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7.6 Grundlagen der Wahrscheinlichkeitstheorie

Die Stochastik ist paradigmatisch für den Modellbildungskreislauf. Hier sollen vom Zufall abhängige Vor-
gänge (wie z.B. Glücksspiele) modelliert werden. Der Zufall soll mit dem Begri� der Wahrscheinlichkeit
erfasst werden. Als erste Näherung kann man den frequentistischen Wahrscheinlichkeitsbegri� heranzie-
hen, der auf Richard von Mises (1883-1953) zurückgeht. Ihm liegt die Erfahrungstatsache zugrunde, dass
sich die relative Häu�gkeit eines Ergebnisses in einem vom Zufall abhängigen Experiment mit wachsender
Anzahl an Wiederholungen des Experimentes stabilisiert (Empirisches Gesetz groÿer Zahlen). Den Grenz-
wert, gegen den die relative Häu�gkeit mit wachsender Wiederholungszahl strebt, interpretiert man dann
als Wahrscheinlichkeit des Ergebnisses. Dieser Erfahrungstatsache folgend kann man relative Häu�gkeiten
als Schätzwerte für Wahrscheinlichkeiten nehmen. Eine rigorose De�nition des Wahrscheinlichkeitsbegri�s
gelang von Mises nicht, da eine mathematische Präzisierung des Stabilisierens der relativen Häu�gkeiten
fehlschlug. Aus diesem Grund wählt man heute den auf Andrei Nikolajewitsch Kolmogorow (1903-1983)
zurückgehenden axiomatischen Zugang zur Wahrscheinlichkeitstheorie.

Thema der Stochastik sind Ereignisse ( und die Wahrscheinlichkeit ihres Eintretens. Unsere Ausgangsfragen
sind:

(i) Was kann passieren?

(ii) Mit welcher Wahrscheinlichkeit treten diese oder jene Ereignisse ein?

Unabhängig von der konkreten betrachteten Situation wird die Menge aller möglichen Ereignisse (also die
Antwort auf die erste Frage) in der Wahrscheinlichkeitstheorie mit Ω bezeichnet.

Beispiele 7.6.1. Wir betrachten einige Situationen und modellieren das zugehörige Ω:

(i) Ein Münzwurf. Eine Münze wird geworfen, und als Ereignis tritt entweder �Kopf� oder �Zahl� ein.
Wenn wir zur Vereinfachung das eine mit �0� notieren und das andere mit �1�, ist die Menge aller
möglichen Ereignisse in diesem Fall Ω = {0, 1}.

(ii) Würfelwurf. Ω = {1, 2, 3, 4, 5, 6}.

(iii) Mehrere Münzwürfe. In dieser Situation fassen wir jede n-elementige Folge von Nullen und Einsen
(alias Köpfen und Zahlen) als ein Ereignis auf; es ist also

Ω =
{
(x1, x2, . . . , xn)

∣∣ xi ∈ {0, 1}
}
= {0, 1}n

die Menge aller möglichen Ereignisse. Beim zweifachen Münzwurf also

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}

D.h. das Element (2, 3) ∈ Ω bedeutet: erst wurde eine 2 und dann eine 3 gewürfelt.

(iv) Unendlich viele Münzwürfe. Hier gilt

Ω = {(xi)i∈N |xi ∈ {0, 1}} .

Im Gegensatz zum einfachen oder n-fachen Münzwurf ist Ω hier nicht endlich.

(v) Zufallszahl zwischen 0 und 1. Ω = [0, 1].

Die Fokussierung auf spezielle Fragestellungen erfolgt durch die Betrachtung sogenannter Ereignisse. Ein
Ereignis A ist eine Teilmenge des Grundraums Ω, also A ⊂ Ω.

Ein Elementarereignis ist ein Element ω ∈ Ω.

Man sagt �das Ereignis A tritt ein�, wenn ein ω mit ω ∈ A beobachtet wird.

Da im Allgemeinen nicht jede Teilmenge von Ω als Ereignis sinnvoll sein muss (z.B. im Modell für den un-
endlichen Münzwurf), werden gewisse Teilmengen als Ereignisse ausgezeichnet, indem sie in einem Ereignis-
System

A := {A ⊆ Ω |A ist ein Ereignis } ⊆ P(Ω).
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aufgelistet werden. Hier ist P(Ω) die Potenzmenge von Ω. Wir verlangen, dass ein Ereignissystem A abge-
schlossen gegenüber allen abzählbaren Mengenoperationen (etwa Durchschnitt, Vereinigung, Komplement,
Mengedi�erenzen,...) ist, d.h. führt man diese Operationen mit Ereignissen aus A durch, so erhält man
wieder Ereignisse aus A.

In den meisten Fällen wählen wir A = P(Ω).

