Question 2.1. Let K be a field, and for each pair of $r \times c$ matrices A, B over K, let

$$V[A,B] = K^c \xrightarrow{A \atop B} K^r$$

a representation of the Kronecker quiver, here denoted Q.

- (1) Prove that any homomorphism of representations θ : $V\left[\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}\right] \to V\left[\begin{pmatrix} 1&0\\0&1 \end{pmatrix}, \begin{pmatrix} 0&0\\1&0 \end{pmatrix}\right]$ is uniquely determined by an element $(a,b) \in K^2$. Compute $\ker(\theta)$ and $\operatorname{cok}(\theta)$ when (a,b) = (1,0) and (a,b) = (0,1).
- (2) Prove that any endomorphism θ of the representation $V\left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\right]$ is uniquely determined by an element $a \in K$. Prove that if $\theta^2 = \theta$ then either $\theta = 0$ or $\theta = 1$.
- (3) Let $V(\infty) = V[(0), (1)]$ and $V(\lambda) = V[(1), (\lambda)]$ for $\lambda \in K$. For $\mu \in K \cup \{\infty\}$ prove that $V(\mu)$ is not the direct sum of two non-zero representations, and prove that $V(\mu) \cong V(\eta)$ if and only if $\mu = \eta$.

Question 2.2. Provide some missing details to the Proposition at the bottom of page 12: prove that every morphism of representations gives rise to a morphism of left KQ-modules; and check that this assignment respects composition of morphisms, addition of morphisms, and identity morphisms.

Question 2.3. Let K be a field and let Q be the quiver

- (1) For each i = 1, 2, 3, 4: write down a K-basis for the projective KQ-module $P[i] = KQe_i$; identify which elements of this basis lie in $e_jP[i]$; draw a diagram of K-vector spaces depicting the representation of Q corresponding to P[i]; and calculate the dimension vector of this representation.
- (2) Write down what it means for a representation of Q to satisfy the relation cb = a. Give an example of a representation that satisfies this relation, and give an example that does not.