei eine Person von 1000 an einer bestimmten Krankheit erkrankt. Zur
Diagnose der Krankheit wird ein Test verwendet, der in 99% der Fälle, in denen die Krankheit vorliegt,
ein positives Testergebnis liefert. Bei einer nicht-erkrankten Person gibt der Test allerdings in 2% der Fälle
fälschlicherweise ein positives Testergebnis aus.
Mit welcher Wahrscheinlichkeit ist eine Person, die ein positives Testergebnis erhalten hat, tatsächlich
krank?
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Bedingte Wahrscheinlichkeiten kann man wie folgt mithilfe von Wahrscheinlichkeitsbäumen visualisieren:

Einschub 7.8.3. ...

Für das Rechnen mit bedingten Wahrscheinlichkeiten gelten die folgenden Sätze:

Satz 7.8.4. (Multiplikations- oder Pfadregel)
Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum und A1, ..., An ∈ A mit P (A1 ∩ ... ∩ An−1) > 0. Dann gilt:

P (A1 ∩ ... ∩ An) = P (A1) · P (A2|A1) · P (A3|A1 ∩ A2) · ... · P (An|A1 ∩ ... ∩ An−1).

Einschub 7.8.5. ...

Einschub 7.8.6. ...
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Beispiele 7.8.7. (Mehrstu�ges Experiment und Pfadregel) Wir werfen zweimal hintereinander einen fairen
3-seitigen Würfel. Dazu sei

Ω = {1, 2, 3} × {1, 2, 3}
die Ergebnismenge und p(ω1, ω2) =

1
9
das zugehörige Laplace-Experiment. Das Ereignis A ⊂ Ω im ersten

Wurf eine gerade Zahl zu werfen lautet

A = {(2, s) | s ∈ {1, 2, 3}} ⊂ Ω.

Das Ereignis B ⊂ Ω im zweiten Wurf eine gerade Zahl zu werfen lautet

B = {(s, 2) | s ∈ {1, 2, 3}} ⊂ Ω.

Das Ereignis im zweiten Wurf eine gerade und im ersten eine ungerade Zahl zu werfen lautet

{(1, 2), (3, 2)} = B ∩ AC .

Also
2
9
= P (B ∩ AC) = P (B|AC) · P (AC) = P (B|AC) · 6

9

und somit
P (B|AC) = 1

3
.

Der zugehörige Wahrscheinlichkeitbaum sieht so aus

Umgekehrt kann man die Wahrscheinlichkeitsfunktion p bestimmen (eventuell kein Laplace-Experiment),
falls man ausreichend viele bedingte Wahrscheinlichkeiten kennt (siehe Beispiel unten).

Satz 7.8.8. (von der totalen Wahrscheinlichkeit)
Sei (Ω,A, P ) ein W.raum, A ∈ A und Bi ∈ A, i ≥ 1, eine Partition von Ω, d.h. es gelten:

(i) Bi ∩Bj = ∅ für alle i ̸= j,

(ii)
⋃

i≥1Bi = Ω.

Ist weiterhin P (Bi) > 0 für alle i ≥ 1, so gilt:

P (A) =
∑
i≥1

P (A|Bi) · P (Bi).

Einschub 7.8.9. ...

Beispiele 7.8.10. Satz von der totalen W.keit und Pfadregel im Spezialfall Ω = B ∪BC .
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Beispiele 7.8.11. In einer Urne be�nden sich zwei blaue und zwei rote Kugeln. Es wird zweimal aus
gezogen. Wird im ersten Zug eine rote Kugel gezogen, so wird sie wieder zurückgelegt. Dann wird ein
zweites Mal gezogen. Wird im ersten Zug eine blaue Kugel gezogen, so wird sie nicht zurückgelegt und
dann ein zweites Mal gezogen.
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Satz 7.8.12. (von Bayes) Sei (Ω,A, P ) ein W.raum und Bi ∈ A, i ≥ 1 eine Partition von Ω mit P (Bi) > 0
für alle i ≥ 1. Dann gilt für alle j = 1, 2, .... und alle A ∈ A:

P (Bj|A) =
P (A|Bj) · P (Bj)∑
i≥1 P (A|Bi) · P (Bi)

.

Bemerkung 7.8.13. Speziell für die Partition (B,BC) bedeutet der Satz von Bayes:

P (B|A) = P (A|B) · P (B)

P (A|B) · P (B) + P (A|BC) · P (BC)

Einschub 7.8.14. ...