Den Zusammenhang zwischen der Beschreibung von Ereignissen in der realen Welt und im Modell zeigt
die folgende Tabelle:

Reale Welt Modell

A und B treten (gleichzeitig) ein ω ∈ A ∩B

A oder B tritt ein (oder beide) ω ∈ A ∪B

Entweder A oder B tritt ein ω ∈ (A \B) ∪ (B \ A)

B tritt ein, A aber nicht ω ∈ B \ A

A tritt nicht ein ω ∈ AC

A und B schlieÿen sich aus A ∩B = ∅
(A und B sind disjunkt.)

Mindestens ein Ai tritt ein ω ∈ ⋃
i≥1

Ai

Alle Ai treten ein ω ∈ ⋂
i≥1

Ai

Beispiele 7.6.2. Wir betrachten Situationen aus dem obigen Beispiel.

(i) Ein Münzwurf. �1 tritt ein�: A = {1}.

(ii) Würfelwurf. Ω = {1, 2, 3, 4, 5, 6}. Es wird eine gerade Zahl gewürfelt A = {2, 4, 6}.

(iii) Mehrere Münzwürfe. �Es treten genau k Einsen auf�:

A =
{
(x1, . . . , xn) ∈ {0, 1}n

∣∣∣ n∑
i=1

xi = k
}
.

(iv) Unendlich viele Münzwürfe. �Die relative Häu�gkeit der 1 ist p�:

A = {(xi)i∈N ∈ {0, 1}N| lim
n→∞

1

n

n∑
i=1

xi = p}.

(v) Zufallszahl zwischen 0 und 1. �Es tritt eine Zahl aus [a, b] auf�: A = [a, b] ⊆ Ω = [0, 1].

7.7 Zufallsexperimente und Wahrscheinlichkeitsräume

De�nition 7.7.1. Ein Paar (Ω, p) heiÿt Zufallsexperiment, falls

(i) Ω eine abzählbare (d.h. endliche oder abzählbar unendliche), nicht-leere Menge (Ergebnismenge,
Grundraum, Stichprobenraum) und

(ii) p : Ω → [0, 1] eine Funktion mit∑
ω∈Ω

p(ω) = 1 (Wahrscheinlichkeitsfunktion, Wahrscheinlichkeitsdichte)

ist.
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Ein Element ω ∈ Ω heiÿt Ergebnis bzw.Elementarereignis und p(ω) heiÿt Wahrscheinlichkeit des Ergebnis-
ses bzw. desElementarereignisses ω.

Beispiele 7.7.2.
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De�nition 7.7.3. Ein Tripel (Ω,A, P ) heiÿt Wahrscheinlichkeitsraum, falls gilt:

(1) Ω ist eine nicht-leere Menge (Ergebnismenge)

(2) A ist ein Ereignis-System (bei uns in der Regel A = P(Ω))

(3) P ist ein Wahrscheinlichkeitsmaÿ auf (Ω,A), d.h. eine Funktion P : A → [0, 1] mit folgenden
Eigenschaften:

(N) Normiertheit: P (Ω) = 1

(A) σ-Additivität:
Für paarweise disjunkte Ereignisse A1, A2, ... ∈ A (d.h. Ai ∩ Aj = ∅ für i ̸= j) gilt:

P

(⋃
n∈N

An

)
=

∞∑
n=1

P (An)

Man sagt, dass P (A) die Wahrscheinlichkeit von A ist (bzw. die Wahrscheinlichkeit ist, dass A eintritt).

Satz 7.7.4. Für ein Zufallsexperiment (Ω, p) wird durch A := P(Ω) und

P (A) :=
∑
ω∈A

p(ω) für A ∈ A

ein Wahrscheinlichkeitsraum (Ω,A, P ) de�niert.

Satz 7.7.5. (Eigenschaften von Wahrscheinlichkeitsmaÿen) Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum.
Dann gelten:

(1) Endliche Additivität: Für paarweise disjunkte Ereignisse A1, A2, ...An ∈ A gilt:

P

(
n⋃

k=1

Ak

)
=

n∑
k=1

P (Ak)

(2) P (∅) = 0

(3) Für alle A ∈ A gilt: P (AC) = 1− P (A)

(4) Für alle A,B ∈ A gilt: P (B \ A) = P (B)− P (A ∩B)

(5) Für alle A,B ∈ A gilt: P (A ∪B) = P (A) + P (B)− P (A ∩B)

(6) Für alle A,B ∈ A gilt: A ⊂ B ⇒ P (A) ≤ P (B)

(7) Endliche Subadditivität: Für A1, ..., An ∈ A gilt:

P (A1 ∪ ... ∪ An) ≤ P (A1) + ...+ P (An)

