Übungen zur Vorlesung

Lineare Algebra II

Blatt 10

Aufgabe 1

Sei β eine symmetrische oder schiefsymmetrische, nicht-ausgeartete Bilinearform auf einem endlich-dimensionalen K-Vektorraum V, und sei U ein Teilraum von V. Beweisen Sie die Äquivalenz der folgenden Aussagen:

- (i) Die Einschränkung $\beta_{|U}$ von β auf U ist nicht-ausgeartet.
- (ii) $U \cap U^{\perp} = \{0\}.$
- (iii) $U + U^{\perp} = V$.
- (iv) Die Einschränkung $\beta_{|U^{\perp}}$ von β auf U^{\perp} ist nicht-ausgeartet.

Hinweis. Zeigen Sie zunächst die Äquivalenz von (i) bis (iii).

(4 Punkte)

Aufgabe 2

Sei q eine quadratische Form auf dem n-dimensionalen K-Vektorraum V. Zeigen Sie, dass gilt: Ist v_1, \ldots, v_m ein System von Vektoren aus V, für welches die $m \times m$ -Matrix $(q(v_i, v_j))_{ij}$ nicht singulär (d.h. invertierbar) ist, so sind v_1, \ldots, v_m linear unabhängig.

(3 Punkte)

Aufgabe 3

Sind die folgenden quadratischen Formen äquivalent über \mathbb{C} , über \mathbb{R} bzw. über \mathbb{Q} ? Begründen Sie Ihre Antwort

(a)
$$q_1\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = x_1^2 - 4x_1x_2 + 4x_2^2 \text{ und } q_2\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = -x_1^2 + 2x_1x_2 - x_2^2.$$

(b)
$$q_1\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = x_1^2 - 10x_1x_2 + x_2^2 \text{ und } q_2\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = 5x_1^2 + 10x_1x_2 + 4x_2^2.$$

(4+4 Punkte)

Aufgabe 4

Seien (V,q) und (V',q') quadratische Räume und sei $s: V \to V'$ eine lineare Abbildung mit q'(sx) = q(x) für alle $x \in V$. Zeigen Sie, dass s injektiv ist, falls q nicht-ausgeartet ist.

(1 Punkt)

Abgabe bis Donnerstag, 20.12.2018, 10.00 Uhr, in den Postfächern der Tutoren im Kopierraum V3-128