Beispiele 7.8.15. In Deutschland sei eine Person von 1000 an einer bestimmten Krankheit erkrankt. Zur
Diagnose der Krankheit wird ein Test verwendet, der in 99% der Fälle, in denen die Krankheit vorliegt,
ein positives Testergebnis liefert. Bei einer nicht-erkrankten Person gibt der Test allerdings in 2% der Fälle
fälschlicherweise ein positives Testergebnis aus.
Mit welcher Wahrscheinlichkeit ist eine Person, die ein positives Testergebnis erhalten hat, tatsächlich
krank?
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De�nition 7.8.16. Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum. Zwei Ereignisse A und B aus A heiÿen
((P-)stochastisch))-unabhängig, falls gilt:

P (A ∩B) = P (A) · P (B).

Andernfalls heiÿen A und B nicht unabhängig. Allgemein heiÿt eine Familie (Ai)i∈I , I eine beliebige Index-
menge, ((P-)stochastisch))-unab-hängig, falls für jede endliche Teilfamilie (Ai)i∈J mit J = {i1, ..., in} ⊂ I
gilt:

P (
⋂
i∈J

Ai) = P (Ai1 ∩ ... ∩ Ain) = P (Ai1) · ... · P (Ain) =
∏
i∈J

P (Ai).

Drei Ereignisse A1, A2, A3 sind gemäÿ der De�nition also unabhängig (hier I = {1, 2, 3}), falls gilt:
Einschub 7.8.17. ...

Beispiele 7.8.18.

(i) im Beispiel 7.8.7 gelten

P (A) = 3
9
, P (B) = 3

9
, P (A ∩B) = P ({(2, 2)}) = 1

9
.

Also sind A und B unabhängig.

(ii) Falls P (B) > 0 gilt, sind die Ereignisse A und B genau dann unabhängig, wenn P (A|B) = P (A)
gilt.

(iii) Falls A und B unabhängig sind, so auch AC und B.

(iv) Hat A die Wahrscheinlichkeit 0 oder 1, so sind A und B für jede Wahl von B unabhängig.
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(v) Aus der Unabhängigkeit der Ereignisse A1, ..., An folgt die paarweise Unabhängigkeit (d.h. je zwei
der Ereignisse A1, ..., An sind unabhängig), aber nicht umgekehrt.

(vi) (Un-)Abhängigkeit meint hier stets stochastische (Un-)Abhängigkeit und nicht zwingend eine kausale
(un-)Abhängigkeit (d.h. (Nicht-)Existenz eines Ursache-Wirkungszusammenhang).

Beispiele 7.8.19. Ein zentrales Beispiel für Unabhängigkeit ist der n-fache unabhängige Wurf einer Mün-
ze, die mit Wahrscheinlichkeit p ∈ [0, 1] auf 'Kopf' und Wahrscheinlichkeit 1− p auf 'Zahl' fällt.

Wir betrachten den Spezialfall n = 3:

Einschub 7.8.20. ...

Die Anzahl der Pfade mit genau k Einsen kann man zählen, diesen Wert wollen wir vorerst αk,n nennen.
Daraus ergibt sich

P (Es fallen genau k Einsen) = αk,n · pk(1− p)n−k =: bn,p(k)

Durch bn,p ist eine Wahrscheinlichkeitsfunktion auf Ω := {0, 1, ..., n} de�niert, die sogenannte Binomial-
verteilung zu den Parametern n und p.
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Einschub 7.8.21. ...
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7.9 Kombinatorik

In der Kombinatorik unterscheidet man bei der Auswahl von k aus n verschiedenen Objekten, ob

� mit Beachtung der Reihenfolge oder

� ohne Beachtung der Reihenfolge ausgewählt wird.

Im ersten Fall erhält man eine geordnete Menge, die man als k-Tupel (x1, ..., xk) notiert. Im zweiten Fall
erhält man eine k-elementige Teilmenge {x1, ..., xk}.

7.9.1 Allgemeines Zählprinzip

Es seien M1, ...,Mk endliche Mengen. Wählt man aus diesen Mengen nacheinander jeweils ein Element
aus, so gibt es insgesamt

|M1| · |M2| · ... · |Mk|
verschiedene Möglichkeiten, dies zu tun. Das Ergebnis dieser Auswahl wird mit

(x1, ..., xk) ∈ M1 × ...×Mk

notiert und nennt man eine Anordnung, falls alle Mengen Mi gleich sind. Wir wissen bereits

|M1 ×M2 × ...×Mk| = |M1| · |M2| · ... · |Mk|.

Beispiele 7.9.1. zum Abzählprinzip.