(8) Subadditiviät: Für A1, A2, ... ∈ A gilt: P (
∞⋃
n=1

An) ≤
∞∑
n=1

P (An)
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De�nition 7.7.6. Ein Zufallsexperiment (Ω, p) heiÿt Laplace-Versuch (oder Laplace-Experiment), wenn Ω
endlich und p : Ω → [0, 1] die sogenannte Gleichverteilung (oder Laplace'sche Wahrscheinlichkeit(sfunktion))
ist, die jedem Ergebnis diesselbe Wahrscheinlichkeit, nämlich

p(ω) =
1

|Ω| ,

zuordnet, wobei |Ω| gleich der Anzahl der Elemente in Ω bezeichnet. Der zugehörige Wahrscheinlichkeits-
raum (Ω,P(Ω), P ) heiÿt Laplace'scher Wahrscheinlichkeitsraum (oder Laplace-Modell). Im Laplace-Modell
gilt für ein Ereignis A ⊂ Ω:

P (A) =
|A|
|Ω| =

Anzahl der für A günstigen Ergebnisse
Anzahl aller möglichen Ergebnisse

In Laplace-Modellen ermittelt man Wahrscheinlichkeiten häu�g durch geschicktes Abzählen.

Einschub 7.7.7. ...

7.8 Bedingte Wahrscheinlichkeit und Unabhängigkeit

O�enbar ist es möglich, dass durch das Eintreten eines Ereignisses B die Wahrscheinlichkeit eines Ereig-
nisses A verändert werden kann. Gesucht ist in diesem Zusammenhang die Wahrscheinlichkeit von A unter
der Bedingung, dass B eingetreten ist. Um dies zu modellieren führen wir bedingte Wahrscheinlichkeiten
ein. Die bedingte Wahrscheinlichkeit kann als Neueinschätzung der Wahrscheinlichkeit von A interpretiert
werden, wenn die Information vorliegt, dass das Ereignis B bereits eingetreten ist.

De�nition 7.8.1. Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum und B ∈ A mit P (B) > 0. Dann heiÿt

P (A|B) :=
P (A ∩B)

P (B)

die bedingte Wahrscheinlichkeit von A gegeben B.

Beispiele 7.8.2. Fairer Würfelwurf.
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Bedingte Wahrscheinlichkeiten kann man wie folgt mithilfe von Wahrscheinlichkeitsbäumen visualisieren:

Einschub 7.8.3. ...

Für das Rechnen mit bedingten Wahrscheinlichkeiten gelten die folgenden Sätze:

Satz 7.8.4. (Multiplikations- oder Pfadregel)
Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum und A1, ..., An ∈ A mit P (A1 ∩ ... ∩ An−1) > 0. Dann gilt:

P (A1 ∩ ... ∩ An) = P (A1) · P (A2|A1) · P (A3|A1 ∩ A2) · ... · P (An|A1 ∩ ... ∩ An−1).

Einschub 7.8.5. ...

Satz 7.8.6. (von der totalen Wahrscheinlichkeit)
Sei (Ω,A, P ) ein W.raum, A ∈ A und Bi ∈ A, i ≥ 1, eine Partition von Ω, d.h. es gelten:

(i) Bi ∩Bj = ∅ für alle i ̸= j,

(ii)
⋃

i≥1Bi = Ω.

Ist weiterhin P (Bi) > 0 für alle i ≥ 1, so gilt:

P (A) =
∑
i≥1

P (A|Bi) · P (Bi).

Einschub 7.8.7. ...
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Beispiele 7.8.8. Satz von der totalen W.keit und Pfadregel im Spezialfall Ω = B ∪BC .

Beispiele 7.8.9. In einer Urne be�nden sich zwei blaue und zwei rote Kugeln. Es wird zweimal aus
gezogen. Wird im ersten Zug eine rote Kugel gezogen, so wird sie wieder zurückgelegt. Dann wird ein
zweites Mal gezogen. Wird im ersten Zug eine blaue Kugel gezogen, so wird sie nicht zurückgelegt und
dann ein zweites Mal gezogen.
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Satz 7.8.10. (von Bayes) Sei (Ω,A, P ) ein W.raum und Bi ∈ A, i ≥ 1 eine Partition von Ω mit P (Bi) > 0
für alle i ≥ 1. Dann gilt für alle j = 1, 2, .... und alle A ∈ A:

P (Bj|A) =
P (A|Bj) · P (Bj)∑
i≥1 P (A|Bi) · P (Bi)

.

Bemerkung 7.8.11. Speziell für die Partition (B,BC) bedeutet der Satz von Bayes:

P (B|A) = P (A|B) · P (B)

P (A|B) · P (B) + P (A|BC) · P (BC)

Beispiele 7.8.12. In Deutschland sei eine Person von 1000 an einer bestimmten Krankheit erkrankt. Zur
Diagnose der Krankheit wird ein Test verwendet, der in 99% der Fälle, in denen die Krankheit vorliegt,
ein positives Testergebnis liefert. Bei einer nicht-erkrankten Person gibt der Test allerdings in 2% der Fälle
fälschlicherweise ein positives Testergebnis aus.
Mit welcher Wahrscheinlichkeit ist eine Person, die ein positives Testergebnis erhalten hat, tatsächlich
krank?


