3. Questions on §1.3 and §1.4.

Question 3.1. Let K be a field and let Q be the quiver

$$1 \xrightarrow{a} 3 \xrightarrow{d} 4 \rightleftharpoons \ell$$

- (1) Let $n \in \mathbb{N} \cup \{\infty\}$, let $\ell^0 = e_4$, let $\ell^\infty = 0$ and consider the ideal $H = \langle cb, da, \ell^n \rangle$ in KQ. Decide, for which n, H is not admissible, and in each case explain why.
- (2) Choose n minimal such that H is admissible. Calculate the representations of Q corresponding to the projective modules P[1], P[2], P[3] and P[4] of the K-algebra KQ/H.
- (3) Prove that $I = \langle \ell da dcb, \ell^2(\ell^2 e_4) \rangle$ is not admissible. Decide whether of not the K-algebra KQ/I is finite-dimensional, and explain your decision.
- (4) Let $J = \langle cb a, (\ell \mu e_4)(\ell \eta e_4) \rangle$ where $\mu, \eta \in K$ and $\mu \neq \eta$. Explain why J is not admissible.
- (5) Define elements $f, g \in KQ$ and a new quiver Q' by

$$f = \frac{1}{\eta - \mu} (\ell - \mu e_4), \quad g = \frac{1}{\mu - \eta} (\ell - \eta e_4), \quad 1' \xrightarrow{w} 2' \xrightarrow{x} 3'$$

Find a K-algebra isomorphism $\theta \colon KQ' \to KQ/J$ such that $\theta(e_{4'}) = f$ and $\theta(e_{4''}) = g$.

Question 3.2. Let K be a field, and define a quiver Q and an ideal I in KQ by

$$1 \underbrace{\overset{a}{\swarrow}}_{x} 2 \underbrace{\overset{b}{\swarrow}}_{y} 3 \underbrace{\overset{c}{\swarrow}}_{z} 4 \qquad I = \langle xa - by, yb - cz, zc \rangle$$

(1) Using the Diamond Lemma, prove that the K-algebra A = KQ/I has a basis defined by the paths

$$e_1$$
, e_2 , e_3 , e_4 , a , b , c , x , y , z , ab , bc , zy , yx , ax , by , cz , abc , aby , bcz , byx , czy , zyx , $abcz$, $abyx$, $bczy$, $czyx$, $abczy$, $bczyx$, $abczyx$.

Hint: describe the length-lexicographic ordering defined by declaring that 4 > 3 > 2 > 1 and a < b < c < z < y < x. Prove that a path in Q is irreducible if and only if it is among those above.

- (2) Explain why I is admissible. Describe the projective modules P[1] and P[4] as representations of Q.
- (3) Find a quiver P with 4 vertices, and find an ideal J of KQ, such that $I \subseteq J$ and such that KQ/J is isomorphic to the preprojective algebra $\Pi(P)$.
- (4) Guess a basis for $\Pi(P)$. Write down a module over KQ/I which is not a module over $\Pi(P)$.
- (5) Find a vertex v in P such that $e_v\Pi(P)e_v\cong K\langle s,t\rangle/\langle s+t,s^2,t^3\rangle$. Hint: use a Theorem in the notes.