Eine Anordnung von n verschiedenen Objekten heiÿt auch Permutation. Es gibt

n! := 1 · 2 · ... · n

verschiedene Permutationen von n Objekten.

Wir wollen die Formel an folgendem Beispiel einsehen.
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Beispiele 7.9.2. Zehn verschiedene Bücher sollen angeordnet werden.

Eine k-elementige Teilmenge von einer n-elementigen Menge von Objekten wird auch k-Kombination
genannt. Es gibt (

n

k

)
:=

n!

k! · (n− k)!
=

n(n− 1)...(n− k + 1)

k!

verschiedene k-Kombinationen von n Objekten.

Wir wollen die Formel an folgendem Beispiel einsehen.

Beispiele 7.9.3. Aus 10 verschiedenen Büchern sollen 3 mit einem Gri� ausgewählt/gezogen werden. Wie
viele Ergebnisse sind möglich?
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De�nition 7.9.4. Die natürliche Zahl
(
n
k

)
(sprich: �n über k�) heiÿt Binomialkoe�zient. Falls k > n setzt

man
(
n
k

)
:= 0.

Satz 7.9.5. (Binomischer Lehrsatz) Für alle x, y ∈ R und alle n ∈ N gilt:

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

Bemerkung 7.9.6.

(i) Für n = 2 erhält man die übliche Binomische Formel.

(ii) Für x = y = 1 ergibt sich
∑n

k=0

(
n
k

)
= 2n und

(iii) für x = −1, y = 1 ergibt sich:
∑n

k=0(−1)k
(
n
k

)
= 0.

Beispiele 7.9.7. (zur Binomialverteilung)
Wir betrachten ein Hotel mit 200 Zimmern. Die Wahrscheinlickeit, dass ein Zimmer vor Anreise storniert
wird sei 10%.

(i) Es seien alle Zimmer reserviert. Es sei Z, das Ereignis, dass weniger als 186 Zimmer vor Anreise
storniert werden. Dann gilt
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(ii) Nun sollen mehr als 200 Reservierungen vorgenommen werden. Aber die Wahrscheilichkeit, dass das
Hotel überbelegt ist soll maximal 1% betragen. Wie viele Reservierungen n(≥ 200) dürfen maximal
vorgenommen werden?

7.10 Urnenmodelle

Oftmals hilft beim strategischen Abzählen die Interpretation der Fragestellung als Ziehung aus einer Urne
mit Kugeln. Hier sind im Wesentlichen vier Fälle zu unterscheiden:

Im Folgenden betrachten wir eine Urne mit n verschiedenen Kugeln. Es bezeichne k die Anzahl der Zie-
hungen von Kugeln aus der Urne.

i) Ziehen mit Zurücklegen und mit Beachtung der Reihenfolge:

Anzahl der möglichen Ergebnisse: nk

Einschub 7.10.1. ...

ii) Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge:

Anzahl der möglichen Ergebnisse: n · (n− 1) · ... · (n− k + 1)

Spezialfall k = n:
Das Experiment liefert alle möglichen Anordnungen von n Elementen.
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Anzahl möglicher Anordnungen von n Elementen: n · (n− 1) · ... · 2 · 1 = n!

Einschub 7.10.2. ...

iii) Ziehen ohne Zurücklegen und ohne Beachtung der Reihenfolge:

Anzahl der möglichen Ergebnisse:
(
n
k

)
= n!

k!·(n−k)!
= n·(n−1)·...·(n−k+1)

k!

(= Anzahl der k-elementigen Teilmengen einer n-elementigen Menge)

Einschub 7.10.3. ...

iv) Ziehen mit Zurücklegen und ohne Beachtung der Reihenfolge:

Anzahl der möglichen Ergebnisse:
(
n+k−1

k

)
Einschub 7.10.4. ...

7.11 Hypergeometrische Verteilung

Sei

� N die Anzahl Kugeln in einer Urne, von denen
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� M (M ≤ N) eine bestimmte Eigenschaft E haben. Aus dieser Urne zieht man

� n (n ≤ N) Kugeln.

Dann gilt:

P (Anzahl der gezogenen Kugeln mit Eigenschaft E = k) =

(
M
k

)
·
(
N−M
n−k

)(
N
n

)
Diese Verteilung heiÿt hypergeometrische Verteilung zu den Parametern N,M und n.

Beispiele 7.11.1. (Zahlenlotto) Berechnung der Wahrscheinlichkeit von k Richtigen im Lotto 6 aus 49,
also N = 49,M = 6 und n = 6.
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